research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The structure of 9-(3-bromo-6-chloro-2-hy­dr­oxy­phen­yl)-10-(2-hy­dr­oxy­ethyl)-3,6-di­phenyl-3,4,5,6,7,9-hexa­hydro-2H-acridine-1,8-dione

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Faculty of Science, Sohag University, Sohag, Egypt, bChemistry Department, College of Education, Salahaddin University-Hawler, Erbil, Kurdistan Region, Iraq, cNational Organization for Drug Control and Research (NODCAR), Giza, Egypt, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and eDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 13 June 2018; accepted 28 July 2018; online 14 August 2018)

In the structure of the title compound C33H29BrClNO4, (I), the hexa­hydro-2H-acridine ring system has a hy­droxy­ethyl substituent on the N atom and a 3-bromo-6-chloro-2-hy­droxy­phenyl substituent on the central C atom at the 9-position. An unusual feature of the mol­ecule is that the substituents at the 3- and 5-positions of the outer cyclo­hexenone rings are phenyl rings rather than the more common dimethyl substituents. C atoms on both of the cyclo­hexenone rings are disordered over two sites. In the crystal structure, O—H⋯O, C—H⋯O and C—H⋯π(ring) hydrogen bonds combine with an Br—O and unusual C—Br⋯π(ring) halogen bonds to generate a three dimensional network with mol­ecules stacked along the a-axis direction.

1. Chemical context

Acridine derivatives form an important class of heterocycles containing nitro­gen with a broad range of pharmaceutical properties. These include compounds that are used as anti-infammatory (Chen et al., 2002[Chen, Y. L., Lu, C. M., Chen, I. L., Tsao, L. T. & Wang, J. P. (2002). J. Med. Chem. 45, 4689-4694.]), anti-cancer (Gamega et al., 1999[Gamage, S. A., Spicer, J. A., Atwell, G. J., Finlay, G. J., Baguley, B. C. & Denny, W. A. (1999). J. Med. Chem. 42, 2383-2393.]), anti-microbial (Kaya et al., 2011[Kaya, M., Yıldırır, Y. & Çelik, G. Y. (2011). Med. Chem. Res. 20, 293-299.]), anti-tubercular (Aly & Abadi 2004[Aly, E. I. & Abadi, A. H. (2004). Arch. Pharm. Res. 27, 713-719.]; Tripathi et al., 2006[Tripathi, R. P., Verma, S. S., Pandey, J., Agarwal, K. C., Chaturvedi, V., Manju, Y. K., Srivastva, A. K., Gaikwad, A. & Sinha, S. (2006). Bioorg. Med. Chem. Lett. 16, 5144-5147.]), anti-parasitic (Di Giorgio, et al., 2005[Di Giorgio, C., De Meo, M., Chiron, J., Delmas, F., Nikoyan, A., Jean, S., Dumenil, G., Timon-David, P. & Galy, J. P. (2005). Bioorg. Med. Chem. 13, 5560-5568.]), anti-malarial (Kumar et al., 2009[Kumar, A., Srivastava, K., Kumar, S. R., Puri, S. K. & Chauhan, M. S. (2009). Bioorg. Med. Chem. Lett. 19, 6996-6999.]; Tomar et al., 2010[Tomar, V., Bhattacharjee, G., Kamaluddin, S. R., Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Eur. J. Med. Chem. 45, 745-751.]), anti-viral (Gupta & Jaiswal, 2010[Gupta, H. C. & Jaiswal, V. (2010). Indian J. Heterocycl. Chem. 19, 409-410.]; Tonelli et al., 2011[Tonelli, M., Vettoretti, G., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Busonera, B., Ouhtit, A., Farci, P., Blois, S., Giliberti, G. & La Colla, P. (2011). Antiviral Res. 91, 133-141.]) and fungicidal agents (Srivastava & Nizamuddin, 2004[Srivastava, A. & Nizamuddin, A. (2004). Indian J. Heterocycl. Chem. 13, 261-264.]). Furthermore, acridines are used as dyes, fluorescent materials for the visualization of biomolecules and in laser technologies (Niknam & Damya, 2009[Niknam, K. & Damya, M. (2009). Jnl Chin. Chem. Soc. 56, 659-665.]). In this context we report here the synthesis and crystal structure of the title acridine derivative.

[Scheme 1]

2. Structural commentary

The title compound (I)[link], consists of a hexa­hydro-2H-acridine ring system made up of a central di­hydro­pyridine ring with an N-bound 2-hy­droxy­ethyl substituent flanked by two cyclo­hexenone rings that carry phenyl substituents in the 3- and 5-positions, respectively (Fig. 1[link]). The central C9 atom bears a 3-bromo-6-chloro-2-hy­droxy­phenyl substituent and the O2′ hy­droxy group forms an intra­molecular hydrogen bond to the adjacent O8 carbonyl oxygen enclosing an S(8) ring. The C2 and C3 atoms of one cyclo­hexenone are disordered over two sites as is the C6 atom of the corresponding cyclo­hexenone. Their occupancy ratios refine to 0.521 (10):0.479 (10) for C2,C3 and 0.746 (9):0.254 (9) for C6. Only details of the major disorder components will be considered here. The central C9,N10,C11–C14 ring adopts a half-chair conformation and is inclined to the adjacent C1–C4,C11,C12 and C5–C8,C13,C14 rings at angles of 7.11 (18) and 21.64 (10)°, respectively, so the hexa­hydro-2H-acridine unit is far from planar. The 3-bromo-6-chloro-2-hy­droxy­phenyl ring subtends an angle of 84.39 (6)° to this central ring. The C1–C4,C11,C12 ring is best described as a severely flattened boat while the C5–C8,C13,C14 system is in a distorted half-chair conformation. The phenyl substituents on these outer cyclo­hexenone rings are inclined to their parent rings at angles of 76.87 (12)° for C31–C36 and 86.27 (8)° for C61–C66. The N-bound 2-hy­droxy­ethyl substituent points away from the convex face of the hexa­hydro-2H-acridine system as does the 3-bromo-6-chloro-2-hy­droxy­phenyl substituent.

[Figure 1]
Figure 1
The structure of (I)[link] with ellipsoids drawn at the 50% probability level. For clarity only the major disorder components of the two cyclo­hexenone rings are shown. An intra­molecular hydrogen bond is drawn as a dashed line.

3. Supra­molecular features

The crystal structure of (I)[link] is supported by a full range of classical and non-classical hydrogen bonds and C—H⋯π(ring) contacts, together with an inter­molecular O⋯Br halogen bond and an unusual C—Br⋯π(ring) contact. Classical O16—H16O⋯O8 hydrogen bonds, Table 1[link], form C(9) chains along the b-axis direction, linking the mol­ecules in a head-to-tail fashion, Fig. 2[link]. Chains also form along the a-axis direction through C65—H65⋯Cg7 contacts, Fig. 3[link], Table 1[link]. C15—H15A⋯O16 hydrogen bonds form inversion dimers that enclose R22(8) rings and are strengthened by C16—H16⋯Cg8 inter­actions. Adjacent dimers are linked by C34—H34⋯Cl5′ hydrogen bonds, forming double chains of mol­ecules along the ab diagonal, Fig. 4[link]. The extensive series of contacts is completed with inversion dimers that also form through O16⋯Br3′v halogen bonds [O⋯Br = 3.0308 (18) Å; symmetry code: (v) 1 − x, 1 − y, 1 − z] (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]; Chifotides & Dunbar, 2013[Chifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894-906.]) and are supported by unusual C3′—Br3′⋯Cg4v contacts [Br3′⋯Cg4 = 3.6991 (10) Å, C3′—Br3′⋯Cg4 = 83.89 (7)°; Cg4 is the centroid of the C1′–C6′ benzene ring] (Matter et al., 2009[Matter, H., Nazaré, M., Güssregen, S., Will, D. W., Schreuder, H., Bauer, A., Urmann, M., Ritter, K., Wagner, M. & Wehner, V. (2009). Angew. Chem. Int. Ed. 48, 2911-2916.]; Shukla et al., 2017[Shukla, R., Khan, I., Ibrar, A., Simpson, J. & Chopra, D. (2017). CrystEngComm, 19, 3485-3498.]; Andleeb et al., 2018[Andleeb, H., Khan, I., Bauzá, A., Tahir, M. N., Simpson, J., Hameed, S. & Frontera, A. (2018). Acta Cryst. C74, 816-829.]). Both of these contacts are significantly shorter than the sum of the Br and O radii, 3.42 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) and that of the Br radius and an estimated half thickness of the benzene ring, 3.75 Å. The dimers are linked into chains running along the ac diagonal by a series of C—H⋯O hydrogen bonds generating R12(8) and R22(13) rings, with C5 acting as a bifurcated donor, Table 1[link], Fig. 5[link]. Overall this plethora of inter­molecular contacts combine to generate a complex three-dimensional network with mol­ecules stacked along the a-axis direction, Fig. 6[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg7 and Cg8 are the centroids of the C31–C36 and C61–C66 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2′—H2′O⋯O8 0.85 (3) 1.79 (3) 2.626 (2) 170 (3)
O16—H16O⋯O8i 0.84 (4) 1.97 (4) 2.782 (2) 163 (4)
C15—H15A⋯O16ii 0.99 2.68 3.622 (3) 159
C5—H5A⋯O8iii 0.99 2.69 3.669 (3) 172
C5—H5A⋯O2′iii 0.99 2.70 3.336 (3) 122
C15—H15B⋯O1iii 0.99 2.47 3.451 (3) 172
C34—H34⋯Cl5′iv 0.95 2.87 3.560 (3) 131
C16—H16BCg8ii 0.99 2.66 3.529 (3) 147
C65—H65⋯Cg7v 0.95 2.78 3.648 (4) 152
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-1, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
C(9) chains of mol­ecules of (I)[link] along b. In this and subsequent figures, hydrogen bonds are drawn as dashed lines.
[Figure 3]
Figure 3
Chains of mol­ecules of (I)[link] along a. C—H⋯π contacts are shown as dotted green lines with ring centroids shown as coloured spheres.
[Figure 4]
Figure 4
Double chains of mol­ecules of (I)[link] along the ab diagonal.
[Figure 5]
Figure 5
Chains of mol­ecule of (I)[link] formed by C—H⋯O hydrogen bonds, C—Br⋯π and O⋯Br contacts, dotted green lines.
[Figure 6]
Figure 6
Overall packing of (I)[link] viewed along the a-axis direction.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39 Nov 2017 with three updates; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for an acridine ring system with a phenyl or substituted benzene ring on the central C9 atom gave 94 hits, 76 of which represented unique occurrences. The majority of these, 58, have two methyl substituents at the 3- and 5-positions of the ring system. However, three instances reveal a pair of methyl substituents on the 3-position only, with the remaining 15 structures having no additional substitution on either of the cyclo­hexenone rings. Inter­estingly, no structures were observed with phenyl substituents at the 3- or the 3- and 5-positions of the hexa­hydro-2H-acridine ring system, emphasizing the uniqueness of the structure reported here. Refining the search to structures with CH2CH substitution on the acridine N atom reduced the hits to seven, four of which have hy­droxy­ethyl substituents on N10 (Mohamed et al., 2013[Mohamed, S. K., Akkurt, M., Horton, P. N., Abdelhamid, A. A. & Remaily, M. A. A. E. (2013). Acta Cryst. E69, o85-o86.]; Abdelhamid et al., 2016[Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2016). IUCrData, 1, x152425.], 2014[Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2014). Acta Cryst. E70, 44-47.], 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]). Only one of the entries has a 2-hy­droxypropyl N10 substituent (Khalilov et al., 2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.]), with pairs of methyl substituents on the 3- and 5-positions.

5. Synthesis and crystallization

The title compound was synthesized according to our previously reported method (Mohamed et al., 2013[Mohamed, S. K., Akkurt, M., Horton, P. N., Abdelhamid, A. A. & Remaily, M. A. A. E. (2013). Acta Cryst. E69, o85-o86.]). Crystals suitable for X-ray diffraction were obtained by the slow evaporation method using ethanol/acetone (5:1) as the solvent mixture. Yield, 79%; m.p. 451 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were refined using a riding model with d(C—H) = 0.95 Å for aromatic, 0.99 Å for methyl­ene and 1.00 Å for methine H atoms, all with Uiso = 1.2Ueq(C). The C2 and C3 atoms in the C1–C4,C11,C12 cyclo­hexenone ring and atom, C6, in the corresponding C5–C8,C13,C14 ring are disordered over two positions. Their occupancies were refined to sum to unity with the disordered atoms of the different rings allowed to refine separately. The occupancies converged to ratios of 0.521 (10): 0.479 (10) for C2 and C3 and 0.746 (9): 0.254 (9) for C6. Positions of the hydrogen atoms on adjacent methyl­ene groups and phenyl rings were assigned taking this disorder into account but a somewhat close H15A⋯H5C contact was still observed. One reflection with Fo >>> Fc, was omitted from the final refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula C33H29BrClNO4
Mr 618.93
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.5669 (2), 15.4643 (2), 13.4979 (2)
β (°) 107.280 (1)
V3) 2903.39 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.09
Crystal size (mm) 0.37 × 0.14 × 0.12
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.618, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23967, 6076, 5714
Rint 0.045
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.07
No. of reflections 6076
No. of parameters 402
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.66, −0.57
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia 2012).

9-(3-Bromo-6-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,6-diphenyl-3,4,5,6,7,9-hexahydro-2H-acridine-1,8-dione top
Crystal data top
C33H29BrClNO4F(000) = 1272
Mr = 618.93Dx = 1.416 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.5669 (2) ÅCell parameters from 16242 reflections
b = 15.4643 (2) Åθ = 4.2–76.6°
c = 13.4979 (2) ŵ = 3.09 mm1
β = 107.280 (1)°T = 100 K
V = 2903.39 (7) Å3Rectangular plate, pale yellow
Z = 40.37 × 0.14 × 0.12 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
6076 independent reflections
Radiation source: SuperNova (Cu) X-ray Source5714 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.045
ω scansθmax = 76.7°, θmin = 4.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1818
Tmin = 0.618, Tmax = 1.000k = 1914
23967 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0434P)2 + 3.2091P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6076 reflectionsΔρmax = 0.66 e Å3
402 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One reflection with Fo >>> Fc was omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.75525 (13)0.16790 (13)0.44418 (13)0.0361 (4)
C10.75604 (17)0.20511 (17)0.36498 (18)0.0309 (5)
C2A0.8507 (4)0.2118 (5)0.3297 (4)0.0302 (15)0.521 (10)
H2A10.90180.23660.38860.036*0.521 (10)
H2A20.87060.15210.31960.036*0.521 (10)
C3A0.8503 (3)0.2523 (4)0.2536 (4)0.0197 (12)0.521 (10)
H3A0.88500.30590.28570.024*0.521 (10)
C2B0.8203 (4)0.1718 (4)0.3031 (5)0.0198 (12)0.479 (10)
H2B10.88690.17110.35030.024*0.479 (10)
H2B20.80210.11090.28470.024*0.479 (10)
C3B0.8224 (4)0.2130 (4)0.2140 (5)0.0240 (15)0.479 (10)
H3B0.78740.16930.16180.029*0.479 (10)
C310.9137 (2)0.2237 (2)0.1795 (3)0.0519 (9)
C320.9205 (2)0.1493 (2)0.1268 (3)0.0525 (9)
H320.88020.10160.12900.063*
C330.9860 (3)0.1432 (2)0.0700 (3)0.0552 (8)
H330.99020.09160.03340.066*
C341.0447 (2)0.2126 (2)0.0674 (3)0.0573 (9)
H341.08960.20860.02890.069*
C351.0389 (2)0.2863 (2)0.1194 (3)0.0546 (9)
H351.07920.33410.11700.065*
C360.9734 (2)0.2917 (2)0.1762 (3)0.0499 (8)
H36A0.97000.34320.21320.060*0.521 (10)
H36B0.97000.34320.21320.060*0.479 (10)
C40.75926 (14)0.29215 (14)0.17397 (16)0.0201 (4)
H4A0.77600.34890.15000.024*0.521 (10)
H4B0.73740.25370.11280.024*0.521 (10)
H4C0.80020.34450.18790.024*0.479 (10)
H4D0.73110.28700.09780.024*0.479 (10)
C50.42495 (14)0.37594 (13)0.10511 (15)0.0178 (4)
H5A0.41650.34500.03880.021*0.746 (9)
H5B0.43350.43810.09290.021*0.746 (9)
H5C0.433 (7)0.370 (7)0.025 (8)0.021*0.254 (9)
H5D0.422 (8)0.437 (7)0.117 (8)0.021*0.254 (9)
C6A0.33431 (18)0.3641 (2)0.1396 (2)0.0195 (9)0.746 (9)
H6A0.33560.40860.19380.023*0.746 (9)
C6B0.3349 (5)0.3168 (5)0.0936 (6)0.015 (2)0.254 (9)
H6B0.33410.27060.04150.019*0.254 (9)
C610.24605 (17)0.3823 (2)0.0451 (2)0.0420 (7)
C620.20200 (18)0.4592 (2)0.0484 (2)0.0396 (6)
H620.22460.49510.10780.047*
C630.12511 (18)0.48598 (19)0.0327 (2)0.0359 (5)
H630.09530.53990.02810.043*
C640.09078 (17)0.43614 (17)0.1202 (2)0.0347 (6)
H640.03770.45540.17570.042*
C650.13441 (19)0.35737 (19)0.1267 (2)0.0406 (6)
H650.11180.32210.18660.049*
C660.21263 (19)0.33072 (19)0.0430 (3)0.0483 (8)
H66A0.24300.27700.04660.058*0.746 (9)
H660.24300.27700.04660.058*0.254 (9)
C70.33159 (18)0.2777 (2)0.1859 (2)0.0424 (7)
H7A0.32990.23230.13370.051*0.746 (9)
H7B0.27290.27220.20810.051*0.746 (9)
H7C0.30360.21950.16710.051*0.254 (9)
H7D0.28460.31090.21070.051*0.254 (9)
C80.41893 (15)0.26609 (14)0.27755 (16)0.0217 (4)
O80.41215 (11)0.22515 (11)0.35542 (12)0.0253 (3)
C90.59971 (14)0.28147 (13)0.35948 (15)0.0164 (4)
H90.58980.22780.39640.020*
C110.67923 (14)0.26478 (13)0.31174 (15)0.0169 (4)
C120.67918 (13)0.30368 (13)0.22213 (15)0.0165 (4)
C130.51346 (14)0.34248 (12)0.18453 (15)0.0156 (4)
C140.50871 (14)0.29899 (12)0.27191 (15)0.0162 (4)
N100.60071 (11)0.35389 (11)0.16665 (13)0.0159 (3)
C150.61313 (14)0.41375 (14)0.08619 (15)0.0186 (4)
H15A0.55040.42250.03280.022*
H15B0.65800.38790.05190.022*
C160.65185 (15)0.49977 (14)0.13240 (17)0.0236 (4)
H16A0.70490.49100.19730.028*
H16B0.67700.53270.08320.028*
O160.57556 (13)0.54592 (12)0.15339 (15)0.0336 (4)
H16O0.592 (3)0.598 (3)0.156 (3)0.050*
C1'0.62288 (14)0.35601 (13)0.43787 (15)0.0168 (4)
C2'0.57556 (14)0.36228 (13)0.51490 (15)0.0179 (4)
O2'0.51146 (11)0.30269 (10)0.52679 (12)0.0222 (3)
H2'O0.485 (2)0.274 (2)0.472 (3)0.033*
C3'0.59615 (15)0.43193 (14)0.58369 (17)0.0223 (4)
Br3'0.53322 (2)0.44056 (2)0.68754 (2)0.02632 (9)
C4'0.66042 (17)0.49627 (15)0.57727 (18)0.0278 (5)
H4'0.67330.54360.62430.033*
C5'0.70526 (16)0.48948 (15)0.50025 (19)0.0275 (5)
Cl5'0.78601 (5)0.56959 (4)0.48926 (6)0.04541 (18)
C6'0.68789 (15)0.42062 (15)0.43232 (17)0.0227 (4)
H6'0.72060.41720.38110.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0387 (9)0.0496 (11)0.0255 (8)0.0246 (8)0.0179 (7)0.0171 (8)
C10.0314 (12)0.0418 (14)0.0240 (11)0.0176 (10)0.0152 (9)0.0099 (10)
C2A0.023 (2)0.042 (4)0.029 (3)0.017 (3)0.012 (2)0.013 (3)
C3A0.0135 (19)0.023 (3)0.024 (2)0.0011 (18)0.0071 (17)0.003 (2)
C2B0.016 (2)0.017 (3)0.030 (3)0.006 (2)0.012 (2)0.007 (2)
C3B0.018 (2)0.030 (3)0.027 (3)0.006 (2)0.010 (2)0.003 (2)
C310.0293 (13)0.075 (2)0.0634 (19)0.0323 (14)0.0320 (13)0.0481 (17)
C320.0248 (12)0.069 (2)0.065 (2)0.0031 (13)0.0155 (13)0.0302 (17)
C330.0555 (19)0.060 (2)0.059 (2)0.0050 (16)0.0308 (16)0.0077 (16)
C340.0530 (18)0.061 (2)0.080 (2)0.0205 (16)0.0544 (18)0.0245 (18)
C350.0339 (14)0.0482 (17)0.095 (3)0.0124 (13)0.0398 (16)0.0261 (17)
C360.0411 (15)0.0537 (18)0.065 (2)0.0271 (14)0.0314 (15)0.0204 (15)
C40.0152 (9)0.0253 (10)0.0218 (9)0.0037 (8)0.0087 (7)0.0042 (8)
C50.0143 (8)0.0203 (10)0.0206 (9)0.0000 (7)0.0080 (7)0.0028 (8)
C6A0.0144 (12)0.0235 (17)0.0212 (15)0.0021 (10)0.0062 (10)0.0004 (13)
C6B0.012 (3)0.018 (5)0.014 (4)0.007 (3)0.000 (3)0.003 (3)
C610.0148 (10)0.0588 (18)0.0492 (16)0.0086 (11)0.0047 (10)0.0285 (14)
C620.0242 (11)0.0598 (18)0.0315 (13)0.0115 (12)0.0034 (10)0.0088 (12)
C630.0263 (11)0.0403 (14)0.0400 (14)0.0004 (10)0.0083 (10)0.0025 (11)
C640.0193 (10)0.0414 (14)0.0371 (13)0.0018 (10)0.0013 (9)0.0055 (11)
C650.0288 (12)0.0386 (14)0.0549 (17)0.0125 (11)0.0134 (12)0.0066 (12)
C660.0269 (12)0.0332 (14)0.093 (2)0.0073 (11)0.0301 (15)0.0277 (15)
C70.0212 (11)0.0646 (19)0.0358 (13)0.0164 (12)0.0001 (10)0.0226 (13)
C80.0201 (9)0.0249 (10)0.0208 (10)0.0044 (8)0.0074 (8)0.0022 (8)
O80.0240 (7)0.0309 (8)0.0232 (7)0.0077 (6)0.0103 (6)0.0049 (6)
C90.0170 (9)0.0177 (9)0.0170 (9)0.0011 (7)0.0088 (7)0.0015 (7)
C110.0151 (8)0.0192 (9)0.0174 (9)0.0023 (7)0.0065 (7)0.0006 (7)
C120.0130 (8)0.0186 (9)0.0187 (9)0.0015 (7)0.0058 (7)0.0004 (7)
C130.0154 (8)0.0148 (9)0.0185 (9)0.0001 (7)0.0081 (7)0.0020 (7)
C140.0155 (8)0.0170 (9)0.0179 (9)0.0007 (7)0.0077 (7)0.0004 (7)
N100.0138 (7)0.0189 (8)0.0168 (8)0.0013 (6)0.0073 (6)0.0028 (6)
C150.0157 (8)0.0253 (10)0.0171 (9)0.0025 (8)0.0086 (7)0.0050 (8)
C160.0208 (9)0.0250 (10)0.0267 (10)0.0020 (8)0.0095 (8)0.0062 (8)
O160.0374 (9)0.0255 (8)0.0458 (10)0.0031 (7)0.0247 (8)0.0060 (8)
C1'0.0166 (8)0.0179 (9)0.0164 (9)0.0027 (7)0.0057 (7)0.0008 (7)
C2'0.0176 (9)0.0191 (9)0.0178 (9)0.0036 (7)0.0067 (7)0.0025 (7)
O2'0.0257 (7)0.0235 (7)0.0217 (7)0.0039 (6)0.0135 (6)0.0014 (6)
C3'0.0227 (10)0.0237 (10)0.0224 (10)0.0037 (8)0.0096 (8)0.0000 (8)
Br3'0.03193 (14)0.02757 (14)0.02364 (13)0.00358 (9)0.01467 (9)0.00484 (8)
C4'0.0295 (11)0.0245 (11)0.0296 (11)0.0018 (9)0.0093 (9)0.0075 (9)
C5'0.0247 (10)0.0250 (11)0.0354 (12)0.0065 (9)0.0131 (9)0.0031 (9)
Cl5'0.0475 (4)0.0350 (3)0.0624 (4)0.0218 (3)0.0296 (3)0.0141 (3)
C6'0.0211 (9)0.0255 (10)0.0245 (10)0.0003 (8)0.0110 (8)0.0004 (8)
Geometric parameters (Å, º) top
O1—C11.217 (3)C61—C661.394 (5)
C1—C111.464 (3)C62—C631.377 (4)
C1—C2B1.518 (5)C62—H620.9500
C1—C2A1.590 (6)C63—C641.374 (4)
C2A—C3A1.202 (7)C63—H630.9500
C2A—H2A10.9900C64—C651.389 (4)
C2A—H2A20.9900C64—H640.9500
C3A—C41.564 (5)C65—C661.407 (4)
C3A—C311.612 (5)C65—H650.9500
C3A—H3A1.0000C66—H66A0.9500
C2B—C3B1.369 (7)C66—H660.9500
C2B—H2B10.9900C7—C81.499 (3)
C2B—H2B20.9900C7—H7A0.9900
C3B—C41.531 (5)C7—H7B0.9900
C3B—C311.543 (5)C7—H7C0.9900
C3B—H3B1.0000C7—H7D0.9900
C31—C321.372 (6)C8—O81.256 (3)
C31—C361.373 (5)C8—C141.426 (3)
C32—C331.393 (4)C9—C111.506 (2)
C32—H320.9500C9—C141.516 (3)
C33—C341.379 (5)C9—C1'1.533 (3)
C33—H330.9500C9—H91.0000
C34—C351.355 (5)C11—C121.351 (3)
C34—H340.9500C12—N101.401 (2)
C35—C361.393 (4)C13—N101.374 (2)
C35—H350.9500C13—C141.377 (3)
C36—H36A0.9500N10—C151.478 (2)
C36—H36B0.9500C15—C161.506 (3)
C4—C121.505 (3)C15—H15A0.9900
C4—H4A0.9900C15—H15B0.9900
C4—H4B0.9900C16—O161.418 (3)
C4—H4C0.9900C16—H16A0.9900
C4—H4D0.9900C16—H16B0.9900
C5—C131.503 (3)O16—Br3'i3.0308 (18)
C5—C6A1.536 (3)O16—H16O0.84 (4)
C5—C6B1.568 (7)C1'—C6'1.394 (3)
C5—H5A0.9900C1'—C2'1.411 (3)
C5—H5B0.9900C2'—O2'1.355 (3)
C5—H5C1.12 (11)C2'—C3'1.395 (3)
C5—H5D0.96 (10)O2'—H2'O0.85 (3)
C6A—C71.481 (4)C3'—C4'1.386 (3)
C6A—C611.544 (3)C3'—Br3'1.894 (2)
C6A—H6A1.0000C4'—C5'1.386 (3)
C6B—C71.398 (8)C4'—H4'0.9500
C6B—C611.620 (8)C5'—C6'1.379 (3)
C6B—H6B1.0000C5'—Cl5'1.745 (2)
C61—C621.358 (5)C6'—H6'0.9500
O1—C1—C11121.6 (2)C62—C61—C6B149.5 (4)
O1—C1—C2B119.4 (3)C66—C61—C6B91.3 (4)
C11—C1—C2B116.8 (2)C61—C62—C63121.2 (3)
O1—C1—C2A122.0 (2)C61—C62—H62119.4
C11—C1—C2A114.6 (3)C63—C62—H62119.4
C3A—C2A—C1120.4 (4)C64—C63—C62121.1 (3)
C3A—C2A—H2A1107.2C64—C63—H63119.4
C1—C2A—H2A1107.2C62—C63—H63119.4
C3A—C2A—H2A2107.2C63—C64—C65119.3 (2)
C1—C2A—H2A2107.2C63—C64—H64120.3
H2A1—C2A—H2A2106.9C65—C64—H64120.3
C2A—C3A—C4125.5 (4)C64—C65—C66118.9 (3)
C2A—C3A—C31122.0 (4)C64—C65—H65120.6
C4—C3A—C31101.9 (3)C66—C65—H65120.6
C2A—C3A—H3A100.8C61—C66—C65120.8 (3)
C4—C3A—H3A100.8C61—C66—H66A119.6
C31—C3A—H3A100.8C65—C66—H66A119.6
C3B—C2B—C1120.3 (4)C61—C66—H66119.6
C3B—C2B—H2B1107.3C65—C66—H66119.6
C1—C2B—H2B1107.3C6B—C7—C8122.8 (3)
C3B—C2B—H2B2107.3C6A—C7—C8109.5 (2)
C1—C2B—H2B2107.3C6A—C7—H7A109.8
H2B1—C2B—H2B2106.9C8—C7—H7A109.8
C2B—C3B—C4120.9 (4)C6A—C7—H7B109.8
C2B—C3B—C31124.2 (4)C8—C7—H7B109.8
C4—C3B—C31106.8 (3)H7A—C7—H7B108.2
C2B—C3B—H3B99.5C6B—C7—H7C106.6
C4—C3B—H3B99.5C8—C7—H7C106.6
C31—C3B—H3B99.5C6B—C7—H7D106.6
C32—C31—C36118.7 (3)C8—C7—H7D106.6
C32—C31—C3B105.5 (4)H7C—C7—H7D106.6
C36—C31—C3B134.7 (4)O8—C8—C14121.73 (19)
C32—C31—C3A134.0 (3)O8—C8—C7119.51 (19)
C36—C31—C3A107.2 (4)C14—C8—C7118.70 (19)
C31—C32—C33120.6 (3)C11—C9—C14107.62 (15)
C31—C32—H32119.7C11—C9—C1'112.62 (16)
C33—C32—H32119.7C14—C9—C1'111.48 (16)
C34—C33—C32119.4 (3)C11—C9—H9108.3
C34—C33—H33120.3C14—C9—H9108.3
C32—C33—H33120.3C1'—C9—H9108.3
C35—C34—C33120.5 (3)C12—C11—C1121.16 (18)
C35—C34—H34119.7C12—C11—C9120.74 (17)
C33—C34—H34119.7C1—C11—C9118.10 (17)
C34—C35—C36119.6 (3)C11—C12—N10120.59 (17)
C34—C35—H35120.2C11—C12—C4122.66 (18)
C36—C35—H35120.2N10—C12—C4116.67 (17)
C31—C36—C35121.1 (3)N10—C13—C14119.85 (18)
C31—C36—H36A119.5N10—C13—C5118.23 (17)
C35—C36—H36A119.5C14—C13—C5121.89 (17)
C31—C36—H36B119.5C13—C14—C8120.01 (18)
C35—C36—H36B119.5C13—C14—C9120.03 (17)
C12—C4—C3B113.8 (2)C8—C14—C9119.87 (17)
C12—C4—C3A111.0 (2)C13—N10—C12119.05 (16)
C12—C4—H4A109.4C13—N10—C15122.07 (16)
C3A—C4—H4A109.4C12—N10—C15118.77 (15)
C12—C4—H4B109.4N10—C15—C16111.18 (16)
C3A—C4—H4B109.4N10—C15—H15A109.4
H4A—C4—H4B108.0C16—C15—H15A109.4
C12—C4—H4C108.8N10—C15—H15B109.4
C3B—C4—H4C108.8C16—C15—H15B109.4
C12—C4—H4D108.8H15A—C15—H15B108.0
C3B—C4—H4D108.8O16—C16—C15107.94 (17)
H4C—C4—H4D107.7O16—C16—H16A110.1
C13—C5—C6A112.05 (17)C15—C16—H16A110.1
C13—C5—C6B112.7 (3)O16—C16—H16B110.1
C13—C5—H5A109.2C15—C16—H16B110.1
C6A—C5—H5A109.2H16A—C16—H16B108.4
C13—C5—H5B109.2C16—O16—Br3'i141.43 (14)
C6A—C5—H5B109.2C16—O16—H16O105 (3)
H5A—C5—H5B107.9Br3'i—O16—H16O96 (3)
C13—C5—H5C110 (5)C6'—C1'—C2'118.60 (19)
C6B—C5—H5C100 (5)C6'—C1'—C9121.04 (18)
C13—C5—H5D107 (6)C2'—C1'—C9120.31 (17)
C6B—C5—H5D120 (6)O2'—C2'—C3'117.75 (18)
H5C—C5—H5D106 (8)O2'—C2'—C1'123.03 (18)
C7—C6A—C5111.7 (2)C3'—C2'—C1'119.20 (19)
C7—C6A—C61113.1 (2)C2'—O2'—H2'O114 (2)
C5—C6A—C61107.9 (2)C4'—C3'—C2'121.9 (2)
C7—C6A—H6A108.0C4'—C3'—Br3'118.69 (16)
C5—C6A—H6A108.0C2'—C3'—Br3'119.43 (16)
C61—C6A—H6A108.0C5'—C4'—C3'118.0 (2)
C7—C6B—C5114.4 (5)C5'—C4'—H4'121.0
C7—C6B—C61113.3 (5)C3'—C4'—H4'121.0
C5—C6B—C61102.7 (5)C6'—C5'—C4'121.5 (2)
C7—C6B—H6B108.7C6'—C5'—Cl5'119.15 (18)
C5—C6B—H6B108.7C4'—C5'—Cl5'119.32 (18)
C61—C6B—H6B108.7C5'—C6'—C1'120.7 (2)
C62—C61—C66118.7 (2)C5'—C6'—H6'119.6
C62—C61—C6A114.7 (3)C1'—C6'—H6'119.6
C66—C61—C6A126.5 (3)
O1—C1—C2A—C3A176.6 (5)O1—C1—C11—C91.9 (4)
C11—C1—C2A—C3A11.9 (8)C2B—C1—C11—C9164.9 (4)
C1—C2A—C3A—C48.1 (10)C2A—C1—C11—C9162.9 (4)
C1—C2A—C3A—C31146.2 (6)C14—C9—C11—C1231.2 (3)
O1—C1—C2B—C3B179.8 (5)C1'—C9—C11—C1292.0 (2)
C11—C1—C2B—C3B16.9 (7)C14—C9—C11—C1148.5 (2)
C1—C2B—C3B—C41.0 (9)C1'—C9—C11—C188.2 (2)
C1—C2B—C3B—C31143.5 (6)C1—C11—C12—N10173.7 (2)
C2B—C3B—C31—C3285.6 (7)C9—C11—C12—N106.1 (3)
C4—C3B—C31—C32125.8 (4)C1—C11—C12—C43.0 (3)
C2B—C3B—C31—C36106.7 (6)C9—C11—C12—C4177.19 (18)
C4—C3B—C31—C3641.9 (7)C3B—C4—C12—C1118.4 (4)
C2A—C3A—C31—C3255.6 (8)C3A—C4—C12—C1115.3 (4)
C4—C3A—C31—C3290.6 (4)C3B—C4—C12—N10158.5 (4)
C2A—C3A—C31—C36121.9 (6)C3A—C4—C12—N10167.9 (3)
C4—C3A—C31—C3691.9 (4)C6A—C5—C13—N10176.0 (2)
C36—C31—C32—C330.7 (5)C6B—C5—C13—N10145.0 (4)
C3B—C31—C32—C33169.3 (3)C6A—C5—C13—C146.0 (3)
C3A—C31—C32—C33178.0 (3)C6B—C5—C13—C1433.0 (4)
C31—C32—C33—C340.3 (5)N10—C13—C14—C8162.73 (19)
C32—C33—C34—C350.1 (6)C5—C13—C14—C815.3 (3)
C33—C34—C35—C360.3 (6)N10—C13—C14—C913.7 (3)
C32—C31—C36—C350.9 (5)C5—C13—C14—C9168.33 (17)
C3B—C31—C36—C35165.5 (4)O8—C8—C14—C13179.0 (2)
C3A—C31—C36—C35178.9 (3)C7—C8—C14—C131.7 (3)
C34—C35—C36—C310.8 (5)O8—C8—C14—C92.6 (3)
C2B—C3B—C4—C1215.9 (7)C7—C8—C14—C9174.7 (2)
C31—C3B—C4—C12165.8 (3)C11—C9—C14—C1335.1 (2)
C2A—C3A—C4—C1221.5 (7)C1'—C9—C14—C1388.9 (2)
C31—C3A—C4—C12166.1 (3)C11—C9—C14—C8141.31 (19)
C13—C5—C6A—C743.4 (3)C1'—C9—C14—C894.7 (2)
C13—C5—C6A—C61168.4 (2)C14—C13—N10—C1215.8 (3)
C13—C5—C6B—C734.3 (7)C5—C13—N10—C12162.27 (17)
C13—C5—C6B—C61157.5 (3)C14—C13—N10—C15167.96 (18)
C7—C6A—C61—C62130.3 (3)C5—C13—N10—C1514.0 (3)
C5—C6A—C61—C62105.7 (3)C11—C12—N10—C1320.0 (3)
C7—C6A—C61—C6653.9 (4)C4—C12—N10—C13156.96 (18)
C5—C6A—C61—C6670.1 (3)C11—C12—N10—C15163.66 (19)
C7—C6B—C61—C6273.4 (8)C4—C12—N10—C1519.4 (3)
C5—C6B—C61—C6250.6 (9)C13—N10—C15—C1697.4 (2)
C7—C6B—C61—C66116.4 (5)C12—N10—C15—C1686.4 (2)
C5—C6B—C61—C66119.6 (4)N10—C15—C16—O1675.8 (2)
C66—C61—C62—C630.7 (4)C15—C16—O16—Br3'i80.6 (3)
C6A—C61—C62—C63176.9 (2)C11—C9—C1'—C6'24.5 (3)
C6B—C61—C62—C63169.5 (6)C14—C9—C1'—C6'96.6 (2)
C61—C62—C63—C640.5 (4)C11—C9—C1'—C2'158.07 (18)
C62—C63—C64—C650.1 (4)C14—C9—C1'—C2'80.8 (2)
C63—C64—C65—C660.2 (4)C6'—C1'—C2'—O2'179.77 (18)
C62—C61—C66—C650.4 (4)C9—C1'—C2'—O2'2.7 (3)
C6A—C61—C66—C65176.1 (2)C6'—C1'—C2'—C3'0.9 (3)
C6B—C61—C66—C65174.8 (3)C9—C1'—C2'—C3'178.40 (18)
C64—C65—C66—C610.0 (4)O2'—C2'—C3'—C4'179.7 (2)
C5—C6B—C7—C820.7 (8)C1'—C2'—C3'—C4'1.3 (3)
C61—C6B—C7—C8138.1 (4)O2'—C2'—C3'—Br3'0.8 (3)
C5—C6A—C7—C858.8 (3)C1'—C2'—C3'—Br3'179.80 (15)
C61—C6A—C7—C8179.2 (2)C2'—C3'—C4'—C5'0.6 (3)
C6B—C7—C8—O8175.2 (5)Br3'—C3'—C4'—C5'179.42 (18)
C6A—C7—C8—O8143.9 (2)C3'—C4'—C5'—C6'0.7 (4)
C6B—C7—C8—C142.2 (6)C3'—C4'—C5'—Cl5'179.59 (18)
C6A—C7—C8—C1438.7 (3)C4'—C5'—C6'—C1'1.2 (4)
O1—C1—C11—C12177.9 (2)Cl5'—C5'—C6'—C1'179.13 (17)
C2B—C1—C11—C1214.9 (5)C2'—C1'—C6'—C5'0.4 (3)
C2A—C1—C11—C1217.3 (5)C9—C1'—C6'—C5'177.2 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg7 and Cg8 are the centroids of the C31–C36 and C61–C66 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2O···O80.85 (3)1.79 (3)2.626 (2)170 (3)
O16—H16O···O8ii0.84 (4)1.97 (4)2.782 (2)163 (4)
C15—H15A···O16iii0.992.683.622 (3)159
C5—H5A···O8iv0.992.693.669 (3)172
C5—H5A···O2iv0.992.703.336 (3)122
C15—H15B···O1iv0.992.473.451 (3)172
C34—H34···Cl5v0.952.873.560 (3)131
C16—H16B···Cg8iii0.992.663.529 (3)147
C65—H65···Cg7vi0.952.783.648 (4)152
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+1/2, z1/2; (v) x+2, y1/2, z+1/2; (vi) x1, y1/2, z3/2.
 

Funding information

The authors thank the University of Otago for purchase of the diffractometer. JS thanks the Chemistry Department, University of Otago for support of his work.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2014). Acta Cryst. E70, 44–47.  CrossRef IUCr Journals Google Scholar
First citationAbdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2016). IUCrData, 1, x152425.  Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAly, E. I. & Abadi, A. H. (2004). Arch. Pharm. Res. 27, 713–719.  Web of Science CrossRef Google Scholar
First citationAndleeb, H., Khan, I., Bauzá, A., Tahir, M. N., Simpson, J., Hameed, S. & Frontera, A. (2018). Acta Cryst. C74, 816–829.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, Y. L., Lu, C. M., Chen, I. L., Tsao, L. T. & Wang, J. P. (2002). J. Med. Chem. 45, 4689–4694.  Web of Science CrossRef Google Scholar
First citationChifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894–906.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDi Giorgio, C., De Meo, M., Chiron, J., Delmas, F., Nikoyan, A., Jean, S., Dumenil, G., Timon-David, P. & Galy, J. P. (2005). Bioorg. Med. Chem. 13, 5560–5568.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGamage, S. A., Spicer, J. A., Atwell, G. J., Finlay, G. J., Baguley, B. C. & Denny, W. A. (1999). J. Med. Chem. 42, 2383–2393.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, H. C. & Jaiswal, V. (2010). Indian J. Heterocycl. Chem. 19, 409–410.  Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKaya, M., Yıldırır, Y. & Çelik, G. Y. (2011). Med. Chem. Res. 20, 293–299.  Web of Science CrossRef Google Scholar
First citationKhalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, A., Srivastava, K., Kumar, S. R., Puri, S. K. & Chauhan, M. S. (2009). Bioorg. Med. Chem. Lett. 19, 6996–6999.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatter, H., Nazaré, M., Güssregen, S., Will, D. W., Schreuder, H., Bauer, A., Urmann, M., Ritter, K., Wagner, M. & Wehner, V. (2009). Angew. Chem. Int. Ed. 48, 2911–2916.  Web of Science CrossRef CAS Google Scholar
First citationMohamed, S. K., Akkurt, M., Horton, P. N., Abdelhamid, A. A. & Remaily, M. A. A. E. (2013). Acta Cryst. E69, o85–o86.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNiknam, K. & Damya, M. (2009). Jnl Chin. Chem. Soc. 56, 659–665.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShukla, R., Khan, I., Ibrar, A., Simpson, J. & Chopra, D. (2017). CrystEngComm, 19, 3485–3498.  Web of Science CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, A. & Nizamuddin, A. (2004). Indian J. Heterocycl. Chem. 13, 261–264.  Google Scholar
First citationTomar, V., Bhattacharjee, G., Kamaluddin, S. R., Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Eur. J. Med. Chem. 45, 745–751.  Web of Science CrossRef Google Scholar
First citationTonelli, M., Vettoretti, G., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Busonera, B., Ouhtit, A., Farci, P., Blois, S., Giliberti, G. & La Colla, P. (2011). Antiviral Res. 91, 133–141.  Web of Science CrossRef Google Scholar
First citationTripathi, R. P., Verma, S. S., Pandey, J., Agarwal, K. C., Chaturvedi, V., Manju, Y. K., Srivastva, A. K., Gaikwad, A. & Sinha, S. (2006). Bioorg. Med. Chem. Lett. 16, 5144–5147.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds