research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two 2,9-di­thia-13-aza­di­spiro­[4.1.47.35]tetra­decan-6-ones

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 August 2015; accepted 4 November 2015; online 21 November 2015)

In the title compounds 4,11-dihy­droxy-13-methyl-1,8-di-p-tolyl-2,9-di­thia-13- aza­dispiro­[4.1.47.35]tetra­decan-6-one, C26H31NO3S2, (I), and 13-benzyl-4,11-dihy­droxy-1,8-bis­(4-methyl­phen­yl)-2,9-di­thia-13-aza­dispiro­[4.1.47.35]tetradecan-6-one, C32H35NO3S2, (II), the piperidine rings adopt distorted chair conformations. The thio­phene rings in (I) have envelope conformations, with the spiro C atoms as the flaps. In (II), one thio­phene ring (D) has an envelope conformation, with the hy­droxy-substituted C atom as the flap, while the other thio­phene ring (E) has a twisted conformation on the C—C bond involving the spiro C atom and the toluyl-substituted C atom. In (I), the mean plane of the piperidine ring makes dihedral angles of 75.16 (9) and 73.33 (8)° with the mean planes of the thio­phene rings (D and E), respectively. In (II), the corresponding dihedral angles are 70.95 (11) and 77.43 (12)°. In both compounds, there is an intra­molecular O—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal of (I), mol­ecules are linked via O—H⋯N and C—H⋯O hydrogen bonds, forming chains along [010]. There are also ππ inter­actions present involving inversion-related benzene rings, linking the chains to form slabs parallel to (100). In the crystal of (II), mol­ecules are linked via O—H⋯O hydrogen bonds, forming inversion dimers with an R44(8) ring motif. The dimers are linked by C—H⋯π inter­actions, forming slabs parallel to (001).

1. Chemical context

Piperidine derivatives have had an important impact in the medical field due to their wide variety of pharmacological activities, and they form an essential part of the mol­ecular structure of important drugs (Hema et al., 2005a[Hema, R., Parthasarathi, V., Ravikumar, K., Sridhar, B. & Pandiarajan, K. (2005a). Acta Cryst. E61, o4345-o4347.],b[Hema, R., Parthasarathi, V., Ravikumar, K., Sridhar, B., Pandiarajan, K. & Muthukumaran, G. (2005b). Acta Cryst. E61, o3987-o3989.]). Piperidine derivatives are used clinically to prevent post-operative vomiting, to speed up gastric emptying before anaesthesia or to facilitate radiological evaluation, and to correct a variety of disturbances of gastro-intestinal functions (Hema et al., 2005a[Hema, R., Parthasarathi, V., Ravikumar, K., Sridhar, B. & Pandiarajan, K. (2005a). Acta Cryst. E61, o4345-o4347.],b[Hema, R., Parthasarathi, V., Ravikumar, K., Sridhar, B., Pandiarajan, K. & Muthukumaran, G. (2005b). Acta Cryst. E61, o3987-o3989.]). The piperidine structural motif is present in natural alkaloids (Raghuvarman et al., 2014[Raghuvarman, B., Sivakumar, R., Thanikachalam, V. & Aravindhan, S. (2014). Acta Cryst. E70, 199-202.]). Notably it is found in the fire ant toxin solenopsin and is an inhibitor of phosphatidyl­inositol-3- kinase signalling and angiogenesis (Rajalakshmi et al., 2012[Rajalakshmi, P., Srinivasan, N. & Krishnakumar, R. V. (2012). Acta Cryst. E68, o2732.]). Piperidines are known to have CNS depressant action at low dosage levels and stimulant activity with increased doses. They have been used as anti­tumor (Nguyen Thi Thanh et al., 2014[Nguyen Thi Thanh, C., Nguyen Bich, N. & Van Meervelt, L. (2014). Acta Cryst. C70, 297-301.]), anti­microbial (Perumal et al., 2014[Perumal, P., Pandey, V. P. & Sarayu, Y. L. (2014). Int. J. Pharm. Pharm. Sci. 6, 572-573.]), anti­fungal, hypoglycaemic, hypolipidemic, anti-acetyl cholin­esterase (Singh et al., 2009[Singh, H. P., Gupta, S. D. & Moorthy, N. S. H. N. (2009). Int. J. PharmTech. Res. 1, 282-287.]), anti-coagulant (Mochizuki et al., 2008[Mochizuki, A., Nakamoto, Y., Naito, H., Uoto, K. & Ohta, T. (2008). Bioorg. Med. Chem. Lett. 18, 782-787.]), anti­histamines, anaesthetics, tranquilizers, analgesic, ganglionic blocking and as hypotensive agents (Pandey & Chawla, 2012[Pandey, P. & Chawla, P. (2012). Int. J. Pharm. Chem. Biol. Sci. 2, 305-309.]). The properties of piperidine derivatives depends on the nature of the side groups and their orientations. As part of our studies in this area, we have synthesized two new 2,9-di­thia-13-aza­dispiro­[4.1.47.35]tetra­decan-6-one derivatives, each incorporating a piperidine ring, and report herein on their crystal structures.

[Scheme 1]
[Scheme 2]

2. Structural commentary

The mol­ecular structure of compounds, (I)[link] and (II)[link], are shown in Figs. 1[link] and 2[link], respectively. A view of the structural overlay of the two compounds is shown in Fig. 3[link]. The essential differences appear to be related to the orientations of the toluyl substituents, viz. rings B an C.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
A view of the structural overlay of compounds (I)[link] and (II)[link] [compound (I)[link] is blue and compound (II)[link] is red].

In both mol­ecules there is an intra­molecular O—H⋯O hydrogen bond present forming an S(6) ring motif. Most piperidine derivatives are known to have chair conformations (Sekar & Parthasarathy et al., 1993[Sekar, K. & Parthasarathy, S. (1993). J. Crystallogr. Spectrosc. Res. 23, 101-105.]). The title compounds are no exception and the piperidine rings (A = C10–C14/N1) adopt distorted chair conformations in both compounds. In compound (I)[link], atoms C12 and N1 are displaced from the mean plane through the four other almost planar atoms (C10/C11/C13/C14) by −0.4543 (15) and 0.7047 (13) Å, respectively. In (II)[link] it is atoms C14 and N1 that are displaced from the mean plane through the four other planar atoms (C10--C13), by 0.412 (2) and −0.7543 (18) Å, respectively.

In compound (I)[link], the thio­phene rings D (C7–C10/S1) and E (C14/C16–C18/S2) have envelope conformations with atoms C10 and C14, respectively, as the flaps. They deviate from the mean plane through the four other atoms in the ring by 0.6277 (15) Å for C10 and 0.6494 (15) Å for C14. The mean plane of the piperidine ring A makes dihedral angles of 75.16 (9) and 73.33 (8)° with the mean planes of the thio­phene rings D and E, respectively. The mean plane of thio­phene ring D makes a dihedral angle of 60.10 (1)° with toluyl ring B (C1–C6), and the mean plane of thio­phene ring D make a dihedral angle of 58.14 (1)° with toluyl ring C (C19–C24). Rings B and C are inclined to one another by 66.39 (13)°.

In compound (II)[link], thio­phene ring D (C7–C10/S1) has an envelope conformation with atom C9 as the flap. It deviates from the mean plane through the other four atoms by 0.621 (2) Å. Thio­phene ring E (C13/C15–C17/S2) has a twisted conformation on the C13—C17 bond. These two atoms deviate from the plane (C15/C16/S2) by 0.291 (2) and −0.490 (2) Å, respectively. The piperidine ring A mean plane makes dihedral angles of 70.95 (11) and 77.43 (12)° with the mean planes of thio­phene rings D and E, respectively. The mean plane of thio­phene ring D make a dihedral angle of 52.42 (1)° with toluyl ring B (C1–C6), and the mean plane of thio­phene ring D make a dihedral angle of 65.71 (1)° with toluyl ring C (C18–C23). Benzyl ring F (C25–C30) makes a dihedral angle of 75.09 (1)° with the mean plane of piperidine ring A. Rings B and C are inclined to one another by 74.33 (12)°.

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked via O—H⋯N and C—H⋯O hydrogen bonds, forming chains along the b-axis direction (Table 1[link] and Fig. 4[link]). The chains are linked via weak ππ stacking inter­actions involving inversion-related C toluyl rings [centroid-to-centroid distance of 3.9582 (17) Å; Fig. 5[link]], forming slabs parallel to the bc plane.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.82 2.16 2.955 (2) 163
O3—H3A⋯N1i 0.82 1.99 2.798 (2) 167
C16—H16⋯O3ii 0.98 2.39 3.273 (2) 150
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The crystal packing of the compound (I)[link], illustrating the formation of chains along [010]. Hydrogen bonds are shown as dashed lines (see Table 1[link]). H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 5]
Figure 5
A partial view of the crystal packing of compound (I)[link], showing the ππ inter­action (dashed line), involving inversion-related toluyl rings. H atoms not involved in this inter­action have been omitted for clarity and the centroids are shown as small red balls.

In the crystal of (II)[link], mol­ecules are linked via O—H⋯O hydrogen bonds, forming inversion dimers enclosing an [R_{4}^{4}](8) ring motif (Table 2[link] and Fig. 6[link]). There are C—H⋯π inter­actions present (Fig. 7[link]) linking the dimers to form slabs parallel to the ab plane.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg4 and Cg5 are the centroids of the B (C1–C6) and C (C18–C23) toluyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.82 2.09 2.873 (3) 159
O3—H3A⋯O1i 0.82 (6) 2.06 (5) 2.880 (3) 174 (1)
C2—H2⋯Cg5ii 0.93 2.80 3.620 (3) 148
C20—H20⋯Cg4iii 0.93 2.79 3.616 (3) 149
Symmetry codes: (i) -x+2, -y, -z; (ii) x-1, y, z; (iii) -x+2, -y+1, -z.
[Figure 6]
Figure 6
The crystal packing of compound (II)[link], viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 2[link] for details). H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 7]
Figure 7
A partial view of the crystal packing of compound (II)[link], showing the C—H⋯π inter­actions as dashed lines (see Table 2[link] for details). H atoms not involved in these inter­actions have been omitted for clarity and the centroids are shown as small red balls.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update May 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for the sub-structure 2,9-di­thia-13-aza­dispiro­[4.1.47.35]tetra­decan-6-one gave zero hits.

5. Synthesis and crystallization

Compound (I): A mixture of (3E,5E)-1-methyl-3,5-bis­(4-methyl­benzyl­idene)piperidin-4-one (1 mmol) 1, 1,4-di­thiane-2,5-diol (1 mmol) 2 and tri­ethyl­amine (0.25 eq) in di­chloro­methane (6 ml) was heated under reflux for 3 h. After completion of the reaction (TLC), the solvent was removed and the product was purified by flash column chromatography using a petroleum ether–ethyl acetate mixture (4:1 v/v) as eluent to afford pure state of the title compound. After purification the compound was recrystallized in CHCl3 by slow evaporation.

Compound (II): A mixture of (3E,5E)-1-benzyl-3,5-bis­(4-methyl­benzyl­idene)piperidin-4-one (1 mmol) 1, 1,4-di­thiane-2,5-diol (1 mmol) 2 and tri­ethyl­amine (0.25 eq) in di­chloro­methane (6 ml) was heated under reflux for 3 h. After completion of the reaction (TLC), the solvent was removed and the product was purified by flash column chromatography using a petroleum ether–ethyl acetate mixture (4:1 v/v) as eluent to afford pure state of the title compound. After purification the compound was recrystallized in CHCl3 by slow evaporation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hy­droxy H atoms were located in difference Fourier maps. For compound (II)[link], the hy­droxy H atom, H3A, was freely refined. Those of compound (I)[link] and the second hy­droxy H atom in compound (II)[link] were refined as riding: O—H = 0.82 Å with Uiso(H) = 1.5Ueq(O). The C-bound hydrogen atoms were placed in calculated positions and refined as riding: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C26H31NO3S2 C32H35NO3S2
Mr 469.64 545.73
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 293 293
a, b, c (Å) 10.7160 (8), 8.5570 (5), 25.6960 (3) 9.9803 (6), 11.7773 (8), 13.6506 (14)
α, β, γ (°) 90, 92.374 (5), 90 105.524 (5), 107.215 (5), 103.087 (4)
V3) 2354.2 (2) 1392.90 (19)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.26 0.23
Crystal size (mm) 0.23 × 0.16 × 0.10 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII area detector Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.944, 0.975 0.956, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 21401, 5871, 4793 20239, 5668, 4271
Rint 0.023 0.035
(sin θ/λ)max−1) 0.668 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.141, 1.02 0.045, 0.136, 1.07
No. of reflections 5871 5668
No. of parameters 294 349
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.73 0.30, −0.50
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008) for (I); ORTEP-3 for Windows (Farrugia, 2012) for (II). For both compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(I) 4,11-Dihydroxy-13-methyl-1,8-di-p-tolyl-2,9-dithia-13-azadispiro[4.1.47.35]tetradecan-6-one top
Crystal data top
C26H31NO3S2F(000) = 1000
Mr = 469.64Dx = 1.325 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5871 reflections
a = 10.7160 (8) Åθ = 1.6–28.4°
b = 8.5570 (5) ŵ = 0.26 mm1
c = 25.6960 (3) ÅT = 293 K
β = 92.374 (5)°Block, colourless
V = 2354.2 (2) Å30.23 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5871 independent reflections
Radiation source: fine-focus sealed tube4793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1411
Tmin = 0.944, Tmax = 0.975k = 1110
21401 measured reflectionsl = 3433
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0662P)2 + 1.3213P]
where P = (Fo2 + 2Fc2)/3
5871 reflections(Δ/σ)max = 0.003
294 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.73 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4048 (2)0.3240 (4)0.03800 (10)0.0719 (8)
C20.3926 (2)0.4410 (4)0.07393 (10)0.0664 (7)
H20.34930.53130.06420.080*
C30.44302 (18)0.4284 (3)0.12434 (9)0.0505 (5)
H30.43240.50970.14780.061*
C40.50904 (16)0.2962 (2)0.14024 (7)0.0398 (4)
C50.5191 (2)0.1764 (3)0.10455 (10)0.0628 (7)
H50.56030.08470.11440.075*
C60.4687 (3)0.1914 (4)0.05435 (11)0.0801 (9)
H60.47810.10990.03090.096*
C70.57099 (15)0.2778 (2)0.19388 (7)0.0333 (3)
H70.57480.16570.20150.040*
C80.61777 (19)0.4164 (3)0.28561 (8)0.0506 (5)
H8A0.62680.52880.28860.061*
H8B0.60880.37360.32020.061*
C90.73237 (16)0.3465 (2)0.26119 (6)0.0350 (4)
H90.80560.41190.26950.042*
C100.70612 (14)0.34308 (18)0.20101 (6)0.0271 (3)
C110.71732 (14)0.50788 (19)0.17824 (7)0.0304 (3)
H11A0.68130.50840.14300.036*
H11B0.66960.57990.19870.036*
N10.84734 (12)0.56261 (15)0.17741 (5)0.0292 (3)
C130.91738 (15)0.46072 (19)0.14329 (6)0.0318 (3)
H13A1.00080.50280.14010.038*
H13B0.87670.46020.10890.038*
C140.92727 (14)0.29212 (18)0.16352 (6)0.0281 (3)
O20.77004 (12)0.09535 (14)0.16831 (5)0.0386 (3)
C161.01479 (16)0.2846 (2)0.21325 (7)0.0353 (4)
H160.99360.36780.23750.042*
C171.14797 (17)0.3050 (2)0.19615 (9)0.0494 (5)
H17A1.20580.25290.22050.059*
H17B1.16940.41500.19520.059*
C180.99011 (15)0.1806 (2)0.12465 (7)0.0377 (4)
H180.97680.07360.13680.045*
C190.94465 (18)0.1872 (2)0.06847 (8)0.0409 (4)
C200.8536 (2)0.0833 (3)0.05035 (9)0.0619 (6)
H200.82180.00990.07300.074*
C210.8096 (3)0.0873 (4)0.00077 (10)0.0759 (8)
H210.74790.01710.01190.091*
C220.8553 (3)0.1937 (3)0.03593 (9)0.0641 (7)
C230.9493 (4)0.2889 (4)0.01808 (10)0.0872 (10)
H230.98460.35810.04120.105*
C240.9938 (3)0.2863 (3)0.03268 (10)0.0762 (8)
H241.05850.35310.04310.091*
C250.8072 (4)0.1958 (4)0.09210 (10)0.0960 (11)
H25A0.81410.29970.10580.144*
H25B0.72130.16380.09400.144*
H25C0.85580.12540.11210.144*
C260.3467 (3)0.3383 (6)0.01659 (11)0.1097 (14)
H26A0.26640.28850.01800.165*
H26B0.39990.28870.04080.165*
H26C0.33720.44680.02550.165*
C120.79789 (14)0.23038 (18)0.17614 (6)0.0269 (3)
O10.75164 (16)0.19543 (18)0.28197 (6)0.0525 (4)
H10.81680.15930.27140.079*
C150.8473 (2)0.7232 (2)0.15654 (8)0.0446 (4)
H15A0.80970.72360.12200.067*
H15B0.93170.76040.15550.067*
H15C0.80060.79010.17850.067*
O30.99559 (13)0.13534 (15)0.23626 (6)0.0469 (4)
H3A1.05000.11950.25900.070*
S10.48173 (4)0.36957 (7)0.24461 (2)0.04803 (15)
S21.15760 (5)0.22095 (9)0.13244 (3)0.0704 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0418 (12)0.126 (3)0.0471 (12)0.0248 (14)0.0074 (10)0.0022 (15)
C20.0447 (12)0.0852 (18)0.0676 (15)0.0093 (12)0.0171 (11)0.0202 (14)
C30.0368 (10)0.0577 (13)0.0560 (12)0.0038 (9)0.0094 (8)0.0011 (10)
C40.0253 (7)0.0494 (11)0.0442 (10)0.0069 (7)0.0038 (7)0.0061 (8)
C50.0459 (11)0.0785 (17)0.0628 (14)0.0043 (11)0.0140 (10)0.0290 (13)
C60.0547 (14)0.124 (3)0.0605 (15)0.0036 (16)0.0079 (12)0.0399 (17)
C70.0265 (7)0.0333 (8)0.0399 (9)0.0033 (6)0.0006 (6)0.0029 (7)
C80.0446 (10)0.0681 (14)0.0391 (10)0.0032 (10)0.0008 (8)0.0118 (10)
C90.0376 (8)0.0361 (9)0.0309 (8)0.0005 (7)0.0045 (7)0.0004 (7)
C100.0253 (7)0.0252 (7)0.0306 (7)0.0007 (6)0.0032 (6)0.0002 (6)
C110.0275 (7)0.0262 (8)0.0369 (8)0.0019 (6)0.0057 (6)0.0019 (6)
N10.0308 (6)0.0204 (6)0.0356 (7)0.0021 (5)0.0067 (5)0.0029 (5)
C130.0320 (8)0.0275 (8)0.0356 (8)0.0019 (6)0.0010 (6)0.0045 (6)
C140.0254 (7)0.0243 (7)0.0343 (8)0.0003 (6)0.0039 (6)0.0002 (6)
O20.0362 (6)0.0242 (6)0.0553 (8)0.0033 (5)0.0002 (5)0.0032 (5)
C160.0311 (8)0.0267 (8)0.0468 (10)0.0002 (6)0.0131 (7)0.0022 (7)
C170.0302 (9)0.0431 (11)0.0735 (14)0.0027 (8)0.0142 (9)0.0014 (10)
C180.0286 (8)0.0345 (9)0.0501 (10)0.0001 (7)0.0036 (7)0.0061 (8)
C190.0434 (9)0.0361 (9)0.0439 (10)0.0021 (8)0.0114 (8)0.0066 (7)
C200.0665 (14)0.0687 (15)0.0501 (12)0.0223 (12)0.0034 (10)0.0051 (11)
C210.0777 (18)0.093 (2)0.0565 (14)0.0207 (16)0.0076 (13)0.0030 (14)
C220.0916 (19)0.0608 (15)0.0403 (11)0.0116 (14)0.0070 (11)0.0041 (10)
C230.145 (3)0.0724 (18)0.0464 (13)0.034 (2)0.0259 (16)0.0004 (13)
C240.102 (2)0.0764 (18)0.0517 (13)0.0419 (16)0.0238 (14)0.0095 (12)
C250.152 (3)0.091 (2)0.0439 (14)0.020 (2)0.0038 (17)0.0071 (14)
C260.079 (2)0.196 (4)0.0527 (16)0.046 (2)0.0196 (14)0.019 (2)
C120.0272 (7)0.0241 (7)0.0289 (7)0.0000 (6)0.0057 (6)0.0019 (6)
O10.0690 (10)0.0477 (8)0.0404 (7)0.0051 (7)0.0010 (7)0.0140 (6)
C150.0531 (11)0.0247 (8)0.0552 (11)0.0025 (8)0.0083 (9)0.0095 (8)
O30.0449 (7)0.0321 (7)0.0614 (9)0.0024 (6)0.0254 (6)0.0127 (6)
S10.0324 (2)0.0625 (3)0.0495 (3)0.0011 (2)0.00694 (19)0.0103 (2)
S20.0279 (2)0.0881 (5)0.0956 (5)0.0015 (3)0.0089 (3)0.0326 (4)
Geometric parameters (Å, º) top
C1—C21.372 (4)C14—C161.555 (2)
C1—C61.382 (5)O2—C121.2082 (19)
C1—C261.516 (4)C16—O31.426 (2)
C2—C31.387 (3)C16—C171.521 (3)
C2—H20.9300C16—H160.9800
C3—C41.387 (3)C17—S21.795 (2)
C3—H30.9300C17—H17A0.9700
C4—C51.383 (3)C17—H17B0.9700
C4—C71.513 (2)C18—C191.505 (3)
C5—C61.384 (4)C18—S21.8306 (18)
C5—H50.9300C18—H180.9800
C6—H60.9300C19—C241.372 (3)
C7—C101.556 (2)C19—C201.386 (3)
C7—S11.8260 (18)C20—C211.377 (3)
C7—H70.9800C20—H200.9300
C8—C91.524 (3)C21—C221.386 (4)
C8—S11.808 (2)C21—H210.9300
C8—H8A0.9700C22—C231.360 (4)
C8—H8B0.9700C22—C251.512 (4)
C9—O11.411 (2)C23—C241.370 (4)
C9—C101.560 (2)C23—H230.9300
C9—H90.9800C24—H240.9300
C10—C111.533 (2)C25—H25A0.9600
C10—C121.535 (2)C25—H25B0.9600
C11—N11.471 (2)C25—H25C0.9600
C11—H11A0.9700C26—H26A0.9600
C11—H11B0.9700C26—H26B0.9600
N1—C131.465 (2)C26—H26C0.9600
N1—C151.475 (2)O1—H10.8200
C13—C141.536 (2)C15—H15A0.9600
C13—H13A0.9700C15—H15B0.9600
C13—H13B0.9700C15—H15C0.9600
C14—C121.531 (2)O3—H3A0.8200
C14—C181.555 (2)
C2—C1—C6117.0 (2)C18—C14—C16103.88 (13)
C2—C1—C26121.1 (3)O3—C16—C17112.07 (15)
C6—C1—C26121.8 (3)O3—C16—C14106.59 (13)
C1—C2—C3121.8 (3)C17—C16—C14107.41 (15)
C1—C2—H2119.1O3—C16—H16110.2
C3—C2—H2119.1C17—C16—H16110.2
C2—C3—C4120.8 (2)C14—C16—H16110.2
C2—C3—H3119.6C16—C17—S2107.92 (13)
C4—C3—H3119.6C16—C17—H17A110.1
C5—C4—C3117.6 (2)S2—C17—H17A110.1
C5—C4—C7118.93 (19)C16—C17—H17B110.1
C3—C4—C7123.51 (18)S2—C17—H17B110.1
C4—C5—C6120.7 (3)H17A—C17—H17B108.4
C4—C5—H5119.6C19—C18—C14117.47 (15)
C6—C5—H5119.6C19—C18—S2112.00 (13)
C1—C6—C5122.0 (3)C14—C18—S2105.22 (11)
C1—C6—H6119.0C19—C18—H18107.2
C5—C6—H6119.0C14—C18—H18107.2
C4—C7—C10116.18 (14)S2—C18—H18107.2
C4—C7—S1112.50 (12)C24—C19—C20117.1 (2)
C10—C7—S1105.91 (11)C24—C19—C18123.24 (19)
C4—C7—H7107.3C20—C19—C18119.57 (18)
C10—C7—H7107.3C21—C20—C19120.8 (2)
S1—C7—H7107.3C21—C20—H20119.6
C9—C8—S1108.49 (13)C19—C20—H20119.6
C9—C8—H8A110.0C20—C21—C22121.5 (3)
S1—C8—H8A110.0C20—C21—H21119.3
C9—C8—H8B110.0C22—C21—H21119.3
S1—C8—H8B110.0C23—C22—C21116.7 (2)
H8A—C8—H8B108.4C23—C22—C25122.2 (3)
O1—C9—C8108.14 (16)C21—C22—C25121.0 (3)
O1—C9—C10112.04 (14)C22—C23—C24122.4 (2)
C8—C9—C10107.47 (14)C22—C23—H23118.8
O1—C9—H9109.7C24—C23—H23118.8
C8—C9—H9109.7C23—C24—C19121.3 (3)
C10—C9—H9109.7C23—C24—H24119.3
C11—C10—C12110.93 (13)C19—C24—H24119.3
C11—C10—C7111.86 (13)C22—C25—H25A109.5
C12—C10—C7109.54 (13)C22—C25—H25B109.5
C11—C10—C9110.30 (13)H25A—C25—H25B109.5
C12—C10—C9109.40 (12)C22—C25—H25C109.5
C7—C10—C9104.61 (13)H25A—C25—H25C109.5
N1—C11—C10112.80 (12)H25B—C25—H25C109.5
N1—C11—H11A109.0C1—C26—H26A109.5
C10—C11—H11A109.0C1—C26—H26B109.5
N1—C11—H11B109.0H26A—C26—H26B109.5
C10—C11—H11B109.0C1—C26—H26C109.5
H11A—C11—H11B107.8H26A—C26—H26C109.5
C13—N1—C11109.16 (12)H26B—C26—H26C109.5
C13—N1—C15109.21 (14)O2—C12—C14120.96 (14)
C11—N1—C15108.43 (13)O2—C12—C10120.79 (14)
N1—C13—C14112.73 (13)C14—C12—C10118.21 (13)
N1—C13—H13A109.0C9—O1—H1109.5
C14—C13—H13A109.0N1—C15—H15A109.5
N1—C13—H13B109.0N1—C15—H15B109.5
C14—C13—H13B109.0H15A—C15—H15B109.5
H13A—C13—H13B107.8N1—C15—H15C109.5
C12—C14—C13110.21 (12)H15A—C15—H15C109.5
C12—C14—C18110.14 (13)H15B—C15—H15C109.5
C13—C14—C18112.64 (14)C16—O3—H3A109.5
C12—C14—C16109.42 (13)C8—S1—C794.46 (8)
C13—C14—C16110.36 (13)C17—S2—C1894.71 (9)
C6—C1—C2—C30.7 (4)C13—C14—C16—C1773.29 (17)
C26—C1—C2—C3178.7 (2)C18—C14—C16—C1747.69 (17)
C1—C2—C3—C40.5 (3)O3—C16—C17—S284.70 (17)
C2—C3—C4—C51.9 (3)C14—C16—C17—S232.04 (17)
C2—C3—C4—C7177.32 (19)C12—C14—C18—C1975.91 (18)
C3—C4—C5—C62.2 (3)C13—C14—C18—C1947.6 (2)
C7—C4—C5—C6177.1 (2)C16—C14—C18—C19167.00 (15)
C2—C1—C6—C50.4 (4)C12—C14—C18—S2158.70 (11)
C26—C1—C6—C5178.3 (3)C13—C14—C18—S277.82 (15)
C4—C5—C6—C11.1 (4)C16—C14—C18—S241.61 (15)
C5—C4—C7—C1092.4 (2)C14—C18—C19—C2488.9 (3)
C3—C4—C7—C1086.9 (2)S2—C18—C19—C2433.0 (3)
C5—C4—C7—S1145.32 (17)C14—C18—C19—C2094.8 (2)
C3—C4—C7—S135.4 (2)S2—C18—C19—C20143.26 (19)
S1—C8—C9—O191.31 (17)C24—C19—C20—C213.9 (4)
S1—C8—C9—C1029.8 (2)C18—C19—C20—C21179.6 (2)
C4—C7—C10—C1146.91 (19)C19—C20—C21—C220.6 (5)
S1—C7—C10—C1178.80 (14)C20—C21—C22—C232.9 (5)
C4—C7—C10—C1276.51 (18)C20—C21—C22—C25179.4 (3)
S1—C7—C10—C12157.79 (11)C21—C22—C23—C243.0 (5)
C4—C7—C10—C9166.31 (15)C25—C22—C23—C24179.4 (3)
S1—C7—C10—C940.61 (14)C22—C23—C24—C190.4 (5)
O1—C9—C10—C11166.28 (14)C20—C19—C24—C233.9 (4)
C8—C9—C10—C1175.07 (18)C18—C19—C24—C23179.8 (3)
O1—C9—C10—C1244.00 (18)C13—C14—C12—O2144.04 (15)
C8—C9—C10—C12162.66 (15)C18—C14—C12—O219.1 (2)
O1—C9—C10—C773.28 (17)C16—C14—C12—O294.44 (18)
C8—C9—C10—C745.38 (18)C13—C14—C12—C1038.32 (18)
C12—C10—C11—N148.75 (17)C18—C14—C12—C10163.20 (13)
C7—C10—C11—N1171.38 (13)C16—C14—C12—C1083.21 (16)
C9—C10—C11—N172.63 (17)C11—C10—C12—O2144.83 (15)
C10—C11—N1—C1362.95 (16)C7—C10—C12—O220.9 (2)
C10—C11—N1—C15178.17 (14)C9—C10—C12—O293.27 (17)
C11—N1—C13—C1464.23 (16)C11—C10—C12—C1437.52 (18)
C15—N1—C13—C14177.37 (13)C7—C10—C12—C14161.49 (13)
N1—C13—C14—C1250.91 (17)C9—C10—C12—C1484.38 (16)
N1—C13—C14—C18174.35 (13)C9—C8—S1—C74.88 (16)
N1—C13—C14—C1670.05 (17)C4—C7—S1—C8149.17 (14)
C12—C14—C16—O344.99 (18)C10—C7—S1—C821.24 (14)
C13—C14—C16—O3166.42 (14)C16—C17—S2—C186.01 (15)
C18—C14—C16—O372.60 (17)C19—C18—S2—C17150.01 (14)
C12—C14—C16—C17165.27 (14)C14—C18—S2—C1721.28 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.822.162.955 (2)163
O3—H3A···N1i0.821.992.798 (2)167
C16—H16···O3ii0.982.393.273 (2)150
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
(II) 13-Benzyl-4,11-dihydroxy-1,8-bis(4-methylphenyl)-2,9-dithia-13-azadispiro[4.1.47.35]tetradecan-6-one top
Crystal data top
C32H35NO3S2Z = 2
Mr = 545.73F(000) = 580
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9803 (6) ÅCell parameters from 5668 reflections
b = 11.7773 (8) Åθ = 1.7–26.4°
c = 13.6506 (14) ŵ = 0.23 mm1
α = 105.524 (5)°T = 293 K
β = 107.215 (5)°Block, colourless
γ = 103.087 (4)°0.20 × 0.15 × 0.10 mm
V = 1392.90 (19) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5668 independent reflections
Radiation source: fine-focus sealed tube4271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.956, Tmax = 0.978k = 1414
20239 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.7912P]
where P = (Fo2 + 2Fc2)/3
5668 reflections(Δ/σ)max = 0.039
349 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8797 (3)0.6378 (2)0.1804 (2)0.0523 (6)
C20.7697 (3)0.5580 (2)0.1950 (2)0.0553 (6)
H20.70560.58940.22270.066*
C30.7519 (2)0.4328 (2)0.1697 (2)0.0476 (5)
H30.67690.38180.18140.057*
C40.8438 (2)0.38122 (19)0.12686 (17)0.0356 (4)
C50.9562 (2)0.4619 (2)0.1134 (2)0.0447 (5)
H51.02090.43090.08610.054*
C60.9737 (3)0.5873 (2)0.1399 (2)0.0528 (6)
H61.05030.63910.13040.063*
C70.8278 (2)0.24410 (19)0.09546 (17)0.0373 (4)
H70.84580.21970.02730.045*
C80.7035 (2)0.0592 (2)0.1530 (2)0.0504 (6)
H8A0.69980.09430.22460.061*
H8B0.64160.02810.12000.061*
C90.8627 (2)0.07220 (19)0.16339 (18)0.0406 (5)
H90.91330.05490.22830.049*
C100.9391 (2)0.21064 (17)0.18060 (16)0.0319 (4)
C110.9745 (2)0.29249 (19)0.29918 (16)0.0353 (4)
H11A1.00860.38000.30820.042*
H11B0.88540.27640.31560.042*
C121.2306 (2)0.31299 (19)0.36365 (17)0.0367 (4)
H12A1.31100.30840.42170.044*
H12B1.24950.39990.37090.044*
C131.2257 (2)0.23660 (18)0.25115 (16)0.0332 (4)
C141.0832 (2)0.22128 (17)0.15850 (16)0.0326 (4)
C151.2342 (3)0.1062 (2)0.25259 (19)0.0434 (5)
H151.18060.08070.29690.052*
C161.3981 (3)0.1214 (3)0.3083 (3)0.0771 (9)
H16A1.42210.05560.26410.093*
H16B1.41550.11380.37970.093*
C171.3638 (2)0.2929 (2)0.22724 (18)0.0370 (4)
H171.34930.23960.15360.044*
C181.3963 (2)0.4256 (2)0.22939 (17)0.0359 (4)
C191.3530 (3)0.4447 (2)0.1302 (2)0.0473 (5)
H191.30930.37640.06450.057*
C201.3742 (3)0.5639 (2)0.1281 (2)0.0549 (6)
H201.34310.57410.06070.066*
C211.4403 (3)0.6678 (2)0.2232 (2)0.0517 (6)
C221.4881 (2)0.6492 (2)0.3219 (2)0.0462 (5)
H221.53530.71790.38720.055*
C231.4670 (2)0.5305 (2)0.32530 (18)0.0407 (5)
H231.50070.52070.39270.049*
C241.0994 (2)0.3146 (2)0.48788 (17)0.0419 (5)
H24A1.10760.40200.50700.050*
H24B1.18830.30910.53730.050*
C250.9655 (2)0.2443 (2)0.50273 (17)0.0414 (5)
C260.8899 (3)0.3059 (3)0.5544 (2)0.0653 (7)
H260.92000.39260.57890.078*
C270.7694 (4)0.2405 (5)0.5704 (3)0.0973 (13)
H270.71910.28350.60550.117*
C280.7242 (4)0.1134 (5)0.5352 (3)0.1005 (14)
H280.64380.06980.54680.121*
C290.7973 (4)0.0500 (4)0.4825 (3)0.0861 (11)
H290.76590.03680.45750.103*
C300.9178 (3)0.1153 (3)0.4668 (2)0.0587 (6)
H300.96760.07190.43140.070*
C310.8977 (4)0.7745 (3)0.2073 (3)0.0809 (10)
H31A0.99920.82380.25360.121*
H31B0.83390.79510.24480.121*
H31C0.87140.79180.14050.121*
C321.4589 (4)0.7978 (3)0.2204 (3)0.0879 (11)
H32A1.36550.81230.20750.132*
H32B1.49180.80540.16230.132*
H32C1.53130.85820.28940.132*
N11.08991 (17)0.26497 (15)0.37491 (13)0.0336 (4)
O10.8638 (2)0.01340 (14)0.06942 (15)0.0594 (5)
H10.94990.00570.07570.089*
O21.08398 (17)0.21434 (14)0.06883 (12)0.0427 (4)
O31.1736 (2)0.01162 (16)0.14756 (17)0.0606 (5)
S10.64069 (6)0.14300 (6)0.06705 (6)0.0616 (2)
S21.51660 (6)0.27141 (6)0.32504 (6)0.05307 (19)
H3A1.170 (10)0.013 (8)0.087 (3)0.28 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0624 (15)0.0476 (13)0.0453 (14)0.0226 (12)0.0122 (12)0.0202 (11)
C20.0549 (15)0.0619 (15)0.0620 (16)0.0323 (13)0.0272 (13)0.0255 (13)
C30.0361 (11)0.0606 (14)0.0571 (15)0.0189 (10)0.0224 (11)0.0301 (12)
C40.0296 (10)0.0438 (11)0.0346 (11)0.0125 (8)0.0090 (8)0.0193 (9)
C50.0390 (12)0.0499 (12)0.0545 (14)0.0153 (10)0.0240 (11)0.0255 (11)
C60.0541 (14)0.0488 (13)0.0579 (15)0.0095 (11)0.0229 (12)0.0272 (12)
C70.0288 (10)0.0433 (11)0.0362 (11)0.0075 (8)0.0079 (8)0.0174 (9)
C80.0362 (12)0.0482 (13)0.0552 (15)0.0008 (10)0.0116 (11)0.0197 (11)
C90.0395 (11)0.0353 (10)0.0405 (12)0.0049 (9)0.0112 (9)0.0144 (9)
C100.0269 (9)0.0329 (10)0.0334 (10)0.0073 (8)0.0091 (8)0.0130 (8)
C110.0304 (10)0.0392 (10)0.0348 (11)0.0110 (8)0.0110 (8)0.0130 (9)
C120.0284 (10)0.0417 (11)0.0358 (11)0.0070 (8)0.0100 (9)0.0137 (9)
C130.0297 (10)0.0362 (10)0.0371 (11)0.0121 (8)0.0132 (8)0.0169 (9)
C140.0329 (10)0.0281 (9)0.0338 (11)0.0074 (8)0.0112 (8)0.0105 (8)
C150.0480 (13)0.0407 (11)0.0486 (13)0.0180 (10)0.0201 (11)0.0223 (10)
C160.0608 (17)0.0567 (16)0.111 (3)0.0266 (14)0.0117 (17)0.0439 (17)
C170.0308 (10)0.0460 (11)0.0412 (12)0.0162 (9)0.0170 (9)0.0197 (9)
C180.0243 (9)0.0473 (11)0.0417 (12)0.0123 (8)0.0154 (9)0.0211 (10)
C190.0397 (12)0.0549 (13)0.0420 (13)0.0062 (10)0.0117 (10)0.0216 (11)
C200.0470 (13)0.0650 (16)0.0535 (15)0.0112 (12)0.0117 (12)0.0370 (13)
C210.0387 (12)0.0509 (13)0.0675 (17)0.0115 (10)0.0173 (12)0.0303 (13)
C220.0345 (11)0.0456 (12)0.0534 (14)0.0078 (9)0.0158 (10)0.0159 (11)
C230.0293 (10)0.0534 (13)0.0411 (12)0.0103 (9)0.0137 (9)0.0220 (10)
C240.0373 (11)0.0495 (12)0.0340 (11)0.0089 (9)0.0123 (9)0.0139 (9)
C250.0357 (11)0.0583 (13)0.0329 (11)0.0170 (10)0.0127 (9)0.0196 (10)
C260.0576 (16)0.093 (2)0.0606 (17)0.0383 (15)0.0315 (14)0.0303 (15)
C270.062 (2)0.177 (4)0.094 (3)0.060 (3)0.054 (2)0.068 (3)
C280.0418 (16)0.175 (4)0.093 (3)0.012 (2)0.0281 (18)0.077 (3)
C290.069 (2)0.092 (2)0.083 (2)0.0077 (18)0.0185 (18)0.0480 (19)
C300.0553 (15)0.0636 (16)0.0601 (16)0.0120 (12)0.0257 (13)0.0288 (13)
C310.110 (3)0.0518 (16)0.078 (2)0.0338 (17)0.025 (2)0.0267 (15)
C320.090 (2)0.0593 (18)0.110 (3)0.0150 (17)0.023 (2)0.0478 (19)
N10.0278 (8)0.0414 (9)0.0312 (9)0.0091 (7)0.0107 (7)0.0150 (7)
O10.0632 (11)0.0353 (8)0.0706 (12)0.0061 (8)0.0314 (10)0.0070 (8)
O20.0425 (8)0.0520 (9)0.0334 (8)0.0138 (7)0.0155 (7)0.0153 (7)
O30.0809 (13)0.0417 (9)0.0590 (12)0.0265 (9)0.0248 (10)0.0146 (8)
S10.0285 (3)0.0585 (4)0.0774 (5)0.0016 (3)0.0024 (3)0.0320 (4)
S20.0349 (3)0.0693 (4)0.0699 (4)0.0264 (3)0.0209 (3)0.0390 (3)
Geometric parameters (Å, º) top
C1—C21.375 (4)C16—H16A0.9700
C1—C61.387 (4)C16—H16B0.9700
C1—C311.508 (4)C17—C181.513 (3)
C2—C31.377 (3)C17—S21.823 (2)
C2—H20.9300C17—H170.9800
C3—C41.390 (3)C18—C191.389 (3)
C3—H30.9300C18—C231.390 (3)
C4—C51.389 (3)C19—C201.380 (3)
C4—C71.513 (3)C19—H190.9300
C5—C61.378 (3)C20—C211.377 (4)
C5—H50.9300C20—H200.9300
C6—H60.9300C21—C221.385 (3)
C7—C101.555 (3)C21—C321.512 (4)
C7—S11.837 (2)C22—C231.381 (3)
C7—H70.9800C22—H220.9300
C8—C91.520 (3)C23—H230.9300
C8—S11.791 (3)C24—N11.461 (3)
C8—H8A0.9700C24—C251.504 (3)
C8—H8B0.9700C24—H24A0.9700
C9—O11.408 (3)C24—H24B0.9700
C9—C101.556 (3)C25—C261.371 (3)
C9—H90.9800C25—C301.382 (3)
C10—C111.532 (3)C26—C271.384 (5)
C10—C141.539 (3)C26—H260.9300
C11—N11.464 (3)C27—C281.362 (6)
C11—H11A0.9700C27—H270.9300
C11—H11B0.9700C28—C291.370 (6)
C12—N11.460 (2)C28—H280.9300
C12—C131.538 (3)C29—C301.382 (4)
C12—H12A0.9700C29—H290.9300
C12—H12B0.9700C30—H300.9300
C13—C141.534 (3)C31—H31A0.9600
C13—C171.553 (3)C31—H31B0.9600
C13—C151.562 (3)C31—H31C0.9600
C14—O21.207 (2)C32—H32A0.9600
C15—O31.410 (3)C32—H32B0.9600
C15—C161.531 (4)C32—H32C0.9600
C15—H150.9800O1—H10.8200
C16—S21.803 (3)O3—H3A0.82 (2)
C2—C1—C6117.2 (2)S2—C16—H16A109.5
C2—C1—C31121.5 (3)C15—C16—H16B109.5
C6—C1—C31121.3 (3)S2—C16—H16B109.5
C1—C2—C3121.8 (2)H16A—C16—H16B108.1
C1—C2—H2119.1C18—C17—C13117.59 (16)
C3—C2—H2119.1C18—C17—S2113.06 (14)
C2—C3—C4121.2 (2)C13—C17—S2104.14 (13)
C2—C3—H3119.4C18—C17—H17107.2
C4—C3—H3119.4C13—C17—H17107.2
C5—C4—C3117.1 (2)S2—C17—H17107.2
C5—C4—C7119.27 (19)C19—C18—C23117.6 (2)
C3—C4—C7123.64 (19)C19—C18—C17118.6 (2)
C6—C5—C4121.1 (2)C23—C18—C17123.76 (19)
C6—C5—H5119.4C20—C19—C18120.8 (2)
C4—C5—H5119.4C20—C19—H19119.6
C5—C6—C1121.5 (2)C18—C19—H19119.6
C5—C6—H6119.2C21—C20—C19121.7 (2)
C1—C6—H6119.2C21—C20—H20119.2
C4—C7—C10115.31 (16)C19—C20—H20119.2
C4—C7—S1113.35 (14)C20—C21—C22117.6 (2)
C10—C7—S1106.77 (13)C20—C21—C32121.4 (3)
C4—C7—H7107.0C22—C21—C32121.0 (3)
C10—C7—H7107.0C23—C22—C21121.3 (2)
S1—C7—H7107.0C23—C22—H22119.3
C9—C8—S1106.11 (15)C21—C22—H22119.3
C9—C8—H8A110.5C22—C23—C18120.9 (2)
S1—C8—H8A110.5C22—C23—H23119.5
C9—C8—H8B110.5C18—C23—H23119.5
S1—C8—H8B110.5N1—C24—C25111.66 (17)
H8A—C8—H8B108.7N1—C24—H24A109.3
O1—C9—C8110.11 (19)C25—C24—H24A109.3
O1—C9—C10112.94 (17)N1—C24—H24B109.3
C8—C9—C10106.43 (17)C25—C24—H24B109.3
O1—C9—H9109.1H24A—C24—H24B107.9
C8—C9—H9109.1C26—C25—C30118.3 (2)
C10—C9—H9109.1C26—C25—C24121.2 (2)
C11—C10—C14110.28 (15)C30—C25—C24120.4 (2)
C11—C10—C7112.19 (16)C25—C26—C27120.8 (3)
C14—C10—C7110.24 (16)C25—C26—H26119.6
C11—C10—C9108.78 (16)C27—C26—H26119.6
C14—C10—C9108.77 (16)C28—C27—C26120.3 (3)
C7—C10—C9106.46 (15)C28—C27—H27119.9
N1—C11—C10109.70 (16)C26—C27—H27119.9
N1—C11—H11A109.7C27—C28—C29119.9 (3)
C10—C11—H11A109.7C27—C28—H28120.1
N1—C11—H11B109.7C29—C28—H28120.1
C10—C11—H11B109.7C28—C29—C30119.8 (4)
H11A—C11—H11B108.2C28—C29—H29120.1
N1—C12—C13110.40 (16)C30—C29—H29120.1
N1—C12—H12A109.6C25—C30—C29120.9 (3)
C13—C12—H12A109.6C25—C30—H30119.6
N1—C12—H12B109.6C29—C30—H30119.6
C13—C12—H12B109.6C1—C31—H31A109.5
H12A—C12—H12B108.1C1—C31—H31B109.5
C14—C13—C12110.81 (16)H31A—C31—H31B109.5
C14—C13—C17109.88 (16)C1—C31—H31C109.5
C12—C13—C17113.19 (16)H31A—C31—H31C109.5
C14—C13—C15110.49 (16)H31B—C31—H31C109.5
C12—C13—C15108.44 (16)C21—C32—H32A109.5
C17—C13—C15103.81 (16)C21—C32—H32B109.5
O2—C14—C13120.01 (18)H32A—C32—H32B109.5
O2—C14—C10120.85 (18)C21—C32—H32C109.5
C13—C14—C10119.11 (16)H32A—C32—H32C109.5
O3—C15—C16109.4 (2)H32B—C32—H32C109.5
O3—C15—C13114.05 (18)C12—N1—C24112.54 (16)
C16—C15—C13107.70 (18)C12—N1—C11108.66 (15)
O3—C15—H15108.5C24—N1—C11111.57 (16)
C16—C15—H15108.5C9—O1—H1109.5
C13—C15—H15108.5C15—O3—H3A132 (6)
C15—C16—S2110.68 (17)C8—S1—C795.12 (10)
C15—C16—H16A109.5C16—S2—C1791.17 (11)
C6—C1—C2—C30.6 (4)C17—C13—C15—O383.2 (2)
C31—C1—C2—C3179.4 (3)C14—C13—C15—C16156.2 (2)
C1—C2—C3—C40.7 (4)C12—C13—C15—C1682.2 (2)
C2—C3—C4—C51.5 (3)C17—C13—C15—C1638.4 (3)
C2—C3—C4—C7178.8 (2)O3—C15—C16—S2113.2 (2)
C3—C4—C5—C61.0 (3)C13—C15—C16—S211.3 (3)
C7—C4—C5—C6179.3 (2)C14—C13—C17—C1866.7 (2)
C4—C5—C6—C10.3 (4)C12—C13—C17—C1857.8 (2)
C2—C1—C6—C51.2 (4)C15—C13—C17—C18175.15 (18)
C31—C1—C6—C5178.9 (2)C14—C13—C17—S2167.34 (13)
C5—C4—C7—C1078.8 (2)C12—C13—C17—S268.19 (18)
C3—C4—C7—C10100.8 (2)C15—C13—C17—S249.17 (18)
C5—C4—C7—S1157.71 (17)C13—C17—C18—C1999.7 (2)
C3—C4—C7—S122.6 (3)S2—C17—C18—C19138.84 (17)
S1—C8—C9—O180.24 (19)C13—C17—C18—C2380.1 (2)
S1—C8—C9—C1042.5 (2)S2—C17—C18—C2341.3 (2)
C4—C7—C10—C1135.2 (2)C23—C18—C19—C202.7 (3)
S1—C7—C10—C1191.72 (17)C17—C18—C19—C20177.1 (2)
C4—C7—C10—C1488.1 (2)C18—C19—C20—C210.9 (4)
S1—C7—C10—C14144.97 (14)C19—C20—C21—C221.4 (4)
C4—C7—C10—C9154.07 (17)C19—C20—C21—C32178.1 (3)
S1—C7—C10—C927.17 (19)C20—C21—C22—C231.6 (3)
O1—C9—C10—C11163.04 (17)C32—C21—C22—C23177.9 (2)
C8—C9—C10—C1176.0 (2)C21—C22—C23—C180.3 (3)
O1—C9—C10—C1442.9 (2)C19—C18—C23—C222.5 (3)
C8—C9—C10—C14163.83 (17)C17—C18—C23—C22177.36 (18)
O1—C9—C10—C775.9 (2)N1—C24—C25—C26131.5 (2)
C8—C9—C10—C745.1 (2)N1—C24—C25—C3050.1 (3)
C14—C10—C11—N151.4 (2)C30—C25—C26—C270.3 (4)
C7—C10—C11—N1174.70 (15)C24—C25—C26—C27178.1 (3)
C9—C10—C11—N167.8 (2)C25—C26—C27—C280.1 (5)
N1—C12—C13—C1448.6 (2)C26—C27—C28—C290.7 (6)
N1—C12—C13—C17172.50 (16)C27—C28—C29—C300.8 (5)
N1—C12—C13—C1572.9 (2)C26—C25—C30—C290.1 (4)
C12—C13—C14—O2148.46 (18)C24—C25—C30—C29178.3 (2)
C17—C13—C14—O222.6 (2)C28—C29—C30—C250.4 (5)
C15—C13—C14—O291.3 (2)C13—C12—N1—C24166.97 (17)
C12—C13—C14—C1033.5 (2)C13—C12—N1—C1169.0 (2)
C17—C13—C14—C10159.36 (16)C25—C24—N1—C12167.72 (17)
C15—C13—C14—C1086.7 (2)C25—C24—N1—C1169.8 (2)
C11—C10—C14—O2146.97 (18)C10—C11—N1—C1270.60 (19)
C7—C10—C14—O222.5 (2)C10—C11—N1—C24164.76 (16)
C9—C10—C14—O293.8 (2)C9—C8—S1—C723.05 (18)
C11—C10—C14—C1335.0 (2)C4—C7—S1—C8130.77 (16)
C7—C10—C14—C13159.47 (16)C10—C7—S1—C82.71 (16)
C9—C10—C14—C1384.2 (2)C15—C16—S2—C1715.5 (2)
C14—C13—C15—O334.5 (2)C18—C17—S2—C16166.52 (18)
C12—C13—C15—O3156.18 (18)C13—C17—S2—C1637.74 (18)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the B (C1–C6) and C (C18–C23) toluyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.822.092.873 (3)159
O3—H3A···O1i0.82 (6)2.06 (5)2.880 (3)174 (1)
C2—H2···Cg5ii0.932.803.620 (3)148
C20—H20···Cg4iii0.932.793.616 (3)149
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z; (iii) x+2, y+1, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. VV thanks the DBT, Government of India, for a fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHema, R., Parthasarathi, V., Ravikumar, K., Sridhar, B. & Pandiarajan, K. (2005a). Acta Cryst. E61, o4345–o4347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHema, R., Parthasarathi, V., Ravikumar, K., Sridhar, B., Pandiarajan, K. & Muthukumaran, G. (2005b). Acta Cryst. E61, o3987–o3989.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMochizuki, A., Nakamoto, Y., Naito, H., Uoto, K. & Ohta, T. (2008). Bioorg. Med. Chem. Lett. 18, 782–787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNguyen Thi Thanh, C., Nguyen Bich, N. & Van Meervelt, L. (2014). Acta Cryst. C70, 297–301.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandey, P. & Chawla, P. (2012). Int. J. Pharm. Chem. Biol. Sci. 2, 305–309.  CAS Google Scholar
First citationPerumal, P., Pandey, V. P. & Sarayu, Y. L. (2014). Int. J. Pharm. Pharm. Sci. 6, 572–573.  Google Scholar
First citationRaghuvarman, B., Sivakumar, R., Thanikachalam, V. & Aravindhan, S. (2014). Acta Cryst. E70, 199–202.  CSD CrossRef IUCr Journals Google Scholar
First citationRajalakshmi, P., Srinivasan, N. & Krishnakumar, R. V. (2012). Acta Cryst. E68, o2732.  CSD CrossRef IUCr Journals Google Scholar
First citationSekar, K. & Parthasarathy, S. (1993). J. Crystallogr. Spectrosc. Res. 23, 101–105.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, H. P., Gupta, S. D. & Moorthy, N. S. H. N. (2009). Int. J. PharmTech. Res. 1, 282–287.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds