research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Zwitterionic 4-bromo-6-meth­­oxy-2-{[tris­­(hy­dr­oxy­meth­yl)methyl]­iminiumyl­meth­yl}phenolate: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: annielee@sunway.edu.my, edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 July 2016; accepted 26 July 2016; online 29 July 2016)

In the solid state, the title compound, C12H16BrNO5 [systematic name: 4-bromo-2-((1E)-{[1,3-dihy­droxy-2-(hy­droxy­meth­yl)propan-2-yl]iminium­yl}meth­yl)-6-meth­oxy­benzen-1-olate], C12H16BrNO5, is found in the keto–amine tautomeric form, with an intra­molecular iminium-N—H⋯O(phenolate) hydrogen bond and an E conformation about the C=N bond. Both gauche (two) and anti relationships are found for the methyl­hydroxy groups. In the crystal, a supra­molecular layer in the bc plane is formed via hy­droxy-O—H⋯O(hy­droxy) and charge-assisted hy­droxy-O—H⋯O(phenolate) hydrogen-bonding inter­actions; various C—H⋯O inter­actions provide additional cohesion to the layers, which stack along the a axis with no directional inter­actions between them. A Hirshfeld surface analysis confirms the lack of specific inter­actions in the inter-layer region.

1. Chemical context

Inter­est in mol­ecules related to the title Schiff base compound derived from tris­(hy­droxy­meth­yl)amino­methane (see Scheme) rests largely with the biological activity exhibited by their metal complexes. Thus, various species have been studied for their anticancer potential, e.g. vanadium (Back et al., 2012[Back, D. F., Kopp, C. R., de Oliveira, G. M. & Piquini, P. C. (2012). Polyhedron, 36, 21-29.]) and tin (Lee et al., 2015[Lee, S. M., Sim, K. S. & Lo, K. M. (2015). Inorg. Chim. Acta, 429, 195-208.]). The insulin-mimetic behaviour of vanadium complexes have been explored (Rehder et al., 2002[Rehder, D., Pessoa, J. C., Geraldes, C. F. G. C., Castro, M. M. C. A., Kabanos, T., Kiss, T., Meier, B., Micera, G., Pettersson, L., Rangel, M., Salifoglou, A., Turel, I. & Wang, D. (2002). J. Biol. Inorg. Chem. 7, 384-396.]), as has the catecolase activity of binuclear cobalt complexes (Dey & Mukherjee, 2014[Dey, S. K. & Mukherjee, A. (2014). New J. Chem. 38, 4985-4995.]). More recently, the adipogenic (cell differentiation) capacity of vanadium (Halevas et al., 2015[Halevas, E., Tsave, O., Yavropoulou, M. P., Hatzidimitriou, A., Yovos, J. G., Psycharis, V., Gabriel, C. & Salifoglou, A. (2015). J. Inorg. Biochem. 147, 99-115.]) and zinc complexes has been described (Tsave et al., 2015[Tsave, O., Halevas, E., Yavropoulou, M. P., Kosmidis Papadimitriou, A., Yovos, J. G., Hatzidimitriou, A., Gabriel, C., Psycharis, V. & Salifoglou, A. (2015). J. Inorg. Biochem. 152, 123-137.]). Over and above these considerations, magnetochemistry motivates on-going investigations, especially single-mol­ecule (Wu et al., 2007[Wu, G., Hewitt, I. J., Mameri, S., Lan, Y., Clérac, R., Anson, C. E., Qiu, S. & Powell, A. K. (2007). Inorg. Chem. 46, 7229-7231.]; Chandrasekhar et al., 2013[Chandrasekhar, V., Dey, A., Mota, A. J. & Colacio, E. (2013). Inorg. Chem. 52, 4554-4561.]; Dey et al., 2015[Dey, S. K., Mitra, P. & Mukherjee, A. (2015). Cryst. Growth Des. 15, 706-717.]) and lanthanide-containing species (Zou et al., 2015[Zou, H.-H., Sheng, L.-B., Liang, F. P., Chen, Z.-L. & Zhang, Y.-Q. (2015). Dalton Trans. 44, 18544-18552.]; Das et al., 2015[Das, C., Vaidya, S., Gupta, T., Frost, J. M., Righi, M., Brechin, E. K., Affronte, M., Rajaraman, G. & Shanmugam, M. (2015). Chem. Eur. J. 21, 15639-15650.]). It was during on-going biological assays (Lee et al., 2015[Lee, S. M., Sim, K. S. & Lo, K. M. (2015). Inorg. Chim. Acta, 429, 195-208.]) that the title compound, (I)[link], became available. Herein, the crystal and mol­ecular structures of (I)[link] are described, as well as a Hirshfeld surface analysis.

2. Structural commentary

The mol­ecular structure of (I)[link] (Fig. 1[link]) exists as a zwitterion in the solid state, with the iminium N atom being protonated and the phenolate O atom being deprotonated. The observed keto–amine tautomeric form for (I)[link] is the common form for mol­ecules of this type, see Database survey. The conformation about the iminium bond [1.295 (4) Å] is E and this residue is almost coplanar with the benzene ring, forming a C2—C1—C7—N1 torsion angle of 1.9 (4)°. This arrangement allows for the formation of a tight charge-assisted iminium-N—H⋯O(phenolate) hydrogen bond (Table 1[link]). The conformations of the methyl­hydroxy groups are variable, with gauche relationships about the C8—C9 and C8—C11 bonds [N1—C8—C9—O2 is 45.9 (3)°, i.e. +synclinal, and N1—C8—C11—O4 is −80.2 (3)°, i.e. –synclinal], and an anti relationship about the C8—C10 bond [N1—C8—C10—O3 is 178.8 (2)°, i.e. +anti­periplanar]. The meth­oxy group is almost coplanar with the ring it is connected to, as seen in the value of the C12—O5—C3—C2 torsion angle of 177.7 (2)°.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.85 (2) 1.90 (2) 2.608 (3) 140 (3)
O2—H2O⋯O4i 0.82 (2) 1.93 (2) 2.741 (3) 170 (3)
O3—H3O⋯O2ii 0.81 (2) 1.91 (2) 2.704 (3) 167 (4)
O4—H4O⋯O1iii 0.82 (3) 1.98 (3) 2.760 (3) 158 (3)
C7—H7⋯O1iii 0.93 2.55 3.429 (4) 158
C9—H9B⋯O3i 0.97 2.51 3.242 (4) 132
C11—H11B⋯O1iv 0.97 2.39 3.353 (3) 171
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. The intramolecular N—H⋯O hydrogen bond is shown as a double-dashed line (see Table 1[link])

3. Supra­molecular features

As anti­cipated from the chemical composition of (I)[link], there are considerable hydrogen-bonding inter­actions operating in the crystal; geometric characteristics of these are listed in Table 1[link]. Each of the hy­droxy O2 and O3 atoms participates in hy­droxy-O—H⋯O(hy­droxy) hydrogen-bonding inter­actions, while the hy­droxy O4 atom forms a donor inter­action with the phenolate O1 atom. The result is the formation of a supra­molecular layer parallel to (100) (Fig. 2[link]a). Within this framework are a number of C—H⋯O inter­actions, i.e. imine-C7—H⋯O(phenolate), methyl­ene-C11—H⋯O(phenolate) and methyl­ene-C9—H⋯O(hy­droxy) (Fig. 2[link]b). In accord with the distance criteria in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), layers stack along the a axis with no directional inter­actions between them. In order to gain more insight into the mol­ecular packing of (I)[link], a Hirshfeld surface analysis was conducted.

[Figure 2]
Figure 2
The mol­ecular packing in (I)[link], showing (a) a view of the supra­molecular layer sustained by O—H⋯O hydrogen bonding, shown as orange dashed lines, and (b) a view of the unit-cell contents shown in projection down the b axis, highlighting the stacking of layers along the a axis. In (a), only acidic H atoms are shown.

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surface of (I)[link] was mapped over the dnorm contact distance within the range of −0.67 to 1.31 Å through calculation of the inter­nal (di) and external (de) Hirshfeld surface distances to the nearest nucleus (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). Two-dimensional fingerprint plots associated with relevant close contacts were obtained through the plot of de versus di (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The electrostatic potential (ESP) of the crystal structure was mapped onto the Hirshfeld surface by an ab initio quantum modelling approach at the Hartree–Fock level of theory with the STO-3G basis set (HF/STO-3G) over the range of −0.122 to 0.189 au. All Hirshfeld surface and fingerprints plots were generated using Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]), while the ESP was calculated by TONTO (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) as implemented in Crystal Explorer. Distances involving H atoms were normalized to the standard neutron diffraction bond lengths.

The Hirshfeld surface map provides a visual summary of any close contacts (shown as red) in contrast to relatively long contacts (shown as white and blue). As displayed in Fig. 3[link](a), there are several red spots observed on the Hirshfeld surface of (I)[link], particularly around the O atoms, indicating close inter­actions at distances shorter than the sum of the van der Waals radii. A qu­anti­tative analysis of the decomposed two-dimensional fingerprint plot of the relevant O⋯H/H⋯O inter­actions reveals a distinctive reciprocal spike in the plot of de versus di (Fig. 3[link]b), with the sum of contact distances being approximately 1.74 Å, signifying a strong inter­molecular inter­action. Such strong inter­actions constitute the second major contribution to the Hirshfeld surface, i.e. 25.4%, between the most prominent H⋯H (38.2%) and other major contacts, like C⋯H/H⋯C (15.2%) and Br⋯H/H⋯Br (14.3%) (Fig. 4[link]). Their contributions to the overall Hirshfeld surface notwithstanding, as seen from Figs. 3[link](c) and 3(d), C⋯H and Br⋯H contacts are at distances greater than their respective van der Waals radii. Fig. 5[link] shows the O—H⋯O inter­actions formed between a reference mol­ecule and symmetry-related mol­ecules.

[Figure 3]
Figure 3
(a) Overall Hirshfeld surface and the two-dimensional fingerprint plot for (I)[link], and dnorm surfaces and two-dimensional plots associated with (b) O⋯H/H⋯O, (c) Br⋯H/H⋯Br and (d) C⋯H/H⋯C inter­actions.
[Figure 4]
Figure 4
Percentage distribution of the corresponding close contacts to the Hirshfeld surface of (I)[link].
[Figure 5]
Figure 5
The dnorm surface for (I)[link], highlighting the O⋯H hydrogen-bonding inter­actions which connect mol­ecules in the mol­ecular packing.

In order to gain a qualitative insight into the electrostatic inter­action and rationalize the packing motif of the structure, the ESP was mapped over the Hirshfeld surface. The result illustrated in Fig. 6[link](a), shows that the electronegative sites are predominantly converged on O atoms and that, upon crystallization, the electronegative and electropositive sites are connected (Fig. 6[link]b). It is noteworthy that despite bromine being an electrophilic element, it did not form a significant non-covalent inter­action with neighbouring mol­ecules in the inter-layer region where these atoms are directed. The closest contact in this region occurs with methyl-C⋯H12Ci, at 3.12 Å, i.e beyond the sum of the respective van der Waals radii (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) [symmetry code: (i) x, −[{1\over 2}] − y, [{1\over 2}] + z].

[Figure 6]
Figure 6
(a) The electrostatic potential map of (I)[link] within the range of −0.008 to 0.008 au and (b) the ESP mapped over the Hirshfeld surface, showing the attraction between the electronegative (red) and electropositive (blue) sites in (I)[link].

5. Database survey

There are several closely related structures to (I)[link] in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). What might be termed the parent compound, i.e. with no substitution at the phenolate ring other than the imino group in the 2-position, (II), exists in the keto–amine tautomeric form and has been the subject of several investigations (Asgedom et al., 1996[Asgedom, G., Sreedhara, A., Kivikoski, J., Valkonen, J., Kolehmainen, E. & Rao, C. P. (1996). Inorg. Chem. 35, 5674-5683.]; Tatar et al., 2005[Tatar, L., Nazir, H., Gümüşer, M., Kale, C. & Atakol, O. (2005). Z. Kristallogr. 220, 639-642.]). Similar zwitterionic structures are found in the 4-bromo, (III) (Martinez et al., 2011[Martinez, R. F., Ávalos, M., Babiano, R., Cintas, P., Jiménez, J. L., Light, M. E. & Palacios, J. C. (2011). Eur. J. Org. Chem. pp. 3137-3145.]), and 6-meth­oxy, (IV) (Odabas˛oǧlu et al., 2003[Odabas˛oǧlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o616-o619.]), derivatives, both closely related to (I)[link], suggesting this is the most stable form for these mol­ecules, at least in the solid state. Despite the similar electronic structures, conformational differences exist about the ring between (I)[link] and (IV) as seen in the relative dispositions of the meth­oxy groups, i.e. C12—O5—C3—C2 is 177.7 (2)° in (I)[link] but −165.75 (14)° in (IV) (Fig. 7[link]). Differences in conformation of the methyl­hydroxy groups are also apparent, no doubt due to the different hydrogen-bonding patterns in the respective crystal structures.

[Figure 7]
Figure 7
Overlay diagrams for (I)[link] (red image), (II) (green), (III) (blue) and (IV) (pink). Images have been drawn so the benzene rings overlap.

6. Synthesis and crystallization

A solution of tris­(hy­droxy­meth­yl)amino­methane (1.21 g, 0.01 mol) was added to an ethano­lic solution of 5-bromo-3-meth­oxy-2-hy­droxy­benzaldehyde (2.31 g, 0.01 mol) and refluxed for 2 h. The solution was allowed to stand at room temperature, during which an orange solid formed. This was recrystallized by slow evaporation of its ethanol solution. Yield: 2.67 (80%). Yellow crystals. M.p. 465–466 K. Analysis calculated for C12H16BrNO5: C 44.48, H 3.70, N 1.99%; found: C 44.81, H 3.42, N 1.64%. IR (cm−1): 3330 (b) ν(N—H, O—H), 1640 (s) ν(C=N), 1528 (m) ν(—O—C=C—), 1066 (m) ν(C—O—C). 1H NMR (400 MHz, CDCl3): δ 8.35 [s, 1H, –N=C(H)], 7.01–7.10 (m, 1H, aryl H), 6.83–6.89 (m, 1H, aryl H), 5.06 (s, 3H, OH), 3.95 (s, 3H, OCH3), 3.37–3.75 (m, 6H, aliphatic H).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set at 1.2–1.5Ueq(C). The O- and N-bound H atoms were located from difference Fourier maps and refined with distance restraints O—H = 0.82±0.01 Å and N—H = 0.86±0.01 Å, and with Uiso(H) set at 1.5Ueq(O) and Uiso(H) set at 1.2Ueq(N), respectively. Owing to poor agreement, several reflections, i.e. (−9 7 7), (−12 4 6), (−10 5 6) and (−3 3 2), were omitted from the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C12H16BrNO5
Mr 334.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.2872 (9), 10.7186 (8), 10.5830 (8)
β (°) 108.462 (1)
V3) 1322.06 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.13
Crystal size (mm) 0.26 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker SMART APEX
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.497, 0.788
No. of measured, independent and observed [I > 2σ(I)] reflections 5095, 2257, 1923
Rint 0.032
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.068, 1.04
No. of reflections 2257
No. of parameters 185
No. of restraints 4
Δρmax, Δρmin (e Å−3) 0.41, −0.54
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SMART (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

4-Bromo-2-((1E)-{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]iminiumyl}methyl)-6-methoxybenzen-1-olate top
Crystal data top
C12H16BrNO5F(000) = 680
Mr = 334.17Dx = 1.679 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.2872 (9) ÅCell parameters from 1493 reflections
b = 10.7186 (8) Åθ = 2.6–27.9°
c = 10.5830 (8) ŵ = 3.13 mm1
β = 108.462 (1)°T = 293 K
V = 1322.06 (17) Å3Prism, yellow
Z = 40.26 × 0.10 × 0.08 mm
Data collection top
Bruker SMART APEX
diffractometer
2257 independent reflections
Radiation source: fine-focus sealed tube1923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1014
Tmin = 0.497, Tmax = 0.788k = 1212
5095 measured reflectionsl = 912
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0206P)2 + 0.8903P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.41 e Å3
2257 reflectionsΔρmin = 0.54 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45516 (2)0.01276 (3)0.80991 (3)0.01835 (11)
O10.79706 (16)0.09687 (18)0.52558 (18)0.0134 (4)
O21.05037 (18)0.27428 (18)0.60436 (19)0.0141 (5)
H2O1.083 (2)0.2087 (17)0.632 (3)0.021*
O30.96322 (18)0.60240 (19)0.62300 (19)0.0174 (5)
H3O0.948 (3)0.641 (3)0.5535 (19)0.026*
O40.85256 (17)0.54263 (18)0.83553 (19)0.0132 (4)
H4O0.824 (3)0.517 (3)0.891 (2)0.020*
O50.70096 (17)0.12504 (18)0.49502 (19)0.0153 (5)
N10.8572 (2)0.2954 (2)0.6738 (2)0.0118 (5)
H1N0.865 (3)0.245 (2)0.615 (2)0.014*
C10.7122 (2)0.1554 (3)0.6915 (3)0.0125 (6)
C20.7298 (2)0.0719 (3)0.5940 (3)0.0110 (6)
C30.6701 (2)0.0452 (3)0.5783 (3)0.0122 (6)
C40.5921 (2)0.0711 (3)0.6427 (3)0.0133 (6)
H40.55310.14670.62890.016*
C50.5715 (2)0.0190 (3)0.7308 (3)0.0146 (6)
C60.6309 (2)0.1276 (3)0.7580 (3)0.0140 (6)
H60.61860.18350.81930.017*
C70.7801 (2)0.2645 (3)0.7279 (3)0.0109 (6)
H70.76890.31610.79330.013*
C80.9361 (2)0.4026 (3)0.7066 (3)0.0110 (6)
C91.0558 (2)0.3539 (3)0.7151 (3)0.0129 (6)
H9A1.10600.42390.71590.016*
H9B1.08780.30790.79750.016*
C100.8904 (2)0.4963 (2)0.5932 (3)0.0120 (6)
H10A0.89040.45970.50940.014*
H10B0.81240.52010.58560.014*
C110.9462 (2)0.4610 (3)0.8413 (3)0.0121 (6)
H11A0.94920.39520.90520.014*
H11B1.01750.50760.87250.014*
C120.6500 (3)0.2459 (3)0.4763 (3)0.0216 (7)
H12A0.66840.28790.56060.032*
H12B0.67910.29330.41700.032*
H12C0.56830.23800.43880.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01640 (17)0.01891 (18)0.02421 (18)0.00122 (13)0.01279 (13)0.00285 (13)
O10.0139 (11)0.0159 (11)0.0136 (10)0.0018 (8)0.0089 (9)0.0016 (8)
O20.0205 (12)0.0093 (10)0.0139 (11)0.0039 (9)0.0075 (9)0.0016 (8)
O30.0284 (13)0.0112 (11)0.0141 (11)0.0034 (9)0.0091 (10)0.0029 (8)
O40.0141 (11)0.0153 (11)0.0145 (11)0.0004 (8)0.0108 (9)0.0009 (9)
O50.0192 (12)0.0123 (10)0.0173 (11)0.0026 (9)0.0099 (9)0.0049 (9)
N10.0151 (13)0.0091 (12)0.0109 (13)0.0001 (10)0.0034 (11)0.0023 (10)
C10.0106 (15)0.0127 (15)0.0145 (15)0.0002 (12)0.0043 (12)0.0015 (12)
C20.0079 (14)0.0123 (15)0.0110 (14)0.0025 (11)0.0008 (12)0.0037 (12)
C30.0094 (15)0.0149 (15)0.0126 (15)0.0007 (12)0.0038 (12)0.0008 (12)
C40.0132 (16)0.0104 (14)0.0142 (15)0.0009 (12)0.0013 (12)0.0009 (12)
C50.0122 (15)0.0180 (16)0.0147 (15)0.0013 (12)0.0060 (12)0.0054 (12)
C60.0140 (15)0.0140 (15)0.0145 (15)0.0035 (12)0.0052 (12)0.0007 (12)
C70.0121 (15)0.0098 (14)0.0115 (14)0.0028 (11)0.0049 (12)0.0025 (11)
C80.0124 (15)0.0105 (14)0.0114 (14)0.0008 (11)0.0055 (12)0.0004 (11)
C90.0137 (16)0.0124 (15)0.0137 (15)0.0019 (12)0.0056 (12)0.0010 (11)
C100.0132 (14)0.0117 (14)0.0118 (14)0.0021 (12)0.0052 (11)0.0028 (12)
C110.0123 (15)0.0117 (14)0.0128 (15)0.0016 (12)0.0048 (12)0.0002 (11)
C120.0263 (19)0.0138 (16)0.0267 (18)0.0091 (13)0.0112 (15)0.0070 (13)
Geometric parameters (Å, º) top
Br1—C51.902 (3)C4—C51.420 (4)
O1—C21.287 (3)C4—H40.9300
O2—C91.434 (3)C5—C61.355 (4)
O2—H2O0.818 (10)C6—H60.9300
O3—C101.419 (3)C7—H70.9300
O3—H3O0.815 (10)C8—C111.525 (4)
O4—C111.432 (3)C8—C101.529 (4)
O4—H4O0.819 (10)C8—C91.536 (4)
O5—C31.365 (3)C9—H9A0.9700
O5—C121.425 (3)C9—H9B0.9700
N1—C71.295 (4)C10—H10A0.9700
N1—C81.473 (4)C10—H10B0.9700
N1—H1N0.856 (10)C11—H11A0.9700
C1—C71.417 (4)C11—H11B0.9700
C1—C61.424 (4)C12—H12A0.9600
C1—C21.432 (4)C12—H12B0.9600
C2—C31.438 (4)C12—H12C0.9600
C3—C41.369 (4)
C9—O2—H2O109 (2)N1—C8—C10106.1 (2)
C10—O3—H3O105 (2)C11—C8—C10111.4 (2)
C11—O4—H4O107 (2)N1—C8—C9107.2 (2)
C3—O5—C12117.3 (2)C11—C8—C9107.0 (2)
C7—N1—C8127.9 (2)C10—C8—C9112.1 (2)
C7—N1—H1N115 (2)O2—C9—C8111.0 (2)
C8—N1—H1N117 (2)O2—C9—H9A109.4
C7—C1—C6118.9 (3)C8—C9—H9A109.4
C7—C1—C2120.1 (3)O2—C9—H9B109.4
C6—C1—C2121.0 (3)C8—C9—H9B109.4
O1—C2—C1123.0 (3)H9A—C9—H9B108.0
O1—C2—C3120.8 (3)O3—C10—C8107.6 (2)
C1—C2—C3116.2 (3)O3—C10—H10A110.2
O5—C3—C4125.2 (3)C8—C10—H10A110.2
O5—C3—C2112.7 (2)O3—C10—H10B110.2
C4—C3—C2122.1 (3)C8—C10—H10B110.2
C3—C4—C5119.2 (3)H10A—C10—H10B108.5
C3—C4—H4120.4O4—C11—C8112.6 (2)
C5—C4—H4120.4O4—C11—H11A109.1
C6—C5—C4121.8 (3)C8—C11—H11A109.1
C6—C5—Br1119.3 (2)O4—C11—H11B109.1
C4—C5—Br1118.8 (2)C8—C11—H11B109.1
C5—C6—C1119.3 (3)H11A—C11—H11B107.8
C5—C6—H6120.3O5—C12—H12A109.5
C1—C6—H6120.3O5—C12—H12B109.5
N1—C7—C1122.7 (3)H12A—C12—H12B109.5
N1—C7—H7118.6O5—C12—H12C109.5
C1—C7—H7118.6H12A—C12—H12C109.5
N1—C8—C11113.2 (2)H12B—C12—H12C109.5
C7—C1—C2—O17.6 (4)C2—C1—C6—C51.7 (4)
C6—C1—C2—O1175.5 (2)C8—N1—C7—C1177.2 (3)
C7—C1—C2—C3170.7 (2)C6—C1—C7—N1178.9 (3)
C6—C1—C2—C36.2 (4)C2—C1—C7—N11.9 (4)
C12—O5—C3—C41.6 (4)C7—N1—C8—C1116.6 (4)
C12—O5—C3—C2177.7 (2)C7—N1—C8—C10105.8 (3)
O1—C2—C3—O55.3 (4)C7—N1—C8—C9134.3 (3)
C1—C2—C3—O5173.1 (2)N1—C8—C9—O245.9 (3)
O1—C2—C3—C4175.4 (3)C11—C8—C9—O2167.6 (2)
C1—C2—C3—C46.2 (4)C10—C8—C9—O270.0 (3)
O5—C3—C4—C5177.5 (3)N1—C8—C10—O3178.8 (2)
C2—C3—C4—C51.8 (4)C11—C8—C10—O355.2 (3)
C3—C4—C5—C63.2 (4)C9—C8—C10—O364.6 (3)
C3—C4—C5—Br1175.5 (2)N1—C8—C11—O480.2 (3)
C4—C5—C6—C13.2 (4)C10—C8—C11—O439.2 (3)
Br1—C5—C6—C1175.5 (2)C9—C8—C11—O4162.0 (2)
C7—C1—C6—C5175.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.85 (2)1.90 (2)2.608 (3)140 (3)
O2—H2O···O4i0.82 (2)1.93 (2)2.741 (3)170 (3)
O3—H3O···O2ii0.81 (2)1.91 (2)2.704 (3)167 (4)
O4—H4O···O1iii0.82 (3)1.98 (3)2.760 (3)158 (3)
C7—H7···O1iii0.932.553.429 (4)158
C9—H9B···O3i0.972.513.242 (4)132
C11—H11B···O1iv0.972.393.353 (3)171
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to Sunway University, the University of Malaya for financial assistance (grant No. RP017B-14AFR) and the Ministry of Higher Education of Malaysia (MOHE) Fundamental Research Grant Scheme (grant No. FP033-2014B) for supporting this research.

References

First citationAsgedom, G., Sreedhara, A., Kivikoski, J., Valkonen, J., Kolehmainen, E. & Rao, C. P. (1996). Inorg. Chem. 35, 5674–5683.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBack, D. F., Kopp, C. R., de Oliveira, G. M. & Piquini, P. C. (2012). Polyhedron, 36, 21–29.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekhar, V., Dey, A., Mota, A. J. & Colacio, E. (2013). Inorg. Chem. 52, 4554–4561.  CrossRef CAS PubMed Google Scholar
First citationDas, C., Vaidya, S., Gupta, T., Frost, J. M., Righi, M., Brechin, E. K., Affronte, M., Rajaraman, G. & Shanmugam, M. (2015). Chem. Eur. J. 21, 15639–15650.  CrossRef CAS PubMed Google Scholar
First citationDey, S. K., Mitra, P. & Mukherjee, A. (2015). Cryst. Growth Des. 15, 706–717.  CrossRef CAS Google Scholar
First citationDey, S. K. & Mukherjee, A. (2014). New J. Chem. 38, 4985–4995.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHalevas, E., Tsave, O., Yavropoulou, M. P., Hatzidimitriou, A., Yovos, J. G., Psycharis, V., Gabriel, C. & Salifoglou, A. (2015). J. Inorg. Biochem. 147, 99–115.  CrossRef CAS PubMed Google Scholar
First citationLee, S. M., Sim, K. S. & Lo, K. M. (2015). Inorg. Chim. Acta, 429, 195–208.  CrossRef CAS Google Scholar
First citationMartinez, R. F., Ávalos, M., Babiano, R., Cintas, P., Jiménez, J. L., Light, M. E. & Palacios, J. C. (2011). Eur. J. Org. Chem. pp. 3137–3145.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOdabas˛oǧlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o616–o619.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRehder, D., Pessoa, J. C., Geraldes, C. F. G. C., Castro, M. M. C. A., Kabanos, T., Kiss, T., Meier, B., Micera, G., Pettersson, L., Rangel, M., Salifoglou, A., Turel, I. & Wang, D. (2002). J. Biol. Inorg. Chem. 7, 384–396.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTatar, L., Nazir, H., Gümüşer, M., Kale, C. & Atakol, O. (2005). Z. Kristallogr. 220, 639–642.  CAS Google Scholar
First citationTsave, O., Halevas, E., Yavropoulou, M. P., Kosmidis Papadimitriou, A., Yovos, J. G., Hatzidimitriou, A., Gabriel, C., Psycharis, V. & Salifoglou, A. (2015). J. Inorg. Biochem. 152, 123-137.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationWu, G., Hewitt, I. J., Mameri, S., Lan, Y., Clérac, R., Anson, C. E., Qiu, S. & Powell, A. K. (2007). Inorg. Chem. 46, 7229–7231.  CrossRef PubMed CAS Google Scholar
First citationZou, H.-H., Sheng, L.-B., Liang, F. P., Chen, Z.-L. & Zhang, Y.-Q. (2015). Dalton Trans. 44, 18544–18552.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds