research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-iso­propyl-5,7′-di­methyl-1′,3′,3a',6′,8a',8b'-hexa­hydro­spiro­[cyclo­hexane-1,6′-furo[3,4-d]imidazo[1,5-b]isoxazol]-8′(7′H)-one

CROSSMARK_Color_square_no_text.svg

aUniversity of Monastir, Heterocyclic Chemistry Laboratory, Products, Natural and Reactivity, Faculty of Sciences of Monastir, Avenue of the Environment, 5000 Monastir, Tunisia, bUniversity of Monastir, Laboratory of Physical Chemistry of Materials, Faculty of Sciences of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia, cLaboratory of Electrochemistry, Materials and Environment, Kairouan University, 3100 Kairouan, Tunisia, and dUniversity of Lyon CNRS, Institute of Chemistry and Biochemistry and Molecular Supramolecular, UMR 5246, Laboratoire de Chimie Organique 2-Glycochemistry, Curien Building, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
*Correspondence e-mail: abda_he@hotmail.fr

Edited by G. Smith, Queensland University of Technology, Australia (Received 4 June 2016; accepted 30 June 2016; online 19 July 2016)

In the title compound, C17H28N2O3, the isoxazolidine ring adopts an envelope conformation with the O atom deviating from the mean plane of the other four ring atoms by 0.617 (1) Å. In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonds, forming chains which extend along the b-axis direction.

1. Chemical context

The 1,3-dipolar cyclo­addition of nitro­nes to alkenes has been applied to produce substituted isoxazolidines (Gothelf & Jørgensen, 1998[Gothelf, K. V. & Jørgensen, K. A. (1998). Chem. Rev. 98, 863-910.]). These compounds can be converted into β-amino alcohols (Padwa et al., 2002[Padwa, A. & Pearson, W. H. (2002). Editors. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Vol. 59, pp. 1-81. Chichester: Wiley.]), β-lactams (Hanselmann et al., 2003[Hanselmann, R., Zhou, J., Ma, P. & Confalone, P. N. (2003). J. Org. Chem. 68, 8739-8741.]) and α-amino acids (Aouadi et al., 2006[Aouadi, K., Vidal, S., Msaddek, M. & Praly, J.-P. (2006). Synlett, 2006, 3299-3303.]), by reductive cleavage of the N—O bond. Consequently, isoxazol­idines have been used as key inter­mediates for the synthesis of various natural products or anti­fungal, anti-inflammatory, anti-mycobacterial, anti-tuberculosis and anti­viral agents. The previously mentioned importance of the isoxazolidine substructure led us to investigate the cyclo­addition of chiral nitrone [(5(S),6(S),9(R)-6-isopropyl-4,9-dimethyl-3-oxo-1,4-di­aza­spiro­[4.5]dec-1-ene-1-oxide] with 2,5-di­hydro­furan. The present work reports the synthesis and the X-ray crystallographic study of this substituted isoxazol­idine, the title compound, C17H28N2O3, (I)[link].

[Scheme 1]

2. Structural commentary

In the title compound (I)[link], the asymmetric unit comprises a single mol­ecule (Fig. 1[link]). Each mol­ecule has six stereogenic centres (Abda et al., 2014[Abda, H., Aouadi, K., Perrin, L., Msaddek, M., Praly, J.-P. & Vidal, S. (2014). Eur. J. Org. Chem. pp. 6017-6024.]) although the absolute configuration for the mol­ecule was not determined definitively in this analysis. The isoxazolidine ring (O1/N2/C7–C9) adopts an envelope conformation with atom O1 displaced by 0.617 (1) Å from the mean plane through atoms N2/C7–C9. The N—O bond lengths of the isoxazolidine rings O1—N2 = 1.482 (2) Å, close to values reported for related compounds (Loh et al., 2010[Loh, B., Vozzolo, L., Mok, B. J., Lee, C. C., Fitzmaurice, R. J., Caddick, S. & Fassati, A. (2010). Chem. Biol. Drug Des. 75, 461-474.]; Molander et al., 2013[Molander, G. A., Cavalcanti, L. N. & García-García, C. (2013). J. Org. Chem. 78, 6427-6439.]).

[Figure 1]
Figure 1
The mol­ecular conformation in the mol­ecules of (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 35% probability level. H atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal, the mol­ecules are linked via non-classical weak C5—H52⋯O13i hydrogen bonds, forming zigzag chains, which extend along the b-axis direction (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H52⋯O13i 0.97 2.57 3.536 (3) 172
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The C—H⋯O hydrogen-bonded chains extending along the b axis in the crystal structure of (I)[link]. Dashed lines indicate hydrogen bonds. Non-associated H atoms have been omitted.

4. Synthesis and crystallization

In a Biotage Initiator 10 ml vial, nitrone [(5(S),6(S),9(R)-6-isopropyl-4,9-dimethyl-3-oxo-1,4-di­aza­spiro­[4.5]dec-1-ene-1-oxide] (1 eq.) in anhydrous toluene (4 ml) was introduced. The vial was flushed with argon and 2,5-di­hydro­furan (3 eq,) was added. The vial was sealed with a septum cap and was irradiated with microwaves (temperature: 373 K) (Fig. 3[link]). TLC monitoring (EtOAc/PE 5/5) showed full conversion after 2 h. After the crude mixture was concentrated and purified by flash column chromatography (silica gel, EtOAc/PE 5/5), the desired isoxazolidine (I)[link] was obtained (m.p. = 410–411 K).

[Figure 3]
Figure 3
The cyclo­addition reaction in the synthesis of (I)[link].

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were located in a difference map, but these were repositioned geometrically and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom). These were subsequently refined with riding constraints (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). Although not definitive for this chiral structure, the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) absolute structure parameter obtained [0.60 (3) for 1261 Friedel pairs] gave C3(S), C7(S), C8(S), C9(S), C14(S), C20(R) assignments for the six arbitrarily named chiral centres in the mol­ecule. The inverted structure gave a similarly high Flack factor .

Table 2
Experimental details

Crystal data
Chemical formula C17H28N2O3
Mr 308.42
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 7.7474 (6), 11.1404 (8), 19.208 (2)
V3) 1657.8 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.49 × 0.43 × 0.25
 
Data collection
Diffractometer Oxford Diffraction Xcalibur (Atlas, Gemini Ultra)
Absorption correction Analytical [CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]); changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.])]
Tmin, Tmax 0.782, 0.866
No. of measured, independent and observed [I > 2.0σ(I)] reflections 10374, 2879, 2680
Rint 0.059
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 1.03
No. of reflections 2866
No. of parameters 201
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.17
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1261 Friedel pairs
Absolute structure parameter 0.6 (3)
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]), CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]), Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.]), Prince (1982[Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]) and Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

(I) top
Crystal data top
C17H28N2O3F(000) = 672
Mr = 308.42Dx = 1.236 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ac 2abCell parameters from 5548 reflections
a = 7.7474 (6) Åθ = 4.5–66.7°
b = 11.1404 (8) ŵ = 0.68 mm1
c = 19.208 (2) ÅT = 150 K
V = 1657.8 (2) Å3Block, colorless
Z = 40.49 × 0.43 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini Ultra)
diffractometer
2879 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray source2680 reflections with I > 2.0σ(I)
Mirror monochromatorRint = 0.059
Detector resolution: 10.4678 pixels mm-1θmax = 66.8°, θmin = 11°
ω scansh = 98
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2013) based on expressions derived by Clark & Reid (1995); changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999)]
k = 1312
Tmin = 0.782, Tmax = 0.866l = 2221
10374 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full Method, part 1, Chebychev polynomial, (Watkin, 1994: Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.124E + 04 0.195E + 04 0.105E + 04 304.
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max = 0.0002
wR(F2) = 0.096Δρmax = 0.16 e Å3
S = 1.03Δρmin = 0.17 e Å3
2866 reflectionsExtinction correction: Larson (1970), Equation 22
201 parametersExtinction coefficient: 74 (4)
0 restraintsAbsolute structure: Flack (1983), 1261 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.6 (3)
Hydrogen site location: difference Fourier map
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat with a nominal stability of 0.1K.

Refinement. The analytical numeric absorption correction using a multi-faceted crystal model is based on expressions derived by Clark & Reid (1995). The relatively large ratio of minimum to maximum corrections applied in the multi-scan process (1:nnn) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3924 (2)0.46528 (13)0.43226 (8)0.0295
N20.2276 (2)0.48439 (15)0.39468 (9)0.0248
C30.2216 (3)0.39172 (18)0.33856 (11)0.0253
N40.3084 (3)0.44977 (16)0.27929 (9)0.0257
C50.3388 (3)0.3911 (2)0.21315 (11)0.0309
H510.39340.44670.18120.0471*
H530.23210.36820.19190.0466*
H520.41290.32130.21930.0470*
C60.3369 (3)0.56800 (19)0.28913 (11)0.0269
C70.2626 (3)0.60075 (18)0.35923 (11)0.0257
C80.3798 (3)0.67280 (19)0.40726 (12)0.0279
C90.4274 (3)0.5792 (2)0.46276 (11)0.0271
C100.3137 (4)0.6110 (2)0.52465 (12)0.0372
O110.1969 (2)0.70248 (16)0.50158 (9)0.0397
C120.2873 (3)0.7679 (2)0.44941 (13)0.0352
H1220.20940.81630.42020.0417*
H1210.36890.82360.47140.0416*
H1020.24950.53960.54100.0447*
H1010.38210.64330.56350.0448*
H910.54990.58390.47530.0337*
H810.47580.70270.38120.0341*
H710.15510.64150.35180.0307*
O130.4052 (2)0.63710 (15)0.24780 (8)0.0357
C140.0307 (3)0.3616 (2)0.32135 (11)0.0274
C150.0806 (3)0.4686 (2)0.29604 (12)0.0310
C160.2129 (4)0.4250 (3)0.24307 (14)0.0435
H1620.28450.49370.22880.0654*
H1630.15940.39030.20170.0653*
H1610.28500.36290.26520.0658*
C170.1731 (4)0.5369 (2)0.35403 (14)0.0406
H1710.21860.61220.33360.0606*
H1730.26720.49080.37210.0604*
H1720.09790.55420.39310.0602*
H1510.00310.52630.27110.0372*
C180.0536 (3)0.2924 (2)0.38122 (13)0.0346
C190.0460 (4)0.1795 (2)0.40142 (14)0.0379
C200.2339 (3)0.2100 (2)0.41916 (12)0.0327
C210.3154 (3)0.27553 (19)0.35817 (12)0.0288
H2110.30960.22120.31710.0339*
H2120.43420.29490.36840.0350*
C220.3387 (4)0.0976 (2)0.43654 (13)0.0429
H2220.45830.11730.44690.0645*
H2210.33580.04160.39630.0629*
H2230.29120.05490.47870.0629*
H2010.23580.26440.45990.0385*
H1920.04690.12370.36070.0463*
H1910.01130.13900.44180.0451*
H1820.17240.27210.36580.0423*
H1810.06060.34690.42170.0410*
H1410.03900.30550.28100.0325*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0344 (8)0.0232 (7)0.0308 (8)0.0026 (7)0.0085 (7)0.0014 (6)
N20.0304 (10)0.0202 (9)0.0239 (9)0.0002 (8)0.0028 (8)0.0005 (7)
C30.0324 (12)0.0197 (10)0.0237 (10)0.0008 (9)0.0029 (9)0.0011 (9)
N40.0317 (9)0.0218 (9)0.0236 (9)0.0001 (8)0.0035 (8)0.0015 (7)
C50.0377 (12)0.0307 (11)0.0242 (11)0.0039 (10)0.0039 (9)0.0034 (9)
C60.0290 (11)0.0233 (10)0.0284 (11)0.0006 (9)0.0018 (9)0.0016 (9)
C70.0302 (11)0.0206 (11)0.0262 (10)0.0023 (10)0.0024 (9)0.0014 (8)
C80.0324 (12)0.0204 (10)0.0307 (12)0.0016 (9)0.0028 (10)0.0014 (9)
C90.0313 (11)0.0233 (10)0.0267 (10)0.0000 (9)0.0042 (9)0.0040 (9)
C100.0453 (14)0.0361 (13)0.0302 (12)0.0014 (12)0.0002 (11)0.0035 (10)
O110.0392 (10)0.0387 (9)0.0413 (9)0.0061 (8)0.0076 (8)0.0078 (8)
C120.0421 (15)0.0257 (11)0.0377 (13)0.0022 (11)0.0016 (11)0.0076 (10)
O130.0489 (10)0.0280 (8)0.0303 (8)0.0062 (8)0.0057 (8)0.0044 (6)
C140.0329 (11)0.0228 (11)0.0265 (11)0.0031 (9)0.0021 (9)0.0005 (9)
C150.0295 (11)0.0298 (12)0.0335 (12)0.0022 (10)0.0007 (10)0.0024 (9)
C160.0430 (14)0.0423 (14)0.0453 (14)0.0056 (13)0.0109 (13)0.0027 (12)
C170.0370 (13)0.0368 (13)0.0481 (15)0.0038 (12)0.0041 (12)0.0022 (11)
C180.0371 (13)0.0322 (13)0.0344 (12)0.0047 (11)0.0039 (11)0.0025 (10)
C190.0533 (16)0.0238 (12)0.0365 (13)0.0085 (11)0.0037 (12)0.0039 (10)
C200.0495 (15)0.0209 (11)0.0278 (11)0.0015 (11)0.0011 (11)0.0001 (9)
C210.0360 (12)0.0211 (11)0.0292 (11)0.0013 (10)0.0009 (10)0.0008 (9)
C220.0680 (19)0.0239 (12)0.0369 (13)0.0025 (12)0.0068 (13)0.0040 (10)
Geometric parameters (Å, º) top
O1—N21.482 (2)C14—C151.550 (3)
O1—C91.424 (3)C14—C181.531 (3)
N2—C31.493 (3)C14—H1410.997
N2—C71.489 (3)C15—C161.524 (3)
C3—N41.472 (3)C15—C171.527 (3)
C3—C141.552 (3)C15—H1511.001
C3—C211.531 (3)C16—H1620.983
N4—C51.448 (3)C16—H1630.977
N4—C61.349 (3)C16—H1610.986
C5—H510.969C17—H1710.991
C5—H530.956C17—H1730.957
C5—H520.974C17—H1720.970
C6—C71.509 (3)C18—C191.526 (4)
C6—O131.226 (3)C18—H1820.992
C7—C81.523 (3)C18—H1810.988
C7—H710.959C19—C201.533 (4)
C8—C91.536 (3)C19—H1920.999
C8—C121.513 (3)C19—H1911.001
C8—H810.957C20—C211.518 (3)
C9—C101.521 (3)C20—C221.529 (3)
C9—H910.980C20—H2010.990
C10—O111.433 (3)C21—H2110.996
C10—H1020.989C21—H2120.966
C10—H1010.983C22—H2220.972
O11—C121.423 (3)C22—H2210.995
C12—H1220.985C22—H2231.009
C12—H1210.981
N2—O1—C9103.68 (14)C3—C14—C18110.82 (19)
O1—N2—C3106.18 (15)C15—C14—C18112.69 (19)
O1—N2—C7100.99 (15)C3—C14—H141103.9
C3—N2—C7106.11 (15)C15—C14—H141105.9
N2—C3—N4103.92 (16)C18—C14—H141107.2
N2—C3—C14109.41 (17)C14—C15—C16109.79 (19)
N4—C3—C14111.43 (18)C14—C15—C17114.5 (2)
N2—C3—C21113.10 (17)C16—C15—C17109.3 (2)
N4—C3—C21110.18 (18)C14—C15—H151108.1
C14—C3—C21108.77 (18)C16—C15—H151106.8
C3—N4—C5123.70 (17)C17—C15—H151108.1
C3—N4—C6113.29 (17)C15—C16—H162108.5
C5—N4—C6122.47 (19)C15—C16—H163112.6
N4—C5—H51109.8H162—C16—H163108.7
N4—C5—H53110.8C15—C16—H161108.4
H51—C5—H53106.1H162—C16—H161110.3
N4—C5—H52110.4H163—C16—H161108.3
H51—C5—H52109.2C15—C17—H171107.4
H53—C5—H52110.4C15—C17—H173110.8
N4—C6—C7107.39 (18)H171—C17—H173109.1
N4—C6—O13126.4 (2)C15—C17—H172112.4
C7—C6—O13126.2 (2)H171—C17—H172110.5
C6—C7—N2105.48 (16)H173—C17—H172106.5
C6—C7—C8116.15 (19)C14—C18—C19113.0 (2)
N2—C7—C8106.89 (17)C14—C18—H182106.7
C6—C7—H71108.3C19—C18—H182110.9
N2—C7—H71108.7C14—C18—H181107.8
C8—C7—H71111.0C19—C18—H181109.5
C7—C8—C9101.88 (16)H182—C18—H181108.9
C7—C8—C12114.2 (2)C18—C19—C20110.74 (19)
C9—C8—C12102.57 (18)C18—C19—H192108.4
C7—C8—H81109.3C20—C19—H192107.8
C9—C8—H81114.4C18—C19—H191110.1
C12—C8—H81113.9C20—C19—H191110.4
C8—C9—O1105.88 (16)H192—C19—H191109.2
C8—C9—C10104.18 (18)C19—C20—C21109.3 (2)
O1—C9—C10114.75 (19)C19—C20—C22111.8 (2)
C8—C9—H91111.5C21—C20—C22110.0 (2)
O1—C9—H91109.5C19—C20—H201109.0
C10—C9—H91110.8C21—C20—H201108.1
C9—C10—O11106.84 (18)C22—C20—H201108.7
C9—C10—H102110.7C3—C21—C20113.52 (19)
O11—C10—H102110.6C3—C21—H211107.3
C9—C10—H101111.5C20—C21—H211107.5
O11—C10—H101108.3C3—C21—H212108.2
H102—C10—H101108.9C20—C21—H212110.3
C10—O11—C12105.74 (19)H211—C21—H212109.9
C8—C12—O11104.57 (19)C20—C22—H222111.5
C8—C12—H122111.7C20—C22—H221109.4
O11—C12—H122112.4H222—C22—H221108.8
C8—C12—H121111.6C20—C22—H223111.6
O11—C12—H121109.7H222—C22—H223106.8
H122—C12—H121107.0H221—C22—H223108.7
C3—C14—C15115.54 (18)
C9—O1—N2—C3156.12 (16)C21—C3—C14—C1853.8 (2)
C9—O1—N2—C745.58 (18)N2—C3—C21—C2064.1 (2)
N2—O1—C9—C840.8 (2)N4—C3—C21—C20179.91 (18)
N2—O1—C9—C1073.5 (2)C14—C3—C21—C2057.7 (2)
C12—O11—C10—C930.4 (2)O13—C6—C7—N2169.1 (2)
C10—O11—C12—C841.4 (2)O13—C6—C7—C851.0 (3)
O1—N2—C3—N488.72 (18)N4—C6—C7—N213.2 (2)
O1—N2—C3—C14152.15 (15)N4—C6—C7—C8131.3 (2)
O1—N2—C3—C2130.7 (2)N2—C7—C8—C99.3 (2)
C7—N2—C3—N418.2 (2)N2—C7—C8—C12100.5 (2)
C7—N2—C3—C14100.94 (18)C6—C7—C8—C9108.1 (2)
C7—N2—C3—C21137.64 (18)C6—C7—C8—C12142.1 (2)
O1—N2—C7—C691.23 (18)C7—C8—C9—O119.2 (2)
O1—N2—C7—C832.94 (19)C7—C8—C9—C10102.2 (2)
C3—N2—C7—C619.4 (2)C12—C8—C9—O1137.68 (18)
C3—N2—C7—C8143.56 (17)C12—C8—C9—C1016.3 (2)
C5—N4—C3—N2177.7 (2)C7—C8—C12—O1174.2 (2)
C5—N4—C3—C1464.6 (3)C9—C8—C12—O1135.1 (2)
C5—N4—C3—C2156.2 (3)O1—C9—C10—O11107.8 (2)
C6—N4—C3—N210.6 (3)C8—C9—C10—O117.6 (2)
C6—N4—C3—C14107.2 (2)C3—C14—C15—C16146.3 (2)
C6—N4—C3—C21132.0 (2)C3—C14—C15—C1790.4 (2)
C3—N4—C6—O13179.3 (2)C18—C14—C15—C1684.9 (2)
C3—N4—C6—C71.6 (3)C18—C14—C15—C1738.4 (3)
C5—N4—C6—O137.4 (4)C3—C14—C18—C1954.8 (3)
C5—N4—C6—C7170.3 (2)C15—C14—C18—C19174.06 (19)
N2—C3—C14—C1559.5 (2)C14—C18—C19—C2055.5 (3)
N2—C3—C14—C1870.2 (2)C18—C19—C20—C2155.6 (3)
N4—C3—C14—C1554.8 (2)C18—C19—C20—C22177.5 (2)
N4—C3—C14—C18175.48 (17)C19—C20—C21—C358.7 (2)
C21—C3—C14—C15176.47 (18)C22—C20—C21—C3178.24 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H52···O13i0.972.573.536 (3)172
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Ministry of Higher Education and Scientific Research of Tunisia for financial support.

References

First citationAbda, H., Aouadi, K., Perrin, L., Msaddek, M., Praly, J.-P. & Vidal, S. (2014). Eur. J. Org. Chem. pp. 6017–6024.  CSD CrossRef Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAouadi, K., Vidal, S., Msaddek, M. & Praly, J.-P. (2006). Synlett, 2006, 3299–3303.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGothelf, K. V. & Jørgensen, K. A. (1998). Chem. Rev. 98, 863–910.  CrossRef PubMed CAS Google Scholar
First citationHanselmann, R., Zhou, J., Ma, P. & Confalone, P. N. (2003). J. Org. Chem. 68, 8739–8741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationLoh, B., Vozzolo, L., Mok, B. J., Lee, C. C., Fitzmaurice, R. J., Caddick, S. & Fassati, A. (2010). Chem. Biol. Drug Des. 75, 461–474.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMolander, G. A., Cavalcanti, L. N. & García-García, C. (2013). J. Org. Chem. 78, 6427–6439.  CrossRef CAS PubMed Google Scholar
First citationPadwa, A. & Pearson, W. H. (2002). Editors. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Vol. 59, pp. 1–81. Chichester: Wiley.  Google Scholar
First citationPrince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds