research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of fac-bis­­[bis­­(pyridin-2-yl)methan­amine]­iron(II) 1,1,3,3-tetra­cyano-2-(di­cyano­methyl­­idene)propane-1,3-diide, [Fe(dipa)2](tcpd)

CROSSMARK_Color_square_no_text.svg

aDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, bLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, cDepartment of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA, dFachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany, and eLaboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco
*Correspondence e-mail: pcorfield@fordham.edu, fat_setifi@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 16 July 2018; accepted 4 August 2018; online 14 August 2018)

In the title compound, [Fe(C11H11N3)2](C10N6), the FeII cation is coordinated by two bis(pyridin-2-yl)methanamine (dipa) ligands and has crystallographic twofold symmetry. There are deviations from ideal octa­hedral geometry due to the steric requirements of the ligands. The polynitrile 1,1,3,3-tetra­cyano-2-(di­cyano­methylid­ene)propane-1,3-diide (tcpd2−) dianion is disordered about an inversion center and is not coordinated to the Fe atom. The anion is not planar but has a propeller shape. In the crystal, weak N—H⋯N inter­actions between the amine H atoms of the dipa ligands and two nitrile groups of the anion form an alternating chain of cations and anions related by the C-centering of the unit cell.

1. Chemical context

Polynitrile anions have recently received considerable attention in the fields of coordination chemistry and mol­ecular materials (Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]). These organic anions are of inter­est for their ability to act towards metal centers with various coordination modes and for their high degree of electronic delocalization (Miyazaki et al., 2003[Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195-1196.]; Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). J. Mol. Struct, 890, 255-262.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]; Atmani et al., 2008[Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921-924.]; Karpov et al., 2018[Karpov, S. V., Kayukov, Y. S., Grigorév, A. A. & Tafeenko, V. A. (2018). Z. Anorg. Allg. Chem. 644, 138-141.]). We are inter­ested in using these anionic ligands in combination with other neutral bridging coligands to explore their structural features and properties relevant to the field of mol­ecular materials exhibiting the spin-crossover (SCO) phenomenon (Setifi et al., 2014[Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97-104.]; Dupouy et al., 2009[Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Létard, J.-F. (2009). Chem. Commun. pp. 3404-3406.]). In an attempt to prepare such an iron(II) complex using solvothermal synthesis, we obtained instead the title compound fac-bis­[bis­(pyridin-2-yl)methanamine]­iron(II) 1,1,3,3-tetra­cyano-2-(di­cyano­methylid­ene)propane-1,3-diide, [Fe(dipa)2](tcpd).

2. Structural commentary

The structure is built from FeII cations coordinated by two bis­(pyridin-2-yl)methanamine (C11H11N3; dipa) ligands, and 1,1,3,3-tetra­cyano-2-(di­cyano­methylid­ene)propane-1,3-diide (C10N62−; tcpd2−) anions. The Fe atom lies on a twofold axis, with its coordinated dipa ligands related by the twofold axis (Fig. 1[link]). The anion lies on an inversion center and is disordered. Detailed geometry of the anion was extracted as described below. The dipa ligand coordinates the Fe atom through the central amino N atom and the two pyridinium N atoms in a fac arrangement. The dipa ligand assumes the butterfly conformation found previously (Setifi et al., 2017[Setifi, Z., Bernès, S., Setifi, F., Kaur, M. & Jasinski, J. P. (2017). IUCrData, 2, x171007.]), with an approximate mirror plane bis­ecting the ligand, and the pyridine rings are at an angle of 56.66 (6)° to each other. Fe—N distances to the pyridine N atoms average 1.959 (1) Å, slightly shorter than the Fe—N distance of 2.004 (2) Å to the amine group. The five-membered chelate ring angles at the Fe atom are 80.10 (6) and 81.55 (6)°, while the butterfly angle N1—Fe—N3 is 90.10 (6)°. The two independent trans angles at Fe in the octa­hedrally coordinated Fe atom are 172.75 (9) and 174.61 (6)°. Otherwise, bond lengths and angles within the ligand are as expected. The tcpd2− anion, which is disordered about a crystallographic inversion center, is propeller-shaped, with approximate C3 symmetry, and a geometry similar to that described previously by Setifi et al. (2015[Setifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509-515.]). The C(CN)2 planes are tilted by 31.1 (5), 24.7 (4), and 30.0 (5)° with respect to the C21–C24 central plane. The C—C distances average 1.414 (18) Å, indicative of the sp2 hybridization of all the C atoms. The average C—N distance in the CN groups is 1.154 (11) Å.

