research communications
d]imidazo[1,5-b]isoxazol]-8′(7′H)-one
of 2-isopropyl-5,7′-dimethyl-1′,3′,3a',6′,8a',8b'-hexahydrospiro[cyclohexane-1,6′-furo[3,4-aUniversity of Monastir, Heterocyclic Chemistry Laboratory, Products, Natural and Reactivity, Faculty of Sciences of Monastir, Avenue of the Environment, 5000 Monastir, Tunisia, bUniversity of Monastir, Laboratory of Physical Chemistry of Materials, Faculty of Sciences of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia, cLaboratory of Electrochemistry, Materials and Environment, Kairouan University, 3100 Kairouan, Tunisia, and dUniversity of Lyon CNRS, Institute of Chemistry and Biochemistry and Molecular Supramolecular, UMR 5246, Laboratoire de Chimie Organique 2-Glycochemistry, Curien Building, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
*Correspondence e-mail: abda_he@hotmail.fr
In the title compound, C17H28N2O3, the isoxazolidine ring adopts an with the O atom deviating from the mean plane of the other four ring atoms by 0.617 (1) Å. In the crystal, molecules are linked via weak C—H⋯O hydrogen bonds, forming chains which extend along the b-axis direction.
Keywords: crystal structure; isoxazolidine; hydrogen bonding.
CCDC reference: 1489217
1. Chemical context
The 1,3-dipolar cycloaddition of nitrones to ). These compounds can be converted into β-amino (Padwa et al., 2002), β-lactams (Hanselmann et al., 2003) and α-amino acids (Aouadi et al., 2006), by reductive cleavage of the N—O bond. Consequently, isoxazolidines have been used as key intermediates for the synthesis of various natural products or antifungal, anti-inflammatory, anti-mycobacterial, anti-tuberculosis and antiviral agents. The previously mentioned importance of the isoxazolidine led us to investigate the cycloaddition of chiral nitrone [(5(S),6(S),9(R)-6-isopropyl-4,9-dimethyl-3-oxo-1,4-diazaspiro[4.5]dec-1-ene-1-oxide] with 2,5-dihydrofuran. The present work reports the synthesis and the X-ray crystallographic study of this substituted isoxazolidine, the title compound, C17H28N2O3, (I).
has been applied to produce substituted isoxazolidines (Gothelf & Jørgensen, 19982. Structural commentary
In the title compound (I), the comprises a single molecule (Fig. 1). Each molecule has six stereogenic centres (Abda et al., 2014) although the for the molecule was not determined definitively in this analysis. The isoxazolidine ring (O1/N2/C7–C9) adopts an with atom O1 displaced by 0.617 (1) Å from the mean plane through atoms N2/C7–C9. The N—O bond lengths of the isoxazolidine rings O1—N2 = 1.482 (2) Å, close to values reported for related compounds (Loh et al., 2010; Molander et al., 2013).
3. Supramolecular features
In the crystal, the molecules are linked via non-classical weak C5—H52⋯O13i hydrogen bonds, forming zigzag chains, which extend along the b-axis direction (Table 1 and Fig. 2).
4. Synthesis and crystallization
In a Biotage Initiator 10 ml vial, nitrone [(5(S),6(S),9(R)-6-isopropyl-4,9-dimethyl-3-oxo-1,4-diazaspiro[4.5]dec-1-ene-1-oxide] (1 eq.) in anhydrous toluene (4 ml) was introduced. The vial was flushed with argon and 2,5-dihydrofuran (3 eq,) was added. The vial was sealed with a septum cap and was irradiated with microwaves (temperature: 373 K) (Fig. 3). TLC monitoring (EtOAc/PE 5/5) showed full conversion after 2 h. After the crude mixture was concentrated and purified by flash (silica gel, EtOAc/PE 5/5), the desired isoxazolidine (I) was obtained (m.p. = 410–411 K).
5. Refinement
Crystal data, data collection and structure . The H atoms were located in a difference map, but these were repositioned geometrically and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom). These were subsequently refined with riding constraints (Cooper et al., 2010). Although not definitive for this chiral structure, the Flack (1983) parameter obtained [0.60 (3) for 1261 Friedel pairs] gave C3(S), C7(S), C8(S), C9(S), C14(S), C20(R) assignments for the six arbitrarily named chiral centres in the molecule. The inverted structure gave a similarly high Flack factor .
details are summarized in Table 2Supporting information
CCDC reference: 1489217
https://doi.org/10.1107/S2056989016010641/zs2363sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016010641/zs2363Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016010641/zs2363Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C17H28N2O3 | F(000) = 672 |
Mr = 308.42 | Dx = 1.236 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 5548 reflections |
a = 7.7474 (6) Å | θ = 4.5–66.7° |
b = 11.1404 (8) Å | µ = 0.68 mm−1 |
c = 19.208 (2) Å | T = 150 K |
V = 1657.8 (2) Å3 | Block, colorless |
Z = 4 | 0.49 × 0.43 × 0.25 mm |
Oxford Diffraction Xcalibur (Atlas, Gemini Ultra) diffractometer | 2879 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray source | 2680 reflections with I > 2.0σ(I) |
Mirror monochromator | Rint = 0.059 |
Detector resolution: 10.4678 pixels mm-1 | θmax = 66.8°, θmin = 11° |
ω scans | h = −9→8 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2013) based on expressions derived by Clark & Reid (1995); changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999)] | k = −13→12 |
Tmin = 0.782, Tmax = 0.866 | l = −22→21 |
10374 measured reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | Method, part 1, Chebychev polynomial, (Watkin, 1994: Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.124E + 04 0.195E + 04 0.105E + 04 304. |
R[F2 > 2σ(F2)] = 0.042 | (Δ/σ)max = 0.0002 |
wR(F2) = 0.096 | Δρmax = 0.16 e Å−3 |
S = 1.03 | Δρmin = −0.17 e Å−3 |
2866 reflections | Extinction correction: Larson (1970), Equation 22 |
201 parameters | Extinction coefficient: 74 (4) |
0 restraints | Absolute structure: Flack (1983), 1261 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.6 (3) |
Hydrogen site location: difference Fourier map |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat with a nominal stability of 0.1K. |
Refinement. The analytical numeric absorption correction using a multi-faceted crystal model is based on expressions derived by Clark & Reid (1995). The relatively large ratio of minimum to maximum corrections applied in the multi-scan process (1:nnn) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3924 (2) | 0.46528 (13) | 0.43226 (8) | 0.0295 | |
N2 | 0.2276 (2) | 0.48439 (15) | 0.39468 (9) | 0.0248 | |
C3 | 0.2216 (3) | 0.39172 (18) | 0.33856 (11) | 0.0253 | |
N4 | 0.3084 (3) | 0.44977 (16) | 0.27929 (9) | 0.0257 | |
C5 | 0.3388 (3) | 0.3911 (2) | 0.21315 (11) | 0.0309 | |
H51 | 0.3934 | 0.4467 | 0.1812 | 0.0471* | |
H53 | 0.2321 | 0.3682 | 0.1919 | 0.0466* | |
H52 | 0.4129 | 0.3213 | 0.2193 | 0.0470* | |
C6 | 0.3369 (3) | 0.56800 (19) | 0.28913 (11) | 0.0269 | |
C7 | 0.2626 (3) | 0.60075 (18) | 0.35923 (11) | 0.0257 | |
C8 | 0.3798 (3) | 0.67280 (19) | 0.40726 (12) | 0.0279 | |
C9 | 0.4274 (3) | 0.5792 (2) | 0.46276 (11) | 0.0271 | |
C10 | 0.3137 (4) | 0.6110 (2) | 0.52465 (12) | 0.0372 | |
O11 | 0.1969 (2) | 0.70248 (16) | 0.50158 (9) | 0.0397 | |
C12 | 0.2873 (3) | 0.7679 (2) | 0.44941 (13) | 0.0352 | |
H122 | 0.2094 | 0.8163 | 0.4202 | 0.0417* | |
H121 | 0.3689 | 0.8236 | 0.4714 | 0.0416* | |
H102 | 0.2495 | 0.5396 | 0.5410 | 0.0447* | |
H101 | 0.3821 | 0.6433 | 0.5635 | 0.0448* | |
H91 | 0.5499 | 0.5839 | 0.4753 | 0.0337* | |
H81 | 0.4758 | 0.7027 | 0.3812 | 0.0341* | |
H71 | 0.1551 | 0.6415 | 0.3518 | 0.0307* | |
O13 | 0.4052 (2) | 0.63710 (15) | 0.24780 (8) | 0.0357 | |
C14 | 0.0307 (3) | 0.3616 (2) | 0.32135 (11) | 0.0274 | |
C15 | −0.0806 (3) | 0.4686 (2) | 0.29604 (12) | 0.0310 | |
C16 | −0.2129 (4) | 0.4250 (3) | 0.24307 (14) | 0.0435 | |
H162 | −0.2845 | 0.4937 | 0.2288 | 0.0654* | |
H163 | −0.1594 | 0.3903 | 0.2017 | 0.0653* | |
H161 | −0.2850 | 0.3629 | 0.2652 | 0.0658* | |
C17 | −0.1731 (4) | 0.5369 (2) | 0.35403 (14) | 0.0406 | |
H171 | −0.2186 | 0.6122 | 0.3336 | 0.0606* | |
H173 | −0.2672 | 0.4908 | 0.3721 | 0.0604* | |
H172 | −0.0979 | 0.5542 | 0.3931 | 0.0602* | |
H151 | −0.0031 | 0.5263 | 0.2711 | 0.0372* | |
C18 | −0.0536 (3) | 0.2924 (2) | 0.38122 (13) | 0.0346 | |
C19 | 0.0460 (4) | 0.1795 (2) | 0.40142 (14) | 0.0379 | |
C20 | 0.2339 (3) | 0.2100 (2) | 0.41916 (12) | 0.0327 | |
C21 | 0.3154 (3) | 0.27553 (19) | 0.35817 (12) | 0.0288 | |
H211 | 0.3096 | 0.2212 | 0.3171 | 0.0339* | |
H212 | 0.4342 | 0.2949 | 0.3684 | 0.0350* | |
C22 | 0.3387 (4) | 0.0976 (2) | 0.43654 (13) | 0.0429 | |
H222 | 0.4583 | 0.1173 | 0.4469 | 0.0645* | |
H221 | 0.3358 | 0.0416 | 0.3963 | 0.0629* | |
H223 | 0.2912 | 0.0549 | 0.4787 | 0.0629* | |
H201 | 0.2358 | 0.2644 | 0.4599 | 0.0385* | |
H192 | 0.0469 | 0.1237 | 0.3607 | 0.0463* | |
H191 | −0.0113 | 0.1390 | 0.4418 | 0.0451* | |
H182 | −0.1724 | 0.2721 | 0.3658 | 0.0423* | |
H181 | −0.0606 | 0.3469 | 0.4217 | 0.0410* | |
H141 | 0.0390 | 0.3055 | 0.2810 | 0.0325* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0344 (8) | 0.0232 (7) | 0.0308 (8) | 0.0026 (7) | −0.0085 (7) | −0.0014 (6) |
N2 | 0.0304 (10) | 0.0202 (9) | 0.0239 (9) | 0.0002 (8) | −0.0028 (8) | 0.0005 (7) |
C3 | 0.0324 (12) | 0.0197 (10) | 0.0237 (10) | 0.0008 (9) | 0.0029 (9) | −0.0011 (9) |
N4 | 0.0317 (9) | 0.0218 (9) | 0.0236 (9) | −0.0001 (8) | 0.0035 (8) | −0.0015 (7) |
C5 | 0.0377 (12) | 0.0307 (11) | 0.0242 (11) | −0.0039 (10) | 0.0039 (9) | −0.0034 (9) |
C6 | 0.0290 (11) | 0.0233 (10) | 0.0284 (11) | −0.0006 (9) | −0.0018 (9) | 0.0016 (9) |
C7 | 0.0302 (11) | 0.0206 (11) | 0.0262 (10) | 0.0023 (10) | 0.0024 (9) | 0.0014 (8) |
C8 | 0.0324 (12) | 0.0204 (10) | 0.0307 (12) | −0.0016 (9) | 0.0028 (10) | −0.0014 (9) |
C9 | 0.0313 (11) | 0.0233 (10) | 0.0267 (10) | 0.0000 (9) | −0.0042 (9) | −0.0040 (9) |
C10 | 0.0453 (14) | 0.0361 (13) | 0.0302 (12) | −0.0014 (12) | −0.0002 (11) | −0.0035 (10) |
O11 | 0.0392 (10) | 0.0387 (9) | 0.0413 (9) | 0.0061 (8) | 0.0076 (8) | −0.0078 (8) |
C12 | 0.0421 (15) | 0.0257 (11) | 0.0377 (13) | 0.0022 (11) | −0.0016 (11) | −0.0076 (10) |
O13 | 0.0489 (10) | 0.0280 (8) | 0.0303 (8) | −0.0062 (8) | 0.0057 (8) | 0.0044 (6) |
C14 | 0.0329 (11) | 0.0228 (11) | 0.0265 (11) | −0.0031 (9) | 0.0021 (9) | −0.0005 (9) |
C15 | 0.0295 (11) | 0.0298 (12) | 0.0335 (12) | −0.0022 (10) | −0.0007 (10) | 0.0024 (9) |
C16 | 0.0430 (14) | 0.0423 (14) | 0.0453 (14) | −0.0056 (13) | −0.0109 (13) | 0.0027 (12) |
C17 | 0.0370 (13) | 0.0368 (13) | 0.0481 (15) | 0.0038 (12) | 0.0041 (12) | −0.0022 (11) |
C18 | 0.0371 (13) | 0.0322 (13) | 0.0344 (12) | −0.0047 (11) | 0.0039 (11) | 0.0025 (10) |
C19 | 0.0533 (16) | 0.0238 (12) | 0.0365 (13) | −0.0085 (11) | 0.0037 (12) | 0.0039 (10) |
C20 | 0.0495 (15) | 0.0209 (11) | 0.0278 (11) | −0.0015 (11) | −0.0011 (11) | −0.0001 (9) |
C21 | 0.0360 (12) | 0.0211 (11) | 0.0292 (11) | 0.0013 (10) | 0.0009 (10) | −0.0008 (9) |
C22 | 0.0680 (19) | 0.0239 (12) | 0.0369 (13) | 0.0025 (12) | −0.0068 (13) | 0.0040 (10) |
O1—N2 | 1.482 (2) | C14—C15 | 1.550 (3) |
O1—C9 | 1.424 (3) | C14—C18 | 1.531 (3) |
N2—C3 | 1.493 (3) | C14—H141 | 0.997 |
N2—C7 | 1.489 (3) | C15—C16 | 1.524 (3) |
C3—N4 | 1.472 (3) | C15—C17 | 1.527 (3) |
C3—C14 | 1.552 (3) | C15—H151 | 1.001 |
C3—C21 | 1.531 (3) | C16—H162 | 0.983 |
N4—C5 | 1.448 (3) | C16—H163 | 0.977 |
N4—C6 | 1.349 (3) | C16—H161 | 0.986 |
C5—H51 | 0.969 | C17—H171 | 0.991 |
C5—H53 | 0.956 | C17—H173 | 0.957 |
C5—H52 | 0.974 | C17—H172 | 0.970 |
C6—C7 | 1.509 (3) | C18—C19 | 1.526 (4) |
C6—O13 | 1.226 (3) | C18—H182 | 0.992 |
C7—C8 | 1.523 (3) | C18—H181 | 0.988 |
C7—H71 | 0.959 | C19—C20 | 1.533 (4) |
C8—C9 | 1.536 (3) | C19—H192 | 0.999 |
C8—C12 | 1.513 (3) | C19—H191 | 1.001 |
C8—H81 | 0.957 | C20—C21 | 1.518 (3) |
C9—C10 | 1.521 (3) | C20—C22 | 1.529 (3) |
C9—H91 | 0.980 | C20—H201 | 0.990 |
C10—O11 | 1.433 (3) | C21—H211 | 0.996 |
C10—H102 | 0.989 | C21—H212 | 0.966 |
C10—H101 | 0.983 | C22—H222 | 0.972 |
O11—C12 | 1.423 (3) | C22—H221 | 0.995 |
C12—H122 | 0.985 | C22—H223 | 1.009 |
C12—H121 | 0.981 | ||
N2—O1—C9 | 103.68 (14) | C3—C14—C18 | 110.82 (19) |
O1—N2—C3 | 106.18 (15) | C15—C14—C18 | 112.69 (19) |
O1—N2—C7 | 100.99 (15) | C3—C14—H141 | 103.9 |
C3—N2—C7 | 106.11 (15) | C15—C14—H141 | 105.9 |
N2—C3—N4 | 103.92 (16) | C18—C14—H141 | 107.2 |
N2—C3—C14 | 109.41 (17) | C14—C15—C16 | 109.79 (19) |
N4—C3—C14 | 111.43 (18) | C14—C15—C17 | 114.5 (2) |
N2—C3—C21 | 113.10 (17) | C16—C15—C17 | 109.3 (2) |
N4—C3—C21 | 110.18 (18) | C14—C15—H151 | 108.1 |
C14—C3—C21 | 108.77 (18) | C16—C15—H151 | 106.8 |
C3—N4—C5 | 123.70 (17) | C17—C15—H151 | 108.1 |
C3—N4—C6 | 113.29 (17) | C15—C16—H162 | 108.5 |
C5—N4—C6 | 122.47 (19) | C15—C16—H163 | 112.6 |
N4—C5—H51 | 109.8 | H162—C16—H163 | 108.7 |
N4—C5—H53 | 110.8 | C15—C16—H161 | 108.4 |
H51—C5—H53 | 106.1 | H162—C16—H161 | 110.3 |
N4—C5—H52 | 110.4 | H163—C16—H161 | 108.3 |
H51—C5—H52 | 109.2 | C15—C17—H171 | 107.4 |
H53—C5—H52 | 110.4 | C15—C17—H173 | 110.8 |
N4—C6—C7 | 107.39 (18) | H171—C17—H173 | 109.1 |
N4—C6—O13 | 126.4 (2) | C15—C17—H172 | 112.4 |
C7—C6—O13 | 126.2 (2) | H171—C17—H172 | 110.5 |
C6—C7—N2 | 105.48 (16) | H173—C17—H172 | 106.5 |
C6—C7—C8 | 116.15 (19) | C14—C18—C19 | 113.0 (2) |
N2—C7—C8 | 106.89 (17) | C14—C18—H182 | 106.7 |
C6—C7—H71 | 108.3 | C19—C18—H182 | 110.9 |
N2—C7—H71 | 108.7 | C14—C18—H181 | 107.8 |
C8—C7—H71 | 111.0 | C19—C18—H181 | 109.5 |
C7—C8—C9 | 101.88 (16) | H182—C18—H181 | 108.9 |
C7—C8—C12 | 114.2 (2) | C18—C19—C20 | 110.74 (19) |
C9—C8—C12 | 102.57 (18) | C18—C19—H192 | 108.4 |
C7—C8—H81 | 109.3 | C20—C19—H192 | 107.8 |
C9—C8—H81 | 114.4 | C18—C19—H191 | 110.1 |
C12—C8—H81 | 113.9 | C20—C19—H191 | 110.4 |
C8—C9—O1 | 105.88 (16) | H192—C19—H191 | 109.2 |
C8—C9—C10 | 104.18 (18) | C19—C20—C21 | 109.3 (2) |
O1—C9—C10 | 114.75 (19) | C19—C20—C22 | 111.8 (2) |
C8—C9—H91 | 111.5 | C21—C20—C22 | 110.0 (2) |
O1—C9—H91 | 109.5 | C19—C20—H201 | 109.0 |
C10—C9—H91 | 110.8 | C21—C20—H201 | 108.1 |
C9—C10—O11 | 106.84 (18) | C22—C20—H201 | 108.7 |
C9—C10—H102 | 110.7 | C3—C21—C20 | 113.52 (19) |
O11—C10—H102 | 110.6 | C3—C21—H211 | 107.3 |
C9—C10—H101 | 111.5 | C20—C21—H211 | 107.5 |
O11—C10—H101 | 108.3 | C3—C21—H212 | 108.2 |
H102—C10—H101 | 108.9 | C20—C21—H212 | 110.3 |
C10—O11—C12 | 105.74 (19) | H211—C21—H212 | 109.9 |
C8—C12—O11 | 104.57 (19) | C20—C22—H222 | 111.5 |
C8—C12—H122 | 111.7 | C20—C22—H221 | 109.4 |
O11—C12—H122 | 112.4 | H222—C22—H221 | 108.8 |
C8—C12—H121 | 111.6 | C20—C22—H223 | 111.6 |
O11—C12—H121 | 109.7 | H222—C22—H223 | 106.8 |
H122—C12—H121 | 107.0 | H221—C22—H223 | 108.7 |
C3—C14—C15 | 115.54 (18) | ||
C9—O1—N2—C3 | 156.12 (16) | C21—C3—C14—C18 | 53.8 (2) |
C9—O1—N2—C7 | 45.58 (18) | N2—C3—C21—C20 | 64.1 (2) |
N2—O1—C9—C8 | −40.8 (2) | N4—C3—C21—C20 | 179.91 (18) |
N2—O1—C9—C10 | 73.5 (2) | C14—C3—C21—C20 | −57.7 (2) |
C12—O11—C10—C9 | −30.4 (2) | O13—C6—C7—N2 | −169.1 (2) |
C10—O11—C12—C8 | 41.4 (2) | O13—C6—C7—C8 | −51.0 (3) |
O1—N2—C3—N4 | −88.72 (18) | N4—C6—C7—N2 | 13.2 (2) |
O1—N2—C3—C14 | 152.15 (15) | N4—C6—C7—C8 | 131.3 (2) |
O1—N2—C3—C21 | 30.7 (2) | N2—C7—C8—C9 | 9.3 (2) |
C7—N2—C3—N4 | 18.2 (2) | N2—C7—C8—C12 | −100.5 (2) |
C7—N2—C3—C14 | −100.94 (18) | C6—C7—C8—C9 | −108.1 (2) |
C7—N2—C3—C21 | 137.64 (18) | C6—C7—C8—C12 | 142.1 (2) |
O1—N2—C7—C6 | 91.23 (18) | C7—C8—C9—O1 | 19.2 (2) |
O1—N2—C7—C8 | −32.94 (19) | C7—C8—C9—C10 | −102.2 (2) |
C3—N2—C7—C6 | −19.4 (2) | C12—C8—C9—O1 | 137.68 (18) |
C3—N2—C7—C8 | −143.56 (17) | C12—C8—C9—C10 | 16.3 (2) |
C5—N4—C3—N2 | 177.7 (2) | C7—C8—C12—O11 | 74.2 (2) |
C5—N4—C3—C14 | −64.6 (3) | C9—C8—C12—O11 | −35.1 (2) |
C5—N4—C3—C21 | 56.2 (3) | O1—C9—C10—O11 | −107.8 (2) |
C6—N4—C3—N2 | −10.6 (3) | C8—C9—C10—O11 | 7.6 (2) |
C6—N4—C3—C14 | 107.2 (2) | C3—C14—C15—C16 | 146.3 (2) |
C6—N4—C3—C21 | −132.0 (2) | C3—C14—C15—C17 | −90.4 (2) |
C3—N4—C6—O13 | −179.3 (2) | C18—C14—C15—C16 | −84.9 (2) |
C3—N4—C6—C7 | −1.6 (3) | C18—C14—C15—C17 | 38.4 (3) |
C5—N4—C6—O13 | −7.4 (4) | C3—C14—C18—C19 | −54.8 (3) |
C5—N4—C6—C7 | 170.3 (2) | C15—C14—C18—C19 | 174.06 (19) |
N2—C3—C14—C15 | 59.5 (2) | C14—C18—C19—C20 | 55.5 (3) |
N2—C3—C14—C18 | −70.2 (2) | C18—C19—C20—C21 | −55.6 (3) |
N4—C3—C14—C15 | −54.8 (2) | C18—C19—C20—C22 | −177.5 (2) |
N4—C3—C14—C18 | 175.48 (17) | C19—C20—C21—C3 | 58.7 (2) |
C21—C3—C14—C15 | −176.47 (18) | C22—C20—C21—C3 | −178.24 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H52···O13i | 0.97 | 2.57 | 3.536 (3) | 172 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors are grateful to the Ministry of Higher Education and Scientific Research of Tunisia for financial support.
References
Abda, H., Aouadi, K., Perrin, L., Msaddek, M., Praly, J.-P. & Vidal, S. (2014). Eur. J. Org. Chem. pp. 6017–6024. CSD CrossRef Google Scholar
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Aouadi, K., Vidal, S., Msaddek, M. & Praly, J.-P. (2006). Synlett, 2006, 3299–3303. Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gothelf, K. V. & Jørgensen, K. A. (1998). Chem. Rev. 98, 863–910. CrossRef PubMed CAS Google Scholar
Hanselmann, R., Zhou, J., Ma, P. & Confalone, P. N. (2003). J. Org. Chem. 68, 8739–8741. Web of Science CrossRef PubMed CAS Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Loh, B., Vozzolo, L., Mok, B. J., Lee, C. C., Fitzmaurice, R. J., Caddick, S. & Fassati, A. (2010). Chem. Biol. Drug Des. 75, 461–474. Web of Science CrossRef CAS PubMed Google Scholar
Molander, G. A., Cavalcanti, L. N. & García-García, C. (2013). J. Org. Chem. 78, 6427–6439. CrossRef CAS PubMed Google Scholar
Padwa, A. & Pearson, W. H. (2002). Editors. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Vol. 59, pp. 1–81. Chichester: Wiley. Google Scholar
Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.