research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of iron and cobalt pyridine (py)–sulfates, [Fe(SO4)(py)4]n and [Co3(SO4)3(py)11]n

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 16 May 2018; accepted 18 May 2018; online 31 May 2018)

The solid-state structures of two metal–pyridine–sulfate compounds, namely catena-poly[[tetra­kis­(pyridine-κN)iron(II)]-μ-sulfato-κ2O:O′], [Fe(SO4)(C5H5N)4]n, (1), and catena-poly[[tetra­kis­(pyridine-κN)cobalt(II)]-μ-sulfato-κ2O:O′-[tetra­kis­(pyridine-κN)cobalt(II)]-μ-sulfato-κ3O,O′:O′′-[tris­(pyridine-κN)cobalt(II)]-μ-sulfato-κ2O:O′], [Co3(SO4)3(C5H5N)11]n, (2), are reported. The iron compound (1) displays a polymeric structure, with infinite chains of FeII atoms adopting octa­hedral N4O2 coordination environments that involve four pyridine ligands and two bridging sulfate ligands. The cobalt compound (2) displays a polymeric structure, with infinite chains of CoII atoms. Two of the three Co centers have an octa­hedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. The third Co center has an octa­hedral N3O3 coordination environment that involves three pyridine ligands, and two bridging sulfate ligands with one sulfate chelating the cobalt atom.

1. Chemical context

The first reports of a pyridine–sulfato–metal complex were in the late 19th century (Reitzenstein, 1894[Reitzenstein, F. (1894). Justus Liebigs Ann. Chem. 282, 267-280.]; Reitzenstein, 1898[Reitzenstein, F. (1898). Z. Anorg. Chem. 18, 253-304.]), and this work played a significant role in the Werner–Jørgensen controversy (Howe, 1898[Howe, J. L. (1898). Science, 8, 945-947.]). While most early work in coordination chemistry was based upon ammonia complexes, the demonstration of the existence of similar complexes with other organic bases such as pyridine was an important contribution to the field. Despite the long history of these complexes, and their contributing role in the development of coordination chemistry, their crystallographic characterization is limited.

[Scheme 1]

Against this backdrop, our lab has recently begun to study the solid-state structures of transition-metal pyridine complexes. We have recently reported the structures of nickel, copper and zinc pyridine sulfates, which showed varying coordination geometries consistent with those predicted by crystal field theory (Roy et al., 2018[Roy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263-268.]). Herein, we expand this series by presenting the crystal structures of the iron–pyridine–sulfate (1) and the cobalt–pyridine–sulfate (2) complexes.

2. Structural commentary

In the yellow crystals of (1), the asymmetric unit consists of two pyridine mol­ecules and one half of a sulfate anion coordinated to an iron atom sitting on an inversion center (Fig. 1[link]a). When grown out, the iron displays an octa­hedral coordination environment (Fig. 1[link]b). There is a square-planar tetra­pyridine iron unit, with FeN4 planarity enforced by the inversion. The octa­hedral coordination is completed by two sulfate ions that bind trans to each other. The cis N—Fe—N angles have values of 86.44 (4) and 93.56 (4)° and the cis O—Fe—N angles have values ranging from 88.12 (4) to 91.88 (4)°. The pyridine rings are rotated from the FeN4 plane by dihedral angles of 44.03 (1) and 78.20 (1)°. The 78.20 (1)° angle is constrained by two C—H⋯O inter­actions with the trans sulfates (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.49 3.4296 (19) 169
C10—H10⋯O2ii 0.95 2.42 3.3621 (19) 171
Symmetry codes: (i) -x, -y, -z; (ii) [-x-{\script{1\over 2}}, y, -z].
[Figure 1]
Figure 1
The mol­ecular structure of compound (1), including (a) the asymmetric unit and (b) the coordination environment of Fe1. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius. C—H⋯O inter­actions (Table 1[link]) are shown as dashed lines. [Symmetry codes: (i) −x, −y, −z (ii) −[{1\over 2}] − x, y, −z (iii) [{1\over 2}] + x, −y, z]

In the pink crystals of (2), the asymmetric unit consists of three cobalt atoms, eleven coordinated pyridine mol­ecules, and three sulfate anions (Fig. 2[link]a). There are three crystallographically independent cobalt atoms, with Co1 (Fig. 2[link]b) and Co2 (Fig. 2[link]c) displaying octa­hedral N4O2 coordination environments, and Co3 showing an octa­hedral N3O3 coordination environment (Fig. 2[link]d).

[Figure 2]
Figure 2
The mol­ecular structure of compound (2), including (a) the asymmetric unit, (b) the coordination environment of Co1, (c) the coordination environment of Co2 and (d) the coordination environment of Co3. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius. C—H⋯O inter­actions (Table 2[link]) are shown as dashed lines. [Symmetry codes: (i) [{1\over 2}] − x, 1 − y, −[{1\over 2}] + z]

Co1 is part of a tetra­pyridine cobalt unit, with the CoN4 plane showing a maximum deviation from planarity of 0.047 Å. The octa­hedral coordination is completed by two sulfate anions that bind trans to each other. The cis N—Co—N angles have values ranging from 87.06 (10) to 93.21 (9)°, and the O—Co—O angle is 174.62 (9)°. The four pyridine rings are rotated from the CoN4 plane by dihedral angles of 37.51 (1), 45.21 (1), 56.40 (1) and 56.92 (1)°. Two of the rings form one C—H⋯O inter­action each with the sulfate oxygen atoms (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.95 2.56 3.421 (4) 150
C1—H1⋯O2 0.95 2.58 3.066 (4) 112
C4—H4⋯O11i 0.95 2.47 3.158 (4) 129
C6—H6⋯O3 0.95 2.48 3.263 (4) 140
C15—H15⋯O5 0.95 2.47 2.967 (4) 113
C24—H24⋯O7ii 0.95 2.59 3.322 (4) 134
C26—H26⋯O11 0.95 2.40 3.343 (4) 171
C30—H30⋯O6 0.95 2.51 3.079 (4) 119
C30—H30⋯O7 0.95 2.50 3.161 (4) 126
C31—H31⋯O6 0.95 2.59 3.107 (4) 115
C35—H35⋯O9 0.95 2.36 2.936 (4) 119
C36—H36⋯O6 0.95 2.41 3.003 (4) 121
C40—H40⋯O12 0.95 2.43 3.352 (4) 163
C46—H46⋯O11 0.95 2.30 3.225 (4) 166
C50—H50⋯O4iii 0.95 2.49 3.132 (4) 125
C51—H51⋯O10 0.95 2.46 3.019 (4) 117
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Co2 is also part of a tetra­pyridine cobalt unit, with the CoN4 plane showing a maximum deviation from plarity of 0.007 Å. The octa­hedral coordination is completed by two sulfate anions that bind trans to each other. The cis N—Co—N angles have values ranging from 85.15 (9) to 93.19 (9)°, and the O—Co—O angle is 175.16 (9)°. The four pyridine rings are rotated from the CoN4 plane by dihedral angles of 55.37 (1), 65.88 (1), 67.08 (1) and 68.07 (1)°. Two of the rings are involved in two C—H⋯O inter­actions each with the sulfate oxygen atoms (Table 2[link]).

Unlike the other two metal centers, Co3 has an N3O3 coordination environment, possessing a meridional arrangement. It is part of a tri­pyridine cobalt unit, with a CoN3 plane showing a maximum deviation from planarity of 0.021 Å. The octa­hedral coordination is completed by two bridging sulfate anions (one of which chelating through the oxygen atoms O1 and O4) that form a CoO3 plane with a maximum deviation from planarity of 0.029 Å. The meridional CoN3 and CoO3 planes are rotated relative to one another by an angle of 88.93 (1)°. The cis N—Co—N angles have values of 86.76 (10) and 87.52 (9)°. The chelating sulfate exhibits an O—Co—O bite angle of 65.36 (7)° and another cis O—Co—O angle of 88.63 (8)°. The three pyridine rings are rotated from the CoN3 plane by dihedral angles of 31.855 (2), 44.111 (3) and 82.863 (4)°. The 82.863 (4)° angle is constrained by two C—H⋯O inter­actions with sulfate oxygen atoms (Table 2[link]).

3. Supra­molecular features

In compound (1), the FeII atoms are linked together into infinite chains along the [100] direction through the sulfate ligands via O—S—O bridges (Fig. 3[link]a). Between each successive tetra­pyridine iron unit are found parallel slipped ππ inter­actions [inter-centroid distance: 3.651 (1) Å, inter-planar distance: 3.607 (1) Å, slippage: 0.570 (1) Å].

[Figure 3]
Figure 3
The infinite chains of (a) compound (1) along [100] and (b) compound (2) along [001]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. ππ inter­actions are shown as dashed lines.

In compound (2), the CoII atoms linked together into infinite chains along the [001] direction through the sulfate ligands (Fig. 3[link]b). No ππ inter­actions are observed in this crystal. There are two C—H⋯O inter­actions between chains [C4—H4⋯O11, d(C⋯O) = 3.158 (4) Å and C24—H24⋯O7, d(C⋯O) = 3.322 (4) Å] that connect the chains in three dimensions (Table 2[link]). The packing of both compounds is shown in Fig. 4[link].

[Figure 4]
Figure 4
The packing of (a) compound (1) and (b) compound (2) along the a axis. Displacement ellipsoids are drawn at the 50% probability level. In (2), H atoms are omitted for clarity in compound (1). H atoms involved in hydrogen bonding between chains are drawn as spheres of arbitrary radius, with the other H atoms omitted for clarity. C—H⋯O inter­actions (Table 2[link]) are shown as dashed lines.

4. Database survey

Though complexes of this form have been known for more than a century, their crystallographic characterization has been limited. Prior to our report earlier this year, there were only two structures in the literature of metal–pyridine–sulfates with no other ligands or components (Cotton & Reid, 1984[Cotton, F. A. & Reid, A. H. Jr (1984). New J. Chem. 8, 203-206.]; Memon et al., 2006[Memon, A. A., Afzaal, M., Malik, M. A., Nguyen, C. Q., O'Brien, P. & Raftery, J. (2006). Dalton Trans. pp. 4499-4505.]). There are a number of closely related structures that have been reported, particularly transition-metal–aqua–pyridine–sulfate complexes. Six of these are found in the literature (Ali et al., 2005[Ali, H. M., Puvaneswary, S. & Ng, S. W. (2005). Acta Cryst. E61, m474-m475.]; Castiñeiras & García-Santos, 2008[Castiñeiras, A. & García-Santos, I. (2008). Z. Anorg. Allg. Chem. 634, 2907-2916.]; Cotton et al., 1994[Cotton, F. A., Daniels, L. M., Murillo, C. A. & Zúňiga, L. A. (1994). Eur. J. Solid State Inorg. Chem. 31, 535-544.]; Kožíšek et al., 1989[Kožíšek, J., Hricov, A. & Langfelderová, H. (1989). Acta Cryst. C45, 885-887.]; Shi et al., 2009[Shi, Y.-F., Li, F.-X., Geng, B., Liu, Y.-C. & Chen, Z.-F. (2009). Acta Cryst. E65, m1665.]; Zhang, 2004[Zhang, Y.-X. (2004). Acta Cryst. E60, m30-m31.]). The metrical parameters in the reported structures are consistent with those seen in the metal–pyridine–triflates (Haynes et al., 1986[Haynes, J. S., Rettig, S. J., Sams, J. R., Thompson, R. C. & Trotter, J. (1986). Can. J. Chem. 64, 429-441.]).

In a report earlier this year, we presented the structures of the metal–pyridine–sulfates of nickel, copper and zinc. It was of note that these three structures exhibited different coordination geometries, consistent with the crystal field stabilization energies (CFSE) associated with their d-electron count: d8 nickel is octa­hedral, d9 copper is square pyramidal, and d10 zinc is both tetra­hedral and octa­hedral. The structures reported here both exhibit octa­hedral coordination environments. For d6 iron, the observed octa­hedral environment gives a CFSE of 4 Dq, while the preferred geometry might be square pyramidal with a CFSE of 4.67 Dq. Similarly for d7 cobalt, the observed octa­hedral environment gives a CFSE of 8 Dq, while the preferred geometry might once again be square pyramidal with a CFSE of 9.14 Dq. The difference between octa­hedral and square pyramidal in these two compounds is small compared to the 3.14 Dq difference for d9 copper, where a square-pyramidal geometry is observed. With such small electronic preferences, the impact of weaker inter­actions (ππ and C—H⋯O) and steric effects could play significant roles in determining the observed coordination environments.

5. Synthesis and crystallization

Approximately 25 mg of each metal sulfate [iron sulfate hepta­hydrate (J. T. Baker), cobalt sulfate hepta­hydrate (J. T. Baker)] were dissolved in pyridine (3 mL, Fisher Chemical) in a 20 mL vial under an atmosphere of di­nitro­gen. In the cobalt case, 0.1 mL of water was also added. The vials were heated to 353 K for 24–48 h, after which single crystals suitable for X-ray diffraction studies were isolated.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All structure solutions were obtained by intrinsic phasing. All non-hydrogen atoms were refined anisotropically (SHELXL) by full-matrix least squares on F2. Hydrogen atoms were placed in calculated positions and then refined with a riding model with C—H bond lengths of 0.95 Å and with isotropic displacement parameters set to 1.20 Ueq of the parent C atom.

Table 3
Experimental details

  (1) (2)
Crystal data
Chemical formula [Fe(SO4)(C5H5N)4] [Co3(SO4)3(C5H5N)11]
Mr 468.31 1335.07
Crystal system, space group Monoclinic, I2/a Orthorhombic, P212121
Temperature (K) 200 200
a, b, c (Å) 11.8259 (10), 10.0847 (9), 17.264 (2) 9.4583 (5), 18.0344 (12), 33.088 (2)
α, β, γ (°) 90, 102.569 (2), 90 90, 90, 90
V3) 2009.6 (3) 5644.0 (6)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.89 1.06
Crystal size (mm) 0.28 × 0.20 × 0.20 0.24 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.397, 0.429 0.394, 0.429
No. of measured, independent and observed [I > 2σ(I)] reflections 25476, 1917, 1760 80759, 10744, 9925
Rint 0.029 0.037
(sin θ/λ)max−1) 0.612 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.057, 1.08 0.024, 0.052, 1.04
No. of reflections 1917 10744
No. of parameters 139 758
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.34 0.27, −0.25
Absolute structure Flack x determined using 4178 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al, 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.003 (3)
Computer programs: APEX3 and SAINT (Bruker 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al. 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker 2016); cell refinement: SAINT (Bruker 2016); data reduction: SAINT (Bruker 2016). Program(s) used to solve structure: SHELXS97 (Sheldrick 2008) for (1); SHELXS (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al. 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al. 2009) and publCIF (Westrip 2010).

catena-Poly[[tetrakis(pyridine-κN)iron(II)]-µ-sulfato-κ2O:O'] (1) top
Crystal data top
[Fe(SO4)(C5H5N)4]F(000) = 968
Mr = 468.31Dx = 1.548 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 11.8259 (10) ÅCell parameters from 9914 reflections
b = 10.0847 (9) Åθ = 3.3–25.7°
c = 17.264 (2) ŵ = 0.89 mm1
β = 102.569 (2)°T = 200 K
V = 2009.6 (3) Å3Block, yellow
Z = 40.28 × 0.20 × 0.20 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
1760 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.8°, θmin = 3.4°
Tmin = 0.397, Tmax = 0.429h = 1414
25476 measured reflectionsk = 1212
1917 independent reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0262P)2 + 2.244P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.30 e Å3
1917 reflectionsΔρmin = 0.34 e Å3
139 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0097 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.00000.00000.01564 (11)
S10.25000.18552 (4)0.00000.01372 (13)
O10.15276 (9)0.09746 (12)0.00709 (6)0.0304 (3)
O20.21834 (10)0.26521 (11)0.07151 (6)0.0312 (3)
N10.09921 (11)0.18297 (13)0.04513 (7)0.0243 (3)
N20.01093 (10)0.05257 (12)0.12846 (7)0.0199 (3)
C10.07094 (15)0.30220 (16)0.01393 (10)0.0325 (4)
H10.00580.30900.02920.039*
C20.13082 (16)0.41650 (18)0.04065 (12)0.0402 (4)
H20.10830.49920.01570.048*
C30.22374 (16)0.40865 (19)0.10405 (12)0.0420 (5)
H30.26590.48590.12440.050*
C40.25409 (16)0.2869 (2)0.13723 (12)0.0475 (5)
H40.31790.27830.18110.057*
C50.19076 (15)0.17686 (19)0.10608 (11)0.0379 (4)
H50.21330.09270.12910.045*
C60.05695 (14)0.00921 (16)0.16947 (9)0.0275 (3)
H60.11060.07310.14280.033*
C70.05294 (16)0.01520 (18)0.24882 (10)0.0345 (4)
H70.10400.02990.27540.041*
C80.02595 (14)0.10558 (17)0.28899 (9)0.0294 (4)
H80.03000.12470.34340.035*
C90.09860 (13)0.16721 (16)0.24801 (9)0.0272 (3)
H90.15540.22830.27420.033*
C100.08829 (13)0.13950 (16)0.16846 (9)0.0246 (3)
H100.13820.18400.14070.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01379 (16)0.01886 (17)0.01416 (16)0.00346 (10)0.00276 (10)0.00193 (10)
S10.0124 (2)0.0146 (2)0.0134 (2)0.0000.00103 (16)0.000
O10.0231 (5)0.0433 (7)0.0258 (6)0.0165 (5)0.0076 (4)0.0056 (5)
O20.0420 (7)0.0278 (6)0.0226 (6)0.0088 (5)0.0044 (5)0.0103 (5)
N10.0237 (6)0.0255 (7)0.0239 (6)0.0013 (5)0.0055 (5)0.0004 (5)
N20.0197 (6)0.0235 (6)0.0161 (6)0.0005 (5)0.0028 (5)0.0025 (5)
C10.0359 (9)0.0277 (8)0.0322 (9)0.0002 (7)0.0041 (7)0.0004 (7)
C20.0438 (10)0.0269 (9)0.0521 (11)0.0027 (8)0.0153 (9)0.0021 (8)
C30.0366 (10)0.0388 (10)0.0535 (11)0.0148 (8)0.0160 (9)0.0156 (9)
C40.0338 (9)0.0563 (12)0.0461 (11)0.0157 (9)0.0049 (8)0.0033 (10)
C50.0300 (9)0.0379 (10)0.0405 (10)0.0064 (7)0.0036 (7)0.0059 (8)
C60.0299 (8)0.0322 (9)0.0206 (8)0.0098 (6)0.0058 (6)0.0053 (6)
C70.0424 (10)0.0416 (10)0.0228 (8)0.0132 (8)0.0142 (7)0.0034 (7)
C80.0350 (8)0.0367 (9)0.0161 (7)0.0005 (7)0.0049 (6)0.0061 (6)
C90.0251 (7)0.0326 (8)0.0221 (8)0.0038 (6)0.0013 (6)0.0087 (6)
C100.0231 (7)0.0298 (8)0.0213 (7)0.0042 (6)0.0057 (6)0.0038 (6)
Geometric parameters (Å, º) top
Fe1—O12.0367 (10)C2—H20.9500
Fe1—O1i2.0367 (10)C2—C31.374 (3)
Fe1—N12.2339 (13)C3—H30.9500
Fe1—N1i2.2339 (13)C3—C41.369 (3)
Fe1—N2i2.2564 (12)C4—H40.9500
Fe1—N22.2563 (12)C4—C51.381 (3)
S1—O11.4790 (10)C5—H50.9500
S1—O1ii1.4790 (10)C6—H60.9500
S1—O2ii1.4522 (10)C6—C71.382 (2)
S1—O21.4522 (10)C7—H70.9500
N1—C11.330 (2)C7—C81.379 (2)
N1—C51.337 (2)C8—H80.9500
N2—C61.335 (2)C8—C91.375 (2)
N2—C101.3445 (19)C9—H90.9500
C1—H10.9500C9—C101.381 (2)
C1—C21.379 (2)C10—H100.9500
O1—Fe1—O1i180.0N1—C1—C2123.70 (16)
O1—Fe1—N190.80 (5)C2—C1—H1118.2
O1—Fe1—N1i89.20 (5)C1—C2—H2120.6
O1i—Fe1—N189.20 (5)C3—C2—C1118.81 (17)
O1i—Fe1—N1i90.80 (5)C3—C2—H2120.6
O1i—Fe1—N291.88 (4)C2—C3—H3120.8
O1i—Fe1—N2i88.12 (4)C4—C3—C2118.44 (17)
O1—Fe1—N2i91.88 (4)C4—C3—H3120.8
O1—Fe1—N288.12 (4)C3—C4—H4120.4
N1i—Fe1—N1180.0C3—C4—C5119.16 (17)
N1—Fe1—N293.56 (4)C5—C4—H4120.4
N1—Fe1—N2i86.44 (4)N1—C5—C4123.17 (17)
N1i—Fe1—N2i93.56 (4)N1—C5—H5118.4
N1i—Fe1—N286.44 (4)C4—C5—H5118.4
N2—Fe1—N2i180.0N2—C6—H6118.4
O1ii—S1—O1106.19 (10)N2—C6—C7123.21 (14)
O2ii—S1—O1ii109.96 (6)C7—C6—H6118.4
O2—S1—O1ii108.86 (6)C6—C7—H7120.3
O2ii—S1—O1108.86 (6)C8—C7—C6119.32 (15)
O2—S1—O1109.96 (6)C8—C7—H7120.3
O2—S1—O2ii112.81 (10)C7—C8—H8121.0
S1—O1—Fe1168.60 (8)C9—C8—C7118.06 (14)
C1—N1—Fe1122.61 (10)C9—C8—H8121.0
C1—N1—C5116.71 (14)C8—C9—H9120.3
C5—N1—Fe1120.69 (11)C8—C9—C10119.39 (14)
C6—N2—Fe1119.95 (10)C10—C9—H9120.3
C6—N2—C10116.91 (12)N2—C10—C9123.08 (14)
C10—N2—Fe1123.03 (10)N2—C10—H10118.5
N1—C1—H1118.2C9—C10—H10118.5
Fe1—N1—C1—C2179.92 (13)C1—C2—C3—C41.1 (3)
Fe1—N1—C5—C4178.92 (15)C2—C3—C4—C50.0 (3)
Fe1—N2—C6—C7178.23 (13)C3—C4—C5—N10.9 (3)
Fe1—N2—C10—C9176.94 (12)C5—N1—C1—C20.5 (3)
O1ii—S1—O1—Fe1132.1 (4)C6—N2—C10—C90.7 (2)
O2ii—S1—O1—Fe1109.5 (4)C6—C7—C8—C90.6 (3)
O2—S1—O1—Fe114.5 (4)C7—C8—C9—C101.7 (2)
N1—C1—C2—C31.4 (3)C8—C9—C10—N21.0 (2)
N2—C6—C7—C81.3 (3)C10—N2—C6—C71.9 (2)
C1—N1—C5—C40.7 (3)
Symmetry codes: (i) x, y, z; (ii) x1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.493.4296 (19)169
C10—H10···O2ii0.952.423.3621 (19)171
Symmetry codes: (i) x, y, z; (ii) x1/2, y, z.
catena-Poly[[tetrakis(pyridine-κN)cobalt(II)]-µ-sulfato-κ2O:O'-[tetrakis(pyridine-κN)cobalt(II)]-µ-sulfato-κ3O,O':O''-[tris(pyridine-κN)cobalt(II)]-µ-sulfato-κ2O:O'] (2) top
Crystal data top
[Co3(SO4)3(C5H5N)11]Dx = 1.571 Mg m3
Mr = 1335.07Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9746 reflections
a = 9.4583 (5) Åθ = 3.1–25.7°
b = 18.0344 (12) ŵ = 1.06 mm1
c = 33.088 (2) ÅT = 200 K
V = 5644.0 (6) Å3Block, pink
Z = 40.24 × 0.22 × 0.20 mm
F(000) = 2748
Data collection top
Bruker D8 Venture CMOS
diffractometer
9925 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.8°, θmin = 3.1°
Tmin = 0.394, Tmax = 0.429h = 1111
80759 measured reflectionsk = 2122
10744 independent reflectionsl = 4040
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.022P)2 + 1.8031P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max = 0.002
wR(F2) = 0.052Δρmax = 0.27 e Å3
S = 1.04Δρmin = 0.25 e Å3
10744 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
758 parametersExtinction coefficient: 0.00161 (11)
0 restraintsAbsolute structure: Flack x determined using 4178 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al, 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (3)
Hydrogen site location: inferred from neighbouring sites
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.16718 (4)0.54403 (2)0.83580 (2)0.01623 (9)
Co20.35870 (4)0.54710 (2)0.66144 (2)0.01621 (9)
Co30.59070 (4)0.50833 (2)0.49027 (2)0.01955 (10)
S10.03819 (7)0.45007 (4)0.91956 (2)0.01798 (15)
S20.29926 (8)0.63760 (4)0.75389 (2)0.01700 (15)
S30.46950 (8)0.44201 (4)0.57942 (2)0.01900 (16)
O10.1088 (2)0.47648 (12)0.95686 (5)0.0251 (5)
O20.0608 (2)0.50429 (12)0.88685 (6)0.0285 (5)
O30.0860 (3)0.37748 (12)0.90752 (7)0.0370 (6)
O40.1154 (2)0.44982 (13)0.93000 (6)0.0272 (5)
O50.2544 (2)0.58060 (13)0.78285 (7)0.0338 (6)
O60.3026 (2)0.60190 (13)0.71364 (6)0.0301 (5)
O70.4410 (3)0.66160 (15)0.76463 (7)0.0438 (7)
O80.2016 (3)0.69844 (14)0.75349 (8)0.0482 (7)
O90.4003 (2)0.49617 (11)0.60684 (5)0.0240 (5)
O100.4761 (2)0.47822 (12)0.53920 (6)0.0319 (5)
O110.6112 (2)0.42540 (12)0.59372 (7)0.0322 (5)
O120.3821 (3)0.37572 (12)0.57694 (7)0.0378 (6)
N10.2390 (3)0.63476 (14)0.87321 (7)0.0200 (5)
N20.3685 (2)0.49064 (14)0.84860 (7)0.0215 (5)
N30.1051 (2)0.44662 (13)0.80158 (6)0.0195 (5)
N40.0243 (3)0.60258 (14)0.82167 (7)0.0239 (6)
N50.4720 (2)0.46432 (14)0.69517 (7)0.0214 (5)
N60.5501 (3)0.61413 (14)0.65736 (8)0.0241 (6)
N70.2377 (3)0.62948 (14)0.62718 (7)0.0204 (5)
N80.1580 (2)0.48519 (14)0.66427 (7)0.0221 (5)
N90.6037 (3)0.39214 (14)0.47104 (7)0.0261 (6)
N100.8148 (3)0.50203 (14)0.50131 (6)0.0237 (6)
N110.5986 (3)0.62212 (14)0.51336 (7)0.0259 (6)
C10.2806 (3)0.62099 (18)0.91129 (9)0.0277 (7)
H10.26680.57260.92190.033*
C20.3421 (4)0.67357 (19)0.93563 (10)0.0367 (9)
H20.37170.66120.96220.044*
C30.3605 (4)0.74465 (18)0.92107 (10)0.0353 (8)
H30.40240.78200.93740.042*
C40.3165 (4)0.76014 (18)0.88237 (10)0.0314 (8)
H40.32700.80860.87160.038*
C50.2569 (3)0.70427 (17)0.85935 (9)0.0251 (7)
H50.22730.71550.83260.030*
C60.3782 (3)0.41984 (17)0.86044 (9)0.0247 (7)
H60.29410.39130.86270.030*
C70.5059 (3)0.38681 (19)0.86950 (10)0.0327 (8)
H70.50950.33590.87670.039*
C80.6277 (3)0.4281 (2)0.86801 (9)0.0316 (8)
H80.71610.40690.87530.038*
C90.6188 (3)0.50081 (19)0.85578 (10)0.0335 (8)
H90.70120.53080.85430.040*
C100.4884 (3)0.52946 (18)0.84573 (10)0.0291 (8)
H100.48360.57920.83630.035*
C110.0126 (3)0.40794 (18)0.80984 (9)0.0263 (7)
H110.07240.42480.83100.032*
C120.0507 (4)0.34498 (19)0.78909 (10)0.0321 (8)
H120.13500.31930.79600.038*
C130.0338 (4)0.31956 (18)0.75843 (10)0.0337 (8)
H130.00920.27620.74370.040*
C140.1552 (4)0.35841 (18)0.74950 (10)0.0346 (8)
H140.21640.34200.72860.041*
C150.1867 (3)0.42136 (18)0.77132 (9)0.0275 (7)
H150.27000.44810.76470.033*
C160.0909 (3)0.64654 (18)0.84787 (10)0.0339 (8)
H160.05480.65040.87460.041*
C170.2093 (4)0.6865 (2)0.83787 (15)0.0514 (11)
H170.25260.71820.85720.062*
C180.2643 (4)0.6801 (2)0.79988 (15)0.0534 (12)
H180.34720.70650.79250.064*
C190.1976 (4)0.6347 (2)0.77261 (12)0.0461 (10)
H190.23410.62890.74610.055*
C200.0775 (4)0.59795 (19)0.78418 (10)0.0332 (8)
H200.03010.56790.76490.040*
C210.5379 (3)0.48265 (18)0.72972 (9)0.0272 (7)
H210.53750.53310.73800.033*
C220.6060 (4)0.4314 (2)0.75364 (10)0.0378 (9)
H220.65330.44660.77760.045*
C230.6049 (4)0.3573 (2)0.74234 (10)0.0392 (9)
H230.64940.32080.75860.047*
C240.5380 (3)0.33802 (19)0.70710 (10)0.0299 (7)
H240.53560.28770.69860.036*
C250.4744 (3)0.39224 (17)0.68426 (9)0.0246 (7)
H250.43010.37830.65960.029*
C260.6599 (4)0.5926 (2)0.63510 (12)0.0460 (10)
H260.65650.54560.62210.055*
C270.7784 (4)0.6362 (3)0.63026 (17)0.0759 (16)
H270.85450.61940.61400.091*
C280.7863 (4)0.7039 (3)0.64894 (16)0.0666 (14)
H280.86640.73500.64540.080*
C290.6767 (4)0.7253 (2)0.67265 (11)0.0404 (9)
H290.68010.77120.68680.048*
C300.5605 (4)0.67976 (18)0.67597 (9)0.0292 (8)
H300.48380.69570.69230.035*
C310.2091 (3)0.69806 (18)0.64044 (10)0.0275 (7)
H310.24130.71190.66660.033*
C320.1354 (4)0.74964 (18)0.61799 (10)0.0305 (8)
H320.11950.79810.62830.037*
C330.0852 (4)0.72998 (19)0.58052 (10)0.0347 (8)
H330.03370.76440.56450.042*
C340.1113 (4)0.65970 (19)0.56676 (10)0.0365 (9)
H340.07700.64450.54110.044*
C350.1877 (3)0.61102 (17)0.59052 (9)0.0273 (7)
H350.20560.56250.58050.033*
C360.0511 (3)0.5147 (2)0.68519 (10)0.0351 (8)
H360.06650.56000.69910.042*
C370.0802 (4)0.4823 (2)0.68751 (12)0.0514 (11)
H370.15370.50530.70250.062*
C380.1037 (4)0.4168 (3)0.66800 (13)0.0596 (12)
H380.19360.39350.66930.072*
C390.0050 (4)0.3849 (2)0.64635 (11)0.0459 (10)
H390.00830.33910.63270.055*
C400.1339 (4)0.42110 (18)0.64486 (9)0.0287 (7)
H400.20820.39970.62950.034*
C410.4994 (4)0.34518 (19)0.47977 (10)0.0345 (8)
H410.41660.36410.49240.041*
C420.5062 (5)0.2702 (2)0.47129 (11)0.0497 (11)
H420.42820.23880.47710.060*
C430.6272 (5)0.2417 (2)0.45436 (11)0.0486 (11)
H430.63550.19010.44910.058*
C440.7343 (4)0.2886 (2)0.44538 (12)0.0508 (11)
H440.81930.27040.43370.061*
C450.7180 (4)0.3632 (2)0.45343 (11)0.0404 (9)
H450.79250.39580.44600.048*
C460.8681 (3)0.47053 (18)0.53457 (9)0.0284 (7)
H460.80530.45340.55490.034*
C471.0131 (4)0.4622 (2)0.54019 (10)0.0342 (8)
H471.04810.43990.56420.041*
C481.1055 (3)0.48622 (18)0.51078 (10)0.0327 (7)
H481.20460.48030.51410.039*
C491.0512 (3)0.51890 (18)0.47664 (10)0.0313 (8)
H491.11190.53650.45590.038*
C500.9062 (3)0.52552 (18)0.47324 (9)0.0284 (7)
H500.86920.54810.44960.034*
C510.5073 (4)0.6448 (2)0.54108 (12)0.0498 (11)
H510.43410.61190.54910.060*
C520.5136 (6)0.7137 (2)0.55876 (15)0.0772 (17)
H520.44350.72850.57770.093*
C530.6227 (6)0.7613 (2)0.54885 (12)0.0583 (13)
H530.63180.80820.56160.070*
C540.7162 (4)0.7388 (2)0.52031 (12)0.0491 (10)
H540.79210.77000.51230.059*
C550.6991 (4)0.6698 (2)0.50314 (12)0.0434 (10)
H550.76370.65550.48260.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01839 (19)0.01621 (19)0.01408 (18)0.00176 (16)0.00010 (15)0.00116 (16)
Co20.01785 (19)0.01691 (19)0.01386 (18)0.00072 (16)0.00057 (15)0.00016 (16)
Co30.0178 (2)0.0255 (2)0.01525 (18)0.00081 (17)0.00025 (16)0.00245 (17)
S10.0193 (3)0.0192 (4)0.0154 (3)0.0044 (3)0.0025 (3)0.0003 (3)
S20.0219 (4)0.0145 (4)0.0146 (3)0.0009 (3)0.0017 (3)0.0001 (3)
S30.0236 (4)0.0161 (4)0.0173 (3)0.0024 (3)0.0040 (3)0.0007 (3)
O10.0216 (11)0.0362 (13)0.0174 (10)0.0044 (9)0.0017 (8)0.0007 (9)
O20.0389 (13)0.0287 (12)0.0178 (10)0.0071 (10)0.0072 (9)0.0035 (9)
O30.0491 (15)0.0185 (12)0.0435 (14)0.0039 (11)0.0156 (12)0.0039 (10)
O40.0182 (10)0.0429 (13)0.0206 (10)0.0075 (10)0.0001 (8)0.0025 (10)
O50.0458 (14)0.0314 (13)0.0242 (12)0.0068 (11)0.0087 (11)0.0073 (10)
O60.0324 (13)0.0421 (14)0.0158 (11)0.0048 (11)0.0037 (10)0.0078 (10)
O70.0341 (14)0.0550 (17)0.0421 (14)0.0208 (12)0.0071 (11)0.0067 (12)
O80.0581 (17)0.0342 (15)0.0523 (16)0.0260 (13)0.0034 (14)0.0000 (12)
O90.0280 (11)0.0260 (11)0.0180 (10)0.0058 (10)0.0039 (9)0.0049 (9)
O100.0434 (14)0.0348 (13)0.0175 (10)0.0042 (11)0.0066 (10)0.0029 (9)
O110.0267 (12)0.0316 (13)0.0382 (13)0.0100 (10)0.0007 (10)0.0059 (10)
O120.0412 (14)0.0225 (12)0.0498 (15)0.0100 (11)0.0106 (12)0.0075 (11)
N10.0238 (13)0.0187 (14)0.0176 (12)0.0009 (11)0.0012 (10)0.0002 (10)
N20.0211 (13)0.0222 (14)0.0213 (12)0.0010 (11)0.0011 (10)0.0019 (11)
N30.0198 (12)0.0213 (13)0.0173 (12)0.0034 (11)0.0004 (10)0.0018 (10)
N40.0220 (13)0.0260 (14)0.0237 (13)0.0003 (11)0.0003 (11)0.0045 (11)
N50.0201 (12)0.0236 (14)0.0204 (12)0.0013 (11)0.0026 (10)0.0017 (11)
N60.0222 (13)0.0240 (14)0.0260 (14)0.0006 (11)0.0009 (11)0.0018 (11)
N70.0228 (13)0.0200 (14)0.0183 (12)0.0006 (11)0.0008 (10)0.0013 (11)
N80.0206 (12)0.0282 (13)0.0176 (12)0.0031 (11)0.0011 (11)0.0023 (11)
N90.0283 (15)0.0284 (15)0.0216 (13)0.0033 (12)0.0022 (12)0.0044 (11)
N100.0212 (13)0.0293 (15)0.0206 (13)0.0012 (12)0.0004 (10)0.0041 (11)
N110.0276 (14)0.0274 (14)0.0226 (13)0.0008 (12)0.0024 (12)0.0040 (11)
C10.0362 (19)0.0236 (18)0.0233 (17)0.0070 (14)0.0050 (14)0.0038 (13)
C20.059 (2)0.0288 (19)0.0226 (17)0.0110 (18)0.0122 (17)0.0026 (14)
C30.047 (2)0.0271 (18)0.0312 (18)0.0119 (16)0.0056 (17)0.0073 (15)
C40.044 (2)0.0186 (17)0.0314 (18)0.0058 (15)0.0009 (16)0.0024 (14)
C50.0349 (19)0.0214 (17)0.0188 (15)0.0002 (14)0.0005 (14)0.0032 (13)
C60.0250 (17)0.0257 (17)0.0233 (16)0.0018 (14)0.0011 (13)0.0027 (13)
C70.033 (2)0.033 (2)0.0329 (18)0.0071 (15)0.0017 (15)0.0094 (15)
C80.0220 (17)0.049 (2)0.0235 (16)0.0096 (15)0.0019 (13)0.0001 (15)
C90.0239 (17)0.038 (2)0.0389 (18)0.0030 (16)0.0005 (14)0.0079 (17)
C100.0228 (16)0.0256 (18)0.0389 (19)0.0038 (13)0.0001 (14)0.0007 (14)
C110.0250 (17)0.0346 (19)0.0194 (16)0.0085 (15)0.0023 (13)0.0023 (14)
C120.0340 (19)0.0356 (19)0.0266 (17)0.0197 (16)0.0054 (15)0.0062 (15)
C130.046 (2)0.0236 (18)0.0316 (19)0.0086 (16)0.0084 (16)0.0037 (15)
C140.036 (2)0.0309 (19)0.0365 (19)0.0010 (16)0.0083 (16)0.0098 (16)
C150.0245 (17)0.0280 (18)0.0300 (17)0.0055 (14)0.0056 (14)0.0024 (14)
C160.0283 (17)0.0319 (19)0.041 (2)0.0016 (15)0.0030 (16)0.0074 (15)
C170.035 (2)0.041 (2)0.078 (3)0.0103 (18)0.000 (2)0.013 (2)
C180.029 (2)0.035 (2)0.096 (4)0.0067 (18)0.020 (2)0.007 (2)
C190.040 (2)0.044 (2)0.054 (2)0.0050 (19)0.0229 (19)0.011 (2)
C200.036 (2)0.035 (2)0.0289 (18)0.0015 (16)0.0069 (16)0.0031 (15)
C210.0260 (16)0.0309 (18)0.0247 (16)0.0031 (14)0.0028 (13)0.0050 (14)
C220.037 (2)0.044 (2)0.0316 (18)0.0133 (17)0.0107 (16)0.0010 (16)
C230.036 (2)0.043 (2)0.038 (2)0.0116 (17)0.0038 (17)0.0130 (17)
C240.0290 (17)0.0253 (17)0.0356 (19)0.0024 (14)0.0039 (15)0.0066 (14)
C250.0251 (16)0.0220 (17)0.0266 (17)0.0004 (14)0.0005 (14)0.0012 (13)
C260.029 (2)0.040 (2)0.070 (3)0.0032 (17)0.0128 (19)0.016 (2)
C270.029 (2)0.071 (3)0.128 (5)0.017 (2)0.033 (3)0.032 (3)
C280.032 (2)0.057 (3)0.111 (4)0.026 (2)0.011 (2)0.016 (3)
C290.040 (2)0.033 (2)0.048 (2)0.0149 (17)0.0048 (18)0.0003 (17)
C300.0346 (19)0.0310 (19)0.0219 (16)0.0068 (15)0.0025 (14)0.0027 (14)
C310.0317 (18)0.0255 (18)0.0252 (17)0.0037 (14)0.0032 (14)0.0040 (14)
C320.0358 (19)0.0222 (17)0.0336 (18)0.0070 (15)0.0044 (15)0.0003 (14)
C330.040 (2)0.0322 (19)0.0314 (18)0.0139 (16)0.0049 (16)0.0061 (15)
C340.048 (2)0.037 (2)0.0249 (17)0.0148 (18)0.0113 (16)0.0048 (15)
C350.0346 (18)0.0221 (17)0.0250 (16)0.0038 (14)0.0043 (14)0.0048 (13)
C360.0277 (18)0.043 (2)0.0343 (18)0.0035 (16)0.0055 (14)0.0097 (16)
C370.0241 (18)0.078 (3)0.053 (2)0.013 (2)0.0101 (17)0.024 (2)
C380.034 (2)0.086 (3)0.059 (3)0.032 (2)0.011 (2)0.024 (2)
C390.044 (2)0.054 (3)0.039 (2)0.026 (2)0.0069 (18)0.0106 (18)
C400.0304 (18)0.0351 (19)0.0204 (15)0.0062 (15)0.0003 (13)0.0022 (14)
C410.041 (2)0.035 (2)0.0282 (18)0.0023 (16)0.0024 (15)0.0058 (15)
C420.074 (3)0.035 (2)0.040 (2)0.013 (2)0.006 (2)0.0027 (17)
C430.080 (3)0.028 (2)0.038 (2)0.012 (2)0.011 (2)0.0060 (17)
C440.046 (2)0.052 (3)0.054 (3)0.022 (2)0.007 (2)0.026 (2)
C450.031 (2)0.043 (2)0.047 (2)0.0008 (17)0.0022 (17)0.0170 (18)
C460.0286 (17)0.0326 (19)0.0240 (16)0.0002 (14)0.0007 (13)0.0005 (14)
C470.0332 (19)0.040 (2)0.0292 (17)0.0062 (16)0.0115 (14)0.0012 (16)
C480.0156 (15)0.0395 (19)0.0430 (18)0.0033 (14)0.0039 (15)0.0142 (17)
C490.0251 (17)0.0345 (19)0.0342 (18)0.0025 (14)0.0066 (14)0.0082 (15)
C500.0247 (16)0.037 (2)0.0234 (15)0.0021 (14)0.0023 (14)0.0006 (13)
C510.057 (3)0.037 (2)0.055 (2)0.006 (2)0.028 (2)0.0115 (19)
C520.118 (4)0.039 (3)0.075 (3)0.012 (3)0.059 (3)0.022 (2)
C530.103 (4)0.029 (2)0.042 (2)0.012 (2)0.012 (3)0.0094 (18)
C540.053 (2)0.033 (2)0.062 (3)0.0096 (18)0.002 (2)0.005 (2)
C550.045 (2)0.036 (2)0.049 (2)0.0020 (18)0.0167 (18)0.0037 (17)
Geometric parameters (Å, º) top
Co1—O22.0924 (19)C13—H130.9500
Co1—O52.046 (2)C13—C141.377 (5)
Co1—N12.161 (2)C14—H140.9500
Co1—N22.175 (2)C14—C151.378 (4)
Co1—N32.171 (2)C15—H150.9500
Co1—N42.148 (3)C16—H160.9500
Co2—O62.060 (2)C16—C171.372 (5)
Co2—O92.0646 (18)C17—H170.9500
Co2—N52.150 (2)C17—C181.365 (6)
Co2—N62.181 (2)C18—H180.9500
Co2—N72.192 (2)C18—C191.372 (6)
Co2—N82.204 (2)C19—H190.9500
Co3—S1i2.7428 (8)C19—C201.370 (5)
Co3—O1i2.204 (2)C20—H200.9500
Co3—O4i2.145 (2)C21—H210.9500
Co3—O102.022 (2)C21—C221.376 (4)
Co3—N92.193 (3)C22—H220.9500
Co3—N102.154 (2)C22—C231.388 (5)
Co3—N112.191 (2)C23—H230.9500
S1—Co3ii2.7429 (8)C23—C241.371 (5)
S1—O11.482 (2)C24—H240.9500
S1—O21.474 (2)C24—C251.374 (4)
S1—O31.441 (2)C25—H250.9500
S1—O41.493 (2)C26—H260.9500
S2—O51.468 (2)C26—C271.379 (5)
S2—O61.480 (2)C27—H270.9500
S2—O71.453 (2)C27—C281.370 (6)
S2—O81.435 (2)C28—H280.9500
S3—O91.485 (2)C28—C291.356 (6)
S3—O101.484 (2)C29—H290.9500
S3—O111.453 (2)C29—C301.377 (5)
S3—O121.456 (2)C30—H300.9500
O1—Co3ii2.204 (2)C31—H310.9500
O4—Co3ii2.145 (2)C31—C321.380 (4)
N1—C11.343 (4)C32—H320.9500
N1—C51.346 (4)C32—C331.374 (5)
N2—C61.339 (4)C33—H330.9500
N2—C101.336 (4)C33—C341.369 (5)
N3—C111.342 (4)C34—H340.9500
N3—C151.344 (4)C34—C351.383 (4)
N4—C161.333 (4)C35—H350.9500
N4—C201.341 (4)C36—H360.9500
N5—C211.344 (4)C36—C371.374 (5)
N5—C251.349 (4)C37—H370.9500
N6—C261.331 (4)C37—C381.364 (5)
N6—C301.338 (4)C38—H380.9500
N7—C311.340 (4)C38—C391.379 (5)
N7—C351.344 (4)C39—H390.9500
N8—C361.335 (4)C39—C401.383 (5)
N8—C401.342 (4)C40—H400.9500
N9—C411.332 (4)C41—H410.9500
N9—C451.335 (4)C41—C421.383 (5)
N10—C461.337 (4)C42—H420.9500
N10—C501.338 (4)C42—C431.374 (6)
N11—C511.324 (4)C43—H430.9500
N11—C551.326 (4)C43—C441.352 (6)
C1—H10.9500C44—H440.9500
C1—C21.373 (5)C44—C451.380 (5)
C2—H20.9500C45—H450.9500
C2—C31.380 (5)C46—H460.9500
C3—H30.9500C46—C471.391 (5)
C3—C41.375 (5)C47—H470.9500
C4—H40.9500C47—C481.378 (5)
C4—C51.383 (4)C48—H480.9500
C5—H50.9500C48—C491.374 (5)
C6—H60.9500C49—H490.9500
C6—C71.380 (4)C49—C501.381 (4)
C7—H70.9500C50—H500.9500
C7—C81.372 (5)C51—H510.9500
C8—H80.9500C51—C521.375 (5)
C8—C91.375 (5)C52—H520.9500
C9—H90.9500C52—C531.381 (6)
C9—C101.378 (4)C53—H530.9500
C10—H100.9500C53—C541.356 (6)
C11—H110.9500C54—H540.9500
C11—C121.375 (4)C54—C551.377 (5)
C12—H120.9500C55—H550.9500
C12—C131.370 (5)
O2—Co1—N187.02 (9)C10—C9—H9120.5
O2—Co1—N296.43 (9)N2—C10—C9123.1 (3)
O2—Co1—N390.79 (8)N2—C10—H10118.5
O2—Co1—N486.49 (9)C9—C10—H10118.5
O5—Co1—O2174.62 (9)N3—C11—H11118.5
O5—Co1—N196.87 (9)N3—C11—C12123.0 (3)
O5—Co1—N287.50 (9)C12—C11—H11118.5
O5—Co1—N385.60 (9)C11—C12—H12120.2
O5—Co1—N489.73 (10)C13—C12—C11119.6 (3)
N1—Co1—N287.06 (9)C13—C12—H12120.2
N1—Co1—N3175.13 (9)C12—C13—H13120.8
N3—Co1—N288.87 (9)C12—C13—C14118.3 (3)
N4—Co1—N190.99 (10)C14—C13—H13120.8
N4—Co1—N2176.40 (10)C13—C14—H14120.4
N4—Co1—N393.21 (9)C13—C14—C15119.2 (3)
O6—Co2—O9175.16 (9)C15—C14—H14120.4
O6—Co2—N591.52 (9)N3—C15—C14123.0 (3)
O6—Co2—N690.00 (9)N3—C15—H15118.5
O6—Co2—N788.49 (9)C14—C15—H15118.5
O6—Co2—N889.17 (9)N4—C16—H16118.6
O9—Co2—N592.90 (8)N4—C16—C17122.8 (3)
O9—Co2—N691.97 (9)C17—C16—H16118.6
O9—Co2—N787.04 (8)C16—C17—H17120.4
O9—Co2—N888.61 (8)C18—C17—C16119.2 (4)
N5—Co2—N690.19 (9)C18—C17—H17120.4
N5—Co2—N7178.34 (9)C17—C18—H18120.6
N5—Co2—N893.19 (9)C17—C18—C19118.8 (4)
N6—Co2—N791.48 (9)C19—C18—H18120.6
N6—Co2—N8176.54 (9)C18—C19—H19120.5
N7—Co2—N885.15 (9)C20—C19—C18119.1 (4)
O1i—Co3—S1i32.61 (5)C20—C19—H19120.5
O4i—Co3—S1i32.76 (5)N4—C20—C19122.7 (3)
O4i—Co3—O1i65.36 (7)N4—C20—H20118.7
O4i—Co3—N993.46 (9)C19—C20—H20118.7
O4i—Co3—N1093.97 (8)N5—C21—H21118.6
O4i—Co3—N1189.48 (9)N5—C21—C22122.8 (3)
O10—Co3—S1i121.20 (7)C22—C21—H21118.6
O10—Co3—O1i88.63 (8)C21—C22—H22120.4
O10—Co3—O4i153.76 (8)C21—C22—C23119.2 (3)
O10—Co3—N990.33 (9)C23—C22—H22120.4
O10—Co3—N10112.18 (9)C22—C23—H23120.8
O10—Co3—N1189.46 (9)C24—C23—C22118.5 (3)
N9—Co3—S1i92.22 (7)C24—C23—H23120.8
N9—Co3—O1i91.22 (9)C23—C24—H24120.4
N10—Co3—S1i126.62 (6)C23—C24—C25119.3 (3)
N10—Co3—O1i159.09 (8)C25—C24—H24120.4
N10—Co3—N986.76 (10)N5—C25—C24123.1 (3)
N10—Co3—N1187.52 (9)N5—C25—H25118.5
N11—Co3—S1i93.23 (7)C24—C25—H25118.5
N11—Co3—O1i95.03 (9)N6—C26—H26118.9
N11—Co3—N9173.74 (10)N6—C26—C27122.1 (4)
O1—S1—Co3ii53.26 (8)C27—C26—H26118.9
O1—S1—O4104.28 (11)C26—C27—H27120.0
O2—S1—Co3ii120.63 (9)C28—C27—C26120.1 (4)
O2—S1—O1109.44 (12)C28—C27—H27120.0
O2—S1—O4108.25 (13)C27—C28—H28120.9
O3—S1—Co3ii128.59 (10)C29—C28—C27118.2 (4)
O3—S1—O1112.38 (14)C29—C28—H28120.9
O3—S1—O2110.73 (13)C28—C29—H29120.5
O3—S1—O4111.51 (14)C28—C29—C30119.1 (3)
O4—S1—Co3ii51.03 (8)C30—C29—H29120.5
O5—S2—O6106.80 (14)N6—C30—C29123.4 (3)
O7—S2—O5108.38 (15)N6—C30—H30118.3
O7—S2—O6109.30 (14)C29—C30—H30118.3
O8—S2—O5110.82 (16)N7—C31—H31118.4
O8—S2—O6109.77 (14)N7—C31—C32123.2 (3)
O8—S2—O7111.64 (17)C32—C31—H31118.4
O10—S3—O9106.08 (12)C31—C32—H32120.4
O11—S3—O9110.10 (13)C33—C32—C31119.1 (3)
O11—S3—O10110.11 (13)C33—C32—H32120.4
O11—S3—O12111.91 (14)C32—C33—H33120.8
O12—S3—O9108.91 (13)C34—C33—C32118.5 (3)
O12—S3—O10109.55 (14)C34—C33—H33120.8
S1—O1—Co3ii94.13 (10)C33—C34—H34120.2
S1—O2—Co1152.83 (14)C33—C34—C35119.5 (3)
S1—O4—Co3ii96.21 (10)C35—C34—H34120.2
S2—O5—Co1154.34 (16)N7—C35—C34122.7 (3)
S2—O6—Co2165.71 (15)N7—C35—H35118.7
S3—O9—Co2155.64 (13)C34—C35—H35118.7
S3—O10—Co3149.17 (15)N8—C36—H36118.5
C1—N1—Co1119.3 (2)N8—C36—C37123.0 (3)
C1—N1—C5117.1 (3)C37—C36—H36118.5
C5—N1—Co1123.35 (19)C36—C37—H37120.4
C6—N2—Co1122.6 (2)C38—C37—C36119.2 (4)
C10—N2—Co1119.8 (2)C38—C37—H37120.4
C10—N2—C6117.5 (3)C37—C38—H38120.5
C11—N3—Co1122.6 (2)C37—C38—C39119.0 (3)
C11—N3—C15116.9 (3)C39—C38—H38120.5
C15—N3—Co1120.5 (2)C38—C39—H39120.7
C16—N4—Co1123.3 (2)C38—C39—C40118.6 (3)
C16—N4—C20117.5 (3)C40—C39—H39120.7
C20—N4—Co1119.2 (2)N8—C40—C39122.6 (3)
C21—N5—Co2120.1 (2)N8—C40—H40118.7
C21—N5—C25117.2 (3)C39—C40—H40118.7
C25—N5—Co2122.6 (2)N9—C41—H41118.5
C26—N6—Co2121.3 (2)N9—C41—C42122.9 (3)
C26—N6—C30117.1 (3)C42—C41—H41118.5
C30—N6—Co2121.5 (2)C41—C42—H42120.4
C31—N7—Co2124.2 (2)C43—C42—C41119.1 (4)
C31—N7—C35117.0 (3)C43—C42—H42120.4
C35—N7—Co2118.9 (2)C42—C43—H43120.7
C36—N8—Co2118.2 (2)C44—C43—C42118.7 (4)
C36—N8—C40117.5 (3)C44—C43—H43120.7
C40—N8—Co2124.2 (2)C43—C44—H44120.5
C41—N9—Co3120.2 (2)C43—C44—C45118.9 (4)
C41—N9—C45116.5 (3)C45—C44—H44120.5
C45—N9—Co3123.1 (2)N9—C45—C44123.8 (4)
C46—N10—Co3122.2 (2)N9—C45—H45118.1
C46—N10—C50117.5 (3)C44—C45—H45118.1
C50—N10—Co3120.11 (19)N10—C46—H46119.1
C51—N11—Co3120.5 (2)N10—C46—C47121.9 (3)
C51—N11—C55116.4 (3)C47—C46—H46119.1
C55—N11—Co3122.9 (2)C46—C47—H47120.1
N1—C1—H1118.4C48—C47—C46119.8 (3)
N1—C1—C2123.1 (3)C48—C47—H47120.1
C2—C1—H1118.4C47—C48—H48120.7
C1—C2—H2120.3C49—C48—C47118.6 (3)
C1—C2—C3119.3 (3)C49—C48—H48120.7
C3—C2—H2120.3C48—C49—H49120.8
C2—C3—H3120.8C48—C49—C50118.4 (3)
C4—C3—C2118.4 (3)C50—C49—H49120.8
C4—C3—H3120.8N10—C50—C49123.9 (3)
C3—C4—H4120.4N10—C50—H50118.0
C3—C4—C5119.2 (3)C49—C50—H50118.0
C5—C4—H4120.4N11—C51—H51118.5
N1—C5—C4122.8 (3)N11—C51—C52123.0 (4)
N1—C5—H5118.6C52—C51—H51118.5
C4—C5—H5118.6C51—C52—H52120.2
N2—C6—H6118.8C51—C52—C53119.5 (4)
N2—C6—C7122.4 (3)C53—C52—H52120.2
C7—C6—H6118.8C52—C53—H53121.1
C6—C7—H7120.2C54—C53—C52117.8 (4)
C8—C7—C6119.5 (3)C54—C53—H53121.1
C8—C7—H7120.2C53—C54—H54120.6
C7—C8—H8120.8C53—C54—C55118.7 (4)
C7—C8—C9118.4 (3)C55—C54—H54120.6
C9—C8—H8120.8N11—C55—C54124.4 (3)
C8—C9—H9120.5N11—C55—H55117.8
C8—C9—C10118.9 (3)C54—C55—H55117.8
Co1—N1—C1—C2172.6 (3)C1—N1—C5—C40.7 (5)
Co1—N1—C5—C4173.2 (2)C1—C2—C3—C40.2 (6)
Co1—N2—C6—C7178.3 (2)C2—C3—C4—C50.5 (5)
Co1—N2—C10—C9175.8 (2)C3—C4—C5—N10.3 (5)
Co1—N3—C11—C12178.1 (2)C5—N1—C1—C21.5 (5)
Co1—N3—C15—C14177.7 (3)C6—N2—C10—C92.5 (5)
Co1—N4—C16—C17176.7 (3)C6—C7—C8—C92.7 (5)
Co1—N4—C20—C19178.7 (3)C7—C8—C9—C100.3 (5)
Co2—N5—C21—C22176.7 (2)C8—C9—C10—N22.4 (5)
Co2—N5—C25—C24175.2 (2)C10—N2—C6—C70.0 (4)
Co2—N6—C26—C27176.1 (4)C11—N3—C15—C140.8 (5)
Co2—N6—C30—C29176.9 (2)C11—C12—C13—C140.1 (5)
Co2—N7—C31—C32178.5 (2)C12—C13—C14—C150.5 (5)
Co2—N7—C35—C34179.5 (3)C13—C14—C15—N30.9 (5)
Co2—N8—C36—C37177.2 (3)C15—N3—C11—C120.3 (4)
Co2—N8—C40—C39178.0 (3)C16—N4—C20—C191.7 (5)
Co3ii—S1—O2—Co1154.7 (2)C16—C17—C18—C191.1 (6)
Co3—N9—C41—C42174.8 (3)C17—C18—C19—C200.6 (6)
Co3—N9—C45—C44172.2 (3)C18—C19—C20—N42.1 (6)
Co3—N10—C46—C47175.5 (3)C20—N4—C16—C170.2 (5)
Co3—N10—C50—C49175.4 (3)C21—N5—C25—C241.3 (4)
Co3—N11—C51—C52175.2 (4)C21—C22—C23—C241.4 (5)
Co3—N11—C55—C54172.6 (3)C22—C23—C24—C250.1 (5)
O1—S1—O2—Co196.6 (3)C23—C24—C25—N51.3 (5)
O1—S1—O4—Co3ii1.42 (13)C25—N5—C21—C220.0 (4)
O2—S1—O1—Co3ii114.25 (11)C26—N6—C30—C290.9 (5)
O2—S1—O4—Co3ii115.04 (11)C26—C27—C28—C291.4 (8)
O3—S1—O1—Co3ii122.30 (12)C27—C28—C29—C302.1 (7)
O3—S1—O2—Co127.8 (3)C28—C29—C30—N61.0 (6)
O3—S1—O4—Co3ii122.92 (13)C30—N6—C26—C271.7 (6)
O4—S1—O1—Co3ii1.38 (13)C31—N7—C35—C340.6 (5)
O4—S1—O2—Co1150.3 (3)C31—C32—C33—C340.3 (5)
O5—S2—O6—Co291.4 (6)C32—C33—C34—C350.6 (6)
O6—S2—O5—Co1155.9 (3)C33—C34—C35—N70.5 (6)
O7—S2—O5—Co186.4 (4)C35—N7—C31—C321.6 (5)
O7—S2—O6—Co225.6 (6)C36—N8—C40—C390.9 (5)
O8—S2—O5—Co136.4 (4)C36—C37—C38—C390.2 (7)
O8—S2—O6—Co2148.4 (6)C37—C38—C39—C400.7 (6)
O9—S3—O10—Co3129.1 (3)C38—C39—C40—N81.3 (6)
O10—S3—O9—Co2150.5 (3)C40—N8—C36—C370.0 (5)
O11—S3—O9—Co231.4 (4)C41—N9—C45—C442.3 (5)
O11—S3—O10—Co310.0 (3)C41—C42—C43—C442.0 (6)
O12—S3—O9—Co291.7 (3)C42—C43—C44—C450.2 (6)
O12—S3—O10—Co3113.4 (3)C43—C44—C45—N92.5 (6)
N1—C1—C2—C31.3 (6)C45—N9—C41—C420.1 (5)
N2—C6—C7—C82.6 (5)C46—N10—C50—C490.2 (5)
N3—C11—C12—C130.0 (5)C46—C47—C48—C490.8 (5)
N4—C16—C17—C181.6 (6)C47—C48—C49—C500.6 (5)
N5—C21—C22—C231.4 (5)C48—C49—C50—N100.1 (5)
N6—C26—C27—C280.6 (8)C50—N10—C46—C470.0 (4)
N7—C31—C32—C331.5 (5)C51—N11—C55—C542.3 (6)
N8—C36—C37—C380.6 (6)C51—C52—C53—C543.0 (8)
N9—C41—C42—C432.3 (6)C52—C53—C54—C550.8 (7)
N10—C46—C47—C480.5 (5)C53—C54—C55—N111.9 (7)
N11—C51—C52—C532.8 (8)C55—N11—C51—C520.1 (6)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.952.563.421 (4)150
C1—H1···O20.952.583.066 (4)112
C4—H4···O11iii0.952.473.158 (4)129
C6—H6···O30.952.483.263 (4)140
C15—H15···O50.952.472.967 (4)113
C24—H24···O7iv0.952.593.322 (4)134
C26—H26···O110.952.403.343 (4)171
C30—H30···O60.952.513.079 (4)119
C30—H30···O70.952.503.161 (4)126
C31—H31···O60.952.593.107 (4)115
C35—H35···O90.952.362.936 (4)119
C36—H36···O60.952.413.003 (4)121
C40—H40···O120.952.433.352 (4)163
C46—H46···O110.952.303.225 (4)166
C50—H50···O4i0.952.493.132 (4)125
C51—H51···O100.952.463.019 (4)117
Symmetry codes: (i) x+1/2, y+1, z1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1429086).

References

First citationAli, H. M., Puvaneswary, S. & Ng, S. W. (2005). Acta Cryst. E61, m474–m475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastiñeiras, A. & García-Santos, I. (2008). Z. Anorg. Allg. Chem. 634, 2907–2916.  Google Scholar
First citationCotton, F. A., Daniels, L. M., Murillo, C. A. & Zúňiga, L. A. (1994). Eur. J. Solid State Inorg. Chem. 31, 535–544.  CAS Google Scholar
First citationCotton, F. A. & Reid, A. H. Jr (1984). New J. Chem. 8, 203–206.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaynes, J. S., Rettig, S. J., Sams, J. R., Thompson, R. C. & Trotter, J. (1986). Can. J. Chem. 64, 429–441.  CrossRef Google Scholar
First citationHowe, J. L. (1898). Science, 8, 945–947.  Google Scholar
First citationKožíšek, J., Hricov, A. & Langfelderová, H. (1989). Acta Cryst. C45, 885–887.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMemon, A. A., Afzaal, M., Malik, M. A., Nguyen, C. Q., O'Brien, P. & Raftery, J. (2006). Dalton Trans. pp. 4499–4505.  Web of Science CSD CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReitzenstein, F. (1894). Justus Liebigs Ann. Chem. 282, 267–280.  CrossRef Google Scholar
First citationReitzenstein, F. (1898). Z. Anorg. Chem. 18, 253–304.  CrossRef Google Scholar
First citationRoy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263–268.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Y.-F., Li, F.-X., Geng, B., Liu, Y.-C. & Chen, Z.-F. (2009). Acta Cryst. E65, m1665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-X. (2004). Acta Cryst. E60, m30–m31.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds