research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­zinc(II) dinitrate bis­­[5-(pyridinium-3-yl)tetra­zol-1-ide]

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, University of Santiago, Av. Ecuador 3493, Estación Central, Santiago, Chile, bDepartamento de Ciencias Quimicas, Universidad Nacional Andres Bello, Av Republica 275 3er Piso, Santiago, Region Metropolitana, Chile, and cMillennium Institute for Research in Optics (MIRO), Chile
*Correspondence e-mail: singh.dinesh@usach.cl

Edited by A. M. Chippindale, University of Reading, England (Received 29 May 2018; accepted 3 August 2018; online 14 August 2018)

Hexa­aqua­zinc(II) dinitrate 5-(pyridinium-3-yl)tetra­zol-1-ide, [Zn(H2O)6](NO3)2·2C6H5N5, crystallizes in the space group P[\overline{1}]. The asymmetric unit contains one zwitterionic 5-(pyridinium-3-yl)tetra­zol-1-ide mol­ecule, one NO3 anion and one half of a [Zn(H2O)6]2+ cation ([\overline{1}] symmetry). The pyridinium and tetra­zolide rings in the zwitterion are nearly coplanar, with a dihedral angle of 5.4 (2)°. Several O—H⋯N and N—H⋯O hydrogen-bonding inter­actions exist between the [Zn(H2O)6]2+ cation and the N atoms of the tetra­zolide ring, and between the nitrate anions and the N—H groups of the pyridinium ring, respectively, giving rise to a three-dimensional network. The 5-(pyridinium-3-yl)tetra­zol-1-ide mol­ecules show parallel-displaced ππ stacking inter­actions; the centroid–centroid distance between adjacent tetra­zolide rings is 3.6298 (6) Å and that between the pyridinium and tetra­zolide rings is 3.6120 (5) Å.

1. Chemical context

Tetra­zole functional groups have attracted increased attention in recent years due to their use in drug design and their employment as isosteric subtitutents of carb­oxy­lic acids (Herr, 2002[Herr, R. J. (2002). Bioorg. Med. Chem. 10, 3379-3393.]), as well as their ability to produce a large variety of metal–organic frameworks (MOFs) (Zhao et al., 2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]; Chi-Duran et al., 2018[Chi-Duran, I., Enriquez, J., Manquian, C., Wrighton-Araneda, K., Cañon-Mancisidor, W., Venegas-Yazigi, D., Herrera, F. & Pratap Singh, D. (2018). ACS Omega, 3, 801-807.]). Push–pull tetra­zole complexes with both electron-donor and electron-acceptor substituents have shown efficient second-order nonlinear optical activity in powdered samples (Masahiko et al., 1994[Masahiko, S., Hideki, I., Shinichi, Y., Fumihide, F., Masanao, E., Katsuya, W. & Nobuo, S. (1994). Jpn J. Appl. Phys. 33, 169-170.]), ferroelectric behaviour (Liu et al., 2015[Liu, D.-S., Sui, Y., Chen, W.-T. & Feng, P. (2015). Cryst. Growth Des. 15, 4020-4025.]) and strong photoluminescence (Zhang et al., 2014[Zhang, Q., Chen, D., He, X., Huang, S., Huang, J., Zhou, X., Yang, Z., Li, J., Li, H. & Nie, F. (2014). CrystEngComm, 16, 10485-10491.]). The in-situ synthesis of tetra­zole compounds can be realized by the Demko–Sharpless method, in which zinc salts catalyze the cyclo­addition reaction between sodium azide and nitrile compounds to form the tetra­zole ring (Demko & Sharpless, 2001[Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem.. 66, 7945-7950.]). In this work, pyridyl­tetra­zole, synthesized at low pH using the Demko–Sharpless method, is cocrystallized in the presence of [Zn(H2O)6]2+ and NO3 ions, to obtain the title compound (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the asymmetric unit (plus the three water molecules of the hexaaquazinc cation generated by symmetry), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x, 2 − y, 2 − z.]

2. Structural commentary

The asymmetric unit of the title compound is composed of one 5-(pyridinium-3-yl)tetra­zol-1-ide zwitterion, one NO3 anion and one half of a [Zn(H2O)6]2+ cation. The hexa­aqua­zinc(II) complex exhibits regular octa­hedral geometry (Table 1[link]), and the tetra­zolide and pyridinium rings of the zwitterion are close to being coplanar, with a dihedral angle of 5.4 (2)° (Fig. 2[link]). The geometric parameters of the tetra­zolide ring are com­parable to those in other reported tetra­zole compounds (Mu et al., 2010[Mu, Y.-Q., Zhao, J. & Li, C. (2010). Acta Cryst. E66, m1667.]; Dai & Chen, 2011a[Dai, J. & Chen, X.-Y. (2011a). Acta Cryst. E67, m113.],b[Dai, J. & Chen, X.-Y. (2011b). Acta Cryst. E67, m171.]). The H atom attached to the N atom of the pyridine ring could not be located in the Fourier density map. Therefore, the H atom was placed in accordance with similar reported structures containing [Mg(H2O)6]X2 (X = Cl, Br) cocrystallized with 5-(pyridinium-3-yl)tetra­zol-1-ide (Dai & Chen, 2011a[Dai, J. & Chen, X.-Y. (2011a). Acta Cryst. E67, m113.],b[Dai, J. & Chen, X.-Y. (2011b). Acta Cryst. E67, m171.]).

Table 1
Selected geometric parameters (Å, °)

Zn1—O3 2.0353 (11) Zn1—O2i 2.1011 (12)
Zn1—O3i 2.0354 (11) Zn1—O1i 2.1841 (11)
Zn1—O2 2.1011 (12) Zn1—O1 2.1841 (11)
       
O3—Zn1—O2 90.01 (5) O2—Zn1—O1i 92.10 (5)
O3—Zn1—O2i 89.99 (5) O3—Zn1—O1 89.47 (4)
O3—Zn1—O1i 90.53 (4) O2—Zn1—O1 87.90 (5)
Symmetry code: (i) -x, -y+2, -z+2.
[Figure 2]
Figure 2
Partial crystal packing of the title compound, showing the hydrogen-bonding inter­actions between [Zn(H2O)6]2+ and the tetra­zolide ring. [Symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 1, −y + 2, −z + 1; (x) x, y − 1, z − 1; (xi) x + 1, y, z − 1.]

3. Supra­molecular features

A three-dimensional network of hydrogen bonds involving the pyridinium–tetra­zolide zwitterions, hexa­aqua­zinc(II) com­plex cations and nitrate ions serves to hold the structure together (Table 2[link] and Fig. 3[link]). The N atoms of the tetra­zole ring inter­act with the octa­hedral complex, [Zn(H2O)6]2+, through O—H⋯N hydrogen bonds, exhibiting DA distances in the range 2.7446 (17)–2.8589 (17) Å. Additionally, the pyridinium ring is involved in N—H⋯O hydrogen bonding to nitrate atom O4, with an N⋯O distance of 2.7384 (18) Å. These inter­actions are shown in the crystal packing diagram (Fig. 3[link]). The structure also shows parallel-displaced ππ stacking inter­actions, which arise from partial overlap between the tetra­zolide and pyridinium rings in adjacent zwitterions, and extend along the a axis parallel to the (010) plane. These parallel-displaced ππ inter­actions lead to inter­planar distances of 3.21 (1) and 3.10 (3) Å, and two centroid–centroid distances (Table 3[link]). The centroid–centroid distance between the tetra­zolide groups is 3.6298 (6) Å and between the pyridinium and tetra­zolide rings is 3.6120 (5) Å (Table 3[link] and Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O5ii 0.85 1.96 2.8067 (17) 172
O1—H2W⋯N1iii 0.85 1.96 2.8029 (17) 173
O2—H3W⋯N4iv 0.85 2.02 2.8589 (17) 170
O2—H4W⋯O1v 0.85 2.08 2.9228 (17) 171
O3—H5W⋯N3ii 0.85 1.91 2.7446 (17) 168
O3—H6W⋯N1vi 0.85 2.72 3.4294 (17) 142
O3—H6W⋯N2vi 0.85 1.97 2.8076 (17) 169
N5—H5N⋯N6vii 0.82 2.61 3.344 (2) 149
N5—H5N⋯O4vii 0.82 1.92 2.7384 (18) 173
N5—H5N⋯O5vii 0.82 2.62 3.1347 (19) 123
C4—H4⋯O5viii 0.93 2.65 3.452 (2) 145
C5—H5⋯O4ix 0.93 2.52 3.292 (2) 141
C5—H5⋯O6ix 0.93 2.52 3.422 (3) 165
C6—H6⋯O5vii 0.93 2.41 3.047 (2) 126
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) x, y+1, z+1; (v) -x+1, -y+2, -z+2; (vi) x-1, y, z+1; (vii) x-1, y, z; (viii) x-1, y+1, z; (ix) -x, -y+1, -z+1.

Table 3
π–π stacking inter­action lengths (Å)

Cg1 and Cg2 are the centroids of the C1/N1/N2/N3/N4 and C2–C6/N5 rings, respectively.

Centroid–centroid Distance Tetra­zolide inter­plane distance
Cg1–Cg1ii 3.6298 (6) 3.23 (1)
Cg1–Cg2vii 3.6120 (5) 3.10 (3)
Symmetry codes: (ii) −x + 1, −y + 1, −1 + z; (vii) x − 1, y, z.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the [100] direction, showing O—H⋯N and N—H⋯O inter­actions (cyan lines).
[Figure 4]
Figure 4
Partial crystal packing, showing ππ inter­actions between tetra­zole and pyridinium rings, with d1 = 3.6298 (6) Å and d2 = 3.6120 (5) Å. [Symmetry codes: (ii) −x + 1, −y + 1, −1 + z; (vii) x − 1, y, z.]

4. Database survey

We found two previously reported structures that are closely related to the title compound. They both involve a hexa­aqua­magnesium(II) cation with a halide counter-ion [chloride (Dai & Chen, 2011b[Dai, J. & Chen, X.-Y. (2011b). Acta Cryst. E67, m171.]) or bromide (Dai & Chen, 2011a[Dai, J. & Chen, X.-Y. (2011a). Acta Cryst. E67, m113.])] cocrystallized in the presence of 5-(pyridinium-3-yl)tetra­zol-1-ide zwitterions (Dai & Chen, 2011a[Dai, J. & Chen, X.-Y. (2011a). Acta Cryst. E67, m113.],b[Dai, J. & Chen, X.-Y. (2011b). Acta Cryst. E67, m171.]). There are more hydrogen-bonding inter­actions in our compound than in the [Mg(H2O)6]X2·2C6H5N5 structures, as more hexa­aqua­zinc(II) complexes can inter­act with the N atoms of the tetra­zole units. Parallel-displaced ππ stacking inter­actions occur in the title compound and in [Mg(H2O)6]X2·2C6H5N5. In [Mg(H2O)6]Cl2·2C6H5N5, the pyridinium–tetra­zolide zwitterions have alternating orientations in the supra­molecular arrangement, whereas in the title compound, the zwitterions are oriented in the same direction, allowing a possible coupling transition between dipole moments similar to J-aggregates (Spano, 2010[Spano, F. C. (2010). Acc. Chem. Res. 43, 429-439.]).

5. Synthesis and crystallization

All the reactants and chemicals were purchased from Sigma Aldrich and utilized without further purification. A mixture of 3-cyano­pyridine (4 mmol), NaN3 (6 mmol) and ZnCl2 (2 mmol) were dissolved in 6 ml of distilled water. This mixture was transferred to a glass bottle and then heated at 378 K for 24 h. The pH was adjusted using a HNO3 (66%) solution immediately after mixing the reactants, and was monitored with a pH meter (pH2700 Oakton) until reaching a pH of 2.0. The reaction mixture was then cooled to 318 K and kept at this temperature for 16 h. The colourless block-shaped crystals obtained were washed with ethanol to give 353 mg (yield 30%) of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms bonded to C atoms were positioned geometrically and treated as riding atoms, using C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Moreover, all H atoms in the hexa­aqua­zinc(II) complex were refined with a distance restraint of O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).

Table 4
Experimental details

Crystal data
Chemical formula [Zn(H2O)6](NO3)2·2C6H5N5
Mr 591.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.6582 (11), 8.4632 (16), 12.046 (2)
α, β, γ (°) 97.209 (2), 91.123 (2), 93.949 (2)
V3) 570.67 (19)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.16
Crystal size (mm) 0.49 × 0.21 × 0.09
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Numerical (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.742, 0.903
No. of measured, independent and observed [I > 2σ(I)] reflections 4429, 2217, 2132
Rint 0.013
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.08
No. of reflections 2217
No. of parameters 198
No. of restraints 13
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.35
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SMART (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Hexaaquazinc(II) dinitrate bis[5-(pyridinium-3-yl)tetrazol-1-ide] top
Crystal data top
[Zn(H2O)6](NO3)2·2C6H5N5Z = 1
Mr = 591.81F(000) = 304
Triclinic, P1Dx = 1.722 Mg m3
a = 5.6582 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4632 (16) ÅCell parameters from 7831 reflections
c = 12.046 (2) Åθ = 2.8–29.5°
α = 97.209 (2)°µ = 1.16 mm1
β = 91.123 (2)°T = 293 K
γ = 93.949 (2)°Block, colorless
V = 570.67 (19) Å30.49 × 0.21 × 0.09 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2132 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.013
phi and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: numerical
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.742, Tmax = 0.903k = 1010
4429 measured reflectionsl = 1414
2217 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0254P)2 + 0.1986P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.37 e Å3
2217 reflectionsΔρmin = 0.35 e Å3
198 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.009 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00001.00001.00000.02186 (9)
O10.25606 (19)1.00502 (12)0.86692 (9)0.0269 (2)
H1W0.226 (4)0.9463 (19)0.8050 (8)0.044 (6)*
H2W0.303 (3)1.0972 (10)0.8515 (16)0.041 (5)*
O20.2699 (2)1.10732 (13)1.11255 (11)0.0345 (3)
H3W0.307 (4)1.2067 (5)1.1282 (17)0.048 (6)*
H4W0.401 (2)1.065 (3)1.116 (2)0.065 (7)*
O30.0981 (2)0.78032 (12)1.02590 (10)0.0293 (2)
H5W0.187 (3)0.725 (2)0.9825 (14)0.051 (6)*
H6W0.008 (3)0.7116 (19)1.0423 (19)0.059 (7)*
N10.5987 (2)0.68143 (14)0.16630 (10)0.0246 (3)
N20.7365 (2)0.58336 (15)0.10516 (11)0.0270 (3)
N30.6508 (2)0.43523 (15)0.10431 (11)0.0296 (3)
N40.4544 (2)0.43180 (14)0.16488 (11)0.0269 (3)
N50.0918 (2)0.58146 (17)0.38266 (11)0.0315 (3)
H5N0.180 (3)0.5136 (17)0.4067 (15)0.042 (5)*
C10.4273 (2)0.58463 (16)0.20195 (12)0.0212 (3)
C20.2376 (2)0.64009 (17)0.27458 (11)0.0218 (3)
C30.2065 (3)0.80168 (18)0.30257 (13)0.0284 (3)
H3A0.30750.87780.27480.034*
C40.0250 (3)0.8491 (2)0.37189 (14)0.0334 (4)
H40.00480.95700.39140.040*
C50.1243 (3)0.7363 (2)0.41142 (14)0.0345 (4)
H50.24700.76680.45780.041*
C60.0827 (3)0.53073 (19)0.31686 (13)0.0279 (3)
H60.09970.42190.29960.033*
N60.6295 (3)0.22071 (16)0.38657 (12)0.0353 (3)
O40.5953 (2)0.34960 (14)0.44531 (11)0.0442 (3)
O50.8117 (2)0.21012 (15)0.33009 (11)0.0431 (3)
O60.4892 (4)0.1062 (2)0.38679 (19)0.1001 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02070 (14)0.01556 (13)0.02905 (15)0.00093 (8)0.00394 (9)0.00145 (9)
O10.0295 (6)0.0203 (5)0.0304 (6)0.0002 (4)0.0092 (4)0.0015 (4)
O20.0292 (6)0.0230 (6)0.0485 (7)0.0009 (5)0.0073 (5)0.0031 (5)
O30.0283 (6)0.0193 (5)0.0419 (6)0.0056 (4)0.0149 (5)0.0063 (5)
N10.0232 (6)0.0217 (6)0.0282 (6)0.0018 (5)0.0064 (5)0.0013 (5)
N20.0232 (6)0.0257 (7)0.0315 (7)0.0011 (5)0.0082 (5)0.0013 (5)
N30.0282 (7)0.0241 (6)0.0360 (7)0.0024 (5)0.0095 (6)0.0006 (5)
N40.0268 (7)0.0199 (6)0.0333 (7)0.0005 (5)0.0086 (5)0.0006 (5)
N50.0275 (7)0.0374 (8)0.0295 (7)0.0062 (6)0.0086 (6)0.0067 (6)
C10.0217 (7)0.0197 (7)0.0214 (7)0.0017 (5)0.0015 (5)0.0014 (5)
C20.0218 (7)0.0228 (7)0.0199 (7)0.0015 (5)0.0018 (5)0.0002 (5)
C30.0311 (8)0.0239 (7)0.0285 (8)0.0041 (6)0.0076 (6)0.0004 (6)
C40.0373 (9)0.0279 (8)0.0332 (8)0.0044 (7)0.0079 (7)0.0049 (6)
C50.0283 (8)0.0457 (10)0.0284 (8)0.0044 (7)0.0092 (6)0.0015 (7)
C60.0279 (8)0.0255 (8)0.0297 (8)0.0030 (6)0.0055 (6)0.0033 (6)
N60.0398 (8)0.0279 (7)0.0346 (8)0.0094 (6)0.0107 (6)0.0048 (6)
O40.0508 (8)0.0301 (6)0.0480 (7)0.0067 (5)0.0237 (6)0.0080 (5)
O50.0428 (7)0.0333 (6)0.0502 (8)0.0024 (5)0.0194 (6)0.0063 (6)
O60.0959 (14)0.0607 (11)0.1238 (16)0.0531 (10)0.0672 (13)0.0446 (11)
Geometric parameters (Å, º) top
Zn1—O32.0353 (11)N4—C11.3345 (19)
Zn1—O3i2.0354 (11)N5—C61.339 (2)
Zn1—O22.1011 (12)N5—C51.339 (2)
Zn1—O2i2.1011 (12)N5—H5N0.8201 (11)
Zn1—O1i2.1841 (11)C1—C21.463 (2)
Zn1—O12.1841 (11)C2—C61.381 (2)
O1—H1W0.8500C2—C31.391 (2)
O1—H2W0.8499C3—C41.385 (2)
O2—H3W0.8499C3—H3A0.9300
O2—H4W0.8499C4—C51.367 (2)
O3—H5W0.8499C4—H40.9300
O3—H6W0.8501C5—H50.9300
N1—C11.3384 (18)C6—H60.9300
N1—N21.3405 (18)N6—O61.210 (2)
N2—N31.3113 (18)N6—O51.2485 (18)
N3—N41.3421 (18)N6—O41.2525 (18)
O3—Zn1—O3i180.0N2—N3—N4109.65 (12)
O3—Zn1—O290.01 (5)C1—N4—N3104.64 (12)
O3i—Zn1—O289.99 (5)C6—N5—C5122.90 (14)
O3—Zn1—O2i89.99 (5)C6—N5—H5N117.6 (14)
O3i—Zn1—O2i90.01 (5)C5—N5—H5N119.5 (14)
O2—Zn1—O2i180.0N4—C1—N1111.53 (13)
O3—Zn1—O1i90.53 (4)N4—C1—C2124.52 (13)
O3i—Zn1—O1i89.47 (4)N1—C1—C2123.93 (13)
O2—Zn1—O1i92.10 (5)C6—C2—C3118.26 (14)
O2i—Zn1—O1i87.90 (5)C6—C2—C1119.94 (13)
O3—Zn1—O189.47 (4)C3—C2—C1121.80 (13)
O3i—Zn1—O190.53 (4)C4—C3—C2119.93 (14)
O2—Zn1—O187.90 (5)C4—C3—H3A120.0
O2i—Zn1—O192.10 (5)C2—C3—H3A120.0
O1i—Zn1—O1180.0C5—C4—C3119.67 (15)
Zn1—O1—H1W118.9 (14)C5—C4—H4120.2
Zn1—O1—H2W115.7 (13)C3—C4—H4120.2
H1W—O1—H2W107.0 (18)N5—C5—C4119.30 (15)
Zn1—O2—H3W126.7 (15)N5—C5—H5120.3
Zn1—O2—H4W120.1 (17)C4—C5—H5120.3
H3W—O2—H4W104 (2)N5—C6—C2119.93 (15)
Zn1—O3—H5W123.7 (14)N5—C6—H6120.0
Zn1—O3—H6W118.5 (15)C2—C6—H6120.0
H5W—O3—H6W103 (2)O6—N6—O5120.33 (15)
C1—N1—N2104.70 (12)O6—N6—O4120.02 (15)
N3—N2—N1109.48 (11)O5—N6—O4119.63 (13)
C1—N1—N2—N30.11 (16)N1—C1—C2—C37.1 (2)
N1—N2—N3—N40.01 (17)C6—C2—C3—C40.5 (2)
N2—N3—N4—C10.09 (17)C1—C2—C3—C4179.80 (14)
N3—N4—C1—N10.17 (17)C2—C3—C4—C50.7 (3)
N3—N4—C1—C2178.53 (13)C6—N5—C5—C40.5 (3)
N2—N1—C1—N40.18 (16)C3—C4—C5—N50.2 (3)
N2—N1—C1—C2178.53 (13)C5—N5—C6—C20.7 (2)
N4—C1—C2—C65.4 (2)C3—C2—C6—N50.2 (2)
N1—C1—C2—C6173.17 (14)C1—C2—C6—N5179.53 (13)
N4—C1—C2—C3174.32 (15)
Symmetry code: (i) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O5ii0.851.962.8067 (17)172
O1—H2W···N1iii0.851.962.8029 (17)173
O2—H3W···N4iv0.852.022.8589 (17)170
O2—H4W···O1v0.852.082.9228 (17)171
O3—H5W···N3ii0.851.912.7446 (17)168
O3—H6W···N1vi0.852.723.4294 (17)142
O3—H6W···N2vi0.851.972.8076 (17)169
N5—H5N···N6vii0.822.613.344 (2)149
N5—H5N···O4vii0.821.922.7384 (18)173
N5—H5N···O5vii0.822.623.1347 (19)123
C4—H4···O5viii0.932.653.452 (2)145
C5—H5···O4ix0.932.523.292 (2)141
C5—H5···O6ix0.932.523.422 (3)165
C6—H6···O5vii0.932.413.047 (2)126
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y+1, z+1; (v) x+1, y+2, z+2; (vi) x1, y, z+1; (vii) x1, y, z; (viii) x1, y+1, z; (ix) x, y+1, z+1.
ππ stacking interaction lengths (Å) top
Centroid–centroidDistanceTetrazolide interplane distance
Cg1–Cg1ii3.6298 (6)3.23 (1)
Cg1–Cg2vii3.6120 (5)3.10 (3)
Symmetry codes: (ii) -x+1, -y+1, -1+z; (vii) x-1, y, z.
 

Funding information

Funding for this research was provided by: Fondecyt Regular (award No. 1151527); Proyecto REDES ETAPA INICIAL, Convocatoria 2017 (award No. REDI170423); Millennium Institute for Research in Optics (MIRO); Basal USA (award No. 1799).

References

First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChi-Duran, I., Enriquez, J., Manquian, C., Wrighton-Araneda, K., Cañon-Mancisidor, W., Venegas-Yazigi, D., Herrera, F. & Pratap Singh, D. (2018). ACS Omega, 3, 801–807.  Google Scholar
First citationDai, J. & Chen, X.-Y. (2011a). Acta Cryst. E67, m113.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDai, J. & Chen, X.-Y. (2011b). Acta Cryst. E67, m171.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDemko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem.. 66, 7945–7950.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHerr, R. J. (2002). Bioorg. Med. Chem. 10, 3379–3393.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, D.-S., Sui, Y., Chen, W.-T. & Feng, P. (2015). Cryst. Growth Des. 15, 4020–4025.  Web of Science CSD CrossRef CAS Google Scholar
First citationMasahiko, S., Hideki, I., Shinichi, Y., Fumihide, F., Masanao, E., Katsuya, W. & Nobuo, S. (1994). Jpn J. Appl. Phys. 33, 169–170.  Google Scholar
First citationMu, Y.-Q., Zhao, J. & Li, C. (2010). Acta Cryst. E66, m1667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpano, F. C. (2010). Acc. Chem. Res. 43, 429–439.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Q., Chen, D., He, X., Huang, S., Huang, J., Zhou, X., Yang, Z., Li, J., Li, H. & Nie, F. (2014). CrystEngComm, 16, 10485–10491.  Web of Science CrossRef Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds