research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of bis- and hexa­kis­[(6,6′-di­hy­droxy­bi­pyridine)copper(II)] nitrate coordination complexes

aDepartment of Chemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487-0336, USA, bDepartment of Chemistry, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA, cDepartment of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790-4160, USA, and dDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: etpapish@ua.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 5 August 2015; accepted 28 October 2015; online 4 November 2015)

Two multinuclear complexes synthesized from Cu(NO3)2 and 6,6′-di­hydroxy­bipyridine (dhbp) exhibit bridging nitrate and hydroxide ligands. The dinuclear complex (6,6′-di­hydroxy­bipyridine-2κ2N,N′)[μ-6-(6-hy­droxy­pyridin-2-yl)pyridin-2-olato-1:2κ3N,N′:O2](μ-hydroxido-1:2κ2O:O′)(μ-nitrato-1:2κ2O:O′)(nitrato-1κO)dicopper(II), [Cu2(C10H7N2O2)(OH)(NO3)2(C10H8N2O2)] or [Cu(6-OH-6′-O-bpy)(NO3)(μ-OH)(μ-NO3)Cu(6,6′-dhbp)], (I), with a 2:1 ratio of nitrate to hydroxide anions and one partially deprotonated dhbp ligand, forms from a water–ethanol mixture at neutral pH. The hexa­nuclear complex bis­(μ3-bi­pyridine-2,2′-diolato-κ3O:N,N′:O′)tetra­kis­(6,6′-di­hydroxy­bipyridine-κ2N,N′)tetra­kis­(μ-hydroxido-κ2O:O′)bis­(methanol-κO)tetra­kis­(μ-nitrato-κ2O:O′)hexa­copper(II), [Cu6(C10H6N2O2)2(CH4O)2(OH)4(NO3)4(C10H8N2O2)4] or [Cu(6,6′-dhbp)(μ-NO3)2(μ-OH)Cu(6,6′-O-bpy)(μ-OH)Cu(6,6′dhbp)(CH3OH)]2, (II), with a 1:1 NO3–OH ratio and two fully protonated and fully deprotonated dhbp ligands, was obtained by methanol recrystallization of material obtained at pH 3. Complex (II) lies across an inversion center. Complexes (I) and (II) both display intra­molecular O—H⋯O hydrogen bonding. Inter­molecular O—H⋯O hydrogen bonding links symmetry-related mol­ecules forming chains along [100] for complex (I) with π-stacking along [010] and [001]. Complex (II) forms inter­molecular O—H⋯O hydrogen-bonded chains along [010] with π-stacking along [100] and [001].

1. Chemical context

Catalytic processes in nature are often facilitated by enzymes that feature transition metals in their active sites. Many of these reactions would be of tremendous inter­est could they be copied using simpler and technologically feasible conditions. One such process is water oxidation as observed in photosynthesis, and the use of transition metal complexes to mimic the reactivity of photosystem II have captured the attention of an increasing number of research groups over the last few years (Kikuchi & Tanaka, 2014[Kikuchi, T. & Tanaka, K. (2014). Eur. J. Inorg. Chem. 2014, 607-618.]; Singh & Spiccia, 2013[Singh, A. & Spiccia, L. (2013). Coord. Chem. Rev. 257, 2607-2622.]). One complex that especially caught our inter­est was [Cp*Ir(bpy)Cl]+ (Blakemore et al., 2010[Blakemore, J. D., Schley, N. D., Balcells, D., Hull, J. F., Olack, G. W., Incarvito, C. D., Eisenstein, O., Brudvig, G. W. & Crabtree, R. H. (2010). J. Am. Chem. Soc. 132, 16017-16029.]) which features a bi­pyridine (bpy) type ligand. In our research into catalytic water oxidation, we are trying to enhance proton-coupled electron transfer (PCET) in metal-complex catalysts by incorporating hydrogen-bond donors and acceptors in near proximity to the potentially catalytic metal atoms to mimic the active center of a protein–metal complex. When applying this principal to the Blakemore-type [Cp*Ir(bpy)Cl]+ complex by swapping normal bi­pyridine for di­hydroxy­bipyridine (6,6′-dhbp), we were indeed able to increase the catalytic turnover rate and control water oxidation rates by adjusting pH levels (DePasquale et al., 2013[DePasquale, J., Nieto, I., Reuther, L. E., Herbst-Gervasoni, C. J., Paul, J. J., Mochalin, V., Zeller, M., Thomas, C. M., Addison, A. W. & Papish, E. T. (2013). Inorg. Chem. 52, 9175-9183.]). The ligand 6,6′-dhbp has also been used in combination with ruthenium terpyridine (tpy) fragments to yield the complex [(tpy)Ru(6,6′-dhbp)(H2O)] (Marelius et al., 2014[Marelius, D. C., Bhagan, S., Charboneau, D. J., Schroeder, K. M., Kamdar, J. M., McGettigan, A. R., Freeman, B. J., Moore, C. E., Rheingold, A. L., Cooksy, A. L., Smith, D. K., Paul, J. J., Papish, E. T. & Grotjahn, D. B. (2014). Eur. J. Inorg. Chem. pp. 676-689.]).

[Scheme 1]
[Scheme 2]

Our focus has most recently shifted to the investigation of copper(II) bi­pyridine complexes analogous to [(bpy)Cu(OH)2]22+ (Barnett et al., 2012[Barnett, S. M., Goldberg, K. I. & Mayer, J. M. (2012). Nat. Chem. 4, 498-502.]). We isolated discrete mono-copper complexes from copper(II) sulfate with a selection of modified bi­pyridine ligands and investigated the compounds spectroscopically, crystallographically and for their catalytic water oxidation capacity (Gerlach et al., 2014[Gerlach, D. L., Bhagan, S., Cruce, A. A., Burks, D. B., Nieto, I., Truong, H. T., Kelley, S. P., Herbst-Gervasoni, C. J., Jernigan, K. L., Bowman, M. K., Pan, S., Zeller, M. & Papish, E. T. (2014). Inorg. Chem. 53, 12689-12698.]). When swapping sulfate for nitrate as the counter-ion we found that the resulting complexes are no longer mononuclear. Instead, larger aggregates with two or six copper(II) atoms formed that feature coordinating nitrate as well as hydroxyl ligands. As a result of their aggregation and the varied coordination environment of their copper atoms, these complexes are not ideally suited for homogenous water oxidation catalysis. Instead they feature quite intriguing and fascinating solid structures which we would like to describe and present.

2. Structural commentary

The dinuclear copper(II) dhbp complex (I)[link] contains nitrate as a co-ligand with both a fully protonated and a mono-deprotonated dhbp ligand (see Fig. 1[link]). Two unique 6,6′-dhbp binding modes were observed for this copper(II) nitrate complex illustrating the structural flexibility of this ligand. The [6,6′-(OH)2bpy] ligand exhibits the typically observed bi­pyridine (N,N) coordination mode through N3 and N4 binding to Cu2. A new coordination mode is observed for the mono-deprotonated (6-O-6′-OH-bpy) ligand in which it bridges two metals, through (N,N) coordination of N1,N2 to Cu1 and through bridging to Cu2 via the pyridino­late oxygen O2 [1.946 (3) Å]. The C—O bond lengths (Å) for the dhbp ligands are 1.335 (5) (C1—O1), 1.322 (5) (C11—O3), and 1.316 (4) (C20—O4) for the protonated hydroxyl groups and slightly shorter at 1.310 (4) (C10—O2) for the pyridino­late, reflecting double-bond character. Both copper atoms have a distorted square-pyramidal geometry with τ = 0.394 at Cu1 and τ = 0.119 at Cu2 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. J. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). This structure has a close Cu⋯Cu distance of 3.158 (9) Å. Complex (I)[link] features three strong intra­molecular hydrogen bonds (Jeffrey, 2003[Jeffrey, G. A. (2003). Crystallogr. Rev. 9, 135-176.]) with O⋯O distances (Å) as follows: 2.583 (4) for O1 to O6 (dhbp to nitrate) with bond angle O—H⋯O of 163 (5)°, 2.528 (4) for O4 to O2 (dhbp to deprotonated dhbp) with bond angle of 161 (5)°, and 2.510 (4) for O3 to O5 (dhbp to hydrox­yl) with bond angle of 164 (5)°. One inter­molecular hydrogen bond tethers one dimer of complex (I)[link] to the next in a head-to-tail fashion via a 2.802 (4) Å hydrogen bond from O5 to O11 (hydroxyl to nitrate) with a bond angle of 164 (4)°. Numerical details of the hydrogen bonds are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H15⋯O11i 0.75 (4) 2.08 (4) 2.802 (4) 164 (4)
O1—H1⋯O6 0.83 (2) 1.78 (2) 2.583 (4) 163 (5)
O3—H3B⋯O5 0.83 (2) 1.70 (2) 2.510 (4) 164 (5)
O4—H4B⋯O2 0.83 (2) 1.73 (2) 2.528 (4) 161 (5)
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
The numbering scheme of complex (I)[link], with donor–acceptor distances of intra­molecular hydrogen bonds colored green and of inter­molecular hydrogen bonds colored blue, represented with displacement ellipsoids at the 50% probability level. Additional symmetry-related atoms O5 and O11 were generated by translation along the a axis.

The hexa­nuclear copper(II)[link] dhbp complex (II)[link] is comprised of a dimer of the asymmetric portion of the molecule which contains three symmetry-unique copper atoms, two fully protonated and one fully deprotonated dhbp, two bridging hydroxide and two nitrate ligands (see Fig. 2[link]). This asymmetric trinuclear unit is related through an inversion center to the full hexa­nuclear complex (see Fig. 3[link]). Two copper atoms, Cu1 and Cu3, are hexa-coordinate with a distorted octa­hedral geometry whereas Cu2 is penta-coordinate with a distorted trigonal–pyramidal geometry with τ = 0.746 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. J. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). Similar to the dinuclear complex, each copper atom is coordinated by one hy­droxy­bipyridine ligand with one bridging hydroxyl ligand between Cu1 to Cu2 and Cu2 to Cu3. The di­hydroxy­bipyridine ligand bound to Cu2 (dhbp2) is doubly deprotonated with each deprotonated oxygen bound to the flanking Cu1 and Cu3 metal sites, O3 and O4, respectively. The remaining coordination sphere of Cu1 entails one dhbp (N,N bound), one bridging hydroxide to Cu2 (O14), one bridging nitrate to Cu2 (O11), and one bridging nitrate (O7) which tethers the two asymmetric units. The coordination of Cu2 entails one deprotonated dhbp (N,N bound), one bridg­ing nitrate to Cu1 (O12), and two bridging hydroxides to Cu1 and Cu3 (O14 and O13, respectively). The remaining coord­ination sphere of Cu3 entails one dhbp (N,N bound), one methanol (O15), one bridging hydroxide (O13), and one bridging nitrate (O8) which tethers the two asymmetric units. Each deprotonated oxygen of dhbp acts as an acceptor for intra­molecular hydrogen bonds from the two protonated dhbp ligands, O2 to O3 at 2.499 (3) Å (O—H⋯O bond angle of 172°), and O6 to O4 at 2.495 (3) Å (O—H⋯O bond angle of 168°) shown in Fig. 4[link]. The remaining hydroxyl groups of the protonated dhbps form strong hydrogen bonds to the bridging hydroxides where O1 donates to O14 [2.448 (3) Å, O—H⋯O bond angle of 175°] of the hydroxide bridging Cu1 and Cu2, and O5 donates to O13 [2.536 (3) Å, O—H⋯O bond angle of 170°] of the hydroxide bridging Cu2 and Cu3 (Table 2[link]). Inter­estingly, both Cu—Cu bridging hydroxides form an inter­mediate strength intra­molecular hydrogen bond to the bridging nitrate linking the two asymmetric units of the hexa­mer, with O⋯O distances (Å) of O13 and O14 to O9 being 2.763 (3) [O—H⋯O angle of 158 (4)°] and 2.738 (3) [O—H⋯O angle of 163 (4)°], respectively. C—O bond lengths of the protonated and deprotonated dhbp ligands of the hexa and dinuclear complexes are similar; C⋯O distances (Å) are 1.302 (4) and 1.312 (4) for the copper coordinating oxygen atoms, and 1.324 (4), 1.304 (4), 1.330 (4), and 1.321 (4) for the hydroxyl O atoms, with the longer of the four values belonging to the hydroxyl groups hydrogen-bound to the neighboring deprotonated dhbp ligand, and the shorter two being associated with those hydrogen-bound to the bridging hydroxyl groups. These reduced lengths reflect increased C—O double-bond character upon deprotonation. One inter­molecular hydrogen bond of inter­mediate strength connects the bound methanol to the non-coordinating oxygen of the Cu1–Cu2 bridging nitrate of another mol­ecule, O15 to O10 at 2.790 (4) Å [O—H⋯O bond angle of 107 (4)°].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O14 0.84 1.61 2.448 (3) 175
O2—H2A⋯O3 0.84 1.66 2.499 (3) 172
O5—H5⋯O13 0.84 1.70 2.536 (3) 170
O6—H6⋯O4 0.84 1.67 2.495 (3) 168
O13—H13A⋯O9i 0.83 (2) 1.98 (2) 2.763 (3) 158 (4)
O14—H14A⋯O9 0.82 (2) 1.94 (2) 2.738 (3) 163 (4)
O15—H15⋯O10ii 0.85 (5) 2.42 (5) 2.790 (4) 107 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
(a) The asymmetric unit of complex (II)[link] represented with displacement ellipsoids at the 50% probability level. H atoms not involved in hydrogen bonding are omitted for clarity. The donor–acceptor distances are shown as green for intra­molecular hydrogen bonds and shown as blue for inter­molecular hydrogen bonds (O10–O15) and inter-asymmetric unit hydrogen bonds (O9 –O13). Additional symmetry-related atoms O10 and O15 were generated by the symmetry operator 1 − x, −y, 1 − z, and O9 and O13 were generated via the inversion center 1 − x, 1 − y, 1 − z at the center of the hexa­nuclear complex. (b) The asymmetric unit of complex (II)[link] oriented to show donor–acceptor distances of intra­molecular hydrogen bonds, in green, of the protonated dhbp ligands.
[Figure 3]
Figure 3
The full hexanuclear complex (II)[link] represented with displacement ellipsoids at the 50% probability level and H atoms not involved in hydrogen bonding are omitted for clarity. The two symmetry-related units of the hexa­mer are shown in blue and green to better visualize the relation of the asymmetric unit through the inversion center.
[Figure 4]
Figure 4
The three unique copper atoms of complex (II)[link] are displayed with the coordination relevant atoms of the bound dhbp ligands and bridging hydroxides with displacement ellipsoids at the 50% probability level and the donor–acceptor distances of intra­molecular hydrogen bonds of the protonated dhbps represented in green.

Comparison of complex (I)[link] to the asymmetric component of complex (II)[link] indicates some structural similarities, Fig. 5[link]. The overall structure of complex (I)[link] can be reasonably well overlaid with the dinuclear component of (II)[link] including Cu2 and Cu3, with the main differences resulting from one nitrate ligand that is bridging between the two copper ions in complex (I)[link] being rotated so that in complex (II)[link] it instead bridges one of these copper ions to the third that has no counterpart in complex (I)[link]. The two copper ions that are bridged by a nitrate ion in complex (I)[link] are thus not bridged in complex (II)[link] (featuring a methanol mol­ecule and a nitrate bridging to the third copper instead), leading to a larger distance between the copper ions in complex (II)[link] and a different tilt angle of the fully protonated dhbp ligand (left dhbp in Fig. 5[link]).

[Figure 5]
Figure 5
Complex (I)[link] in yellow is overlaid on the Cu2—Cu3 dimer portion of the asymmetric unit of complex (II)[link] in green.

The bridging oxygen species for both complexes (I)[link] and (II)[link] are correctly assigned as hydroxides to balance the overall neutral charge of the complex. Complex (I)[link] with two CuII ions is charge balanced with one terminal and one bridging nitrate each with a single negative charge, one deprotonated hydroxyl group of dhbp, and one bridging hydroxide. The bond lengths to the bridging hydroxide from Cu1 to O5 is 1.964 (3) Å and Cu2 to O5 is 1.939 (3) Å where the proton of O5 hydrogen bonds to one acceptor. A comparable bond length is 1.946 (3) Å from Cu2 to O2 of the deprotonated dhbp ligand. The remaining oxygen atoms of the dhbp ligands are each protonated and engaged in hydrogen bonding as described above. The asymmetric unit of complex (II)[link] balances similarly with three Cu (II)[link] ions against one bridging nitrate, one nitrate bridging the two asymmetric units, two deprotonated dhbp hydroxyl groups, and two bridging hydroxides. The bond lengths to the bridging hydroxide, Cu2 and Cu3 to O13: 1.933 (2) and 1.951 (2) Å, respectively, are comparable to those observed in complex (I)[link] where each of these hydroxides have one hydrogen bond. Alternatively, the bond lengths to the bridging hydroxide are longer where Cu1 and Cu2 to O14 are 1.970 (2) and 2.062 (3) Å, respectively, likely due to the two hydrogen-bonding inter­actions described above weakening the orbital overlap with the copper and lengthening these bonds. The two copper–hydroxyl dhbp bonds in complex (II)[link] are comparable to this bond in complex (I)[link] at 1.966 (3) Å from Cu1 to O3 of dhbp and 1.960 (2) Å from Cu3 to O4 of dhbp.

3. Supra­molecular features

Some inter­molecular hydrogen-bonding inter­actions in both complexes have already been discussed, vide supra. The dinuclear complex (I)[link] also features inter­molecular parallel offset π-stacking of both dhbp ligands. The dhbp ligand coordinating to Cu1 is π-stacked with its symmetry counterpart alternating across two inversion centers, one for each ring of this dhbp ligand. These alternating ππ inter­actions form chains in the [010] direction. The pyridine ring containing N2 inter­acts with the symmetry-equivalent ring of a neighboring mol­ecule across the symmetry operation 1 − x, −y, −z at a distance of 3.894 (3) Å between the centroids of the rings. The pyridine ring containing N1 inter­acts with its symmetry-equivalent ring across the symmetry operation 1 − x, 1 − y, −z with a centroid-to-centroid distance of 3.969 (3) Å. The dhbp ligand coordinating to Cu2 also shows π-stacking via two alternating inversion-symmetry operations, forming chains along [100]. The pyridine rings containing N3 and N4 inter­cross by the symmetry operation 1 − x, −y, 1 − z where the centroid of the ring defined by N3 is at a distance of 3.604 (2) Å from the centroid of the ring defined as N4 on side of the dhbp plane with the bridging hydroxide. These rings also π-stack on the opposite face of the plane at a distance of 3.768 (2) Å from the centroid of the ring defined by N3 to N4 through the symmetry operationx, −y, 1 − z. Inter­molecular hydrogen bonding from the bridging hydroxide ligand to the terminal oxygen of the bridging nitrate ligand inter­links neighboring mol­ecules primarily along [100]. See Fig. 6[link] for extended inter­molecular inter­actions of complex (I)[link].

[Figure 6]
Figure 6
The packing arrangement of complex (I)[link] propagates along [100] via inter­molecular hydrogen bonding (blue) and in the bc plane by π-stacking of the dhbp pyridyl rings.

The hexa­nuclear complex (II)[link] progresses along [010] through two symmetry-related hydrogen bonds between O15 of the bound methanol mol­ecule of Cu3 to O10 of the Cu1–Cu2 bridging nitrate (Fig. 7[link]). The dhbp ligands are primarily within the ac plane and exhibit π-stacking but in a less regular fashion than for complex (I)[link], primarily in the [010] direction without forming chains. Off-set π-stacking of the dhbp ligand bound to Cu1 are related through the symmetry operation 1 − x, −y, −z with a centroid-to-centroid distance of 3.784 (2) Å of the pyridine rings containing N1 to the ring containing N2 and vice versa. A single ring of each dhbp ligand bound to Cu2 and Cu3 π-stack via translation at a distance of 3.551 (2) Å between the centroids of the pyridine rings defined by N3 and N5, respectively. Additionally, the Cu3 dhbp ligand π-stacks via the symmetry-equivalent ring defined by N5 of a neighboring mol­ecule across the symmetry operationx, −y, 1 − z at a centroid-to-centroid distance of 3.887 (2) Å. Close proximity occurs in plane between the pyridine ring containing N4 of the dhbp ligand bound to Cu2 at a distance of 3.818 (2) Å between C18 to C19 and vice versa across the symmetry operation 1 − x, 1 − y, −z.

[Figure 7]
Figure 7
The packing arrangement of complex (II)[link] propagates along [010] via inter­molecular hydrogen bonding (blue) and in the ac plane by π-stacking of the dhbp pyridyl rings.

4. Database survey

Although many structures have been reported featuring a hydroxide anion bridging two copper(II) ions each bound by 2,2′-bi­pyridine, no analogous structure has been reported with a 6,6′-dihy­droxy-2,2′-bi­pyridine ligand. A search of the Cambridge Structural Database (Version 5.36, May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for the substructure of copper ligated by 6-hy­droxy-2,2′-bi­pyridine, where the hydroxyl group (–OH) further ligates to a second copper atom, resulted in several structures. These primarily planar structures are reported either with co-crystallized metal-containing counter-ions: CSD refcode QEXHUX (Guo et al., 2007[Guo, H.-X., Rao, Z.-M. & Wang, Q.-H. (2007). Acta Cryst. E63, m637-m638.]), VIHZIX (Zhong, Li et al., 2013[Zhong, Z.-G., Li, J. & Song, J.-F. (2013). Z. Kristallogr. New Cryst. Struct. 228, 261-262.]), WUJGUE (Wang et al., 2009[Wang, C.-M., Zheng, S.-T. & Yang, G.-Y. (2009). J. Clust Sci. 20, 489-501.]), XIQGAH (Zhong, Feng et al., 2013[Zhong, Z.-G., Feng, Y.-Q. & Zhang, P. (2013). Acta Cryst. C69, 833-836.]); or with a bridging mol­ecule linking two of these planar copper dimers: IYOWOI (He & Lu, 2004[He, X. & Lu, C.-Z. (2004). Z. Anorg. Allg. Chem. 630, 756-759.]), MISPUZ (Zhang, Tong & Chen, 2002[Zhang, X.-M., Tong, M.-L. & Chen, X.-M. (2002). Angew. Chem. Int. Ed. 41, 1029-1031.]), REMMAY (Luo et al., 2006[Luo, F., Che, Y.-X. & Zheng, J.-M. (2006). Inorg. Chem. Commun. 9, 848-851.]), SESDAW (Sun et al., 2006[Sun, Y.-H., Yu, J.-H., Jin, X.-J., Song, J.-F., Xu, J.-Q. & Ye, L. (2006). Inorg. Chem. Commun. 9, 1087-1090.]), XOVTEH (Zhang, Tong, Gong et al., 2002[Zhang, X.-M., Tong, M.-L., Gong, M.-L., Lee, H.-K., Luo, L., Li, K.-F., Tong, Y.-X. & Chen, X.-M. (2002). Chem. Eur. J. 8, 3187-3194.]).

The most relevant structure reported in the database contains a dinuclear copper 6-hy­droxy­bipyridine complex with a nitrate ligand bridging the copper ions, IBOXAZ (Zhang et al., 2004[Zhang, J.-P., Han, Z.-B., Chen, X.-M. & Xuebao, W. H. (2004). Chin. J. Inorg. Chem. 20, 1213-1216.]). No examples of hy­droxy­bipyridine-ligated copper compounds with oxide or hydroxide bridges have been reported.

5. Synthesis and crystallization

The neutral copper dinuclear complex (I)[link] Copper(II)[link] nitrate trihydrate (128 mg, 0.530 mmol) and 6,6′-dhbp (100 mg, 0.531 mmol) were combined in 50/50 ethanol and water solvent (10 mL) and stirred two days. Green plate crystals were grown from an ethanol solution in a freezer. This complex was analyzed exclusively by X-ray diffraction.

The neutral copper hexanuclear complex (II)[link] Copper(II)[link] nitrate hemi­penta­hydrate (124 mg, 0.533 mmol) and 6,6′-dhbp (100 mg, 0.531 mmol) were combined in 10 mL of 0.1 M NaOAc adjusted to pH 3 by acetic acid. The mixture was stirred for three days at room temperature. The resulting solution was dried under high vacuum and recrystallized twice from methanol to afford green prismatic crystals. This complex was analyzed exclusively by x-ray diffraction.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [Cu2(C10H7N2O2)(OH)(NO3)2(C10H8N2O2)] [Cu6(C10H6N2O2)2(CH4O)2(OH)4(NO3)4(C10H8N2O2)4]
Mr 643.47 1886.53
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 7.358 (2), 10.447 (3), 15.744 (4) 10.2135 (7), 13.3707 (8), 14.0565 (10)
α, β, γ (°) 77.610 (4), 78.927 (4), 69.938 (4) 64.591 (4), 75.659 (5), 82.262 (5)
V3) 1101.1 (5) 1679.0 (2)
Z 2 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.01 1.97
Crystal size (mm) 0.17 × 0.12 × 0.03 0.26 × 0.22 × 0.07
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Version 2009.7-0. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.605, 0.746 0.622, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 14887, 6413, 4302 20719, 10920, 7847
Rint 0.050 0.068
(sin θ/λ)max−1) 0.717 0.746
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.125, 1.04 0.044, 0.119, 1.00
No. of reflections 6413 10920
No. of parameters 365 529
No. of restraints 3 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.11, −0.69 0.90, −1.08
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Version 2009.7-0. Bruker AXS Inc., Madison, Wisconsin, USA.], 2012[Bruker (2012). APEX2 and SAINT. Version 2012.4-3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2012 and SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

The crystal under investigation for complex (II)[link] was found to be split with two major domains not related by any obvious twin operation. The orientation matrices for the two components were identified using the program Cell Now (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), with the two components being related by a 2.9° rotation about either the reciprocal axis 1.000 − 0.363 − 0.339 or the real axis 1.000 − 0.178 − 0.265. The two components were integrated using SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Version 2012.4-3. Bruker AXS Inc., Madison, Wisconsin, USA.]), resulting in the following statistics: 17535 data (5769 unique) involve domain 1 only, mean I/σ 8.6, 17271 data (5689 unique) involve domain 2 only, mean I/σ 8.2, 34813 data (9811 unique) involve 2 domains, mean I/sigma 9.5, 11 data (11 unique) involve 3 domains, mean I/σ 8.7 and 4 data (2 unique) involve 4 domains, mean I/σ 57.6 The exact correlation matrix as identified by the integration program was found to be 1.00336 0.02923 −0.02720, −0.01894 1.02272 −0.04903, 0.02520 0.05747 0.97055. The data were corrected for absorption using TWINABS (Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.]), and the structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the HKLF5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.486 (1). The Rint value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.]).

C- and O-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: aromatic C—Harom = 0.95 Å with Uiso(H) = 1.2Ueq(C), C—Hmeth­yl = 0.98 Å with Uiso(H) = 1.5Ueq(C). O—H were refined for complex (I)[link] and for hydroxide and methanol H atoms of complex (II)[link], with O—H distances restrained to 0.84 (2) Å for O1, O3 and O4 of complex (I)[link], and O13 and O14 of complex (II)[link] yielding O—H distances of 0.748–0.828 Å. The remainder of the hydroxyl atoms were placed in calculated positions with O—H = 0.84 Å, and all Uiso(HOH) were set to 1.5Ueq(O).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009) for (I); APEX2 (Bruker, 2012) for (II). Cell refinement: SAINT (Bruker, 2009) for (I); SAINT (Bruker, 2012) for (II). Data reduction: SAINT (Bruker, 2009) for (I); SAINT (Bruker, 2012) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011) for (I); SHELXL2012 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011) for (II). For both compounds, molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) (6,6'-Dihydroxybipyridine-2κ2N,N')[µ-6-(6-hydroxypyridin-2-yl)pyridin-2-olato-1:2κ3N,N':O2](µ-hydroxido-1:2κ2O:O')(µ-nitrato-1:2κ2O:O')(nitrato-1κO)dicopper(II) top
Crystal data top
[Cu2(C10H7N2O2)(OH)(NO3)2(C10H8N2O2)]Z = 2
Mr = 643.47F(000) = 648
Triclinic, P1Dx = 1.941 Mg m3
a = 7.358 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.447 (3) ÅCell parameters from 390 reflections
c = 15.744 (4) Åθ = 2.3–24.8°
α = 77.610 (4)°µ = 2.01 mm1
β = 78.927 (4)°T = 100 K
γ = 69.938 (4)°Plate, green
V = 1101.1 (5) Å30.17 × 0.12 × 0.03 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4302 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
ω scansθmax = 30.7°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.605, Tmax = 0.746k = 1414
14887 measured reflectionsl = 2221
6413 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: mixed
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1969P]
where P = (Fo2 + 2Fc2)/3
6413 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 1.11 e Å3
3 restraintsΔρmin = 0.69 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2710 (5)0.4849 (4)0.0150 (3)0.0185 (8)
C20.2962 (6)0.5280 (4)0.1049 (3)0.0216 (8)
H20.22060.61680.13050.026*
C30.4322 (6)0.4401 (4)0.1562 (3)0.0220 (8)
H30.45210.46700.21800.026*
C40.5418 (5)0.3099 (4)0.1166 (2)0.0190 (8)
H40.63790.24800.15100.023*
C50.5083 (5)0.2731 (4)0.0271 (2)0.0144 (7)
C60.6100 (5)0.1354 (4)0.0196 (2)0.0147 (7)
C70.7447 (5)0.0339 (4)0.0228 (3)0.0190 (8)
H70.78050.05110.08450.023*
C80.8294 (5)0.0964 (4)0.0263 (3)0.0187 (8)
H80.92440.16760.00180.022*
C90.7735 (5)0.1193 (4)0.1146 (3)0.0174 (8)
H90.82900.20650.14860.021*
C100.6315 (5)0.0113 (4)0.1552 (2)0.0140 (7)
C110.2728 (5)0.2782 (4)0.4525 (2)0.0169 (7)
C120.1854 (5)0.3244 (4)0.5324 (3)0.0186 (8)
H120.16600.41650.53920.022*
C130.1285 (5)0.2346 (4)0.6005 (3)0.0201 (8)
H130.07050.26380.65530.024*
C140.1560 (5)0.0991 (4)0.5894 (2)0.0175 (7)
H140.11770.03550.63620.021*
C150.2398 (5)0.0608 (4)0.5090 (2)0.0138 (7)
H150.584 (6)0.211 (4)0.257 (3)0.016 (12)*
C160.2731 (5)0.0791 (4)0.4908 (2)0.0147 (7)
C170.2193 (5)0.1803 (4)0.5517 (2)0.0164 (7)
H170.15680.16220.60850.020*
C180.2577 (5)0.3093 (4)0.5287 (2)0.0172 (7)
H180.22320.38060.57020.021*
C190.3449 (5)0.3331 (4)0.4465 (3)0.0191 (8)
H190.37040.42040.42990.023*
C200.3961 (5)0.2269 (4)0.3869 (2)0.0172 (7)
N10.3732 (4)0.3613 (3)0.0244 (2)0.0156 (6)
N20.5553 (4)0.1137 (3)0.10808 (19)0.0129 (6)
N30.2987 (4)0.1489 (3)0.44065 (19)0.0126 (6)
N40.3616 (4)0.1019 (3)0.40843 (19)0.0139 (6)
N50.0443 (5)0.4545 (4)0.2519 (2)0.0217 (7)
N60.0449 (4)0.1339 (3)0.2131 (2)0.0149 (6)
O10.1390 (4)0.5753 (3)0.03228 (18)0.0244 (6)
H10.140 (7)0.552 (5)0.0859 (14)0.037*
O20.5740 (4)0.0383 (3)0.23919 (17)0.0181 (5)
O30.3321 (4)0.3654 (3)0.38846 (17)0.0194 (6)
H3B0.380 (6)0.334 (5)0.3421 (19)0.029*
O40.4801 (4)0.2525 (3)0.30803 (18)0.0217 (6)
H4B0.532 (6)0.195 (4)0.280 (3)0.033*
O50.4755 (4)0.2277 (3)0.26553 (17)0.0159 (5)
O60.1872 (4)0.4522 (3)0.19101 (18)0.0208 (6)
O70.0328 (4)0.3455 (3)0.29893 (19)0.0294 (7)
O80.0797 (4)0.5672 (3)0.2623 (2)0.0367 (8)
O90.1131 (4)0.2090 (3)0.15141 (17)0.0205 (6)
O100.1392 (4)0.0637 (3)0.2725 (2)0.0290 (7)
O110.1223 (4)0.1285 (3)0.21196 (19)0.0260 (7)
Cu10.36658 (6)0.27682 (5)0.15407 (3)0.01478 (12)
Cu20.41333 (6)0.06500 (5)0.33097 (3)0.01386 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0167 (17)0.0172 (19)0.024 (2)0.0082 (15)0.0056 (15)0.0011 (16)
C20.0243 (19)0.0138 (19)0.027 (2)0.0079 (15)0.0079 (16)0.0036 (16)
C30.027 (2)0.023 (2)0.0168 (19)0.0125 (17)0.0023 (15)0.0030 (16)
C40.0224 (19)0.020 (2)0.0154 (18)0.0094 (16)0.0001 (15)0.0017 (15)
C50.0112 (15)0.0162 (19)0.0183 (18)0.0070 (14)0.0005 (13)0.0045 (15)
C60.0107 (15)0.0180 (19)0.0172 (18)0.0076 (14)0.0024 (13)0.0010 (15)
C70.0167 (17)0.020 (2)0.0198 (19)0.0075 (15)0.0012 (14)0.0027 (16)
C80.0131 (16)0.0170 (19)0.025 (2)0.0026 (14)0.0009 (14)0.0059 (16)
C90.0140 (16)0.0138 (18)0.025 (2)0.0032 (14)0.0032 (14)0.0045 (15)
C100.0134 (16)0.0148 (18)0.0160 (18)0.0070 (14)0.0003 (13)0.0045 (14)
C110.0169 (17)0.0137 (18)0.0212 (19)0.0045 (14)0.0071 (14)0.0013 (15)
C120.0181 (17)0.0148 (19)0.024 (2)0.0034 (14)0.0059 (15)0.0064 (16)
C130.0196 (18)0.024 (2)0.0180 (19)0.0063 (16)0.0011 (14)0.0077 (16)
C140.0155 (17)0.019 (2)0.0184 (18)0.0062 (15)0.0027 (14)0.0034 (15)
C150.0117 (15)0.0145 (18)0.0155 (17)0.0044 (13)0.0026 (13)0.0015 (14)
C160.0110 (15)0.0150 (18)0.0178 (18)0.0027 (13)0.0032 (13)0.0028 (14)
C170.0165 (17)0.0191 (19)0.0142 (17)0.0083 (15)0.0011 (13)0.0003 (15)
C180.0154 (17)0.0164 (19)0.0203 (19)0.0080 (14)0.0030 (14)0.0014 (15)
C190.0198 (18)0.0096 (18)0.028 (2)0.0055 (14)0.0022 (15)0.0036 (15)
C200.0170 (17)0.0154 (19)0.0189 (19)0.0037 (14)0.0045 (14)0.0027 (15)
N10.0141 (14)0.0139 (15)0.0193 (16)0.0065 (12)0.0032 (12)0.0006 (13)
N20.0117 (13)0.0128 (15)0.0139 (15)0.0040 (11)0.0006 (11)0.0025 (12)
N30.0120 (13)0.0114 (15)0.0143 (14)0.0028 (11)0.0021 (11)0.0030 (12)
N40.0126 (14)0.0133 (15)0.0156 (15)0.0035 (11)0.0029 (11)0.0020 (12)
N50.0220 (16)0.0194 (18)0.0257 (18)0.0022 (14)0.0097 (14)0.0092 (15)
N60.0140 (14)0.0127 (15)0.0178 (16)0.0039 (12)0.0004 (12)0.0050 (13)
O10.0309 (15)0.0146 (14)0.0209 (15)0.0007 (12)0.0024 (12)0.0024 (12)
O20.0208 (13)0.0147 (13)0.0151 (13)0.0051 (10)0.0007 (10)0.0016 (11)
O30.0295 (15)0.0160 (14)0.0154 (13)0.0103 (11)0.0021 (11)0.0036 (11)
O40.0325 (15)0.0169 (14)0.0171 (14)0.0110 (12)0.0049 (11)0.0076 (11)
O50.0151 (13)0.0151 (13)0.0186 (14)0.0067 (11)0.0021 (10)0.0019 (11)
O60.0240 (14)0.0142 (14)0.0225 (14)0.0041 (11)0.0024 (11)0.0027 (11)
O70.0319 (16)0.0290 (17)0.0274 (16)0.0131 (13)0.0039 (13)0.0061 (14)
O80.0320 (17)0.0305 (18)0.0410 (19)0.0030 (14)0.0008 (14)0.0180 (15)
O90.0215 (13)0.0256 (15)0.0160 (13)0.0125 (12)0.0007 (10)0.0013 (12)
O100.0244 (15)0.0310 (17)0.0330 (17)0.0126 (13)0.0151 (13)0.0083 (14)
O110.0140 (13)0.0296 (16)0.0354 (17)0.0104 (12)0.0033 (12)0.0012 (14)
Cu10.0146 (2)0.0141 (2)0.0145 (2)0.00367 (17)0.00074 (16)0.00225 (18)
Cu20.0155 (2)0.0128 (2)0.0137 (2)0.00583 (17)0.00062 (16)0.00191 (17)
Geometric parameters (Å, º) top
C1—O11.335 (5)C15—C161.478 (5)
C1—N11.336 (5)C16—N41.366 (4)
C1—C21.388 (6)C16—C171.378 (5)
C2—C31.369 (6)C17—C181.391 (5)
C2—H20.9500C17—H170.9500
C3—C41.402 (5)C18—C191.363 (5)
C3—H30.9500C18—H180.9500
C4—C51.376 (5)C19—C201.399 (5)
C4—H40.9500C19—H190.9500
C5—N11.370 (4)C20—O41.316 (4)
C5—C61.480 (5)C20—N41.346 (5)
C6—N21.366 (5)N1—Cu12.042 (3)
C6—C71.372 (5)N2—Cu11.969 (3)
C7—C81.411 (5)N3—Cu22.011 (3)
C7—H70.9500N4—Cu22.009 (3)
C8—C91.366 (5)N5—O81.238 (4)
C8—H80.9500N5—O71.239 (4)
C9—C101.420 (5)N5—O61.276 (4)
C9—H90.9500N6—O101.225 (4)
C10—O21.310 (4)N6—O91.251 (4)
C10—N21.346 (5)N6—O111.254 (4)
C11—O31.322 (5)O1—H10.827 (19)
C11—N31.347 (5)O2—Cu21.946 (3)
C11—C121.402 (5)O3—H3B0.829 (19)
C12—C131.367 (5)O4—H4B0.827 (19)
C12—H120.9500O5—Cu21.939 (3)
C13—C141.404 (5)O5—Cu11.964 (3)
C13—H130.9500O5—H150.75 (4)
C14—C151.374 (5)O6—Cu11.985 (3)
C14—H140.9500O9—Cu12.221 (3)
C15—N31.365 (5)O10—Cu22.377 (3)
O1—C1—N1120.4 (3)C18—C19—C20119.0 (4)
O1—C1—C2116.4 (3)C18—C19—H19120.5
N1—C1—C2123.2 (4)C20—C19—H19120.5
C3—C2—C1118.7 (4)O4—C20—N4120.3 (3)
C3—C2—H2120.7O4—C20—C19117.8 (3)
C1—C2—H2120.7N4—C20—C19121.9 (3)
C2—C3—C4119.3 (4)C1—N1—C5118.0 (3)
C2—C3—H3120.3C1—N1—Cu1130.4 (3)
C4—C3—H3120.3C5—N1—Cu1111.6 (2)
C5—C4—C3119.1 (4)C10—N2—C6119.6 (3)
C5—C4—H4120.5C10—N2—Cu1126.3 (2)
C3—C4—H4120.5C6—N2—Cu1114.1 (2)
N1—C5—C4121.7 (3)C11—N3—C15118.6 (3)
N1—C5—C6115.6 (3)C11—N3—Cu2127.8 (2)
C4—C5—C6122.7 (3)C15—N3—Cu2113.6 (2)
N2—C6—C7121.8 (3)C20—N4—C16118.6 (3)
N2—C6—C5115.4 (3)C20—N4—Cu2127.7 (2)
C7—C6—C5122.7 (3)C16—N4—Cu2113.7 (2)
C6—C7—C8119.1 (3)O8—N5—O7121.6 (4)
C6—C7—H7120.4O8—N5—O6118.6 (4)
C8—C7—H7120.4O7—N5—O6119.8 (3)
C9—C8—C7119.4 (3)O10—N6—O9121.6 (3)
C9—C8—H8120.3O10—N6—O11119.9 (3)
C7—C8—H8120.3O9—N6—O11118.5 (3)
C8—C9—C10119.3 (4)C1—O1—H1114 (3)
C8—C9—H9120.4C10—O2—Cu2137.1 (2)
C10—C9—H9120.4C11—O3—H3B114 (3)
O2—C10—N2121.2 (3)C20—O4—H4B114 (3)
O2—C10—C9117.9 (3)Cu2—O5—Cu1108.02 (13)
N2—C10—C9120.9 (3)Cu2—O5—H15108 (3)
O3—C11—N3120.3 (3)Cu1—O5—H15110 (3)
O3—C11—C12117.9 (3)N5—O6—Cu1121.9 (2)
N3—C11—C12121.8 (3)N6—O9—Cu1124.9 (2)
C13—C12—C11118.9 (4)N6—O10—Cu2135.9 (2)
C13—C12—H12120.5O5—Cu1—N292.97 (12)
C11—C12—H12120.5O5—Cu1—O689.59 (11)
C12—C13—C14119.9 (4)N2—Cu1—O6174.53 (12)
C12—C13—H13120.0O5—Cu1—N1150.90 (12)
C14—C13—H13120.0N2—Cu1—N182.98 (12)
C15—C14—C13118.3 (4)O6—Cu1—N192.44 (12)
C15—C14—H14120.8O5—Cu1—O9116.83 (10)
C13—C14—H14120.8N2—Cu1—O992.96 (11)
N3—C15—C14122.4 (3)O6—Cu1—O990.19 (11)
N3—C15—C16115.4 (3)N1—Cu1—O992.20 (11)
C14—C15—C16122.2 (3)O5—Cu2—O289.00 (11)
N4—C16—C17121.7 (3)O5—Cu2—N4174.31 (12)
N4—C16—C15115.1 (3)O2—Cu2—N493.75 (11)
C17—C16—C15123.2 (3)O5—Cu2—N394.05 (12)
C16—C17—C18119.0 (3)O2—Cu2—N3167.14 (11)
C16—C17—H17120.5N4—Cu2—N382.20 (12)
C18—C17—H17120.5O5—Cu2—O10104.96 (11)
C19—C18—C17119.8 (3)O2—Cu2—O1086.67 (11)
C19—C18—H18120.1N4—Cu2—O1080.20 (11)
C17—C18—H18120.1N3—Cu2—O10104.54 (11)
O1—C1—C2—C3178.8 (3)C4—C5—N1—C11.1 (5)
N1—C1—C2—C30.0 (6)C6—C5—N1—C1177.1 (3)
C1—C2—C3—C40.2 (6)C4—C5—N1—Cu1178.2 (3)
C2—C3—C4—C50.7 (6)C6—C5—N1—Cu13.6 (4)
C3—C4—C5—N11.2 (5)O2—C10—N2—C6176.0 (3)
C3—C4—C5—C6176.9 (3)C9—C10—N2—C62.4 (5)
N1—C5—C6—N20.3 (5)O2—C10—N2—Cu14.4 (5)
C4—C5—C6—N2177.8 (3)C9—C10—N2—Cu1177.2 (3)
N1—C5—C6—C7177.9 (3)C7—C6—N2—C101.5 (5)
C4—C5—C6—C70.3 (6)C5—C6—N2—C10176.0 (3)
N2—C6—C7—C80.2 (5)C7—C6—N2—Cu1178.1 (3)
C5—C6—C7—C8177.5 (3)C5—C6—N2—Cu14.3 (4)
C6—C7—C8—C91.0 (5)O3—C11—N3—C15178.4 (3)
C7—C8—C9—C100.1 (5)C12—C11—N3—C150.8 (5)
C8—C9—C10—O2176.8 (3)O3—C11—N3—Cu22.6 (5)
C8—C9—C10—N21.6 (5)C12—C11—N3—Cu2178.2 (3)
O3—C11—C12—C13177.9 (3)C14—C15—N3—C110.3 (5)
N3—C11—C12—C131.3 (5)C16—C15—N3—C11180.0 (3)
C11—C12—C13—C140.7 (6)C14—C15—N3—Cu2179.4 (3)
C12—C13—C14—C150.3 (5)C16—C15—N3—Cu20.9 (4)
C13—C14—C15—N30.8 (5)O4—C20—N4—C16179.6 (3)
C13—C14—C15—C16179.5 (3)C19—C20—N4—C160.3 (5)
N3—C15—C16—N41.1 (4)O4—C20—N4—Cu22.8 (5)
C14—C15—C16—N4178.6 (3)C19—C20—N4—Cu2177.1 (3)
N3—C15—C16—C17178.7 (3)C17—C16—N4—C200.0 (5)
C14—C15—C16—C171.6 (5)C15—C16—N4—C20179.8 (3)
N4—C16—C17—C180.6 (5)C17—C16—N4—Cu2177.3 (3)
C15—C16—C17—C18179.6 (3)C15—C16—N4—Cu22.5 (4)
C16—C17—C18—C190.9 (5)N2—C10—O2—Cu29.7 (5)
C17—C18—C19—C200.7 (6)C9—C10—O2—Cu2171.9 (3)
C18—C19—C20—O4180.0 (3)O8—N5—O6—Cu1168.6 (3)
C18—C19—C20—N40.1 (6)O7—N5—O6—Cu111.6 (5)
O1—C1—N1—C5179.2 (3)O10—N6—O9—Cu118.1 (5)
C2—C1—N1—C50.4 (5)O11—N6—O9—Cu1163.9 (2)
O1—C1—N1—Cu10.2 (5)O9—N6—O10—Cu220.0 (5)
C2—C1—N1—Cu1178.6 (3)O11—N6—O10—Cu2162.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H15···O11i0.75 (4)2.08 (4)2.802 (4)164 (4)
O1—H1···O60.83 (2)1.78 (2)2.583 (4)163 (5)
O3—H3B···O50.83 (2)1.70 (2)2.510 (4)164 (5)
O4—H4B···O20.83 (2)1.73 (2)2.528 (4)161 (5)
Symmetry code: (i) x+1, y, z.
(II) Bis(µ3-bipyridine-2,2'-diolato-κ3O:N,N':O')tetrakis(6,6'-dihydroxybipyridine-κ2N,N')tetrakis(µ-hydroxido-κ2O:O')bis(methanol-κO)tetrakis(µ-nitrato-κ2O:O')hexacopper(II) top
Crystal data top
[Cu6(C10H6N2O2)2(CH4O)2(OH)4(NO3)4(C10H8N2O2)4]Z = 1
Mr = 1886.53F(000) = 954
Triclinic, P1Dx = 1.866 Mg m3
a = 10.2135 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.3707 (8) ÅCell parameters from 1117 reflections
c = 14.0565 (10) Åθ = 3.0–29.1°
α = 64.591 (4)°µ = 1.97 mm1
β = 75.659 (5)°T = 100 K
γ = 82.262 (5)°Prism, green
V = 1679.0 (2) Å30.26 × 0.22 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
7847 reflections with I > 2σ(I)
φ and ω scansRint = 0.068
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
θmax = 32.0°, θmin = 1.6°
Tmin = 0.622, Tmax = 0.746h = 1414
20719 measured reflectionsk = 1619
10920 independent reflectionsl = 020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
10920 reflections(Δ/σ)max = 0.001
529 parametersΔρmax = 0.90 e Å3
2 restraintsΔρmin = 1.08 e Å3
Special details top

Experimental. The crystal under investigation was found to be split with two major domains not related by any obvious twin operation. The orientation matrices for the two components were identified using the program Cell_Now, with the two components being related by a 2.9 degrees rotation about either the reciprocal axis 1.000 - 0.363 - 0.339 or the real axis 1.000 - 0.178 - 0.265 degree. The two components were integrated using Saint, resulting in in the following statistics:

17535 data (5769 unique) involve domain 1 only, mean I/sigma 8.6 17271 data (5689 unique) involve domain 2 only, mean I/sigma 8.2 34813 data (9811 unique) involve 2 domains, mean I/sigma 9.5 11 data (11 unique) involve 3 domains, mean I/sigma 8.7 4 data (2 unique) involve 4 domains, mean I/sigma 57.6

The exact correlation matrix was identified by the integration program was found to be

Transforms h1.1(1)->h1.2(2) 1.00336 0.02923 - 0.02720 - 0.01894 1.02272 - 0.04903 0.02520 0.05747 0.97055.

The data were corrected for absorption using twinabs, and the structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.486 (1).

The Rint value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS (Sheldrick, 2009)).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.41028 (4)0.22335 (3)0.75942 (3)0.01004 (9)
Cu20.48719 (4)0.28424 (3)0.49234 (3)0.01009 (9)
Cu30.79681 (4)0.28550 (3)0.32300 (3)0.00978 (9)
O10.6858 (2)0.3553 (2)0.66647 (18)0.0149 (5)
H10.61870.34980.64470.022*
O20.1351 (2)0.0820 (2)0.89259 (19)0.0210 (6)
H2A0.17690.11330.82840.031*
O30.2766 (2)0.17719 (19)0.70803 (17)0.0108 (4)
O40.6689 (2)0.3846 (2)0.23790 (17)0.0154 (5)
O50.8343 (2)0.1430 (2)0.56936 (18)0.0162 (5)
H50.77650.18770.53820.024*
O60.8053 (2)0.3901 (2)0.06196 (18)0.0174 (5)
H60.75040.38590.11890.026*
O70.2336 (2)0.3684 (2)0.77329 (18)0.0169 (5)
O80.1064 (2)0.5167 (2)0.71865 (19)0.0172 (5)
O90.2815 (2)0.49085 (19)0.60670 (18)0.0166 (5)
O100.5101 (3)0.0537 (2)0.6858 (2)0.0244 (6)
O110.5594 (2)0.0977 (2)0.68885 (19)0.0160 (5)
O120.4932 (2)0.1038 (2)0.55029 (19)0.0164 (5)
O130.6824 (2)0.28679 (18)0.45612 (17)0.0103 (4)
H13A0.695 (4)0.347 (2)0.455 (3)0.015*
O140.4843 (2)0.33310 (19)0.61349 (17)0.0105 (4)
H14A0.432 (3)0.387 (2)0.598 (3)0.016*
O150.7227 (3)0.1269 (2)0.3314 (2)0.0262 (6)
H150.647 (4)0.121 (4)0.375 (4)0.039*
N10.5541 (2)0.2397 (2)0.8244 (2)0.0105 (5)
N20.3295 (3)0.1288 (2)0.9159 (2)0.0111 (5)
N30.2886 (2)0.2882 (2)0.5293 (2)0.0104 (5)
N40.4511 (2)0.3683 (2)0.3394 (2)0.0102 (5)
N50.9518 (3)0.2047 (2)0.3927 (2)0.0110 (5)
N60.9403 (3)0.3065 (2)0.1862 (2)0.0108 (5)
N70.2064 (3)0.4580 (2)0.7012 (2)0.0125 (5)
N80.5208 (3)0.0495 (2)0.6423 (2)0.0134 (6)
C10.6682 (3)0.2959 (3)0.7701 (3)0.0132 (6)
C20.7689 (3)0.2919 (3)0.8239 (3)0.0148 (7)
H20.85020.33030.78480.018*
C30.7495 (3)0.2321 (3)0.9335 (3)0.0174 (7)
H30.81760.22870.97030.021*
C40.6293 (3)0.1761 (3)0.9908 (3)0.0168 (7)
H40.61310.13591.06680.020*
C50.5354 (3)0.1810 (3)0.9336 (3)0.0115 (6)
C60.4062 (3)0.1227 (3)0.9856 (3)0.0124 (7)
C70.3656 (3)0.0679 (3)1.0958 (3)0.0157 (7)
H70.42100.06441.14230.019*
C80.2402 (3)0.0176 (3)1.1371 (3)0.0177 (7)
H80.21000.02141.21270.021*
C90.1613 (3)0.0243 (3)1.0695 (3)0.0173 (7)
H90.07500.00791.09710.021*
C100.2101 (3)0.0798 (3)0.9580 (3)0.0148 (7)
C110.2146 (3)0.2432 (3)0.6310 (3)0.0118 (6)
C120.0747 (3)0.2651 (3)0.6532 (3)0.0147 (7)
H120.02300.23280.72480.018*
C130.0135 (3)0.3340 (3)0.5699 (3)0.0162 (7)
H130.08060.35150.58410.019*
C140.0893 (3)0.3782 (3)0.4647 (3)0.0134 (6)
H140.04800.42490.40630.016*
C150.2260 (3)0.3523 (3)0.4478 (3)0.0107 (6)
C160.3161 (3)0.3916 (3)0.3392 (3)0.0107 (6)
C170.2675 (3)0.4448 (3)0.2472 (3)0.0136 (7)
H170.17280.45560.25060.016*
C180.3584 (3)0.4833 (3)0.1480 (3)0.0170 (7)
H180.32680.52150.08290.020*
C190.4939 (3)0.4648 (3)0.1461 (3)0.0155 (7)
H190.55750.49260.07950.019*
C200.5395 (3)0.4043 (3)0.2436 (2)0.0124 (6)
C210.9476 (3)0.1470 (3)0.4981 (3)0.0132 (6)
C221.0618 (3)0.0891 (3)0.5372 (3)0.0150 (7)
H221.05610.04730.61240.018*
C231.1811 (3)0.0938 (3)0.4656 (3)0.0163 (7)
H231.25980.05620.49060.020*
C241.1870 (3)0.1542 (3)0.3551 (3)0.0152 (7)
H241.26930.15770.30440.018*
C251.0716 (3)0.2084 (3)0.3209 (3)0.0120 (6)
C261.0664 (3)0.2698 (3)0.2063 (3)0.0121 (6)
C271.1783 (3)0.2865 (3)0.1232 (3)0.0169 (7)
H271.26580.26390.13850.020*
C281.1625 (3)0.3365 (3)0.0176 (3)0.0175 (7)
H281.23910.34710.03980.021*
C291.0370 (3)0.3706 (3)0.0045 (3)0.0165 (7)
H291.02430.40340.07650.020*
C300.9276 (3)0.3557 (3)0.0827 (3)0.0136 (7)
C310.7846 (4)0.0935 (4)0.2443 (3)0.0308 (9)
H31A0.88290.10030.22820.046*
H31B0.74920.14130.18000.046*
H31C0.76360.01640.26590.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00874 (18)0.0129 (2)0.00790 (18)0.00220 (14)0.00128 (13)0.00351 (15)
Cu20.00726 (17)0.0145 (2)0.00810 (18)0.00063 (13)0.00178 (13)0.00408 (15)
Cu30.00937 (18)0.0123 (2)0.00782 (18)0.00178 (14)0.00247 (13)0.00451 (15)
O10.0088 (10)0.0228 (14)0.0133 (11)0.0060 (9)0.0021 (8)0.0062 (10)
O20.0149 (12)0.0354 (17)0.0115 (12)0.0138 (11)0.0006 (9)0.0061 (12)
O30.0098 (10)0.0145 (12)0.0072 (10)0.0033 (8)0.0019 (8)0.0028 (9)
O40.0101 (11)0.0237 (14)0.0083 (10)0.0025 (9)0.0031 (8)0.0030 (10)
O50.0126 (11)0.0195 (13)0.0129 (11)0.0018 (9)0.0040 (9)0.0033 (10)
O60.0135 (11)0.0266 (15)0.0115 (11)0.0047 (10)0.0033 (9)0.0084 (11)
O70.0218 (12)0.0130 (13)0.0113 (11)0.0030 (9)0.0016 (9)0.0027 (10)
O80.0127 (11)0.0189 (13)0.0217 (13)0.0050 (9)0.0035 (9)0.0115 (11)
O90.0205 (12)0.0140 (12)0.0109 (11)0.0007 (9)0.0025 (9)0.0046 (10)
O100.0251 (13)0.0103 (13)0.0334 (15)0.0018 (10)0.0150 (11)0.0000 (12)
O110.0130 (11)0.0183 (13)0.0194 (12)0.0009 (9)0.0042 (9)0.0098 (11)
O120.0171 (12)0.0158 (13)0.0159 (12)0.0013 (9)0.0061 (9)0.0051 (10)
O130.0088 (10)0.0124 (12)0.0098 (10)0.0007 (8)0.0029 (8)0.0047 (9)
O140.0096 (10)0.0110 (11)0.0111 (10)0.0008 (8)0.0029 (8)0.0046 (9)
O150.0306 (15)0.0195 (15)0.0308 (16)0.0048 (12)0.0132 (12)0.0076 (13)
N10.0096 (12)0.0133 (14)0.0089 (12)0.0012 (10)0.0016 (10)0.0055 (11)
N20.0104 (12)0.0113 (14)0.0097 (12)0.0029 (10)0.0018 (10)0.0022 (11)
N30.0096 (12)0.0122 (14)0.0117 (13)0.0002 (9)0.0020 (10)0.0074 (11)
N40.0100 (12)0.0109 (13)0.0103 (12)0.0008 (10)0.0044 (10)0.0042 (11)
N50.0111 (12)0.0104 (13)0.0115 (13)0.0007 (10)0.0023 (10)0.0049 (11)
N60.0130 (13)0.0100 (14)0.0099 (12)0.0015 (10)0.0026 (10)0.0051 (11)
N70.0151 (13)0.0130 (14)0.0111 (13)0.0017 (10)0.0009 (10)0.0073 (11)
N80.0107 (13)0.0095 (14)0.0179 (14)0.0001 (10)0.0046 (11)0.0029 (12)
C10.0140 (15)0.0133 (17)0.0138 (15)0.0006 (12)0.0024 (12)0.0077 (13)
C20.0085 (14)0.0195 (19)0.0196 (17)0.0022 (12)0.0028 (12)0.0108 (15)
C30.0151 (16)0.0193 (19)0.0204 (18)0.0002 (13)0.0081 (13)0.0085 (15)
C40.0187 (17)0.021 (2)0.0120 (15)0.0006 (14)0.0055 (13)0.0075 (14)
C50.0102 (14)0.0146 (17)0.0126 (15)0.0018 (12)0.0039 (12)0.0082 (13)
C60.0125 (15)0.0115 (17)0.0118 (15)0.0019 (12)0.0033 (12)0.0039 (13)
C70.0185 (17)0.0177 (19)0.0101 (15)0.0015 (13)0.0032 (12)0.0055 (14)
C80.0225 (18)0.0147 (18)0.0115 (15)0.0025 (13)0.0008 (13)0.0031 (14)
C90.0147 (16)0.020 (2)0.0141 (16)0.0062 (13)0.0032 (13)0.0059 (15)
C100.0126 (15)0.0181 (18)0.0141 (16)0.0011 (13)0.0026 (12)0.0069 (14)
C110.0106 (14)0.0118 (16)0.0122 (15)0.0034 (11)0.0001 (11)0.0045 (13)
C120.0116 (15)0.0191 (18)0.0152 (16)0.0013 (12)0.0005 (12)0.0097 (14)
C130.0102 (14)0.0206 (18)0.0197 (17)0.0006 (12)0.0013 (12)0.0113 (15)
C140.0130 (15)0.0147 (17)0.0136 (15)0.0017 (12)0.0051 (12)0.0061 (13)
C150.0101 (14)0.0117 (16)0.0123 (15)0.0001 (11)0.0043 (11)0.0059 (13)
C160.0118 (14)0.0093 (15)0.0136 (15)0.0012 (11)0.0039 (11)0.0069 (13)
C170.0139 (15)0.0135 (17)0.0148 (16)0.0030 (12)0.0055 (12)0.0067 (14)
C180.0197 (17)0.021 (2)0.0119 (15)0.0066 (14)0.0076 (13)0.0075 (14)
C190.0161 (16)0.0209 (19)0.0069 (14)0.0047 (13)0.0035 (12)0.0042 (14)
C200.0129 (15)0.0151 (17)0.0091 (14)0.0026 (12)0.0034 (11)0.0051 (13)
C210.0148 (15)0.0116 (16)0.0143 (15)0.0009 (12)0.0033 (12)0.0059 (13)
C220.0175 (16)0.0135 (17)0.0139 (15)0.0004 (12)0.0079 (12)0.0035 (13)
C230.0151 (16)0.0149 (17)0.0189 (17)0.0051 (12)0.0077 (13)0.0063 (14)
C240.0112 (15)0.0180 (18)0.0194 (17)0.0028 (12)0.0036 (12)0.0112 (15)
C250.0128 (15)0.0114 (16)0.0138 (15)0.0025 (11)0.0025 (12)0.0083 (13)
C260.0125 (15)0.0116 (16)0.0167 (16)0.0014 (12)0.0053 (12)0.0093 (13)
C270.0137 (16)0.0205 (19)0.0196 (17)0.0022 (13)0.0031 (13)0.0121 (15)
C280.0150 (16)0.021 (2)0.0174 (16)0.0005 (13)0.0017 (13)0.0118 (15)
C290.0191 (17)0.0209 (19)0.0107 (15)0.0016 (14)0.0031 (12)0.0083 (14)
C300.0149 (16)0.0116 (17)0.0136 (15)0.0032 (12)0.0021 (12)0.0060 (13)
C310.036 (2)0.030 (2)0.032 (2)0.0003 (18)0.0100 (18)0.016 (2)
Geometric parameters (Å, º) top
Cu1—O31.966 (2)C1—C21.403 (5)
Cu1—O141.970 (2)C2—C31.373 (5)
Cu1—N11.991 (3)C2—H20.9500
Cu1—N22.028 (3)C3—C41.399 (5)
Cu1—O112.474 (2)C3—H30.9500
Cu1—O72.503 (2)C4—C51.374 (5)
Cu2—O131.933 (2)C4—H40.9500
Cu2—N31.964 (2)C5—C61.481 (5)
Cu2—N42.056 (3)C6—C71.377 (4)
Cu2—O142.062 (2)C7—C81.399 (5)
Cu2—O122.188 (2)C7—H70.9500
Cu3—O131.951 (2)C8—C91.358 (5)
Cu3—O41.960 (2)C8—H80.9500
Cu3—N52.008 (3)C9—C101.404 (5)
Cu3—N62.044 (2)C9—H90.9500
Cu3—O152.292 (3)C11—C121.404 (4)
O1—C11.304 (4)C12—C131.376 (5)
O1—H10.8400C12—H120.9500
O2—C101.324 (4)C13—C141.393 (4)
O2—H2A0.8400C13—H130.9500
O3—C111.312 (4)C14—C151.380 (4)
O4—C201.302 (4)C14—H140.9500
O5—C211.321 (4)C15—C161.483 (4)
O5—H50.8400C16—C171.363 (4)
O6—C301.330 (4)C17—C181.394 (5)
O6—H60.8400C17—H170.9500
O7—N71.244 (3)C18—C191.369 (4)
O8—N71.243 (3)C18—H180.9500
O9—N71.277 (3)C19—C201.418 (4)
O10—N81.255 (4)C19—H190.9500
O11—N81.247 (4)C21—C221.404 (4)
O12—N81.265 (4)C22—C231.364 (4)
O13—H13A0.828 (19)C22—H220.9500
O14—H14A0.823 (18)C23—C241.400 (5)
O15—C311.452 (5)C23—H230.9500
O15—H150.85 (4)C24—C251.377 (4)
N1—C11.345 (4)C24—H240.9500
N1—C51.368 (4)C25—C261.472 (4)
N2—C101.338 (4)C26—C271.379 (4)
N2—C61.369 (4)C27—C281.385 (5)
N3—C111.352 (4)C27—H270.9500
N3—C151.352 (4)C28—C291.365 (5)
N4—C201.349 (4)C28—H280.9500
N4—C161.373 (4)C29—C301.401 (4)
N5—C211.337 (4)C29—H290.9500
N5—C251.372 (4)C31—H31A0.9800
N6—C301.346 (4)C31—H31B0.9800
N6—C261.368 (4)C31—H31C0.9800
O3—Cu1—O1492.09 (9)C5—C4—H4121.0
O3—Cu1—N1169.20 (10)C3—C4—H4121.0
O14—Cu1—N194.74 (10)N1—C5—C4122.7 (3)
O3—Cu1—N292.42 (10)N1—C5—C6114.8 (3)
O14—Cu1—N2171.80 (10)C4—C5—C6122.6 (3)
N1—Cu1—N281.86 (11)N2—C6—C7122.7 (3)
O3—Cu1—O1181.68 (8)N2—C6—C5114.9 (3)
O14—Cu1—O1181.22 (8)C7—C6—C5122.4 (3)
N1—Cu1—O1191.10 (9)C6—C7—C8118.1 (3)
N2—Cu1—O11106.22 (9)C6—C7—H7121.0
O3—Cu1—O783.89 (9)C8—C7—H7121.0
O14—Cu1—O786.60 (8)C9—C8—C7120.3 (3)
N1—Cu1—O7104.84 (9)C9—C8—H8119.8
N2—Cu1—O787.07 (9)C7—C8—H8119.8
O11—Cu1—O7160.71 (8)C8—C9—C10118.6 (3)
O13—Cu2—N3177.44 (10)C8—C9—H9120.7
O13—Cu2—N498.59 (10)C10—C9—H9120.7
N3—Cu2—N481.24 (10)O2—C10—N2119.2 (3)
O13—Cu2—O1490.04 (9)O2—C10—C9118.2 (3)
N3—Cu2—O1488.22 (9)N2—C10—C9122.6 (3)
N4—Cu2—O14132.65 (10)O3—C11—N3118.3 (3)
O13—Cu2—O1291.19 (9)O3—C11—C12121.0 (3)
N3—Cu2—O1291.20 (10)N3—C11—C12120.8 (3)
N4—Cu2—O12114.24 (10)C13—C12—C11119.1 (3)
O14—Cu2—O12112.01 (9)C13—C12—H12120.5
O13—Cu3—O491.56 (9)C11—C12—H12120.5
O13—Cu3—N593.98 (10)C12—C13—C14120.1 (3)
O4—Cu3—N5169.81 (11)C12—C13—H13119.9
O13—Cu3—N6168.03 (10)C14—C13—H13119.9
O4—Cu3—N691.13 (10)C15—C14—C13118.1 (3)
N5—Cu3—N681.74 (10)C15—C14—H14120.9
O13—Cu3—O1598.82 (10)C13—C14—H14120.9
O4—Cu3—O1594.90 (10)N3—C15—C14122.5 (3)
N5—Cu3—O1592.70 (10)N3—C15—C16114.5 (3)
N6—Cu3—O1592.58 (11)C14—C15—C16122.9 (3)
C1—O1—H1109.5C17—C16—N4123.2 (3)
C10—O2—H2A109.5C17—C16—C15122.3 (3)
C11—O3—Cu1125.2 (2)N4—C16—C15114.5 (3)
C20—O4—Cu3140.7 (2)C16—C17—C18119.2 (3)
C21—O5—H5109.5C16—C17—H17120.4
C30—O6—H6109.5C18—C17—H17120.4
N7—O7—Cu1128.98 (17)C19—C18—C17118.7 (3)
N8—O11—Cu1123.07 (18)C19—C18—H18120.6
N8—O12—Cu2115.9 (2)C17—C18—H18120.6
Cu2—O13—Cu3125.46 (12)C18—C19—C20120.1 (3)
Cu2—O13—H13A101 (3)C18—C19—H19120.0
Cu3—O13—H13A105 (3)C20—C19—H19120.0
Cu1—O14—Cu2114.21 (11)O4—C20—N4121.0 (3)
Cu1—O14—H14A109 (3)O4—C20—C19118.2 (3)
Cu2—O14—H14A101 (3)N4—C20—C19120.9 (3)
C31—O15—Cu3117.3 (2)O5—C21—N5120.4 (3)
C31—O15—H15137 (3)O5—C21—C22117.6 (3)
Cu3—O15—H15100 (3)N5—C21—C22122.0 (3)
C1—N1—C5119.1 (3)C23—C22—C21118.9 (3)
C1—N1—Cu1125.9 (2)C23—C22—H22120.6
C5—N1—Cu1114.8 (2)C21—C22—H22120.6
C10—N2—C6117.8 (3)C22—C23—C24119.7 (3)
C10—N2—Cu1128.6 (2)C22—C23—H23120.1
C6—N2—Cu1113.5 (2)C24—C23—H23120.1
C11—N3—C15119.4 (3)C25—C24—C23119.0 (3)
C11—N3—Cu2124.0 (2)C25—C24—H24120.5
C15—N3—Cu2116.1 (2)C23—C24—H24120.5
C20—N4—C16117.8 (3)N5—C25—C24121.4 (3)
C20—N4—Cu2129.6 (2)N5—C25—C26115.6 (3)
C16—N4—Cu2112.6 (2)C24—C25—C26123.0 (3)
C21—N5—C25118.9 (3)N6—C26—C27121.2 (3)
C21—N5—Cu3127.1 (2)N6—C26—C25115.3 (3)
C25—N5—Cu3113.9 (2)C27—C26—C25123.5 (3)
C30—N6—C26118.0 (3)C26—C27—C28119.7 (3)
C30—N6—Cu3129.0 (2)C26—C27—H27120.2
C26—N6—Cu3112.9 (2)C28—C27—H27120.2
O8—N7—O7121.4 (3)C29—C28—C27120.2 (3)
O8—N7—O9118.7 (3)C29—C28—H28119.9
O7—N7—O9119.9 (2)C27—C28—H28119.9
O11—N8—O10120.4 (3)C28—C29—C30117.8 (3)
O11—N8—O12120.5 (3)C28—C29—H29121.1
O10—N8—O12119.1 (3)C30—C29—H29121.1
O1—C1—N1120.0 (3)O6—C30—N6118.7 (3)
O1—C1—C2119.4 (3)O6—C30—C29118.2 (3)
N1—C1—C2120.6 (3)N6—C30—C29123.1 (3)
C3—C2—C1119.8 (3)O15—C31—H31A109.5
C3—C2—H2120.1O15—C31—H31B109.5
C1—C2—H2120.1H31A—C31—H31B109.5
C2—C3—C4119.8 (3)O15—C31—H31C109.5
C2—C3—H3120.1H31A—C31—H31C109.5
C4—C3—H3120.1H31B—C31—H31C109.5
C5—C4—C3118.0 (3)
Cu1—O7—N7—O8172.8 (2)C13—C14—C15—C16178.1 (3)
Cu1—O7—N7—O96.8 (4)C20—N4—C16—C172.7 (5)
Cu1—O11—N8—O10111.9 (3)Cu2—N4—C16—C17178.7 (3)
Cu1—O11—N8—O1268.9 (3)C20—N4—C16—C15178.2 (3)
Cu2—O12—N8—O119.2 (3)Cu2—N4—C16—C150.4 (3)
Cu2—O12—N8—O10171.6 (2)N3—C15—C16—C17171.4 (3)
C5—N1—C1—O1177.7 (3)C14—C15—C16—C178.2 (5)
Cu1—N1—C1—O17.1 (4)N3—C15—C16—N47.7 (4)
C5—N1—C1—C21.9 (4)C14—C15—C16—N4172.7 (3)
Cu1—N1—C1—C2173.2 (2)N4—C16—C17—C183.5 (5)
O1—C1—C2—C3178.2 (3)C15—C16—C17—C18177.5 (3)
N1—C1—C2—C31.5 (5)C16—C17—C18—C190.9 (5)
C1—C2—C3—C40.3 (5)C17—C18—C19—C202.1 (5)
C2—C3—C4—C51.7 (5)Cu3—O4—C20—N419.3 (5)
C1—N1—C5—C40.5 (4)Cu3—O4—C20—C19160.8 (3)
Cu1—N1—C5—C4175.1 (3)C16—N4—C20—O4179.6 (3)
C1—N1—C5—C6179.7 (3)Cu2—N4—C20—O42.1 (5)
Cu1—N1—C5—C64.6 (3)C16—N4—C20—C190.5 (5)
C3—C4—C5—N11.3 (5)Cu2—N4—C20—C19177.8 (2)
C3—C4—C5—C6178.5 (3)C18—C19—C20—O4177.2 (3)
C10—N2—C6—C70.5 (5)C18—C19—C20—N42.9 (5)
Cu1—N2—C6—C7176.2 (2)C25—N5—C21—O5179.1 (3)
C10—N2—C6—C5178.6 (3)Cu3—N5—C21—O53.4 (5)
Cu1—N2—C6—C52.8 (3)C25—N5—C21—C220.8 (5)
N1—C5—C6—N24.9 (4)Cu3—N5—C21—C22176.7 (2)
C4—C5—C6—N2174.8 (3)O5—C21—C22—C23178.6 (3)
N1—C5—C6—C7174.1 (3)N5—C21—C22—C231.4 (5)
C4—C5—C6—C76.2 (5)C21—C22—C23—C241.1 (5)
N2—C6—C7—C80.5 (5)C22—C23—C24—C250.3 (5)
C5—C6—C7—C8178.5 (3)C21—N5—C25—C240.0 (5)
C6—C7—C8—C90.7 (5)Cu3—N5—C25—C24177.8 (3)
C7—C8—C9—C101.8 (5)C21—N5—C25—C26177.6 (3)
C6—N2—C10—O2178.4 (3)Cu3—N5—C25—C260.2 (4)
Cu1—N2—C10—O26.6 (5)C23—C24—C25—N50.2 (5)
C6—N2—C10—C90.7 (5)C23—C24—C25—C26177.2 (3)
Cu1—N2—C10—C9174.3 (2)C30—N6—C26—C272.6 (5)
C8—C9—C10—O2177.3 (3)Cu3—N6—C26—C27173.8 (3)
C8—C9—C10—N21.8 (5)C30—N6—C26—C25175.0 (3)
Cu1—O3—C11—N367.6 (4)Cu3—N6—C26—C258.6 (3)
Cu1—O3—C11—C12113.4 (3)N5—C25—C26—N65.7 (4)
C15—N3—C11—O3176.9 (3)C24—C25—C26—N6171.9 (3)
Cu2—N3—C11—O312.0 (4)N5—C25—C26—C27176.8 (3)
C15—N3—C11—C122.0 (5)C24—C25—C26—C275.7 (5)
Cu2—N3—C11—C12169.1 (2)N6—C26—C27—C283.2 (5)
O3—C11—C12—C13179.4 (3)C25—C26—C27—C28174.2 (3)
N3—C11—C12—C130.5 (5)C26—C27—C28—C291.0 (6)
C11—C12—C13—C142.1 (5)C27—C28—C29—C301.6 (5)
C12—C13—C14—C151.1 (5)C26—N6—C30—O6178.8 (3)
C11—N3—C15—C143.1 (5)Cu3—N6—C30—O65.5 (5)
Cu2—N3—C15—C14168.7 (3)C26—N6—C30—C290.2 (5)
C11—N3—C15—C16176.5 (3)Cu3—N6—C30—C29175.9 (3)
Cu2—N3—C15—C1611.7 (3)C28—C29—C30—O6179.1 (3)
C13—C14—C15—N31.5 (5)C28—C29—C30—N62.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O140.841.612.448 (3)175
O2—H2A···O30.841.662.499 (3)172
O5—H5···O130.841.702.536 (3)170
O6—H6···O40.841.672.495 (3)168
O13—H13A···O9i0.83 (2)1.98 (2)2.763 (3)158 (4)
O14—H14A···O90.82 (2)1.94 (2)2.738 (3)163 (4)
O15—H15···O10ii0.85 (5)2.42 (5)2.790 (4)107 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The X-ray diffractometer was funded by NSF Grant 0087210, Ohio Board of Regents Grant CAP-491, and by Youngstown State University. NSF CAREER (Grant CHE-0846383 and CHE-1360802) provided funding to ETP and her group. NSF Grant CHE-1039689 provided funding for the X-ray diffractometer at Illinois State University.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. J. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarnett, S. M., Goldberg, K. I. & Mayer, J. M. (2012). Nat. Chem. 4, 498–502.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBlakemore, J. D., Schley, N. D., Balcells, D., Hull, J. F., Olack, G. W., Incarvito, C. D., Eisenstein, O., Brudvig, G. W. & Crabtree, R. H. (2010). J. Am. Chem. Soc. 132, 16017–16029.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Version 2009.7-0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). APEX2 and SAINT. Version 2012.4-3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDePasquale, J., Nieto, I., Reuther, L. E., Herbst-Gervasoni, C. J., Paul, J. J., Mochalin, V., Zeller, M., Thomas, C. M., Addison, A. W. & Papish, E. T. (2013). Inorg. Chem. 52, 9175–9183.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGerlach, D. L., Bhagan, S., Cruce, A. A., Burks, D. B., Nieto, I., Truong, H. T., Kelley, S. P., Herbst-Gervasoni, C. J., Jernigan, K. L., Bowman, M. K., Pan, S., Zeller, M. & Papish, E. T. (2014). Inorg. Chem. 53, 12689–12698.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, H.-X., Rao, Z.-M. & Wang, Q.-H. (2007). Acta Cryst. E63, m637–m638.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, X. & Lu, C.-Z. (2004). Z. Anorg. Allg. Chem. 630, 756–759.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (2003). Crystallogr. Rev. 9, 135–176.  CrossRef CAS Google Scholar
First citationKikuchi, T. & Tanaka, K. (2014). Eur. J. Inorg. Chem. 2014, 607–618.  Web of Science CrossRef CAS Google Scholar
First citationLuo, F., Che, Y.-X. & Zheng, J.-M. (2006). Inorg. Chem. Commun. 9, 848–851.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarelius, D. C., Bhagan, S., Charboneau, D. J., Schroeder, K. M., Kamdar, J. M., McGettigan, A. R., Freeman, B. J., Moore, C. E., Rheingold, A. L., Cooksy, A. L., Smith, D. K., Paul, J. J., Papish, E. T. & Grotjahn, D. B. (2014). Eur. J. Inorg. Chem. pp. 676–689.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, A. & Spiccia, L. (2013). Coord. Chem. Rev. 257, 2607–2622.  Web of Science CrossRef CAS Google Scholar
First citationSun, Y.-H., Yu, J.-H., Jin, X.-J., Song, J.-F., Xu, J.-Q. & Ye, L. (2006). Inorg. Chem. Commun. 9, 1087–1090.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C.-M., Zheng, S.-T. & Yang, G.-Y. (2009). J. Clust Sci. 20, 489–501.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J.-P., Han, Z.-B., Chen, X.-M. & Xuebao, W. H. (2004). Chin. J. Inorg. Chem. 20, 1213–1216.  CAS Google Scholar
First citationZhang, X.-M., Tong, M.-L. & Chen, X.-M. (2002). Angew. Chem. Int. Ed. 41, 1029–1031.  Web of Science CrossRef CAS Google Scholar
First citationZhang, X.-M., Tong, M.-L., Gong, M.-L., Lee, H.-K., Luo, L., Li, K.-F., Tong, Y.-X. & Chen, X.-M. (2002). Chem. Eur. J. 8, 3187–3194.  CrossRef PubMed CAS Google Scholar
First citationZhong, Z.-G., Li, J. & Song, J.-F. (2013). Z. Kristallogr. New Cryst. Struct. 228, 261–262.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, Z.-G., Feng, Y.-Q. & Zhang, P. (2013). Acta Cryst. C69, 833–836.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds