research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-benzoyl­amino-N′-(4-hy­dr­oxy­benzyl­­idene)-3-(thio­phen-2-yl)prop-2-eno­hydrazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mangalore University, Mangalagangothri 574 199, DK, Mangalore, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, dDepartment of Bioinformatics, Central University of South Bihar, BIT Campus, PO B. V. College, Patna 800 014, India, and eSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 July 2016; accepted 6 July 2016; online 12 July 2016)

In the title compound, C21H17N3O3S, the non-H atoms, apart from those in the benzoyl group, are almost coplanar (r.m.s. deviation = 0.049 Å) and the benzoyl group is almost orthogonal to the plane of the rest of the mol­ecule [dihedral angle = 80.34 (6)°]. In the crystal, a combination of N—H⋯O and asymmetric bifurcated O—H⋯(N,O) hydrogen bonds link the mol­ecules into a three-dimensional network. Weak C—H⋯O inter­actions are also observed.

1. Chemical context

Compounds containing hydrazide and Schiff base functionality are of inter­est as examples of this class have been shown to exhibit anti­fungal (Singh & Dash, 1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]), anti-inflammatory (Todeschini et al., 1998[Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189-199.]), anti­microbial (Pandeya et al., 1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624-628.]) and anti­tumour activity (Desai et al., 2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]).

[Scheme 1]

We report here the crystal structure of the title compound, (I)[link] (Fig. 1[link]), which we compare with the closely related compound methyl 2-benzoyl­amino-3-(thio­phen-2-yl)prop-2-enoate, (II) (Subbulakshmi et al., 2015[Subbulakshmi, K. N., Narayana, B., Yathirajan, H. S., Akkurt, M., Çelik, Ö., Ersanlı, C. C. & Glidewell, C. (2015). Acta Cryst. C71, 742-751.]). The constitutions of compounds (I)[link] and (II) differ simply in the notional replacement of the COOMe unit in (II) by the CONHN=CHC6H4OH group in (I)[link]. Compound (I)[link] was prepared by condensation of 2-benzoyl­amino-3-(thio­phen-2-yl)prop-2-enoylhydrazine with 4-hy­droxy­benzaldehyde, whereas compound (II) was prepared by the hydrolytic ring-opening of 2-phenyl-4-[(thio­phen-2-yl)-methyl­idene]-1,3-oxazol-5(4H)-one to form 2-(benzoyl­amino)-3-(thio­phen-2-yl)prop-2-enoic acid, followed by esterification.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing displacement ellipsoids drawn at the 30% probability level.

2. Structural commentary

The central core of the mol­ecule of (I)[link], encompassing atoms N21, C3, C2, C1, N11, N12, C17 and C11, is roughly planar: the maximum deviation of any of the component atoms from the mean plane is 0.0859 (14) Å with an r.m.s. deviation of 0.049 Å. The thienyl ring and the aryl ring (C11–C16) are both nearly coplanar with the central spacer unit, making dihedral angles of 1.60 (12) and 5.35 (11)°, respectively. By contrast, the aryl ring (C21–C26) is almost orthogonal to the central unit, making a dihedral angle of 80.34 (6)°. The mol­ecules of (I)[link] exhibit no inter­nal symmetry and they are thus conformationally chiral: the centrosymmetric space group confirms that compound (I)[link] crystallizes as a conformational racemate. The bond distances show clearly that the bonds C2—C3 and N12—C17 are localized double bonds, consistent with the location of the H atoms as deduced from difference maps, ruling out the occurrence in the crystal of any other tautomeric forms. The non-bonded intra­molecular distance O1⋯O27, 3.820 (3) Å, rules out any possibility of an intra­molecular O—H⋯O hydrogen bond.

3. Supra­molecular inter­actions

In the crystal, the mol­ecules of (I)[link] are linked into a three-dimensional network by a combination of two N—H⋯O hydrogen bonds and a three-centre (bifurcated) O—H⋯(N,O) hydrogen bond (Table 1[link]). The three-centre inter­action is planar within experimental uncertainty with both acceptors in the same mol­ecule, and it is markedly asymmetric. While the longer component might, perhaps, be regarded as an adventitious contact given the proximity of the two acceptor sites, the great propensity of hydroxyl groups to act as hydrogen-bond donors (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]) cautions against this inter­pretation. Very asymmetric three-centre hydrogen bonds are, in fact, not uncommon: for example, in the structure of 2-amino-4,6-dimeth­oxy-5-nitro­sopyrimidine–water (4/3) (Glidewell et al., 2002[Glidewell, C., Low, J. N., Marchal, A., Melguizo, M. & Quesada, A. (2002). Acta Cryst. C58, o655-o657.]) there are six different three-centre hydrogen bonds, two of which, both of O—H⋯(N,O) type, show asymmetries comparable with that found here in (I)[link]; markedly asymmetric N—H⋯(N,O) systems occur in the structures of 2-amino-4,6-bis­(benz­yloxy)-5-nitro­sopyrimidine (Quesada et al., 2002[Quesada, A., Low, J. N., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o355-o358.]), and in (E)-3-di­methyl­amino-2-(1H-indol-3-ylcarbon­yl)acrylo­nitrile, where the two acceptors form parts of different mol­ecules (Galvez et al., 2008[Galvez, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2008). Acta Cryst. C64, o385-o387.]); and a very asymmetric N—H⋯(O)2 hydrogen bond having the two acceptors in different mol­ecules occurs in the structure of 3,3-di­fluoro-5-nitro-1H-indol-2(3H)-one (Glidewell et al., 2005[Glidewell, C., Low, J. N. & Wardell, J. L. (2005). Acta Cryst. C61, o57-o59.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O27i 0.86 (2) 2.10 (2) 2.9400 (18) 168 (2)
N21—H21⋯O1ii 0.827 (19) 2.238 (19) 3.0002 (18) 153.5 (18)
O14—H14⋯O1iii 0.84 (3) 1.97 (3) 2.7727 (19) 162 (3)
O14—H14⋯N12iii 0.84 (3) 2.59 (3) 3.133 (2) 124 (2)
C3—H3⋯O27i 0.93 2.52 3.333 (2) 147
C17—H17⋯O27i 0.93 2.57 3.350 (2) 142
C24—H24⋯O14iv 0.93 2.58 3.364 (3) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, y+{\script{3\over 2}}, z].

The formation of the hydrogen-bonded network in (I)[link] is most readily analysed in terms of simpler substructures of lower dimensionality (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). In the simplest of the substructures, mol­ecules related by a 21 screw axis are linked by the three-centre hydrogen bond to form a C(8)C(11)[R12(5)] chain of rings running parallel to the [010] direction (Fig. 2[link]). The chains of this type are linked by the N—H⋯O hydrogen bond having atom O1 as the acceptor (Table 1[link]) to form a two-dimensional substructure in the form of a sheet lying parallel to (001) (Fig. 3[link]). Finally, these sheets are linked by the N—H⋯O hydrogen bond having atom O27 as the acceptor to form a continuous framework structure (Fig. 4[link]). This network is reinforced by a number of weak C—H⋯O inter­actions (Table 1[link]), but these are not essential to its formation.

[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded chain of rings parallel to [010]. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions ([{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z), ([{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z) and (x, 1 + y, z), respectively.
[Figure 3]
Figure 3
A projection along [010] of part of the crystal structure of compound (I)[link], showing the linking of the [010] chains to form a sheet parallel to (001). Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 4]
Figure 4
A projection along [010] of part of the crystal structure of compound (I)[link], showing the linking of the (001) sheets to form a three-dimensional framework structure. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

4. Database survey

In the crystal structure of compound (II) (Subbulakshmi et al., 2015[Subbulakshmi, K. N., Narayana, B., Yathirajan, H. S., Akkurt, M., Çelik, Ö., Ersanlı, C. C. & Glidewell, C. (2015). Acta Cryst. C71, 742-751.]), a combination of N—H⋯O and C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets; in the structure of (E)-N′-[1-(2-hy­droxy­phen­yl)ethyl­idene]-3-meth­oxy­benzohydrazide the mol­ecules are linked by a single N—H⋯O hydrogen bond to form simple C(4) chains (Li & Ban, 2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.]); and the mol­ecules of (E)-N′-(4-hy­droxy­benzyl­idene)-3-nitro­benzohydrazide are linked into sheets by a combination of N—H⋯O, O—H⋯·(N,O) and C—H⋯O hydrogen bonds (Meng et al., 2012[Meng, X.-F., Wang, D.-Y. & Ma, J.-J. (2012). Acta Cryst. E68, o20.]).

5. Synthesis and crystallization

A mixture of 2-benzoyl­amino-3-(thio­phen-2-yl)prop-2-enoylhydrazine (2.87 g, 0.01 mol), and 4-hy­droxy­benzaldehyde (1.22 g, 0.01 mol) in ethanol (20 ml) was stirred at ambient temperature for 4 h. The resulting solid product was collected by filtration, washed with cold water, dried in air and recrystallized from ethanol solution: m.p. 534–535 K. Crystals of (I)[link] were grown by slow evaporation at room temperature of a solution in 1,4-dioxane-methanol (1:1, v/v).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H = 0.93 Å and with Uiso(H) = 1.2 Ueq(C). For the H atoms bonded to O or N atoms, the atomic coordinates were refined with Uiso(H) = 1.2 Ueq(N) or 1.5Ueq(O), giving the O—H and N—H distances shown in Table 1[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H17N3O3S
Mr 391.43
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 22.5212 (7), 10.1879 (4), 17.3592 (5)
β (°) 105.801 (3)
V3) 3832.5 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.42 × 0.32 × 0.18
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.757, 0.965
No. of measured, independent and observed [I > 2σ(I)] reflections 9963, 4419, 3426
Rint 0.024
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.04
No. of reflections 4419
No. of parameters 262
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.26
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009).

2-Benzoylamino-N'-(4-hydroxybenzylidene)-3-(thiophen-2-yl)prop-2-enohydrazide top
Crystal data top
C21H17N3O3SF(000) = 1632
Mr = 391.43Dx = 1.357 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.5212 (7) ÅCell parameters from 6327 reflections
b = 10.1879 (4) Åθ = 3.4–32.0°
c = 17.3592 (5) ŵ = 0.20 mm1
β = 105.801 (3)°T = 298 K
V = 3832.5 (2) Å3Plate, colourless
Z = 80.42 × 0.32 × 0.18 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3426 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.024
φ and ω scansθmax = 27.6°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 2529
Tmin = 0.757, Tmax = 0.965k = 137
9963 measured reflectionsl = 2022
4419 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0475P)2 + 2.5641P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4419 reflectionsΔρmax = 0.24 e Å3
262 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53659 (7)0.43211 (16)0.64694 (9)0.0306 (3)
O10.56722 (5)0.47222 (13)0.71288 (7)0.0423 (3)
C20.47457 (7)0.48794 (16)0.60847 (9)0.0299 (3)
C30.43369 (7)0.43455 (17)0.54526 (9)0.0347 (4)
H30.44690.35860.52520.042*
N110.55560 (6)0.33591 (15)0.60668 (8)0.0348 (3)
H110.5363 (9)0.3157 (19)0.5583 (12)0.042*
N120.61135 (6)0.27363 (15)0.63980 (8)0.0350 (3)
C170.62189 (8)0.17766 (18)0.59827 (10)0.0372 (4)
H170.59240.15700.55090.045*
C110.67784 (7)0.09896 (17)0.62156 (10)0.0349 (4)
C120.72750 (8)0.13084 (18)0.68643 (10)0.0382 (4)
H120.72610.20680.71560.046*
C130.77876 (8)0.05097 (19)0.70785 (10)0.0393 (4)
H130.81150.07300.75150.047*
C140.78174 (8)0.06236 (18)0.66441 (10)0.0373 (4)
O140.83122 (6)0.14325 (14)0.68163 (9)0.0524 (4)
H140.8583 (12)0.115 (3)0.7211 (15)0.079*
C150.73300 (8)0.09439 (18)0.59955 (11)0.0436 (4)
H150.73460.17000.57010.052*
C160.68189 (8)0.01392 (19)0.57854 (10)0.0421 (4)
H160.64940.03580.53450.050*
N210.45947 (6)0.60302 (14)0.64533 (8)0.0326 (3)
H210.4510 (9)0.5932 (19)0.6884 (11)0.039*
C270.46800 (7)0.72320 (17)0.61800 (9)0.0314 (3)
O270.49198 (6)0.73798 (13)0.56269 (7)0.0435 (3)
C210.44374 (8)0.83722 (17)0.65374 (9)0.0360 (4)
C220.40355 (9)0.8231 (2)0.70116 (12)0.0497 (5)
H220.39330.73950.71490.060*
C230.37867 (11)0.9317 (3)0.72807 (14)0.0642 (6)
H230.35190.92100.76000.077*
C240.39294 (12)1.0539 (2)0.70834 (14)0.0676 (7)
H240.37561.12670.72630.081*
C250.43304 (14)1.0707 (2)0.66171 (15)0.0737 (7)
H250.44301.15480.64850.088*
C260.45857 (11)0.9615 (2)0.63441 (12)0.0551 (5)
H260.48570.97270.60300.066*
S310.33408 (2)0.61148 (5)0.52709 (3)0.04314 (14)
C320.37235 (8)0.47716 (18)0.50374 (10)0.0367 (4)
C330.33582 (9)0.4137 (2)0.43779 (12)0.0518 (5)
H330.34820.33920.41530.062*
C340.27760 (9)0.4737 (3)0.40789 (12)0.0597 (6)
H340.24730.44250.36400.072*
C350.27068 (9)0.5808 (2)0.44974 (12)0.0533 (5)
H350.23530.63230.43780.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0294 (8)0.0327 (8)0.0303 (7)0.0004 (6)0.0090 (6)0.0012 (6)
O10.0340 (6)0.0506 (8)0.0378 (6)0.0050 (5)0.0019 (5)0.0115 (6)
C20.0310 (8)0.0298 (8)0.0301 (7)0.0047 (6)0.0107 (6)0.0002 (6)
C30.0330 (8)0.0346 (9)0.0370 (8)0.0039 (7)0.0103 (7)0.0042 (7)
N110.0316 (7)0.0407 (8)0.0293 (6)0.0108 (6)0.0037 (6)0.0008 (6)
N120.0307 (7)0.0406 (8)0.0335 (7)0.0096 (6)0.0086 (6)0.0043 (6)
C170.0346 (8)0.0429 (10)0.0323 (8)0.0077 (7)0.0062 (7)0.0036 (7)
C110.0338 (8)0.0383 (9)0.0330 (8)0.0069 (7)0.0097 (7)0.0043 (7)
C120.0378 (9)0.0399 (10)0.0368 (8)0.0055 (7)0.0103 (7)0.0036 (7)
C130.0332 (8)0.0485 (11)0.0335 (8)0.0033 (8)0.0047 (7)0.0003 (8)
C140.0337 (8)0.0367 (9)0.0401 (9)0.0080 (7)0.0078 (7)0.0092 (7)
O140.0425 (7)0.0490 (8)0.0558 (8)0.0182 (6)0.0034 (6)0.0021 (7)
C150.0417 (10)0.0354 (10)0.0488 (10)0.0076 (8)0.0043 (8)0.0061 (8)
C160.0360 (9)0.0439 (11)0.0402 (9)0.0058 (8)0.0000 (7)0.0040 (8)
N210.0376 (7)0.0343 (8)0.0279 (6)0.0073 (6)0.0123 (6)0.0011 (6)
C270.0296 (8)0.0349 (9)0.0266 (7)0.0033 (6)0.0023 (6)0.0035 (6)
O270.0537 (8)0.0439 (8)0.0375 (6)0.0012 (6)0.0203 (6)0.0028 (5)
C210.0363 (9)0.0357 (9)0.0305 (8)0.0061 (7)0.0002 (7)0.0061 (7)
C220.0499 (11)0.0483 (12)0.0534 (11)0.0079 (9)0.0185 (9)0.0102 (9)
C230.0613 (14)0.0656 (16)0.0688 (14)0.0177 (12)0.0231 (11)0.0200 (12)
C240.0798 (17)0.0531 (14)0.0641 (14)0.0248 (12)0.0095 (12)0.0189 (11)
C250.108 (2)0.0359 (12)0.0719 (15)0.0058 (13)0.0156 (15)0.0041 (11)
C260.0741 (15)0.0385 (11)0.0527 (11)0.0012 (10)0.0175 (11)0.0040 (9)
S310.0342 (2)0.0489 (3)0.0449 (3)0.00813 (19)0.00828 (18)0.0011 (2)
C320.0326 (8)0.0431 (10)0.0338 (8)0.0015 (7)0.0080 (7)0.0027 (7)
C330.0381 (10)0.0649 (14)0.0475 (10)0.0022 (9)0.0034 (8)0.0158 (9)
C340.0363 (10)0.0921 (18)0.0430 (10)0.0006 (11)0.0025 (8)0.0101 (11)
C350.0328 (9)0.0762 (15)0.0471 (11)0.0103 (9)0.0047 (8)0.0074 (10)
Geometric parameters (Å, º) top
C1—O11.2342 (19)N21—C271.346 (2)
C1—N111.340 (2)N21—H210.826 (19)
C1—C21.487 (2)C27—O271.2322 (19)
C2—C31.341 (2)C27—C211.489 (2)
C2—N211.421 (2)C21—C261.374 (3)
C3—C321.440 (2)C21—C221.387 (3)
C3—H30.9300C22—C231.378 (3)
N11—N121.3844 (18)C22—H220.9300
N11—H110.859 (19)C23—C241.353 (4)
N12—C171.275 (2)C23—H230.9300
C17—C111.455 (2)C24—C251.378 (4)
C17—H170.9300C24—H240.9300
C11—C161.388 (2)C25—C261.394 (3)
C11—C121.392 (2)C25—H250.9300
C12—C131.378 (2)C26—H260.9300
C12—H120.9300S31—C351.702 (2)
C13—C141.391 (3)S31—C321.7235 (18)
C13—H130.9300C32—C331.376 (2)
C14—O141.352 (2)C33—C341.411 (3)
C14—C151.381 (2)C33—H330.9300
O14—H140.84 (3)C34—C351.343 (3)
C15—C161.379 (2)C34—H340.9300
C15—H150.9300C35—H350.9300
C16—H160.9300
O1—C1—N11123.27 (15)C27—N21—H21121.3 (14)
O1—C1—C2120.61 (15)C2—N21—H21116.8 (14)
N11—C1—C2116.11 (13)O27—C27—N21121.39 (15)
C3—C2—N21120.54 (14)O27—C27—C21121.18 (16)
C3—C2—C1124.32 (15)N21—C27—C21117.32 (14)
N21—C2—C1115.10 (13)C26—C21—C22118.82 (18)
C2—C3—C32129.69 (16)C26—C21—C27118.41 (17)
C2—C3—H3115.2C22—C21—C27122.62 (17)
C32—C3—H3115.2C23—C22—C21120.6 (2)
C1—N11—N12120.08 (13)C23—C22—H22119.7
C1—N11—H11122.5 (13)C21—C22—H22119.7
N12—N11—H11117.2 (13)C24—C23—C22120.5 (2)
C17—N12—N11113.83 (14)C24—C23—H23119.8
N12—C17—C11123.09 (15)C22—C23—H23119.8
N12—C17—H17118.5C23—C24—C25120.1 (2)
C11—C17—H17118.5C23—C24—H24119.9
C16—C11—C12118.20 (15)C25—C24—H24119.9
C16—C11—C17119.08 (15)C24—C25—C26119.9 (2)
C12—C11—C17122.71 (16)C24—C25—H25120.1
C13—C12—C11120.66 (17)C26—C25—H25120.1
C13—C12—H12119.7C21—C26—C25120.2 (2)
C11—C12—H12119.7C21—C26—H26119.9
C12—C13—C14120.29 (16)C25—C26—H26119.9
C12—C13—H13119.9C35—S31—C3291.97 (10)
C14—C13—H13119.9C33—C32—C3123.35 (17)
O14—C14—C15117.42 (17)C33—C32—S31110.17 (14)
O14—C14—C13123.00 (16)C3—C32—S31126.48 (13)
C15—C14—C13119.57 (15)C32—C33—C34112.82 (19)
C14—O14—H14110.1 (19)C32—C33—H33123.6
C16—C15—C14119.75 (17)C34—C33—H33123.6
C16—C15—H15120.1C35—C34—C33112.70 (18)
C14—C15—H15120.1C35—C34—H34123.7
C15—C16—C11121.52 (16)C33—C34—H34123.7
C15—C16—H16119.2C34—C35—S31112.35 (15)
C11—C16—H16119.2C34—C35—H35123.8
C27—N21—C2121.16 (13)S31—C35—H35123.8
O1—C1—C2—C3166.88 (16)C2—N21—C27—O273.6 (2)
N11—C1—C2—C311.8 (2)C2—N21—C27—C21172.62 (13)
O1—C1—C2—N2111.0 (2)O27—C27—C21—C2611.9 (2)
N11—C1—C2—N21170.33 (14)N21—C27—C21—C26171.89 (16)
N21—C2—C3—C321.0 (3)O27—C27—C21—C22163.63 (16)
C1—C2—C3—C32178.77 (16)N21—C27—C21—C2212.6 (2)
O1—C1—N11—N121.9 (3)C26—C21—C22—C230.3 (3)
C2—C1—N11—N12176.74 (14)C27—C21—C22—C23175.14 (17)
C1—N11—N12—C17175.03 (16)C21—C22—C23—C240.3 (3)
N11—N12—C17—C11179.60 (16)C22—C23—C24—C250.6 (4)
N12—C17—C11—C16171.54 (17)C23—C24—C25—C260.4 (4)
N12—C17—C11—C127.3 (3)C22—C21—C26—C250.5 (3)
C16—C11—C12—C131.0 (3)C27—C21—C26—C25175.14 (18)
C17—C11—C12—C13177.86 (16)C24—C25—C26—C210.1 (4)
C11—C12—C13—C140.5 (3)C2—C3—C32—C33178.32 (19)
C12—C13—C14—O14178.76 (17)C2—C3—C32—S311.3 (3)
C12—C13—C14—C150.1 (3)C35—S31—C32—C330.22 (16)
O14—C14—C15—C16178.83 (17)C35—S31—C32—C3179.89 (17)
C13—C14—C15—C160.1 (3)C3—C32—C33—C34179.77 (18)
C14—C15—C16—C110.5 (3)S31—C32—C33—C340.6 (2)
C12—C11—C16—C151.0 (3)C32—C33—C34—C350.7 (3)
C17—C11—C16—C15177.89 (18)C33—C34—C35—S310.5 (3)
C3—C2—N21—C2786.1 (2)C32—S31—C35—C340.18 (18)
C1—C2—N21—C2795.92 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O27i0.86 (2)2.10 (2)2.9400 (18)168 (2)
N21—H21···O1ii0.827 (19)2.238 (19)3.0002 (18)153.5 (18)
O14—H14···O1iii0.84 (3)1.97 (3)2.7727 (19)162 (3)
O14—H14···N12iii0.84 (3)2.59 (3)3.133 (2)124 (2)
C3—H3···O27i0.932.523.333 (2)147
C17—H17···O27i0.932.573.350 (2)142
C24—H24···O14iv0.932.583.364 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2; (iii) x+3/2, y1/2, z+3/2; (iv) x1/2, y+3/2, z.
 

Acknowledgements

KNS gratefully acknowledges the Department of Chemistry, Shri Madhwa Vadiraja Institute of Technology, Bantakal (VTU Belgam) for providing research facilities. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGalvez, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2008). Acta Cryst. C64, o385–o387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Marchal, A., Melguizo, M. & Quesada, A. (2002). Acta Cryst. C58, o655–o657.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N. & Wardell, J. L. (2005). Acta Cryst. C61, o57–o59.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, X.-F., Wang, D.-Y. & Ma, J.-J. (2012). Acta Cryst. E68, o20.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624–628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQuesada, A., Low, J. N., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o355–o358.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubbulakshmi, K. N., Narayana, B., Yathirajan, H. S., Akkurt, M., Çelik, Ö., Ersanlı, C. C. & Glidewell, C. (2015). Acta Cryst. C71, 742–751.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTodeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds