organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-{[(2,4-di­hy­droxy­benzyl­­idene)amino]­meth­yl}cyclo­hexane­carb­­oxy­lic acid

aDepartment of Chemistry, Institute of Natural Sciences, University of Gujrat, Gujrat 50700, Pakistan, and bDepartment of physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 November 2015; accepted 23 November 2015; online 28 November 2015)

In the title compound, C15H19NO4, the cyclo­hexyl ring adopts a chair conformation with both exocyclic C—C bonds in equatorial orientations. The dihedral angle between the basal plane of cyclo­hexyl ring and the 2,4-di­hydroxy­benzaldehyde moiety is 84.13 (13)°. An intra­molecular O—H⋯N hydrogen bonds closes an S(6) ring. In the crystal, Oc—H⋯Op (c = carb­oxy­lic acid, p = phenol) hydrogen bonds link the mol­ecules into [100] C(13) chains whereas an Op—H⋯Oc hydrogen bond generates [101] C(15) chains. Together, these bonds generate (010) sheets incorporating R22(20) loops. Weak C—H⋯O and C—H⋯π inter­actions also occur.

1. Related literature

For the crystal structures of related Schiff bases, see: Shuja et al. (2006[Shuja, S., Ali, S., Khalid, N., Labat, G. & Stoeckli-Evans, H. (2006). Acta Cryst. E62, o4786-o4788.], 2007[Shuja, S., Ali, S., Khalid, N. & Parvez, M. (2007). Acta Cryst. E63, o879-o880.]); Nisar et al. (2011[Nisar, M., Ali, I., Tahir, M. N., Qayum, M. & Marwat, I. K. (2011). Acta Cryst. E67, o1058.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H19NO4

  • Mr = 277.31

  • Monoclinic, P 21 /c

  • a = 6.2399 (17) Å

  • b = 10.222 (2) Å

  • c = 22.251 (6) Å

  • β = 90.232 (8)°

  • V = 1419.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.33 × 0.27 × 0.14 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.988

  • 10670 measured reflections

  • 2580 independent reflections

  • 1222 reflections with I > 2σ(I)

  • Rint = 0.095

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.214

  • S = 1.01

  • 2580 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.88 (5) 1.58 (5) 2.447 (4) 168 (5)
O3—H3⋯N1 0.82 1.92 2.667 (4) 150
O4—H4⋯O2ii 0.82 1.85 2.669 (4) 174
C9—H9⋯O1iii 0.93 2.42 3.338 (5) 170
C14—H14⋯O3iv 0.93 2.60 3.499 (5) 164
C5—H5⋯Cg2v 0.98 2.97 3.772 (5) 140
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is the Schiff base ligand synthesized from tranexamic acid and 2,4-dihydroxybenzaldehyde. The reported crystal structures of the Schiff bases of tranexamic acid are 2-[(4-carboxycyclohexyl)methylammoniomethyl]-6-hydroxyphenolate (Shuja et al., 2006), 4-((E)-(5-bromo-2-hydroxybenzylidene)aminomethyl)cyclohexane-1-carboxylic acid (Shuja et al., 2007) and 4-({[(E)-pyridin-3-ylmethylidene]amino}-methyl)cyclohexanecarboxylic acid (Nisar et al., 2011). The title compound is synthesized for various studies and complexation with different metals.

In (I), the basal plane A (C3/C4/C6/C7) of cyclohexyl ring and the part of 2,4-dihydroxybenzaldehyde B (C9—C14) are planar with r. m. s. deviation of 0.0101 Å and 0.0387 Å, respectively. The dihedral angle between A/B is 84.13 (13)°. The apical C-atoms C2 and C5 are almost at an equal distance of -0.680 (6) Å and 0.648 (6) Å, respectively from the plane A. The carboxylic part C (O1/C1/O2) is oriented at dihedral angles of 31.6 (3)° from planes A.

There exist S(6) ring motif due to O—H···N interactions (Table 1, Fig. 1). Each molecule is linked to four molecules due to O—H···O interactions (Table 1, Fig. 2) with C(13) and C(15) chains. C(13) chains exist from the 2-hydroxy and carboxyl hydroxy groups, where as C(15) chains are created when 4-hydroxy and carbonyl O-atom interlink. The C9—H9···O1iii [iii = -x, -y + 1, -z] interactions generate R22(20) ring motif (Table 1, Fig. 2). Similarly, the O4—H4···O2ii [ii = x + 1, -y + 3/2, z + 1/2], C9—H9···O1iii and C14—H14···O3iv [iv = -x + 1, y - 1/2, -z + 1/2] interactions complete R33(15) ring motifs. In this way, the alternate R33(15) and R22(20) ring motifs stabilize the molecules in the form of 2-dimensional network with base vectors [1 0 0], [0 0 1] in the plane (0 1 0). A C—H···π interaction (Table 1) is also involved in the packing.

Related literature top

For the crystal structures of related Schiff bases, see: Shuja et al. (2006, 2007); Nisar et al. (2011).

Experimental top

Tranexamic acid (0.786 g, 5 mmol) and 2,4-dihydroxybenzaldehyde (0.661 g, 5 mmol) were disolved in 10 ml distilled water and 10 ml ethanol separately. These mixture were mixed and refluxed for 4 h to yield orange precipitate. The precipitates obtained were filtered and dried from which light orange plates of (I) were obtained after recrystallization in ethanol after one week.

Yield: 83%

Melting point:512 K.

Refinement top

The coordinates of H-atoms of carboxylic acid were refined with constraints. The H-atoms were positioned geometrically (C–H = 0.93 - 0.98 Å, O–H = 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for hydroxy and x = 1.2 for other H-atoms.

Structure description top

The title compound (I, Fig. 1) is the Schiff base ligand synthesized from tranexamic acid and 2,4-dihydroxybenzaldehyde. The reported crystal structures of the Schiff bases of tranexamic acid are 2-[(4-carboxycyclohexyl)methylammoniomethyl]-6-hydroxyphenolate (Shuja et al., 2006), 4-((E)-(5-bromo-2-hydroxybenzylidene)aminomethyl)cyclohexane-1-carboxylic acid (Shuja et al., 2007) and 4-({[(E)-pyridin-3-ylmethylidene]amino}-methyl)cyclohexanecarboxylic acid (Nisar et al., 2011). The title compound is synthesized for various studies and complexation with different metals.

In (I), the basal plane A (C3/C4/C6/C7) of cyclohexyl ring and the part of 2,4-dihydroxybenzaldehyde B (C9—C14) are planar with r. m. s. deviation of 0.0101 Å and 0.0387 Å, respectively. The dihedral angle between A/B is 84.13 (13)°. The apical C-atoms C2 and C5 are almost at an equal distance of -0.680 (6) Å and 0.648 (6) Å, respectively from the plane A. The carboxylic part C (O1/C1/O2) is oriented at dihedral angles of 31.6 (3)° from planes A.

There exist S(6) ring motif due to O—H···N interactions (Table 1, Fig. 1). Each molecule is linked to four molecules due to O—H···O interactions (Table 1, Fig. 2) with C(13) and C(15) chains. C(13) chains exist from the 2-hydroxy and carboxyl hydroxy groups, where as C(15) chains are created when 4-hydroxy and carbonyl O-atom interlink. The C9—H9···O1iii [iii = -x, -y + 1, -z] interactions generate R22(20) ring motif (Table 1, Fig. 2). Similarly, the O4—H4···O2ii [ii = x + 1, -y + 3/2, z + 1/2], C9—H9···O1iii and C14—H14···O3iv [iv = -x + 1, y - 1/2, -z + 1/2] interactions complete R33(15) ring motifs. In this way, the alternate R33(15) and R22(20) ring motifs stabilize the molecules in the form of 2-dimensional network with base vectors [1 0 0], [0 0 1] in the plane (0 1 0). A C—H···π interaction (Table 1) is also involved in the packing.

For the crystal structures of related Schiff bases, see: Shuja et al. (2006, 2007); Nisar et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intramolecular hydrogen bonding.
[Figure 2] Fig. 2. A partial packing diagram, showig that molecules form R22(20) and R33(15) ring motifs. H atoms not involved in hydrogen-bonding interactions are omitted for clarity.
4-{[(2,4-Dihydroxybenzylidene)amino]methyl}cyclohexanecarboxylic acid top
Crystal data top
C15H19NO4F(000) = 592
Mr = 277.31Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.2399 (17) ÅCell parameters from 1222 reflections
b = 10.222 (2) Åθ = 2.7–25.3°
c = 22.251 (6) ŵ = 0.09 mm1
β = 90.232 (8)°T = 296 K
V = 1419.2 (6) Å3Plate, light orange
Z = 40.33 × 0.27 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2580 independent reflections
Radiation source: fine-focus sealed tube1222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
Detector resolution: 7.80 pixels mm-1θmax = 25.3°, θmin = 2.7°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 128
Tmin = 0.970, Tmax = 0.988l = 2727
10670 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0891P)2]
where P = (Fo2 + 2Fc2)/3
2580 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H19NO4V = 1419.2 (6) Å3
Mr = 277.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2399 (17) ŵ = 0.09 mm1
b = 10.222 (2) ÅT = 296 K
c = 22.251 (6) Å0.33 × 0.27 × 0.14 mm
β = 90.232 (8)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2580 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1222 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.988Rint = 0.095
10670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.35 e Å3
2580 reflectionsΔρmin = 0.26 e Å3
186 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0521 (6)0.7966 (3)0.09932 (14)0.0576 (10)
H10.082 (8)0.840 (5)0.132 (2)0.086*
O20.2047 (6)0.9366 (3)0.07558 (15)0.0717 (11)
O30.0919 (5)0.5993 (3)0.30231 (12)0.0465 (8)
H30.00410.60400.27490.070*
O40.7509 (5)0.3799 (3)0.33996 (14)0.0549 (9)
H40.76730.43990.36400.082*
N10.1192 (6)0.5339 (3)0.20228 (15)0.0426 (10)
C10.1074 (8)0.8366 (4)0.06681 (19)0.0441 (11)
C20.1625 (7)0.7441 (4)0.01567 (18)0.0430 (11)
H20.19760.65930.03370.052*
C30.3547 (7)0.7867 (5)0.0196 (2)0.0604 (14)
H3A0.47630.79790.00720.072*
H3B0.32560.87000.03890.072*
C40.4078 (7)0.6832 (5)0.06750 (19)0.0563 (13)
H4A0.53060.71230.09050.068*
H4B0.44640.60200.04770.068*
C50.2214 (6)0.6584 (4)0.10995 (18)0.0425 (11)
H50.19130.73940.13200.051*
C60.0247 (7)0.6216 (4)0.07511 (18)0.0498 (12)
H6A0.04700.53670.05660.060*
H6B0.09580.61420.10260.060*
C70.0299 (7)0.7226 (4)0.02570 (18)0.0470 (12)
H7A0.07060.80490.04420.056*
H7B0.15050.69130.00240.056*
C80.2828 (7)0.5528 (4)0.15533 (18)0.0454 (12)
H8A0.41720.57680.17410.054*
H8B0.30480.47080.13430.054*
C90.0253 (7)0.4422 (4)0.19944 (18)0.0418 (11)
H90.01230.38250.16810.050*
C100.1980 (7)0.4246 (4)0.23882 (18)0.0377 (11)
C110.2338 (7)0.5082 (3)0.28987 (19)0.0388 (11)
C120.4181 (7)0.4917 (4)0.32423 (18)0.0407 (11)
H120.44110.54470.35760.049*
C130.5676 (8)0.3976 (4)0.30947 (19)0.0419 (11)
C140.5317 (8)0.3123 (4)0.26061 (19)0.0460 (12)
H140.62980.24670.25160.055*
C150.3522 (7)0.3274 (4)0.2270 (2)0.0466 (12)
H150.32960.27120.19470.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.077 (3)0.055 (2)0.041 (2)0.0053 (17)0.0165 (19)0.0106 (15)
O20.078 (3)0.070 (2)0.068 (2)0.026 (2)0.014 (2)0.0257 (19)
O30.054 (2)0.0480 (18)0.0371 (18)0.0076 (16)0.0024 (15)0.0005 (14)
O40.052 (2)0.053 (2)0.059 (2)0.0024 (16)0.0121 (18)0.0066 (16)
N10.042 (2)0.049 (2)0.037 (2)0.0004 (18)0.0041 (19)0.0091 (17)
C10.051 (3)0.045 (3)0.036 (3)0.005 (2)0.002 (2)0.001 (2)
C20.044 (3)0.050 (3)0.036 (2)0.001 (2)0.003 (2)0.006 (2)
C30.049 (3)0.081 (3)0.051 (3)0.021 (3)0.004 (3)0.011 (3)
C40.031 (3)0.091 (4)0.046 (3)0.004 (3)0.006 (2)0.013 (3)
C50.039 (3)0.051 (3)0.038 (3)0.004 (2)0.001 (2)0.000 (2)
C60.045 (3)0.064 (3)0.040 (3)0.005 (2)0.002 (2)0.012 (2)
C70.038 (3)0.063 (3)0.040 (3)0.004 (2)0.002 (2)0.009 (2)
C80.041 (3)0.054 (3)0.042 (3)0.000 (2)0.005 (2)0.005 (2)
C90.049 (3)0.044 (3)0.032 (3)0.010 (2)0.003 (2)0.001 (2)
C100.044 (3)0.035 (2)0.035 (2)0.003 (2)0.003 (2)0.0015 (19)
C110.053 (3)0.027 (2)0.037 (3)0.001 (2)0.012 (2)0.0063 (19)
C120.053 (3)0.034 (2)0.035 (3)0.005 (2)0.005 (2)0.0015 (19)
C130.049 (3)0.034 (2)0.043 (3)0.006 (2)0.000 (2)0.003 (2)
C140.054 (3)0.032 (2)0.052 (3)0.002 (2)0.010 (3)0.006 (2)
C150.056 (3)0.036 (2)0.047 (3)0.005 (2)0.003 (3)0.010 (2)
Geometric parameters (Å, º) top
O1—C11.299 (5)C5—C81.528 (5)
O1—H10.88 (5)C5—H50.9800
O2—C11.205 (5)C6—C71.547 (5)
O3—C111.316 (4)C6—H6A0.9700
O3—H30.8200C6—H6B0.9700
O4—C131.340 (5)C7—H7A0.9700
O4—H40.8200C7—H7B0.9700
N1—C91.303 (5)C8—H8A0.9700
N1—C81.470 (5)C8—H8B0.9700
C1—C21.520 (5)C9—C101.398 (6)
C2—C31.501 (5)C9—H90.9300
C2—C71.526 (6)C10—C151.409 (5)
C2—H20.9800C10—C111.438 (5)
C3—C41.538 (6)C11—C121.388 (6)
C3—H3A0.9700C12—C131.381 (5)
C3—H3B0.9700C12—H120.9300
C4—C51.517 (6)C13—C141.411 (5)
C4—H4A0.9700C14—C151.353 (6)
C4—H4B0.9700C14—H140.9300
C5—C61.502 (5)C15—H150.9300
C1—O1—H1118 (3)C7—C6—H6B109.1
C11—O3—H3109.5H6A—C6—H6B107.8
C13—O4—H4109.5C2—C7—C6110.5 (3)
C9—N1—C8122.6 (4)C2—C7—H7A109.6
O2—C1—O1124.3 (4)C6—C7—H7A109.6
O2—C1—C2122.3 (4)C2—C7—H7B109.6
O1—C1—C2113.4 (4)C6—C7—H7B109.6
C3—C2—C1113.2 (4)H7A—C7—H7B108.1
C3—C2—C7110.8 (4)N1—C8—C5112.8 (3)
C1—C2—C7111.2 (3)N1—C8—H8A109.0
C3—C2—H2107.1C5—C8—H8A109.0
C1—C2—H2107.1N1—C8—H8B109.0
C7—C2—H2107.1C5—C8—H8B109.0
C2—C3—C4109.7 (4)H8A—C8—H8B107.8
C2—C3—H3A109.7N1—C9—C10126.5 (4)
C4—C3—H3A109.7N1—C9—H9116.8
C2—C3—H3B109.7C10—C9—H9116.8
C4—C3—H3B109.7C9—C10—C15119.9 (4)
H3A—C3—H3B108.2C9—C10—C11122.4 (4)
C5—C4—C3112.3 (4)C15—C10—C11117.5 (4)
C5—C4—H4A109.1O3—C11—C12121.8 (4)
C3—C4—H4A109.1O3—C11—C10119.0 (4)
C5—C4—H4B109.1C12—C11—C10119.3 (4)
C3—C4—H4B109.1C13—C12—C11120.8 (4)
H4A—C4—H4B107.9C13—C12—H12119.6
C6—C5—C4110.3 (3)C11—C12—H12119.6
C6—C5—C8111.8 (3)O4—C13—C12123.4 (4)
C4—C5—C8109.6 (3)O4—C13—C14116.1 (4)
C6—C5—H5108.3C12—C13—C14120.6 (4)
C4—C5—H5108.3C15—C14—C13118.9 (4)
C8—C5—H5108.3C15—C14—H14120.5
C5—C6—C7112.5 (3)C13—C14—H14120.5
C5—C6—H6A109.1C14—C15—C10122.8 (4)
C7—C6—H6A109.1C14—C15—H15118.6
C5—C6—H6B109.1C10—C15—H15118.6
O2—C1—C2—C33.2 (6)C8—N1—C9—C10173.6 (4)
O1—C1—C2—C3176.7 (4)N1—C9—C10—C15174.5 (4)
O2—C1—C2—C7122.3 (5)N1—C9—C10—C111.4 (6)
O1—C1—C2—C757.8 (5)C9—C10—C11—O34.4 (6)
C1—C2—C3—C4176.2 (4)C15—C10—C11—O3179.5 (3)
C7—C2—C3—C458.1 (5)C9—C10—C11—C12174.8 (4)
C2—C3—C4—C557.8 (5)C15—C10—C11—C121.3 (5)
C3—C4—C5—C655.2 (5)O3—C11—C12—C13178.3 (3)
C3—C4—C5—C8178.7 (3)C10—C11—C12—C130.8 (6)
C4—C5—C6—C753.5 (5)C11—C12—C13—O4178.0 (4)
C8—C5—C6—C7175.7 (4)C11—C12—C13—C142.8 (6)
C3—C2—C7—C656.7 (5)O4—C13—C14—C15178.2 (4)
C1—C2—C7—C6176.5 (4)C12—C13—C14—C152.5 (6)
C5—C6—C7—C254.6 (5)C13—C14—C15—C100.3 (6)
C9—N1—C8—C596.8 (5)C9—C10—C15—C14174.6 (4)
C6—C5—C8—N163.9 (5)C11—C10—C15—C141.5 (6)
C4—C5—C8—N1173.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.88 (5)1.58 (5)2.447 (4)168 (5)
O3—H3···N10.821.922.667 (4)150
O4—H4···O2ii0.821.852.669 (4)174
C9—H9···O1iii0.932.423.338 (5)170
C14—H14···O3iv0.932.603.499 (5)164
C5—H5···Cg2v0.982.973.772 (5)140
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.88 (5)1.58 (5)2.447 (4)168 (5)
O3—H3···N10.821.922.667 (4)150
O4—H4···O2ii0.821.852.669 (4)174
C9—H9···O1iii0.932.423.338 (5)170
C14—H14···O3iv0.932.603.499 (5)164
C5—H5···Cg2v0.982.973.772 (5)140
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by the Ex-Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNisar, M., Ali, I., Tahir, M. N., Qayum, M. & Marwat, I. K. (2011). Acta Cryst. E67, o1058.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShuja, S., Ali, S., Khalid, N., Labat, G. & Stoeckli-Evans, H. (2006). Acta Cryst. E62, o4786–o4788.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShuja, S., Ali, S., Khalid, N. & Parvez, M. (2007). Acta Cryst. E63, o879–o880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds