research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1S,3R,8R,9R)-2,2-di­chloro-3,7,7-tri­methyl-10-methylenetri­cyclo­[6.4.0.01,3]dodecan-9-ol

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Physico-Chimie Moléculaire et Synthèse Organique, Département de Chimie, Faculté des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco, and bLaboratoire de Chimie de Coordination, CNRS UPR8241, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: a.auhmani@uca.ac.ma

Edited by S. Parkin, University of Kentucky, USA (Received 17 June 2016; accepted 8 July 2016; online 22 July 2016)

The title compound, C16H24Cl2O, was synthesized by treating (1S,3R,8S,9R,10S)-2,2-di­chloro-3,7,7,10-tetra­methyl-9,10-ep­oxy­tri­cyclo­[6.4.0.01,3]dodecane with a concentrated solution of hydro­bromic acid. It is built up from three fused rings: a cyclo­heptane ring, a cyclo­hexyl ring bearing alkene and hy­droxy substituents, and a cyclo­propane ring bearing two chlorine atoms. The asymmetric unit contains two mol­ecules linked by an O—H⋯O hydrogen bond. In the crystal, further O—H⋯O hydrogen bonds build up an R44(8) cyclic tetra­mer. One of the mol­ecules presents disorder that affects the seven-membered ring. In both mol­ecules, the six-membered rings display a chair conformation, whereas the seven-membered rings display conformations inter­mediate between boat and twist-boat for the non-disordered mol­ecule and either a chair or boat and twist-boat for the disordered mol­ecule owing to the disorder. The absolute configuration for both mol­ecules is 1S,3R,8R,9R and was deduced from the chemical pathway and further confirmed by the X-ray structural analysis.

1. Chemical context

The main constituent (50%) of the essential oil of the Atlas cedar (Cedrus atlantica) is a bicyclic hydro­carbon sesquiterpene called β-himachalene (Plattier & Teisseire, 1974[Plattier, M. & Teisseire, P. (1974). Recherche, 19, 131-144.]; Joseph & Dev, 1968[Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841-3852.]). The reactivity of this sesquiterpene and its derivatives has been studied extensively (Auhmani et al., 2002[Auhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2002). Synth. Commun. 32, 699-707.]; El Jamili et al., 2002[Eljamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]; Dakir et al., 2004[Dakir, M., Auhmani, A., Itto, M. Y. A., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001-2008.]). Optically active allylic alcohols are very inter­esting building inter­mediates that have been widely used in organic transformations (Paresh & Sujit, 2012[Paresh, N. C. & Sujit, R. (2012). Tetrahedron, 68, 3776-3785.]; Arfaoui et al., 2010[Arfaoui, J., Boudali, L. K. & Ghorbel, A. (2010). Appl. Clay Sci. 48, 171-178.]). Several potent biologically active compounds contain this allylic alcohol functionality (Chung et al., 2007[Chung, I., Kwon, S. H., Shim, S.-T. & Kyung, K. H. (2007). J. Food Sci. 72, M437-M440.]; Servi et al., 2000[Servi, S., Cansiz, A., Digrak, M. & Ahmedzade, M. (2000). Indian J. Chem. Sect. B, 39, 629-633.]). In order to prepare new optically active allylic alcohols using this sesquiterpene, we prepared the title compound (1S,3R,8R,9R)-2,2-di­chloro-10-methyl­ene-3,7,7-tri­methyl­tri­cyclo­[6.4.0.01,3]dodecan-9-ol by treating (1S,3R,8S,9R,10S)-2,2-di­chloro-3,7,7,10-tetra­methyl-9,10-ep­oxy­tri­cyclo­[6.4.0.01,3]dodecane with a concentrated solution of hydro­bromic acid.

2. Structural commentary

There are two mol­ecules A and B within the asymmetric unit, which are built up from three fused rings, a seven-membered heptane ring, a six-membered cyclo­hexyl ring bearing an hydroxyl and alkene groups and a three-membered propane ring bearing two Cl atoms (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular view of the title compound with the atom-labeling scheme. For clarity, only one component of the disorder is represented. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small circles of arbitrary radius. The hydrogen bond is represented as dashed line.

In mol­ecule B, there is disorder affecting the location of the C5B, C6B, and C7B atoms, which are split over two positions C5C, C6C, and C7C (Fig. 2[link]), resulting in disorder of the two methyl atoms attached to C7B and C7C, and also disorder for the two H atoms attached to C5B and C5C. The disordered sites have occupancy factor in the ratio 0.502 (8):0.498 (8). In both mol­ecules, the six-membered ring displays a chair conformation with puckering parameters θ = 169.3° and φ2 = 119.6° for mol­ecule A and θ = 172.1° and φ2 = 110.0° for mol­ecule B. The seven-membered cyclo­heptane ring in mol­ecule A displays a conformation inter­mediate between boat and twist boat with puckering parameters q2 = 1.138 (4) Å and q3 = 0.037 (5) Å (Boessenkool & Boeyens, 1980[Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.]). As a result of the disorder observed in mol­ecule B within the seven-membered ring, the conformation of this ring is inter­mediate between chair [q2 = 0.434 (6), q3 = 0.739 (6) Å] or boat and twist-boat [q2 = 1.173 (5), q3 = 0.020 (4) Å] (Boessenkool & Boeyens, 1980[Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.]), depending on the position of the C6B(C) atom. The disorder does not affect the absolute configuration of the two mol­ecules (1AS,3AR,8AR,9AR) and (1BS,3BR,8BR,9BR).

[Figure 2]
Figure 2
View showing the disorder in mol­ecule B. Bonds in the minor disorder component are shown as dashed lines.

3. Supra­molecular features

The two independent mol­ecules are connected by O—H⋯O hydrogen bonds (Table 1[link]), building a pseudo-dimer. Pairs of such dimers are connected by O—H⋯O hydrogen bonds, building an R44(8) cyclic tetra­mer (Fig. 3[link]). There are also weak C—H⋯Cl intra­molecular inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O1Bi 0.82 1.98 2.791 (4) 169
C8A—H8A⋯Cl1A 0.98 2.68 3.228 (4) 116
O1B—H1B⋯O1A 0.82 2.04 2.835 (4) 162
C8B—H8B⋯Cl1A 0.98 2.78 3.691 (4) 156
C8B—H8B⋯Cl1B 0.98 2.63 3.238 (4) 120
O1A—H1A⋯O1Bi 0.82 1.98 2.791 (4) 169
C8A—H8A⋯Cl1A 0.98 2.68 3.228 (4) 116
O1B—H1B⋯O1A 0.82 2.04 2.835 (4) 162
C8B—H8B⋯Cl1A 0.98 2.78 3.691 (4) 156
C8B—H8B⋯Cl1B 0.98 2.63 3.238 (4) 120
Symmetry code: (i) -x+1, -y-1, z.
[Figure 3]
Figure 3
Partial packing diagram (PLUTON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) showing the formation of the R44(8) tetra­mer. H atoms not involved in hydrogen bonding have been removed for the sake of clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, update November 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using fused cyclo­hexyl, cyclo­heptane and cyclo­propane rings system as the main skeleton, revealed the presence of 32 structures. Among these, only one, C16H22Br2Cl2 (Auhmani et al., 2002[Auhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2002). Synth. Commun. 32, 699-707.]), contains a cyclo­hexyl ring substituted by a =CH2 group but, to the best of our knowledge, there are no reported structures that have a cyclo­hexyl group substituted by a hydroxyl at C9A (C9B).

5. Synthesis and crystallization

To a 100 mL flask was added (1 g, 3.29 mmol) of (1S,3R,8S,9R,10S)-2,2- di­chloro-3,7,7,10-tetra­methyl-9,10-ep­oxy­tri­cyclo­[6.4.0.01,3]dodecane in 25 mL of di­chloro­methane. The mixture was cooled to 273.15 K in an ice bath prior to dropwise addition of 8 mL of concentrated hydro­bromic acid. The mixture was stirred for 30 min. TLC control showed that the reaction was complete. The reaction mixture was extracted with di­chloro­methane (3 × 30mL) and the organic layer was washed first with water and then with a saturated solution of NaHCO3, dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel (230–400 mesh) with hexa­ne/ethyl acetate (97:3) as eluent to give the title compound in 64% yield. X-ray quality crystals were obtained by slow evaporation from a petroleum ether solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were initially located in a difference Fourier map but they were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances = 1.0 Å (Cmethine), 0.98 Å (Cmeth­yl), 0.99 Å (Cmethyl­ene) and 0.84 Å (hydrox­yl), with Uiso(H) = 1.2Ueq(Cmethine, Cmethyl­ene) or 1.5Ueq(Cmeth­yl, Ohydrox­yl).

Table 2
Experimental details

Crystal data
Chemical formula C16H24Cl2O
Mr 303.25
Crystal system, space group Orthorhombic, P21212
Temperature (K) 180
a, b, c (Å) 12.3075 (4), 13.9332 (7), 18.6716 (9)
V3) 3201.9 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.43 × 0.31 × 0.25
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.907, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20074, 7060, 6084
Rint 0.033
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 1.06
No. of reflections 7060
No. of parameters 393
No. of restraints 22
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.36
Absolute structure Flack x determined using 2376 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.03 (3)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England.]), SHELXT2013(Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT2013(Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015b).

(1S,3R,8R,9R)-2,2-Dichloro-3,7,7-trimethyl-10-methylenetricyclo[6.4.0.01,3]dodecan-9-ol top
Crystal data top
C16H24Cl2ODx = 1.258 Mg m3
Mr = 303.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 5974 reflections
a = 12.3075 (4) Åθ = 3.5–30.6°
b = 13.9332 (7) ŵ = 0.40 mm1
c = 18.6716 (9) ÅT = 180 K
V = 3201.9 (2) Å3Box, colourless
Z = 80.43 × 0.31 × 0.25 mm
F(000) = 1296
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
7060 independent reflections
Radiation source: Enhance (Mo) X-ray Source6084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.1978 pixels mm-1θmax = 27.1°, θmin = 2.9°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1717
Tmin = 0.907, Tmax = 1.000l = 2323
20074 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0522P)2 + 1.8807P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
7060 reflectionsΔρmax = 0.52 e Å3
393 parametersΔρmin = 0.36 e Å3
22 restraintsAbsolute structure: Flack x determined using 2376 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, CrysAlisPro (Agilent Technologies, 2014)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.38798 (7)0.19453 (7)0.28372 (5)0.0380 (2)
Cl2A0.15680 (8)0.18866 (9)0.29099 (6)0.0479 (3)
O1A0.3867 (2)0.41044 (17)0.22969 (13)0.0298 (5)
H1A0.38170.46540.24510.045*
C1A0.2588 (3)0.2464 (2)0.16119 (19)0.0257 (7)
C2A0.2689 (3)0.1917 (3)0.2314 (2)0.0316 (8)
C3A0.2659 (3)0.1359 (3)0.1627 (2)0.0362 (9)
C4A0.3710 (4)0.0925 (3)0.1351 (2)0.0461 (11)
H4A10.37380.02520.14850.055*
H4A20.43200.12460.15770.055*
C5A0.3822 (5)0.1010 (3)0.0532 (3)0.0570 (13)
H5A10.45860.09700.04080.068*
H5A20.34590.04670.03120.068*
C6A0.3356 (5)0.1933 (3)0.0211 (2)0.0573 (13)
H6A10.25750.19140.02760.069*
H6A20.34910.19150.03010.069*
C7A0.3755 (4)0.2906 (3)0.0487 (2)0.0372 (9)
C8A0.3567 (3)0.3021 (2)0.13200 (18)0.0256 (7)
H8A0.42080.27420.15510.031*
C9A0.3528 (3)0.4083 (2)0.15632 (18)0.0272 (7)
H9A0.40420.44560.12750.033*
C10A0.2414 (3)0.4547 (3)0.1516 (2)0.0324 (9)
C11A0.1495 (3)0.3959 (3)0.1800 (2)0.0370 (9)
H11A0.08120.42730.16900.044*
H11B0.15560.39110.23170.044*
C12A0.1503 (3)0.2955 (3)0.1473 (2)0.0322 (8)
H12A0.09210.25750.16810.039*
H12B0.13780.29990.09610.039*
C13A0.1662 (4)0.0747 (3)0.1461 (3)0.0516 (12)
H13A0.17200.01430.17060.077*
H13B0.16190.06370.09540.077*
H13C0.10190.10750.16190.077*
C14A0.3170 (5)0.3675 (4)0.0029 (2)0.0568 (13)
H14A0.33220.35660.04680.085*
H14B0.34250.43010.01630.085*
H14C0.24010.36360.01090.085*
C15A0.4969 (4)0.3035 (4)0.0350 (3)0.0612 (14)
H15A0.53650.25380.05920.092*
H15B0.51970.36500.05280.092*
H15C0.51090.30000.01550.092*
C16A0.2287 (4)0.5428 (3)0.1266 (2)0.0436 (10)
H16A0.16010.57090.12620.052*
H16B0.28830.57680.10940.052*
Cl1B0.64962 (7)0.18578 (8)0.20137 (5)0.0415 (2)
Cl2B0.87789 (8)0.21670 (9)0.20248 (6)0.0518 (3)
O1B0.6090 (2)0.39598 (19)0.26805 (12)0.0302 (5)
H1B0.54380.38800.26100.045*
C1B0.7575 (3)0.2429 (3)0.33159 (19)0.0262 (8)
C2B0.7636 (3)0.1965 (3)0.2577 (2)0.0308 (8)
C3B0.7751 (3)0.1342 (3)0.3232 (2)0.0356 (9)
C4B0.6812 (4)0.0682 (3)0.3428 (3)0.0572 (14)
H4B10.69390.00500.32260.069*
H4B20.61440.09320.32250.069*
C5B0.669 (2)0.0598 (13)0.4252 (9)0.075 (10)0.498 (8)
H5B10.64550.00410.43870.090*0.498 (8)
H5B20.73710.07390.44910.090*0.498 (8)
C6B0.5817 (8)0.1352 (7)0.4443 (6)0.055 (3)0.498 (8)
H6B10.52030.12630.41250.067*0.498 (8)
H6B20.55660.12260.49270.067*0.498 (8)
C14B0.517 (2)0.2953 (16)0.4674 (17)0.084 (10)0.498 (8)
H14D0.49800.27210.51410.126*0.498 (8)
H14E0.45740.28510.43510.126*0.498 (8)
H14F0.53310.36260.47000.126*0.498 (8)
C15B0.7119 (9)0.2558 (8)0.4924 (5)0.054 (3)0.498 (8)
H15D0.73430.32180.49120.082*0.498 (8)
H15E0.77180.21550.47890.082*0.498 (8)
H15F0.68870.23950.54000.082*0.498 (8)
C7B0.6177 (18)0.2408 (11)0.4400 (15)0.043 (3)0.498 (8)
C5C0.656 (2)0.0716 (12)0.4234 (7)0.064 (8)0.502 (8)
H5C10.69160.01760.44620.077*0.502 (8)
H5C20.57810.06260.42950.077*0.502 (8)
C6C0.6896 (8)0.1660 (6)0.4647 (5)0.059 (3)0.502 (8)
H6C10.67570.15560.51520.071*0.502 (8)
H6C20.76750.17380.45920.071*0.502 (8)
C14C0.5122 (19)0.2525 (16)0.4543 (15)0.073 (7)0.502 (8)
H14G0.49760.23650.50340.110*0.502 (8)
H14H0.48460.20280.42380.110*0.502 (8)
H14I0.47750.31220.44280.110*0.502 (8)
C15C0.6759 (9)0.3422 (7)0.4933 (4)0.054 (3)0.502 (8)
H15G0.63220.39860.48670.081*0.502 (8)
H15H0.75030.35680.48230.081*0.502 (8)
H15I0.67060.32120.54220.081*0.502 (8)
C7C0.6353 (18)0.2623 (11)0.4434 (14)0.043 (3)0.502 (8)
C8B0.6477 (3)0.2777 (3)0.36065 (19)0.0314 (8)
H8B0.59440.24540.33000.038*
C9B0.6317 (4)0.3854 (3)0.3432 (2)0.0401 (10)
H9B0.57030.41030.37100.048*
C10B0.7308 (5)0.4468 (3)0.3572 (3)0.0603 (15)
C11B0.8344 (4)0.4091 (3)0.3272 (3)0.0531 (13)
H11C0.89430.44940.34260.064*
H11D0.83140.41100.27530.064*
C12B0.8540 (3)0.3069 (3)0.3517 (2)0.0365 (9)
H12C0.86430.30580.40320.044*
H12D0.91960.28230.32940.044*
C13B0.8857 (4)0.0895 (3)0.3402 (3)0.0516 (12)
H13D0.89780.03530.30950.077*
H13E0.88690.06890.38930.077*
H13F0.94190.13620.33260.077*
C16B0.7226 (8)0.5295 (5)0.3905 (4)0.122 (4)
H16C0.78370.56790.39640.147*
H16D0.65580.54950.40830.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0268 (4)0.0437 (5)0.0436 (5)0.0046 (4)0.0118 (4)0.0125 (4)
Cl2A0.0306 (5)0.0585 (6)0.0545 (6)0.0073 (5)0.0058 (4)0.0172 (6)
O1A0.0319 (12)0.0283 (12)0.0293 (12)0.0013 (11)0.0054 (11)0.0061 (10)
C1A0.0208 (17)0.0238 (17)0.0326 (18)0.0037 (13)0.0079 (14)0.0010 (14)
C2A0.0213 (15)0.0320 (18)0.041 (2)0.0052 (17)0.0068 (14)0.0065 (17)
C3A0.0295 (19)0.0258 (18)0.053 (2)0.0023 (16)0.0125 (18)0.0034 (18)
C4A0.048 (3)0.0273 (18)0.063 (3)0.0091 (19)0.012 (2)0.0074 (19)
C5A0.072 (3)0.040 (2)0.059 (3)0.016 (2)0.006 (3)0.024 (2)
C6A0.082 (4)0.049 (3)0.041 (2)0.004 (3)0.008 (2)0.020 (2)
C7A0.044 (2)0.038 (2)0.0295 (18)0.0011 (17)0.0010 (17)0.0053 (15)
C8A0.0252 (16)0.0249 (16)0.0265 (16)0.0032 (14)0.0008 (13)0.0016 (14)
C9A0.0296 (17)0.0242 (16)0.0278 (17)0.0053 (14)0.0014 (14)0.0016 (14)
C10A0.041 (2)0.0277 (18)0.0285 (19)0.0029 (16)0.0082 (16)0.0058 (15)
C11A0.0293 (18)0.037 (2)0.045 (2)0.0118 (17)0.0042 (16)0.0015 (17)
C12A0.0247 (17)0.0319 (19)0.040 (2)0.0009 (15)0.0075 (15)0.0050 (15)
C13A0.051 (3)0.030 (2)0.074 (3)0.016 (2)0.022 (2)0.001 (2)
C14A0.079 (4)0.060 (3)0.031 (2)0.013 (3)0.004 (2)0.003 (2)
C15A0.058 (3)0.082 (4)0.044 (3)0.000 (3)0.023 (2)0.007 (3)
C16A0.055 (3)0.032 (2)0.044 (2)0.007 (2)0.011 (2)0.0018 (18)
Cl1B0.0315 (4)0.0501 (5)0.0429 (5)0.0046 (4)0.0115 (4)0.0152 (5)
Cl2B0.0275 (5)0.0792 (8)0.0487 (6)0.0090 (5)0.0076 (4)0.0049 (5)
O1B0.0291 (12)0.0364 (13)0.0251 (12)0.0029 (12)0.0062 (10)0.0055 (10)
C1B0.0196 (17)0.0272 (18)0.0319 (18)0.0015 (13)0.0059 (14)0.0033 (15)
C2B0.0160 (15)0.0367 (19)0.040 (2)0.0046 (16)0.0020 (13)0.0041 (17)
C3B0.0270 (18)0.0262 (18)0.054 (2)0.0038 (16)0.0087 (18)0.0028 (17)
C4B0.045 (3)0.039 (2)0.087 (4)0.012 (2)0.016 (3)0.018 (2)
C5B0.055 (13)0.045 (9)0.12 (2)0.006 (8)0.003 (12)0.050 (10)
C6B0.038 (5)0.070 (7)0.059 (6)0.002 (5)0.003 (4)0.039 (5)
C14B0.079 (13)0.114 (18)0.058 (13)0.050 (14)0.046 (10)0.044 (14)
C15B0.076 (7)0.058 (7)0.029 (4)0.013 (5)0.000 (4)0.018 (4)
C7B0.041 (6)0.057 (6)0.030 (3)0.007 (5)0.002 (4)0.016 (5)
C5C0.038 (8)0.078 (14)0.077 (13)0.013 (9)0.027 (8)0.061 (10)
C6C0.054 (6)0.073 (8)0.049 (6)0.002 (5)0.010 (4)0.041 (5)
C14C0.049 (8)0.12 (2)0.047 (11)0.022 (11)0.012 (7)0.052 (13)
C15C0.068 (7)0.073 (7)0.022 (4)0.002 (5)0.003 (4)0.005 (4)
C7C0.041 (6)0.057 (6)0.030 (3)0.007 (5)0.002 (4)0.016 (5)
C8B0.0309 (18)0.039 (2)0.0241 (17)0.0113 (16)0.0011 (15)0.0072 (15)
C9B0.056 (3)0.041 (2)0.0233 (18)0.023 (2)0.0019 (18)0.0003 (15)
C10B0.097 (4)0.033 (2)0.051 (3)0.014 (3)0.043 (3)0.010 (2)
C11B0.066 (3)0.036 (2)0.057 (3)0.019 (2)0.029 (2)0.006 (2)
C12B0.0325 (19)0.0370 (19)0.040 (2)0.0046 (18)0.0146 (16)0.0047 (17)
C13B0.037 (2)0.043 (2)0.075 (3)0.017 (2)0.012 (2)0.004 (2)
C16B0.160 (8)0.072 (4)0.134 (7)0.044 (5)0.092 (6)0.065 (4)
Geometric parameters (Å, º) top
Cl1A—C2A1.762 (3)C2B—C3B1.506 (6)
Cl2A—C2A1.773 (4)C3B—C4B1.521 (6)
O1A—C9A1.432 (4)C3B—C13B1.531 (5)
O1A—H1A0.8200C4B—C5C1.538 (15)
C1A—C2A1.521 (5)C4B—C5B1.550 (16)
C1A—C12A1.523 (5)C4B—H4B10.9700
C1A—C8A1.533 (5)C4B—H4B20.9700
C1A—C3A1.542 (5)C5B—C6B1.54 (2)
C2A—C3A1.500 (6)C5B—H5B10.9700
C3A—C4A1.519 (6)C5B—H5B20.9700
C3A—C13A1.527 (6)C6B—C7B1.539 (16)
C4A—C5A1.541 (7)C6B—H6B10.9700
C4A—H4A10.9700C6B—H6B20.9700
C4A—H4A20.9700C14B—C7B1.540 (16)
C5A—C6A1.530 (7)C14B—H14D0.9600
C5A—H5A10.9700C14B—H14E0.9600
C5A—H5A20.9700C14B—H14F0.9600
C6A—C7A1.531 (6)C15B—C7B1.532 (17)
C6A—H6A10.9700C15B—H15D0.9600
C6A—H6A20.9700C15B—H15E0.9600
C7A—C15A1.527 (6)C15B—H15F0.9600
C7A—C14A1.548 (6)C7B—C8B1.61 (3)
C7A—C8A1.582 (5)C5C—C6C1.581 (13)
C8A—C9A1.548 (5)C5C—H5C10.9700
C8A—H8A0.9800C5C—H5C20.9700
C9A—C10A1.518 (5)C6C—C7C1.550 (16)
C9A—H9A0.9800C6C—H6C10.9700
C10A—C16A1.323 (5)C6C—H6C20.9700
C10A—C11A1.494 (6)C14C—C7C1.535 (17)
C11A—C12A1.527 (5)C14C—H14G0.9600
C11A—H11A0.9700C14C—H14H0.9600
C11A—H11B0.9700C14C—H14I0.9600
C12A—H12A0.9700C15C—C7C1.537 (16)
C12A—H12B0.9700C15C—H15G0.9600
C13A—H13A0.9600C15C—H15H0.9600
C13A—H13B0.9600C15C—H15I0.9600
C13A—H13C0.9600C7C—C8B1.57 (3)
C14A—H14A0.9600C8B—C9B1.548 (5)
C14A—H14B0.9600C8B—H8B0.9800
C14A—H14C0.9600C9B—C10B1.512 (7)
C15A—H15A0.9600C9B—H9B0.9800
C15A—H15B0.9600C10B—C16B1.313 (7)
C15A—H15C0.9600C10B—C11B1.489 (8)
C16A—H16A0.9300C11B—C12B1.515 (6)
C16A—H16B0.9300C11B—H11C0.9700
Cl1B—C2B1.760 (4)C11B—H11D0.9700
Cl2B—C2B1.767 (4)C12B—H12C0.9700
O1B—C9B1.439 (4)C12B—H12D0.9700
O1B—H1B0.8200C13B—H13D0.9600
C1B—C2B1.524 (5)C13B—H13E0.9600
C1B—C12B1.532 (5)C13B—H13F0.9600
C1B—C8B1.534 (5)C16B—H16C0.9300
C1B—C3B1.538 (5)C16B—H16D0.9300
C9A—O1A—H1A109.5C4B—C3B—C1B117.6 (4)
C2A—C1A—C12A116.3 (3)C13B—C3B—C1B120.3 (4)
C2A—C1A—C8A119.8 (3)C3B—C4B—C5C111.9 (7)
C12A—C1A—C8A113.7 (3)C3B—C4B—C5B111.0 (9)
C2A—C1A—C3A58.6 (3)C3B—C4B—H4B1109.4
C12A—C1A—C3A120.0 (3)C5B—C4B—H4B1109.4
C8A—C1A—C3A117.9 (3)C3B—C4B—H4B2109.4
C3A—C2A—C1A61.4 (2)C5B—C4B—H4B2109.4
C3A—C2A—Cl1A120.4 (3)H4B1—C4B—H4B2108.0
C1A—C2A—Cl1A122.3 (3)C6B—C5B—C4B104.2 (14)
C3A—C2A—Cl2A120.4 (3)C6B—C5B—H5B1110.9
C1A—C2A—Cl2A119.3 (3)C4B—C5B—H5B1110.9
Cl1A—C2A—Cl2A107.4 (2)C6B—C5B—H5B2110.9
C2A—C3A—C4A118.4 (3)C4B—C5B—H5B2110.9
C2A—C3A—C13A118.9 (4)H5B1—C5B—H5B2108.9
C4A—C3A—C13A113.1 (4)C7B—C6B—C5B116.0 (13)
C2A—C3A—C1A60.0 (2)C7B—C6B—H6B1108.3
C4A—C3A—C1A116.1 (4)C5B—C6B—H6B1108.3
C13A—C3A—C1A120.6 (4)C7B—C6B—H6B2108.3
C3A—C4A—C5A112.4 (4)C5B—C6B—H6B2108.3
C3A—C4A—H4A1109.1H6B1—C6B—H6B2107.4
C5A—C4A—H4A1109.1C7B—C14B—H14D109.5
C3A—C4A—H4A2109.1C7B—C14B—H14E109.5
C5A—C4A—H4A2109.1H14D—C14B—H14E109.5
H4A1—C4A—H4A2107.9C7B—C14B—H14F109.5
C6A—C5A—C4A114.9 (4)H14D—C14B—H14F109.5
C6A—C5A—H5A1108.5H14E—C14B—H14F109.5
C4A—C5A—H5A1108.5C7B—C15B—H15D109.5
C6A—C5A—H5A2108.5C7B—C15B—H15E109.5
C4A—C5A—H5A2108.5H15D—C15B—H15E109.5
H5A1—C5A—H5A2107.5C7B—C15B—H15F109.5
C5A—C6A—C7A119.5 (4)H15D—C15B—H15F109.5
C5A—C6A—H6A1107.4H15E—C15B—H15F109.5
C7A—C6A—H6A1107.4C15B—C7B—C6B108.3 (13)
C5A—C6A—H6A2107.4C15B—C7B—C14B109 (2)
C7A—C6A—H6A2107.4C6B—C7B—C14B102.9 (15)
H6A1—C6A—H6A2107.0C15B—C7B—C8B111.8 (15)
C15A—C7A—C6A111.2 (4)C6B—C7B—C8B114.8 (14)
C15A—C7A—C14A106.3 (4)C14B—C7B—C8B109.4 (16)
C6A—C7A—C14A106.2 (4)C4B—C5C—C6C116.6 (11)
C15A—C7A—C8A107.2 (3)C4B—C5C—H5C1108.1
C6A—C7A—C8A112.0 (3)C6C—C5C—H5C1108.1
C14A—C7A—C8A113.8 (3)C4B—C5C—H5C2108.1
C1A—C8A—C9A110.8 (3)C6C—C5C—H5C2108.1
C1A—C8A—C7A114.4 (3)H5C1—C5C—H5C2107.3
C9A—C8A—C7A113.0 (3)C7C—C6C—C5C118.7 (13)
C1A—C8A—H8A106.0C7C—C6C—H6C1107.6
C9A—C8A—H8A106.0C5C—C6C—H6C1107.6
C7A—C8A—H8A106.0C7C—C6C—H6C2107.6
O1A—C9A—C10A108.1 (3)C5C—C6C—H6C2107.6
O1A—C9A—C8A107.0 (3)H6C1—C6C—H6C2107.1
C10A—C9A—C8A114.7 (3)C7C—C14C—H14G109.5
O1A—C9A—H9A109.0C7C—C14C—H14H109.5
C10A—C9A—H9A109.0H14G—C14C—H14H109.5
C8A—C9A—H9A109.0C7C—C14C—H14I109.5
C16A—C10A—C11A123.0 (4)H14G—C14C—H14I109.5
C16A—C10A—C9A121.5 (4)H14H—C14C—H14I109.5
C11A—C10A—C9A115.4 (3)C7C—C15C—H15G109.5
C10A—C11A—C12A110.8 (3)C7C—C15C—H15H109.5
C10A—C11A—H11A109.5H15G—C15C—H15H109.5
C12A—C11A—H11A109.5C7C—C15C—H15I109.5
C10A—C11A—H11B109.5H15G—C15C—H15I109.5
C12A—C11A—H11B109.5H15H—C15C—H15I109.5
H11A—C11A—H11B108.1C14C—C7C—C15C107.7 (19)
C1A—C12A—C11A110.4 (3)C14C—C7C—C6C108.4 (15)
C1A—C12A—H12A109.6C15C—C7C—C6C109.3 (13)
C11A—C12A—H12A109.6C14C—C7C—C8B103.9 (15)
C1A—C12A—H12B109.6C15C—C7C—C8B117.9 (14)
C11A—C12A—H12B109.6C6C—C7C—C8B109.3 (15)
H12A—C12A—H12B108.1C1B—C8B—C9B110.1 (3)
C3A—C13A—H13A109.5C1B—C8B—C7C113.0 (8)
C3A—C13A—H13B109.5C9B—C8B—C7C109.1 (6)
H13A—C13A—H13B109.5C1B—C8B—C7B115.2 (8)
C3A—C13A—H13C109.5C9B—C8B—C7B118.3 (7)
H13A—C13A—H13C109.5C1B—C8B—H8B103.7
H13B—C13A—H13C109.5C9B—C8B—H8B103.7
C7A—C14A—H14A109.5C7B—C8B—H8B103.7
C7A—C14A—H14B109.5O1B—C9B—C10B105.5 (4)
H14A—C14A—H14B109.5O1B—C9B—C8B109.2 (3)
C7A—C14A—H14C109.5C10B—C9B—C8B114.2 (3)
H14A—C14A—H14C109.5O1B—C9B—H9B109.3
H14B—C14A—H14C109.5C10B—C9B—H9B109.3
C7A—C15A—H15A109.5C8B—C9B—H9B109.3
C7A—C15A—H15B109.5C16B—C10B—C11B123.6 (7)
H15A—C15A—H15B109.5C16B—C10B—C9B121.1 (7)
C7A—C15A—H15C109.5C11B—C10B—C9B115.2 (4)
H15A—C15A—H15C109.5C10B—C11B—C12B110.7 (4)
H15B—C15A—H15C109.5C10B—C11B—H11C109.5
C10A—C16A—H16A120.0C12B—C11B—H11C109.5
C10A—C16A—H16B120.0C10B—C11B—H11D109.5
H16A—C16A—H16B120.0C12B—C11B—H11D109.5
C9B—O1B—H1B109.5H11C—C11B—H11D108.1
C2B—C1B—C12B115.5 (3)C11B—C12B—C1B110.5 (3)
C2B—C1B—C8B119.8 (3)C11B—C12B—H12C109.6
C12B—C1B—C8B114.3 (3)C1B—C12B—H12C109.6
C2B—C1B—C3B58.9 (3)C11B—C12B—H12D109.6
C12B—C1B—C3B119.3 (3)C1B—C12B—H12D109.6
C8B—C1B—C3B118.2 (3)H12C—C12B—H12D108.1
C3B—C2B—C1B61.0 (2)C3B—C13B—H13D109.5
C3B—C2B—Cl1B120.7 (3)C3B—C13B—H13E109.5
C1B—C2B—Cl1B122.5 (3)H13D—C13B—H13E109.5
C3B—C2B—Cl2B119.4 (3)C3B—C13B—H13F109.5
C1B—C2B—Cl2B120.0 (3)H13D—C13B—H13F109.5
Cl1B—C2B—Cl2B107.4 (2)H13E—C13B—H13F109.5
C2B—C3B—C4B118.2 (4)C10B—C16B—H16C120.0
C2B—C3B—C13B119.2 (4)C10B—C16B—H16D120.0
C4B—C3B—C13B112.3 (3)H16C—C16B—H16D120.0
C2B—C3B—C1B60.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O1Bi0.821.982.791 (4)169
C8A—H8A···Cl1A0.982.683.228 (4)116
O1B—H1B···O1A0.822.042.835 (4)162
C8B—H8B···Cl1A0.982.783.691 (4)156
C8B—H8B···Cl1B0.982.633.238 (4)120
O1A—H1A···O1Bi0.821.982.791 (4)169
C8A—H8A···Cl1A0.982.683.228 (4)116
O1B—H1B···O1A0.822.042.835 (4)162
C8B—H8B···Cl1A0.982.783.691 (4)156
C8B—H8B···Cl1B0.982.633.238 (4)120
Symmetry code: (i) x+1, y1, z.
 

References

First citationAgilent (2014). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationArfaoui, J., Boudali, L. K. & Ghorbel, A. (2010). Appl. Clay Sci. 48, 171–178.  Web of Science CrossRef CAS Google Scholar
First citationAuhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2002). Synth. Commun. 32, 699–707.  Web of Science CrossRef CAS Google Scholar
First citationBoessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChung, I., Kwon, S. H., Shim, S.-T. & Kyung, K. H. (2007). J. Food Sci. 72, M437–M440.  CrossRef PubMed CAS Google Scholar
First citationDakir, M., Auhmani, A., Itto, M. Y. A., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.  Web of Science CrossRef CAS Google Scholar
First citationEljamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJoseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3852.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParesh, N. C. & Sujit, R. (2012). Tetrahedron, 68, 3776–3785.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPlattier, M. & Teisseire, P. (1974). Recherche, 19, 131–144.  CAS Google Scholar
First citationServi, S., Cansiz, A., Digrak, M. & Ahmedzade, M. (2000). Indian J. Chem. Sect. B, 39, 629–633.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds