research communications
Hexaaquazinc(II) dinitrate bis[5-(pyridinium-3-yl)tetrazol-1-ide]
aDepartment of Physics, University of Santiago, Av. Ecuador 3493, Estación Central, Santiago, Chile, bDepartamento de Ciencias Quimicas, Universidad Nacional Andres Bello, Av Republica 275 3er Piso, Santiago, Region Metropolitana, Chile, and cMillennium Institute for Research in Optics (MIRO), Chile
*Correspondence e-mail: singh.dinesh@usach.cl
Hexaaquazinc(II) dinitrate 5-(pyridinium-3-yl)tetrazol-1-ide, [Zn(H2O)6](NO3)2·2C6H5N5, crystallizes in the P. The contains one zwitterionic 5-(pyridinium-3-yl)tetrazol-1-ide molecule, one NO3− anion and one half of a [Zn(H2O)6]2+ cation ( symmetry). The pyridinium and tetrazolide rings in the zwitterion are nearly coplanar, with a dihedral angle of 5.4 (2)°. Several O—H⋯N and N—H⋯O hydrogen-bonding interactions exist between the [Zn(H2O)6]2+ cation and the N atoms of the tetrazolide ring, and between the nitrate anions and the N—H groups of the pyridinium ring, respectively, giving rise to a three-dimensional network. The 5-(pyridinium-3-yl)tetrazol-1-ide molecules show parallel-displaced π–π stacking interactions; the centroid–centroid distance between adjacent tetrazolide rings is 3.6298 (6) Å and that between the pyridinium and tetrazolide rings is 3.6120 (5) Å.
Keywords: crystal stryucture; pyridin-3-yltetrazole; hexaaquazinc(II) complex; π–π stacking; hydrogen-bonding.
CCDC reference: 1860162
1. Chemical context
Tetrazole functional groups have attracted increased attention in recent years due to their use in drug design and their employment as isosteric subtitutents of carboxylic acids (Herr, 2002), as well as their ability to produce a large variety of metal–organic frameworks (MOFs) (Zhao et al., 2008; Chi-Duran et al., 2018). Push–pull tetrazole complexes with both electron-donor and electron-acceptor substituents have shown efficient second-order nonlinear optical activity in powdered samples (Masahiko et al., 1994), ferroelectric behaviour (Liu et al., 2015) and strong (Zhang et al., 2014). The in-situ synthesis of tetrazole compounds can be realized by the Demko–Sharpless method, in which zinc salts catalyze the cycloaddition reaction between sodium azide and nitrile compounds to form the tetrazole ring (Demko & Sharpless, 2001). In this work, pyridyltetrazole, synthesized at low pH using the Demko–Sharpless method, is cocrystallized in the presence of [Zn(H2O)6]2+ and NO3− ions, to obtain the title compound (Fig. 1).
2. Structural commentary
The 3− anion and one half of a [Zn(H2O)6]2+ cation. The hexaaquazinc(II) complex exhibits regular octahedral geometry (Table 1), and the tetrazolide and pyridinium rings of the zwitterion are close to being coplanar, with a dihedral angle of 5.4 (2)° (Fig. 2). The geometric parameters of the tetrazolide ring are comparable to those in other reported tetrazole compounds (Mu et al., 2010; Dai & Chen, 2011a,b). The H atom attached to the N atom of the pyridine ring could not be located in the Fourier density map. Therefore, the H atom was placed in accordance with similar reported structures containing [Mg(H2O)6]X2 (X = Cl−, Br−) cocrystallized with 5-(pyridinium-3-yl)tetrazol-1-ide (Dai & Chen, 2011a,b).
of the title compound is composed of one 5-(pyridinium-3-yl)tetrazol-1-ide zwitterion, one NO3. Supramolecular features
A three-dimensional network of hydrogen bonds involving the pyridinium–tetrazolide and Fig. 3). The N atoms of the tetrazole ring interact with the octahedral complex, [Zn(H2O)6]2+, through O—H⋯N hydrogen bonds, exhibiting D⋯A distances in the range 2.7446 (17)–2.8589 (17) Å. Additionally, the pyridinium ring is involved in N—H⋯O hydrogen bonding to nitrate atom O4, with an N⋯O distance of 2.7384 (18) Å. These interactions are shown in the crystal packing diagram (Fig. 3). The structure also shows parallel-displaced π–π stacking interactions, which arise from partial overlap between the tetrazolide and pyridinium rings in adjacent and extend along the a axis parallel to the (010) plane. These parallel-displaced π–π interactions lead to interplanar distances of 3.21 (1) and 3.10 (3) Å, and two centroid–centroid distances (Table 3). The centroid–centroid distance between the tetrazolide groups is 3.6298 (6) Å and between the pyridinium and tetrazolide rings is 3.6120 (5) Å (Table 3 and Fig. 4).
hexaaquazinc(II) complex cations and nitrate ions serves to hold the structure together (Table 24. Database survey
We found two previously reported structures that are closely related to the title compound. They both involve a hexaaquamagnesium(II) cation with a halide counter-ion [chloride (Dai & Chen, 2011b) or bromide (Dai & Chen, 2011a)] cocrystallized in the presence of 5-(pyridinium-3-yl)tetrazol-1-ide (Dai & Chen, 2011a,b). There are more hydrogen-bonding interactions in our compound than in the [Mg(H2O)6]X2·2C6H5N5 structures, as more hexaaquazinc(II) complexes can interact with the N atoms of the tetrazole units. Parallel-displaced π–π stacking interactions occur in the title compound and in [Mg(H2O)6]X2·2C6H5N5. In [Mg(H2O)6]Cl2·2C6H5N5, the pyridinium–tetrazolide have alternating orientations in the supramolecular arrangement, whereas in the title compound, the are oriented in the same direction, allowing a possible coupling transition between dipole moments similar to J-aggregates (Spano, 2010).
5. Synthesis and crystallization
All the reactants and chemicals were purchased from Sigma Aldrich and utilized without further purification. A mixture of 3-cyanopyridine (4 mmol), NaN3 (6 mmol) and ZnCl2 (2 mmol) were dissolved in 6 ml of distilled water. This mixture was transferred to a glass bottle and then heated at 378 K for 24 h. The pH was adjusted using a HNO3 (66%) solution immediately after mixing the reactants, and was monitored with a pH meter (pH2700 Oakton) until reaching a pH of 2.0. The reaction mixture was then cooled to 318 K and kept at this temperature for 16 h. The colourless block-shaped crystals obtained were washed with ethanol to give 353 mg (yield 30%) of the title compound.
6. Refinement
Crystal data, data collection and structure . All H atoms bonded to C atoms were positioned geometrically and treated as riding atoms, using C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Moreover, all H atoms in the hexaaquazinc(II) complex were refined with a distance restraint of O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 4
|
Supporting information
CCDC reference: 1860162
https://doi.org/10.1107/S205698901801112X/cq2025sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901801112X/cq2025Isup3.hkl
Data collection: SMART (Bruker, 2008); cell
SMART (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(H2O)6](NO3)2·2C6H5N5 | Z = 1 |
Mr = 591.81 | F(000) = 304 |
Triclinic, P1 | Dx = 1.722 Mg m−3 |
a = 5.6582 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.4632 (16) Å | Cell parameters from 7831 reflections |
c = 12.046 (2) Å | θ = 2.8–29.5° |
α = 97.209 (2)° | µ = 1.16 mm−1 |
β = 91.123 (2)° | T = 293 K |
γ = 93.949 (2)° | Block, colorless |
V = 570.67 (19) Å3 | 0.49 × 0.21 × 0.09 mm |
Bruker SMART CCD area detector diffractometer | 2132 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.013 |
phi and ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: numerical (SADABS; Bruker, 2008) | h = −6→6 |
Tmin = 0.742, Tmax = 0.903 | k = −10→10 |
4429 measured reflections | l = −14→14 |
2217 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0254P)2 + 0.1986P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.054 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.37 e Å−3 |
2217 reflections | Δρmin = −0.35 e Å−3 |
198 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
13 restraints | Extinction coefficient: 0.009 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.0000 | 1.0000 | 1.0000 | 0.02186 (9) | |
O1 | 0.25606 (19) | 1.00502 (12) | 0.86692 (9) | 0.0269 (2) | |
H1W | 0.226 (4) | 0.9463 (19) | 0.8050 (8) | 0.044 (6)* | |
H2W | 0.303 (3) | 1.0972 (10) | 0.8515 (16) | 0.041 (5)* | |
O2 | 0.2699 (2) | 1.10732 (13) | 1.11255 (11) | 0.0345 (3) | |
H3W | 0.307 (4) | 1.2067 (5) | 1.1282 (17) | 0.048 (6)* | |
H4W | 0.401 (2) | 1.065 (3) | 1.116 (2) | 0.065 (7)* | |
O3 | 0.0981 (2) | 0.78032 (12) | 1.02590 (10) | 0.0293 (2) | |
H5W | 0.187 (3) | 0.725 (2) | 0.9825 (14) | 0.051 (6)* | |
H6W | −0.008 (3) | 0.7116 (19) | 1.0423 (19) | 0.059 (7)* | |
N1 | 0.5987 (2) | 0.68143 (14) | 0.16630 (10) | 0.0246 (3) | |
N2 | 0.7365 (2) | 0.58336 (15) | 0.10516 (11) | 0.0270 (3) | |
N3 | 0.6508 (2) | 0.43523 (15) | 0.10431 (11) | 0.0296 (3) | |
N4 | 0.4544 (2) | 0.43180 (14) | 0.16488 (11) | 0.0269 (3) | |
N5 | −0.0918 (2) | 0.58146 (17) | 0.38266 (11) | 0.0315 (3) | |
H5N | −0.180 (3) | 0.5136 (17) | 0.4067 (15) | 0.042 (5)* | |
C1 | 0.4273 (2) | 0.58463 (16) | 0.20195 (12) | 0.0212 (3) | |
C2 | 0.2376 (2) | 0.64009 (17) | 0.27458 (11) | 0.0218 (3) | |
C3 | 0.2065 (3) | 0.80168 (18) | 0.30257 (13) | 0.0284 (3) | |
H3A | 0.3075 | 0.8778 | 0.2748 | 0.034* | |
C4 | 0.0250 (3) | 0.8491 (2) | 0.37189 (14) | 0.0334 (4) | |
H4 | 0.0048 | 0.9570 | 0.3914 | 0.040* | |
C5 | −0.1243 (3) | 0.7363 (2) | 0.41142 (14) | 0.0345 (4) | |
H5 | −0.2470 | 0.7668 | 0.4578 | 0.041* | |
C6 | 0.0827 (3) | 0.53073 (19) | 0.31686 (13) | 0.0279 (3) | |
H6 | 0.0997 | 0.4219 | 0.2996 | 0.033* | |
N6 | 0.6295 (3) | 0.22071 (16) | 0.38657 (12) | 0.0353 (3) | |
O4 | 0.5953 (2) | 0.34960 (14) | 0.44531 (11) | 0.0442 (3) | |
O5 | 0.8117 (2) | 0.21012 (15) | 0.33009 (11) | 0.0431 (3) | |
O6 | 0.4892 (4) | 0.1062 (2) | 0.38679 (19) | 0.1001 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02070 (14) | 0.01556 (13) | 0.02905 (15) | 0.00093 (8) | 0.00394 (9) | 0.00145 (9) |
O1 | 0.0295 (6) | 0.0203 (5) | 0.0304 (6) | −0.0002 (4) | 0.0092 (4) | 0.0015 (4) |
O2 | 0.0292 (6) | 0.0230 (6) | 0.0485 (7) | −0.0009 (5) | −0.0073 (5) | −0.0031 (5) |
O3 | 0.0283 (6) | 0.0193 (5) | 0.0419 (6) | 0.0056 (4) | 0.0149 (5) | 0.0063 (5) |
N1 | 0.0232 (6) | 0.0217 (6) | 0.0282 (6) | −0.0018 (5) | 0.0064 (5) | 0.0013 (5) |
N2 | 0.0232 (6) | 0.0257 (7) | 0.0315 (7) | 0.0011 (5) | 0.0082 (5) | 0.0013 (5) |
N3 | 0.0282 (7) | 0.0241 (6) | 0.0360 (7) | 0.0024 (5) | 0.0095 (6) | 0.0006 (5) |
N4 | 0.0268 (7) | 0.0199 (6) | 0.0333 (7) | −0.0005 (5) | 0.0086 (5) | 0.0006 (5) |
N5 | 0.0275 (7) | 0.0374 (8) | 0.0295 (7) | −0.0062 (6) | 0.0086 (6) | 0.0067 (6) |
C1 | 0.0217 (7) | 0.0197 (7) | 0.0214 (7) | −0.0017 (5) | 0.0015 (5) | 0.0014 (5) |
C2 | 0.0218 (7) | 0.0228 (7) | 0.0199 (7) | −0.0015 (5) | 0.0018 (5) | 0.0002 (5) |
C3 | 0.0311 (8) | 0.0239 (7) | 0.0285 (8) | −0.0041 (6) | 0.0076 (6) | −0.0004 (6) |
C4 | 0.0373 (9) | 0.0279 (8) | 0.0332 (8) | 0.0044 (7) | 0.0079 (7) | −0.0049 (6) |
C5 | 0.0283 (8) | 0.0457 (10) | 0.0284 (8) | 0.0044 (7) | 0.0092 (6) | −0.0015 (7) |
C6 | 0.0279 (8) | 0.0255 (8) | 0.0297 (8) | −0.0030 (6) | 0.0055 (6) | 0.0033 (6) |
N6 | 0.0398 (8) | 0.0279 (7) | 0.0346 (8) | −0.0094 (6) | 0.0107 (6) | −0.0048 (6) |
O4 | 0.0508 (8) | 0.0301 (6) | 0.0480 (7) | −0.0067 (5) | 0.0237 (6) | −0.0080 (5) |
O5 | 0.0428 (7) | 0.0333 (6) | 0.0502 (8) | −0.0024 (5) | 0.0194 (6) | −0.0063 (6) |
O6 | 0.0959 (14) | 0.0607 (11) | 0.1238 (16) | −0.0531 (10) | 0.0672 (13) | −0.0446 (11) |
Zn1—O3 | 2.0353 (11) | N4—C1 | 1.3345 (19) |
Zn1—O3i | 2.0354 (11) | N5—C6 | 1.339 (2) |
Zn1—O2 | 2.1011 (12) | N5—C5 | 1.339 (2) |
Zn1—O2i | 2.1011 (12) | N5—H5N | 0.8201 (11) |
Zn1—O1i | 2.1841 (11) | C1—C2 | 1.463 (2) |
Zn1—O1 | 2.1841 (11) | C2—C6 | 1.381 (2) |
O1—H1W | 0.8500 | C2—C3 | 1.391 (2) |
O1—H2W | 0.8499 | C3—C4 | 1.385 (2) |
O2—H3W | 0.8499 | C3—H3A | 0.9300 |
O2—H4W | 0.8499 | C4—C5 | 1.367 (2) |
O3—H5W | 0.8499 | C4—H4 | 0.9300 |
O3—H6W | 0.8501 | C5—H5 | 0.9300 |
N1—C1 | 1.3384 (18) | C6—H6 | 0.9300 |
N1—N2 | 1.3405 (18) | N6—O6 | 1.210 (2) |
N2—N3 | 1.3113 (18) | N6—O5 | 1.2485 (18) |
N3—N4 | 1.3421 (18) | N6—O4 | 1.2525 (18) |
O3—Zn1—O3i | 180.0 | N2—N3—N4 | 109.65 (12) |
O3—Zn1—O2 | 90.01 (5) | C1—N4—N3 | 104.64 (12) |
O3i—Zn1—O2 | 89.99 (5) | C6—N5—C5 | 122.90 (14) |
O3—Zn1—O2i | 89.99 (5) | C6—N5—H5N | 117.6 (14) |
O3i—Zn1—O2i | 90.01 (5) | C5—N5—H5N | 119.5 (14) |
O2—Zn1—O2i | 180.0 | N4—C1—N1 | 111.53 (13) |
O3—Zn1—O1i | 90.53 (4) | N4—C1—C2 | 124.52 (13) |
O3i—Zn1—O1i | 89.47 (4) | N1—C1—C2 | 123.93 (13) |
O2—Zn1—O1i | 92.10 (5) | C6—C2—C3 | 118.26 (14) |
O2i—Zn1—O1i | 87.90 (5) | C6—C2—C1 | 119.94 (13) |
O3—Zn1—O1 | 89.47 (4) | C3—C2—C1 | 121.80 (13) |
O3i—Zn1—O1 | 90.53 (4) | C4—C3—C2 | 119.93 (14) |
O2—Zn1—O1 | 87.90 (5) | C4—C3—H3A | 120.0 |
O2i—Zn1—O1 | 92.10 (5) | C2—C3—H3A | 120.0 |
O1i—Zn1—O1 | 180.0 | C5—C4—C3 | 119.67 (15) |
Zn1—O1—H1W | 118.9 (14) | C5—C4—H4 | 120.2 |
Zn1—O1—H2W | 115.7 (13) | C3—C4—H4 | 120.2 |
H1W—O1—H2W | 107.0 (18) | N5—C5—C4 | 119.30 (15) |
Zn1—O2—H3W | 126.7 (15) | N5—C5—H5 | 120.3 |
Zn1—O2—H4W | 120.1 (17) | C4—C5—H5 | 120.3 |
H3W—O2—H4W | 104 (2) | N5—C6—C2 | 119.93 (15) |
Zn1—O3—H5W | 123.7 (14) | N5—C6—H6 | 120.0 |
Zn1—O3—H6W | 118.5 (15) | C2—C6—H6 | 120.0 |
H5W—O3—H6W | 103 (2) | O6—N6—O5 | 120.33 (15) |
C1—N1—N2 | 104.70 (12) | O6—N6—O4 | 120.02 (15) |
N3—N2—N1 | 109.48 (11) | O5—N6—O4 | 119.63 (13) |
C1—N1—N2—N3 | 0.11 (16) | N1—C1—C2—C3 | 7.1 (2) |
N1—N2—N3—N4 | −0.01 (17) | C6—C2—C3—C4 | 0.5 (2) |
N2—N3—N4—C1 | −0.09 (17) | C1—C2—C3—C4 | −179.80 (14) |
N3—N4—C1—N1 | 0.17 (17) | C2—C3—C4—C5 | −0.7 (3) |
N3—N4—C1—C2 | −178.53 (13) | C6—N5—C5—C4 | 0.5 (3) |
N2—N1—C1—N4 | −0.18 (16) | C3—C4—C5—N5 | 0.2 (3) |
N2—N1—C1—C2 | 178.53 (13) | C5—N5—C6—C2 | −0.7 (2) |
N4—C1—C2—C6 | 5.4 (2) | C3—C2—C6—N5 | 0.2 (2) |
N1—C1—C2—C6 | −173.17 (14) | C1—C2—C6—N5 | −179.53 (13) |
N4—C1—C2—C3 | −174.32 (15) |
Symmetry code: (i) −x, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···O5ii | 0.85 | 1.96 | 2.8067 (17) | 172 |
O1—H2W···N1iii | 0.85 | 1.96 | 2.8029 (17) | 173 |
O2—H3W···N4iv | 0.85 | 2.02 | 2.8589 (17) | 170 |
O2—H4W···O1v | 0.85 | 2.08 | 2.9228 (17) | 171 |
O3—H5W···N3ii | 0.85 | 1.91 | 2.7446 (17) | 168 |
O3—H6W···N1vi | 0.85 | 2.72 | 3.4294 (17) | 142 |
O3—H6W···N2vi | 0.85 | 1.97 | 2.8076 (17) | 169 |
N5—H5N···N6vii | 0.82 | 2.61 | 3.344 (2) | 149 |
N5—H5N···O4vii | 0.82 | 1.92 | 2.7384 (18) | 173 |
N5—H5N···O5vii | 0.82 | 2.62 | 3.1347 (19) | 123 |
C4—H4···O5viii | 0.93 | 2.65 | 3.452 (2) | 145 |
C5—H5···O4ix | 0.93 | 2.52 | 3.292 (2) | 141 |
C5—H5···O6ix | 0.93 | 2.52 | 3.422 (3) | 165 |
C6—H6···O5vii | 0.93 | 2.41 | 3.047 (2) | 126 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) x, y+1, z+1; (v) −x+1, −y+2, −z+2; (vi) x−1, y, z+1; (vii) x−1, y, z; (viii) x−1, y+1, z; (ix) −x, −y+1, −z+1. |
Centroid–centroid | Distance | Tetrazolide interplane distance |
Cg1–Cg1ii | 3.6298 (6) | 3.23 (1) |
Cg1–Cg2vii | 3.6120 (5) | 3.10 (3) |
Symmetry codes: (ii) -x+1, -y+1, -1+z; (vii) x-1, y, z. |
Funding information
Funding for this research was provided by: Fondecyt Regular (award No. 1151527); Proyecto REDES ETAPA INICIAL, Convocatoria 2017 (award No. REDI170423); Millennium Institute for Research in Optics (MIRO); Basal USA (award No. 1799).
References
Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chi-Duran, I., Enriquez, J., Manquian, C., Wrighton-Araneda, K., Cañon-Mancisidor, W., Venegas-Yazigi, D., Herrera, F. & Pratap Singh, D. (2018). ACS Omega, 3, 801–807. Google Scholar
Dai, J. & Chen, X.-Y. (2011a). Acta Cryst. E67, m113. Web of Science CrossRef IUCr Journals Google Scholar
Dai, J. & Chen, X.-Y. (2011b). Acta Cryst. E67, m171. Web of Science CrossRef IUCr Journals Google Scholar
Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem.. 66, 7945–7950. Web of Science CrossRef PubMed CAS Google Scholar
Herr, R. J. (2002). Bioorg. Med. Chem. 10, 3379–3393. Web of Science CrossRef PubMed CAS Google Scholar
Liu, D.-S., Sui, Y., Chen, W.-T. & Feng, P. (2015). Cryst. Growth Des. 15, 4020–4025. Web of Science CSD CrossRef CAS Google Scholar
Masahiko, S., Hideki, I., Shinichi, Y., Fumihide, F., Masanao, E., Katsuya, W. & Nobuo, S. (1994). Jpn J. Appl. Phys. 33, 169–170. Google Scholar
Mu, Y.-Q., Zhao, J. & Li, C. (2010). Acta Cryst. E66, m1667. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spano, F. C. (2010). Acc. Chem. Res. 43, 429–439. Web of Science CrossRef CAS Google Scholar
Zhang, Q., Chen, D., He, X., Huang, S., Huang, J., Zhou, X., Yang, Z., Li, J., Li, H. & Nie, F. (2014). CrystEngComm, 16, 10485–10491. Web of Science CrossRef Google Scholar
Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.