[Scheme 1]
[Figure 1]
Figure 1
The [Fe(dipa2)]2+ cation and tcpd2− anion in the title compound. Atoms in the cation with the # suffix are related to the asymmetric unit by (1 − x, y, [3 \over 2] − z). Only one orientation of the disordered anion is shown. Displacement ellipsoids are drawn at the probability 50% level.

3. Supra­molecular features

Fig. 2[link] shows the packing of the crystal structure. The cations stack along the b-axis direction in columns related by the glide planes and the C-centering. The N3/C7–C11 pyridine ring lies almost perpendicular to the b axis and partially overlaps the parallel ring related by the center of symmetry at ([1 \over 4], [1 \over 4], [1 \over 2]). The planes of these pyridine rings are 3.442 (1) Å apart. The anion is disordered about a center of symmetry displaced by b/2 from the center of these pyridine rings. Fig. 2[link] shows the inter­actions between the amine H atoms and the CN groups. There is an N2—H12⋯N25 hydrogen bond, with N⋯N = 2.95 (1) Å and N—H ⋯ N = 157.1 (2)° (Table 1[link]). The weaker inter­actions N2—H13⋯N27(x − [{1\over 2}], y + [{1\over 2}], z) and N2—H13⋯N28(x − [{1\over 2}], y + [{1\over 2}], z) link the cations and anions into alternating chains along [1[\overline{1}]0]. Possible interactions between CN groups and atom H6 are also listed in Table 1[link]. Other short inter­actions are C6⋯N28(x − [{1\over 2}], [{1\over 2}] + y, z) of 2.99 Å and C5⋯N28([3 \over 2] − x, [1 \over 2] − y, 1 − z) of 3.11 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H12⋯N25 0.88 (2) 2.12 (3) 2.950 (13) 156.9 (19)
N2—H13⋯N27i 0.90 (2) 2.64 (2) 3.459 (8) 151.1 (17)
N2—H13⋯N28i 0.90 (2) 2.61 (2) 3.138 (11) 118.2 (16)
C6—H6⋯N25ii 1.00 2.47 3.129 (13) 123
C6—H6⋯N28i 1.00 2.41 2.986 (13) 116
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Projection of the structure down the b axis, with weak N—H⋯N inter­actions shown as dashed orange bonds. Only one disorder mate for the anion is shown. Cations have more solid bonds. The asymmetric unit is shown in bold.

4. Database survey

A search for the tcpd2− anion in the Cambridge Structural Database (CSD, Version of 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) produced 49 hits for structures with atomic coordinates available. We selected 20 of these hits for analysis, not using 23 variable-temperature studies and six with disordered tcpd2− anions for which detailed parameters were not available. In nine of the 20 studies, the anion was present in an uncoordinated form, and in the rest, it was coordinated to a first-row transition metal. The bond lengths in the 20 structures analyzed were quite consistent, with sample deviations of 0.013 Å. The two types of C—C distances have the same average shortened distance of 1.417 (1) Å, and the C≡N bond lengths average 1.147 (1) Å, showing the same trends as in the present structure. In all cases, the anion as a whole was nonplanar, with each C(CN)2 group twisted in the same direction relative to the central four-atom plane, with an average twist angle of 24.4 (7)°. Presumably, this minimizes repulsion between the N atoms, which carry a partial negative charge. The average twist angle is the same, regardless of whether the anion is coordinated. In an individual structure, the twist angles were invariably scattered, with the average minimum twist angle some 67% of the average maximum twist angle. The twist angles for tcpd2− in the present structure average 28.6 (3)°, higher than the average twist angle in any of the nine free anions reviewed in the CSD.

A search for the dipa ligand yielded nine hits, with one, two, or three dipa mol­ecules coordinated to transition-metal atoms in all cases. There were only three instances of dipa coordinated to an Fe atom, including Setifi et al. (2017[Setifi, Z., Bernès, S., Setifi, F., Kaur, M. & Jasinski, J. P. (2017). IUCrData, 2, x171007.]).

5. Synthesis and crystallization

The title compound was synthesized solvothermally under autogenous pressure from a mixture of FeSO4·7H2O (28 mg, 0.1 mmol), dipa (19 mg, 0.1 mmol) and K2tcpd (28 mg, 0.1 mmol) in water–ethanol (4:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 423 K for 3 d, and then cooled to room temperature at a rate of 10 K h−1 (yield 23%). Red blocks of the title compound suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The tcpd2− anion lies on an inversion center, which requires the anion to be disordered. The three C atoms bonded to the central C21 atom are easily resolved from their centrosymmetric equivalents, but the six CN groups are close enough to a centric array that the disorder mates are not resolved in a difference map. Indeed, a preliminary refinement that constrained the cyanide C and N atoms to centrically related positions converged successfully. This treatment led to unreasonable C—C≡N bond angles, however, and hindered a detailed analysis of the anion geometry. Scrutiny of a model indicated that while the cyanide C atoms might be very close to their centric counterparts, the cyanide N atoms ought to lie far enough apart to refine separately. Accordingly, the positions for the N atoms were calculated manually, assuming linear C—C≡N bonding and typical C—C and C≡N distances. The complete anion could then be refined by tightly restricting differences from threefold symmetry in chemically equivalent C—C distances and C—C—C angles, and refining the C and N atoms first isotropically and then anisotropically. At this point, cyanide C atoms had moved an average of 0.4 Å from their centric images, and cyanide N atoms were at an average distance of 0.5 Å from their images (Fig. 3[link]). The restraints could now be removed for the final refinements, except that displacement parameters for nitrile groups 25–27 were constrained to be the same as those for nitrile groups 28–30, and a restraint on the anisotropy of C atoms 25–30 was added via an ISOR instruction. In a separate refinement, the coordinates of the cyanide C atoms were arbitrarily moved small amounts before the restrained refinements, but the same final structure was obtained. C-bound H atoms were constrained to idealized positions, with C—H distances of 1.00 Å for the CH group and 0.95 Å for aromatic H atoms, and with U values set at 1.2 times the Uiso value of their bonded atoms. The positions of the amino H atoms were refined independently, although their final positions are very close to what would have been predicted. Their U values were set at 1.5 times the Uiso value for N2. We also explored refinements in the space group Cc, which would not force disorder on the anion model, nor impose twofold symmetry on the cation. Although the noncentric model refined smoothly, it was abandoned because some of the displacement ellipsoids were unreasonable and convergence occurred at R1 = 0.043 and wR = 0.109, values higher than in our final centric model, even though many more variables were refined in the noncentric model.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C11H11N3)2](C10N6)
Mr 630.46
Crystal system, space group Monoclinic, C2/c
Temperature (K) 162
a, b, c (Å) 17.5394 (7), 13.5094 (7), 13.7913 (6)
β (°) 117.006 (3)
V3) 2911.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.56
Crystal size (mm) 0.39 × 0.20 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.667, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11328, 3227, 2623
Rint 0.035
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.04
No. of reflections 3227
No. of parameters 243
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.42
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 3]
Figure 3
The tcpd2− anion structure superimposed on its disorder mate related by ([3 \over 2] − x, [1 \over 2] − y, 1 − z). Atom C21 lies on the center of symmetry at ([3 \over 4], [1 \over 4], [1 \over 2]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: publCIF (Westrip, 2010).

fac-Bis[bis(pyridin-2-yl)methanamine]iron(II) 1,1,3,3-tetracyano-2-(dicyanomethylene)propane-1,3-diide, [Fe(dipa)2](tcpd) top
Crystal data top
[Fe(C11H11N3)2](C10N6)F(000) = 1296
Mr = 630.46Dx = 1.438 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.5394 (7) ÅCell parameters from 3760 reflections
b = 13.5094 (7) Åθ = 2.2–27.1°
c = 13.7913 (6) ŵ = 0.56 mm1
β = 117.006 (3)°T = 162 K
V = 2911.5 (2) Å3Plate, red
Z = 40.39 × 0.20 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
2623 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 27.1°, θmin = 2.0°
Tmin = 0.667, Tmax = 0.746h = 2222
11328 measured reflectionsk = 1717
3227 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0355P)2 + 2.4992P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3227 reflectionsΔρmax = 0.31 e Å3
243 parametersΔρmin = 0.42 e Å3
18 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe0.5000000.33107 (3)0.7500000.01516 (11)
N10.51003 (9)0.23776 (11)0.64840 (12)0.0171 (3)
N20.49834 (10)0.42852 (12)0.63946 (12)0.0182 (3)
H120.5465 (14)0.4381 (15)0.6361 (17)0.027*
H130.4774 (13)0.4883 (16)0.6433 (16)0.027*
N30.37599 (9)0.34028 (11)0.65615 (12)0.0178 (3)
C10.55086 (12)0.15040 (13)0.66787 (15)0.0220 (4)
H10.5731140.1229720.7389190.026*
C20.56168 (13)0.09904 (15)0.58871 (16)0.0271 (4)
H20.5912050.0375720.6051560.032*
C30.52888 (13)0.13836 (15)0.48477 (16)0.0269 (4)
H30.5358290.1042950.4290380.032*
C40.48589 (11)0.22779 (14)0.46310 (15)0.0223 (4)
H40.4623490.2558030.3922300.027*
C50.47789 (11)0.27554 (13)0.54654 (14)0.0185 (4)
C60.43762 (11)0.37540 (13)0.53883 (14)0.0190 (4)
H60.4275890.4116850.4708690.023*
C70.35729 (11)0.36624 (13)0.55295 (15)0.0194 (4)
C80.27498 (12)0.38700 (14)0.47501 (16)0.0246 (4)
H80.2636060.4037020.4027820.030*
C90.20953 (12)0.38291 (15)0.50458 (17)0.0287 (5)
H90.1524250.3979430.4531070.034*
C100.22812 (12)0.35672 (15)0.60976 (17)0.0288 (5)
H100.1839290.3537570.6314500.035*
C110.31139 (11)0.33492 (14)0.68303 (15)0.0225 (4)
H110.3235080.3154860.7547950.027*
C210.7500000.2500000.5000000.0192 (5)
C220.6860 (2)0.3267 (3)0.4533 (3)0.0222 (8)0.5
C230.8132 (2)0.2577 (3)0.6062 (3)0.0238 (8)0.5
C240.7474 (2)0.1695 (3)0.4309 (3)0.0208 (7)0.5
C250.6592 (6)0.3810 (9)0.5196 (6)0.0197 (11)0.5
C260.8404 (9)0.3491 (10)0.6596 (15)0.0225 (16)0.5
C270.8597 (9)0.1729 (6)0.6652 (11)0.0289 (14)0.5
C280.8232 (6)0.1203 (9)0.4490 (6)0.0197 (11)0.5
C290.6717 (9)0.1319 (10)0.3432 (15)0.0225 (16)0.5
C300.6485 (9)0.3540 (6)0.3413 (12)0.0289 (14)0.5
N250.6372 (6)0.4221 (10)0.5748 (6)0.0298 (14)0.5
N260.8632 (6)0.4253 (8)0.7055 (10)0.0391 (14)0.5
N270.8951 (7)0.1069 (8)0.7166 (6)0.0490 (14)0.5
N280.8855 (6)0.0826 (10)0.4618 (6)0.0298 (14)0.5
N290.6118 (6)0.0972 (8)0.2768 (10)0.0391 (14)0.5
N300.6157 (7)0.3822 (8)0.2521 (6)0.0490 (14)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.01275 (17)0.01604 (19)0.01247 (18)0.0000.00205 (14)0.000
N10.0157 (7)0.0164 (8)0.0154 (7)0.0002 (6)0.0038 (6)0.0006 (6)
N20.0149 (7)0.0163 (8)0.0201 (8)0.0001 (6)0.0051 (6)0.0007 (6)
N30.0170 (7)0.0163 (8)0.0173 (7)0.0017 (6)0.0052 (6)0.0021 (6)
C10.0228 (9)0.0191 (10)0.0199 (10)0.0015 (7)0.0059 (8)0.0015 (7)
C20.0305 (10)0.0196 (10)0.0291 (11)0.0035 (8)0.0117 (9)0.0027 (8)
C30.0300 (10)0.0281 (11)0.0233 (10)0.0040 (9)0.0126 (9)0.0089 (8)
C40.0215 (9)0.0268 (10)0.0150 (9)0.0046 (8)0.0051 (8)0.0006 (8)
C50.0150 (8)0.0206 (10)0.0166 (9)0.0029 (7)0.0044 (7)0.0009 (7)
C60.0178 (9)0.0196 (9)0.0148 (9)0.0005 (7)0.0034 (7)0.0033 (7)
C70.0182 (8)0.0149 (9)0.0197 (9)0.0008 (7)0.0040 (7)0.0009 (7)
C80.0203 (9)0.0222 (10)0.0215 (10)0.0004 (8)0.0008 (8)0.0004 (8)
C90.0136 (9)0.0295 (11)0.0303 (11)0.0001 (8)0.0013 (8)0.0044 (9)
C100.0172 (9)0.0325 (12)0.0349 (12)0.0035 (8)0.0102 (9)0.0087 (9)
C110.0194 (9)0.0246 (10)0.0215 (9)0.0048 (8)0.0076 (8)0.0056 (8)
C210.0173 (12)0.0220 (14)0.0160 (13)0.0025 (10)0.0057 (10)0.0021 (10)
C220.0199 (17)0.0241 (19)0.0181 (18)0.0045 (16)0.0048 (15)0.0017 (16)
C230.0263 (19)0.021 (2)0.0196 (19)0.0034 (16)0.0066 (16)0.0027 (15)
C240.0195 (17)0.0201 (18)0.0204 (18)0.0023 (15)0.0069 (15)0.0019 (15)
C250.019 (3)0.0175 (10)0.018 (3)0.002 (2)0.005 (3)0.002 (3)
C260.022 (3)0.024 (4)0.0198 (12)0.006 (3)0.008 (2)0.003 (3)
C270.029 (2)0.023 (4)0.0211 (16)0.001 (3)0.0001 (15)0.000 (3)
C280.019 (3)0.0175 (10)0.018 (3)0.002 (2)0.005 (3)0.002 (3)
C290.022 (3)0.024 (4)0.0198 (12)0.006 (3)0.008 (2)0.003 (3)
C300.029 (2)0.023 (4)0.0211 (16)0.001 (3)0.0001 (15)0.000 (3)
N250.031 (4)0.0234 (15)0.041 (5)0.004 (3)0.021 (3)0.002 (4)
N260.040 (5)0.035 (5)0.032 (4)0.001 (3)0.008 (4)0.010 (3)
N270.063 (3)0.045 (2)0.024 (4)0.0162 (19)0.007 (3)0.009 (3)
N280.031 (4)0.0234 (15)0.041 (5)0.004 (3)0.021 (3)0.002 (4)
N290.040 (5)0.035 (5)0.032 (4)0.001 (3)0.008 (4)0.010 (3)
N300.063 (3)0.045 (2)0.024 (4)0.0162 (19)0.007 (3)0.009 (3)
Geometric parameters (Å, º) top
Fe—N1i1.9512 (15)C7—C81.382 (2)
Fe—N11.9512 (15)C8—C91.383 (3)
Fe—N3i1.9659 (14)C8—H80.9500
Fe—N31.9659 (14)C9—C101.381 (3)
Fe—N2i2.0042 (16)C9—H90.9500
Fe—N22.0043 (16)C10—C111.379 (3)
N1—C11.343 (2)C10—H100.9500
N1—C51.354 (2)C11—H110.9500
N2—C61.494 (2)C21—C231.383 (4)
N2—H120.88 (2)C21—C241.433 (4)
N2—H130.90 (2)C21—C221.447 (4)
N3—C111.345 (2)C22—C251.408 (12)
N3—C71.354 (2)C22—C301.425 (15)
C1—C21.377 (3)C23—C261.406 (14)
C1—H10.9500C23—C271.427 (11)
C2—C31.385 (3)C24—C281.403 (11)
C2—H20.9500C24—C291.424 (15)
C3—C41.383 (3)C25—N251.143 (18)
C3—H30.9500C26—N261.18 (2)
C4—C51.381 (3)C27—N271.133 (15)
C4—H40.9500C28—N281.145 (18)
C5—C61.504 (3)C29—N291.13 (2)
C6—C71.512 (2)C30—N301.161 (16)
C6—H61.0000
N1i—Fe—N199.51 (9)C4—C5—C6125.61 (16)
N1i—Fe—N3i90.09 (6)N2—C6—C5104.56 (14)
N1—Fe—N3i94.59 (6)N2—C6—C7103.44 (14)
N1i—Fe—N394.59 (6)C5—C6—C7110.64 (15)
N1—Fe—N390.09 (6)N2—C6—H6112.5
N3i—Fe—N3172.75 (9)C5—C6—H6112.5
N1i—Fe—N2i81.55 (6)C7—C6—H6112.5
N1—Fe—N2i174.61 (6)N3—C7—C8122.63 (17)
N3i—Fe—N2i80.10 (6)N3—C7—C6111.19 (15)
N3—Fe—N2i95.10 (6)C8—C7—C6126.07 (17)
N1i—Fe—N2174.61 (6)C7—C8—C9118.46 (18)
N1—Fe—N281.55 (6)C7—C8—H8120.8
N3i—Fe—N295.10 (6)C9—C8—H8120.8
N3—Fe—N280.10 (6)C10—C9—C8119.23 (17)
N2i—Fe—N297.89 (9)C10—C9—H9120.4
C1—N1—C5118.15 (16)C8—C9—H9120.4
C1—N1—Fe129.65 (13)C11—C10—C9119.42 (18)
C5—N1—Fe111.76 (12)C11—C10—H10120.3
C6—N2—Fe98.58 (11)C9—C10—H10120.3
C6—N2—H12108.6 (14)N3—C11—C10122.08 (18)
Fe—N2—H12117.1 (14)N3—C11—H11119.0
C6—N2—H13110.4 (13)C10—C11—H11119.0
Fe—N2—H13114.2 (13)C23—C21—C24122.0 (2)
H12—N2—H13107.5 (19)C23—C21—C22120.3 (2)
C11—N3—C7118.15 (15)C24—C21—C22117.6 (2)
C11—N3—Fe129.34 (13)C25—C22—C30116.3 (7)
C7—N3—Fe112.09 (11)C25—C22—C21120.3 (4)
N1—C1—C2122.49 (17)C30—C22—C21123.4 (6)
N1—C1—H1118.8C21—C23—C26122.6 (7)
C2—C1—H1118.8C21—C23—C27121.3 (5)
C1—C2—C3119.01 (18)C26—C23—C27115.9 (8)
C1—C2—H2120.5C28—C24—C29115.2 (7)
C3—C2—H2120.5C28—C24—C21120.0 (4)
C4—C3—C2119.21 (18)C29—C24—C21124.8 (6)
C4—C3—H3120.4N25—C25—C22177.7 (12)
C2—C3—H3120.4N26—C26—C23179.2 (19)
C5—C4—C3118.67 (17)N27—C27—C23176.0 (16)
C5—C4—H4120.7N28—C28—C24177.7 (12)
C3—C4—H4120.7N29—C29—C24176.1 (17)
N1—C5—C4122.46 (17)N30—C30—C22175.0 (12)
N1—C5—C6111.87 (15)
C5—N1—C1—C20.6 (3)C5—C6—C7—N368.77 (19)
Fe—N1—C1—C2171.08 (14)N2—C6—C7—C8133.42 (18)
N1—C1—C2—C30.4 (3)C5—C6—C7—C8115.1 (2)
C1—C2—C3—C40.3 (3)N3—C7—C8—C91.3 (3)
C2—C3—C4—C50.7 (3)C6—C7—C8—C9174.40 (18)
C1—N1—C5—C40.2 (3)C7—C8—C9—C101.1 (3)
Fe—N1—C5—C4172.93 (14)C8—C9—C10—C110.2 (3)
C1—N1—C5—C6177.48 (15)C7—N3—C11—C101.2 (3)
Fe—N1—C5—C64.33 (17)Fe—N3—C11—C10170.60 (14)
C3—C4—C5—N10.4 (3)C9—C10—C11—N31.4 (3)
C3—C4—C5—C6176.44 (16)C23—C21—C22—C2531.1 (7)
Fe—N2—C6—C556.76 (13)C24—C21—C22—C25151.7 (6)
Fe—N2—C6—C759.12 (13)C23—C21—C22—C30147.0 (6)
N1—C5—C6—N242.55 (18)C24—C21—C22—C3030.2 (7)
C4—C5—C6—N2134.61 (18)C24—C21—C23—C26151.9 (9)
N1—C5—C6—C768.22 (19)C22—C21—C23—C2625.2 (10)
C4—C5—C6—C7114.62 (19)C24—C21—C23—C2722.8 (9)
C11—N3—C7—C80.1 (3)C22—C21—C23—C27160.1 (8)
Fe—N3—C7—C8173.35 (14)C23—C21—C24—C2826.7 (6)
C11—N3—C7—C6176.15 (15)C22—C21—C24—C28150.5 (6)
Fe—N3—C7—C62.94 (18)C23—C21—C24—C29152.0 (10)
N2—C6—C7—N342.71 (18)C22—C21—C24—C2930.9 (10)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H12···N250.88 (2)2.12 (3)2.950 (13)156.9 (19)
N2—H13···N27ii0.90 (2)2.64 (2)3.459 (8)151.1 (17)
N2—H13···N28ii0.90 (2)2.61 (2)3.138 (11)118.2 (16)
C6—H6···N25iii1.002.473.129 (13)123
C6—H6···N28ii1.002.412.986 (13)116
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

FS gratefully acknowledges the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support.

References

First citationAtmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). J. Mol. Struct, 890, 255–262.  Web of Science CrossRef Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Létard, J.-F. (2009). Chem. Commun. pp. 3404–3406.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarpov, S. V., Kayukov, Y. S., Grigorév, A. A. & Tafeenko, V. A. (2018). Z. Anorg. Allg. Chem. 644, 138–141.  Web of Science CrossRef Google Scholar
First citationMiyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196.  Web of Science CrossRef CAS Google Scholar
First citationSetifi, Z., Bernès, S., Setifi, F., Kaur, M. & Jasinski, J. P. (2017). IUCrData, 2, x171007.  Google Scholar
First citationSetifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSetifi, Z., Valkonen, A., Fernandes, M. A., Nummelin, S., Boughzala, H., Setifi, F. & Glidewell, C. (2015). Acta Cryst. E71, 509–515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds