research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Inter­molecular inter­actions in a phenol-substituted benzimidazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

Edited by M. Zeller, Purdue University, USA (Received 22 January 2019; accepted 23 January 2019; online 29 January 2019)

Hydrogen bonding plays an important role in the design of solid-state structures and gels with desirable properties. 1-(4-Hydroxybenzyl)-2-(4-hydroxyphenyl)-5,6-dimethyl-1H-benzimidazole was isolated as the acetone disolvate, C22H20N2O2·2C3H6O. O—H⋯N hydrogen bonding between benz­imidazole mol­ecules results in chains parallel to [010]. One of the acetone solvate mol­ecules participates in O—H⋯O hydrogen bonding with the benzimidazole derivative. C—H⋯π inter­actions are observed in the extended structure. Hirshfeld surface analysis was used to explore the inter­molecular inter­actions and density functional theory was used to estimate the strength of the hydrogen bonds.

1. Chemical context

The formation of a gel rather than a crystalline solid depends on the ability of the dissolved gelator to self-assemble into a three-dimensional network structure incorporating the solvent via non-covalent inter­actions rather than self-assembly followed by crystallization. The study of the gelation properties of small organic compounds (organogelators) is of importance in soft-matter research because of possible biomedical applications (Lau & Kiick, 2015[Lau, H. K. & Kiick, K. L. (2015). Biomacromolecules, 16, 28-42.]; Huynh et al., 2011[Huynh, C. T., Nguyen, M. K. & Lee, D. S. (2011). Macromolecules, 44, 6629-6636.]; Ye et al., 2014[Ye, E., Chee, P. L., Prasad, A., Fang, X., Owh, C., Yeo, V. J. J. & Loh, X. J. (2014). Mater. Today, 17, 194-202.]), including potential use in tissue engin­eering (Xavier et al., 2015[Xavier, J. R., Thakur, T., Desai, P., Jaiswal, M. K., Sears, N., Cosgriff-Hernandez, E., Kaunas, R. & Gaharwar, A. K. (2015). ACS Nano, 9, 3109-3118.]; Yan et al., 2015[Yan, L.-P., Oliveira, J. M., Oliveira, A. L. & Reis, R. L. (2015). ACS Biomater. Sci. Eng. 1, 183-200.]), drug delivery and diagnostics (Wu & Wang, 2016[Wu, H.-Q. & Wang, C.-C. (2016). Langmuir, 32, 6211-6225.]; Tibbitt et al., 2016[Tibbitt, M. W., Dahlman, J. E. & Langer, R. (2016). J. Am. Chem. Soc. 138, 704-717.]), and medical implants (Liow et al., 2016[Liow, S. S., Dou, Q., Kai, D., Karim, A. A., Zhang, K., Xu, F. & Loh, X. J. (2016). ACS Biomater. Sci. Eng. 2, 295-316.]; Yasmeen et al., 2014[Yasmeen, S., Lo, M. K., Bajracharya, S. & Roldo, M. (2014). Langmuir, 30, 12977-12985.]).

Our efforts in this area include the preparation, structural characterization and exploration of the inter­molecular inter­actions in long-chain ester-substituted biphenyl derivatives (Geiger, Geiger, Moore et al., 2017[Geiger, D. K., Geiger, H. C., Moore, S. M. & Roberts, W. R. (2017). Acta Cryst. C73, 791-796.]; Geiger, Geiger, Roberts et al., 2018[Geiger, H. C., Geiger, D. K., Roberts, W. R., Morell, D. L., Huttunen, P., Schulman, J. L., Tran, M. & Farthing, D. (2018). Gels, 4, 34-49.]) and phenyphenol derivatives (Geiger, Geiger & Morell, 2018[Geiger, D. K., Geiger, H. C. & Morell, D. L. (2018). Acta Cryst. E74, 594-599.]). We have also reported a novel long-chain ester-substituted benzimidazole gelator (Geiger, Zick et al., 2017[Geiger, H. C., Zick, P. L., Roberts, W. R. & Geiger, D. K. (2017). Acta Cryst. C73, 350-356.]).

[Scheme 1]

In our continuing efforts to exploit benzimidazole as a gelator core, we synthesized 1-(4-hydroxybenzyl)-2-(4-hy­droxy­phenyl)-5,6-dimethyl-1H-benzimidazole in the hope of using it as a starting material to prepare derivatives with a propensity for gelation. This compound was isolated as the di-acetone solvate, (1), and we report herein its structural characterization and an exploration of its three-dimensional superstructure, including an examination of hydrogen-bond strengths.

2. Structural commentary

A view of the mol­ecular structure of (1) with the atom-labeling scheme employed is seen in Fig. 1[link]. The bond lengths and angles are all within the range reported for similar disubstituted benzimidazole derivatives (c.f. Geiger & DeStefano, 2016[Geiger, D. K. & DeStefano, M. R. (2016). Acta Cryst. C72, 867-874.]). The benzimidazole moiety is planar with the largest deviation for C7 [0.0344 (13) Å]. The 2-(4-hy­droxy­phen­yl) substituent is canted at an angle of 44.18 (7)° from the benzimidazole plane and the N2—C7—C8—C13 torsion angle is −43.7 (2)°.

[Figure 1]
Figure 1
View of the mol­ecular structure of (1) showing the atom-labeling scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

In addition to the benzimidazole, the asymmetric unit of (1) contains two acetone mol­ecules, one of which uses its carbonyl oxygen atom as acceptor in an O—H⋯O hydrogen bond (see Table 1[link]). The hydrogen-bonded acetone mol­ecule exhibits a slightly longer C—O bond distance than the other acetone mol­ecule [1.212 (3) Å versus 1.192 (3) Å]. This observation is consistent with previous results (Ichikawa, 1979[Ichikawa, M. (1979). J. Cryst. Mol. Struct. 9, 87-105.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is ring centroid of the 2-(4-hy­droxy­phen­yl) substituent. Cg2 is ring centroid of the benzene ring of the benzimidazole ring system.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.81 (4) 1.96 (4) 2.748 (3) 165 (4)
O2—H2⋯N2i 0.93 (3) 1.83 (3) 2.757 (2) 176 (2)
C16—H16⋯Cg3ii 0.95 2.76 3.6061 (19) 149
C13—H13⋯Cg2iii 0.95 3.00 3.552 (2) 119
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) x-1, y, z.

3. Supra­molecular features

Fig. 2[link] and Table 1[link] show the hydrogen-bonding network exhibited by (1). Each of the phenol groups behaves as a donor in a hydrogen bond. The 2-(4-hy­droxy­phen­yl) substit­uent participates in an O—H⋯O inter­action with one of the acetone solvate mol­ecules as the acceptor. The 1-(4-hy­droxy­phen­yl)methyl substituent forms an O—H⋯N hydrogen bond in which an adjacent benzimidazole moiety serves as the acceptor. The result is a chain structure that runs parallel to [010].

[Figure 2]
Figure 2
Partial packing diagram of (1) showing the O—H⋯N hydrogen bonding resulting in chains along [010]. Only H atoms involved in the inter­actions are shown. Symmetry codes: (i) −x + 2, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 2, y − [{1\over 2}], −z + [{1\over 2}].

Fig. 3[link] shows the Hirshfeld surface and fingerprint plot for the disubstituted benzimidazole moiety. The prinicpal hydrogen-bonding inter­actions are clearly visible. The surface coverages corresponding to H⋯O and H⋯N inter­actions are 16.0% and 5.9%, respectively. There are no significant ππ inter­actions observed. The fingerprint plot does, however, reveal a weak C—H⋯π inter­action that involves C16—H16 with the 2-(4-hy­droxy­phen­yl) substituent ring system and C13—H13 with the benzene ring of the benzimidazole moiety (see Table 1[link] and Fig. 4[link]). These inter­actions are between mol­ecules translated along the a axis. The surface coverage corresponding to H⋯C inter­actions is 24.7%.

[Figure 3]
Figure 3
Hirshfeld surface (left) and fingerprint plot (right) for the benzimidazole moiety of (1).
[Figure 4]
Figure 4
Partial packing diagram of (1) showing the chains along [100] resulting from C—H⋯π inter­actions. Only H atoms involved in inter­actions are shown. Symmetry codes: (i) x + 1, y, z; (ii) x − 1, y, z; (iii) x, −y + [{1\over 2}], z + [{1\over 2}].

The inter­action energies were calculated using density functional theory with the CE-B3LYP/6-31G(d,p) functional/basis set combination (see Section 7 for details). The results of the calculations are reported in Table 2[link]. As expected, the electrostatic component is the primary contributor to the traditional hydrogen-bonding inter­actions and the dispersive component dominates for the C—H⋯π inter­actions. The C—H⋯π inter­actions appear to reinforce each other with the sum of their contributions exceeding that of the traditional hydrogen-bond energies.

Table 2
Inter­action energies calculated for (1)

Energies are in kJ mol−1 and are corrected for BSSE.

Inter­action Eele Epol Edis Erep Etot1,2 E3
O—H⋯N −73.0 −19.9 −20.2 82 −58.8 −39.2
O—H⋯O −48.9 −11.0 −9.0 50.1 −36.7 −35.7
C—H⋯π −15.1 −4.5 −90.5 56.1 −63.5 −48.5
Notes: (i) Scale factors used to determine Etot: kele = 1.057, kpol = 0.740, kenergy-dispersive = 0.871, krep = 0.618 (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). See Section 7 for calculation details. (ii) Inter­action energies were calculated employing the CE-B3LYP/6–31G(d,p) functional/basis set combination. (iii) Inter­action energies were calculated employing the M06–2X/6–31G(d,p) functional/basis set combination.

The M06 suite of density functionals are reported to outperform B3LYP for dispersion and ionic hydrogen-bonding inter­actions (Walker et al., 2013[Walker, M., Harvey, A. J. A., Sen, A. & Dessent, C. E. H. (2013). J. Phys. Chem. A, 117, 12590-12600.]; Zhao & Truhlar, 2008[Zhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215-241.]) and so the M06-2X/6-31G(d,p) functional/basis set combination was also used to calculate the inter­action energies. The results are found in Table 2[link]. The value obtained using the M06-2X functional compares favorably with the CE-B3LYP functional result for the phenol⋯acetone hydrogen bond, but the values are decidedly less for the C—H⋯π and the inter-benzimidazole O—H⋯N hydrogen bonds. The calculations employing the M06-2X functional were performed in the gas phase; however, in the solid state, inter­molecular inter­actions do not occur in isolation, which may account for the difference in results.

O—H⋯O hydrogen bonds exhibit a large range of energies. For example, reported o-hydry­oxy ketones have intra­molecular hydrogen-bond strengths of −26.8 to −54.8 kJ mol−1 (Rusiniska-Roszak, 2017[Rusiniska-Roszak, D. (2017). Molecules, 22, 481-581.]) and a series of CX[4} and CX[5] calixarenes have calculated O—H⋯O energies ranging from −19.2 to −34.4 kJ mol−1 (Khedkar et al., 2012[Khedkar, J. K., Deshmukh, M. M., Gadre, S. R. & Gejji, S. P. (2012). J. Phys. Chem. A, 116, 3739-3744.]). The O—H⋯O hydrogen-bond energies in cyclo­dextrin conformers were found to range from −4.6 to −34.7 kJ mol−1 (Deshmukh et al., 2011[Deshmukh, M. M., Bartolotti, L. J. & Gadre, S. (2011). J. Comput. Chem. 32, 2996-3004.]). As a final example, the hydrogen-bond energy in the optimized water dimer is −21 kJ mol−1 and in the hexa­mer water cluster it is −42 kJ mol−1 (Wendler et al., 2010[Wendler, K., Thar, J., Zahn, S. & Kirchner, B. (2010). J. Phys. Chem. A, 114, 9529-9536.]). The value obtained in the present study (Table 2[link]) is comparable to these values.

The O—H⋯N hydrogen-bond strength is greater than the O—H⋯O hydrogen-bond strength in this example (Table 2[link]), as has been observed for H3SiOH with O- and N-atom acceptors (Beckmann & Grabowsky, 2007[Beckmann, J. & Grabowsky, S. (2007). J. Phys. Chem. A, 111, 2011-2019.]). For comparison, the intra­molecular O—H⋯N hydrogen-bond strengths for a series of 2-hy­droxy­benzaldimine compounds range from −55 to −80 kJ mol−1, depending on the imine substituent (Simperler & Mikenda, 1997[Simperler, A. & Mikenda, W. (1997). Monatshefte für Chemie 128, 969-980.]); and the inter­action energy for pyridine and formic acid is −46.4 kJ mol−1 (Fernandez-Berridi et al., 2002[Fernandez-Berridi, M. J., Iruin, J. J., Irusta, L., Mercero, J. M. & Ugalde, J. M. (2002). J. Phys. Chem. A, 106, 4187-4191.]).

4. Database survey

In 3-[1-(3-hy­droxy­benz­yl)-1H-benzimidazol-2-yl]phenol, the 3-hy­droxy­phenyl substituent forms a dihedral angle of 56.55 (3)° with the benzimidazole moiety (Eltayeb, Teoh, Fun et al., 2009[Eltayeb, N. E., Teoh, S. G., Fun, H.-K., Jebas, S. R. & Adnan, R. (2009). Acta Cryst. E65, o1374-o1375.]). The structure of 1-(2-hy­droxy­benz­yl)-2-(2-hy­droxy­phen­yl)-1H-benzimidazol-3-ium chloride displays a dihedral angle of 55.49 (9)° between the benzimidazole core and the 2-hy­droxy­phenyl substituent (Khan et al., 2017[Khan, T., Mishra, N., Mhatre, D. S. & Datta, A. (2017). Acta Cryst. E73, 1143-1147.]). 2-(1H-Benzimidazol-2-yl)phenol is essentially planar and exhibits an intra­molecular hydrogen bond (Prakash et al., 2014[Prakash, S. M., Thiruvalluvar, A., Rosepriya, S. & Srinivasan, N. (2014). Acta Cryst. E70, o184.]). In the hydro­chloride salt of 2-(4-hy­droxy­phen­yl)-1H-benzimidazole, the hy­droxy­phenyl substituent is essentially coplanar with the benzimidazole moiety (González-Padilla et al., 2013[González-Padilla, J. E., Rosales-Hernández, M. C., Padilla-Martínez, I. I., García-Báez, E. V. & Rojas-Lima, S. (2013). Acta Cryst. E69, o1485-o1486.]). Other benzimidazole derivatives that have hy­droxy­phenyl substituents include 2-{[2-(pyridin-4-yl)-1H-benzimidazol-1-yl]meth­yl}phenol (Omer et al., 2013[Omer, M. A. S., Liu, J. & Xiao, C. (2013). Acta Cryst. E69, o700.]), 2-[(1H-benzimidazol-1-yl)meth­yl]phenol benzene hemisolvate (Rivera et al., 2014[Rivera, A., Jiménez-Cruz, L. & Bolte, M. (2014). Acta Cryst. E70, o177.]), 2-(1-phenyl-1H-benzimidazol-2-yl)phenol (Thiruvalluvar et al., 2013[Thiruvalluvar, A., Rosepriya, S., Jayamoorthy, K., Jayabharathi, J., Öztürk Yildirim, S. & Butcher, R. J. (2013). Acta Cryst. E69, o62.]), and 2-meth­oxy-6-(6-methyl-1H-benzimid­azol-2-yl)phenol (Eltayeb, Teoh, Quah et al., 2009[Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613-o1614.]).

5. Synthesis and crystallization

5,6-Dimethyl-2-(4-hy­droxy­phen­yl)-1-[(4-hy­droxy­phen­yl)meth­­yl]-1H-benzimidazole: 1.96 g (14.37 mmol) of 4,5-di­meth­yl-1,2-di­amino­benzene were dissolved in 50 mL of ethanol and stirred under nitro­gen. 3.65 g (29.9 mmol) of 4-hy­droxy­benzaldehyde were dissolved in ethanol, purged with nitro­gen for 5 min., and then added dropwise to the solution. The solution was refluxed for 24 h and cooled, after which a yellow solid formed. This solid was filtered and washed with cold ethanol. 4.23 g (12.3 mmol, 85.5% yield) of the yellow solid was obtained. Rf (3:1 acetone/hexa­ne) = 0.64. 1H NMR (400MHz, DMSO): δ 2.23 ppm (s, 3H), δ 2.28 ppm (s, 3H), δ 5.33 ppm (s, 2H), δ 6.64 ppm (d, 2H), δ 6.78 ppm (d, 2H), δ 6.85 ppm (d, 2H), δ 7.15 ppm (s, 1H) δ 7.40 ppm (s, 1H), δ 7.50 ppm (d, 2H), δ 9.34 ppm (s, 1H), δ 9.88 ppm (s, 1H).

Single crystals of (1) were obtained by slow evaporation of a dilute acetone solution of the product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. A refined extinction coefficient [0.006 (2)] was employed to calculate the correction factor applied to the structure-factor data. H atoms bonded to C were refined using a riding model with C—H = 0.95 Å for H bonded to aromatic C atoms, 0.99 Å for methyl­ene H atoms, and 0.98 Å for the methyl H atoms. Uiso(H) = kUeq(C), where k = 1.2 for H atoms bonded to aromatic and methyl­ene C atoms and 1.5 for H atoms bonded to methyl C atoms. H atoms bonded to oxygen were refined freely, including isotropic displacement parameters.

Table 3
Experimental details

Crystal data
Chemical formula C22H20N2O2·2C3H6O
Mr 460.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 5.7307 (6), 19.733 (2), 22.436 (3)
β (°) 92.400 (4)
V3) 2534.9 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.60 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.35, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 26416, 4489, 3268
Rint 0.093
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.195, 1.07
No. of reflections 4489
No. of parameters 322
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

7. Hirshfeld surface, fingerprint plots, inter­action energy calculations

Hirshfeld surfaces, fingerprint plots, and inter­action energies were calculated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au]), in which the C—H bond lengths were converted to normalized values based on neutron diffraction results (Allen et al., 2004[Allen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2004). International Tables for Crystallography, 3rd ed., edited by E. Prince, pp. 790-811. Heidelberg: Springer Verlag.]). Inter­action energies were calculated employing the CE-B3LYP/6-31G(d,p) functional/basis set combination and are corrected for basis set superposition energy (BSSE) using the counterpoise (CP) method (Boys & Bernardi, 1970[Boys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553-566.]). The inter­action energy is broken down as

Etot = keleE′ele + kpolE′pol + kdisE′dis + krepE′rep

where the k values are scale factors, E′ele represents the electrostatic component, E′pol the polarization energy, E′dis the dispersion energy, and E′rep the exchange-repulsion energy (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]; Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]).

Inter­action energy calculations were also performed on mol­ecules in the gas phase using SPARTAN'16 (Wavefunction, 2016[Wavefunction. (2016). SPARTAN'16. Wavefunction Inc. Irvine, CA, USA.]). DFT calculations using the M06-2X (Zhao & Truhlar, 2008[Zhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215-241.]) functional with a 6-31G(d,p) basis set were employed for the determination of inter­action energies, which were corrected for BSSE employing the CP method (Boys & Bernardi, 1970[Boys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553-566.]). Atomic coordinates obtained from the crystallographic analysis were used for all non-H atoms. Because bond lengths obtained for H atoms from X-ray crystallographic analyses are unreliable, the positions of the H atoms were optimized to their energy minima using the M06-2X/6-31G(d,p) functional/basis set combination.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

1-(4-Hydroxybenzyl)-2-(4-hydroxyphenyl)-5,6-dimethyl-1H-benzimidazole acetone disolvate top
Crystal data top
C22H20N2O2·2C3H6OF(000) = 984
Mr = 460.55Dx = 1.207 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.7307 (6) ÅCell parameters from 7680 reflections
b = 19.733 (2) Åθ = 2.3–25.0°
c = 22.436 (3) ŵ = 0.08 mm1
β = 92.400 (4)°T = 200 K
V = 2534.9 (5) Å3Prism, clear colourless
Z = 40.60 × 0.30 × 0.30 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
4489 independent reflections
Radiation source: XOS X-beam microfocus source3268 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.093
Detector resolution: 8.3330 pixels mm-1θmax = 25.1°, θmin = 2.1°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2223
Tmin = 0.35, Tmax = 0.98l = 2626
26416 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.124P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4489 reflectionsΔρmax = 0.28 e Å3
322 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2015)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.006 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0984 (3)0.33911 (10)0.39918 (10)0.0665 (6)
H10.154 (7)0.3632 (18)0.425 (2)0.110 (14)*
O21.3625 (3)0.65683 (6)0.31799 (8)0.0513 (5)
H21.304 (5)0.7006 (14)0.3166 (12)0.066 (7)*
O30.3839 (4)0.58204 (10)0.11484 (12)0.0973 (8)
O40.2047 (4)0.42019 (11)0.49612 (10)0.0795 (6)
N10.8301 (3)0.40174 (7)0.19126 (8)0.0357 (5)
N20.7935 (3)0.28900 (7)0.18639 (8)0.0378 (5)
C10.9855 (3)0.37992 (8)0.14968 (10)0.0367 (5)
C20.9600 (3)0.30963 (8)0.14685 (10)0.0379 (5)
C31.1005 (4)0.27223 (9)0.11001 (11)0.0459 (6)
H31.08360.22440.10760.055*
C41.2651 (4)0.30477 (11)0.07677 (11)0.0487 (6)
C51.2878 (4)0.37676 (10)0.07961 (11)0.0469 (6)
C61.1473 (4)0.41409 (9)0.11616 (10)0.0435 (6)
H61.1610.4620.11830.052*
C70.7220 (3)0.34487 (8)0.21232 (10)0.0341 (5)
C80.5588 (3)0.34613 (8)0.26094 (10)0.0362 (5)
C90.6028 (4)0.38479 (9)0.31208 (11)0.0405 (6)
H90.73750.41290.31490.049*
C100.4532 (4)0.38297 (9)0.35902 (11)0.0446 (6)
H100.48660.40930.39380.054*
C110.2546 (4)0.34270 (10)0.35521 (11)0.0444 (6)
C120.2085 (4)0.30419 (10)0.30451 (11)0.0474 (6)
H120.07190.27690.30150.057*
C130.3607 (4)0.30533 (9)0.25829 (10)0.0409 (6)
H130.32940.27780.22420.049*
C140.7491 (3)0.47223 (8)0.19678 (10)0.0387 (5)
H14A0.59820.47190.21670.046*
H14B0.71990.49090.15620.046*
C150.9149 (3)0.51921 (8)0.23098 (9)0.0326 (5)
C161.1243 (3)0.49868 (8)0.25815 (10)0.0367 (5)
H161.16790.45230.2570.044*
C171.2716 (3)0.54515 (8)0.28710 (10)0.0378 (5)
H171.41480.53020.30550.045*
C181.2115 (4)0.61319 (8)0.28943 (10)0.0359 (5)
C190.9987 (4)0.63368 (8)0.26372 (10)0.0414 (6)
H190.9530.67980.2660.05*
C200.8527 (3)0.58733 (9)0.23476 (10)0.0405 (6)
H200.70790.60210.21720.049*
C210.2570 (5)0.62914 (14)0.10570 (13)0.0626 (7)
C220.0308 (7)0.6214 (2)0.0731 (2)0.1300 (18)
H22A0.02030.57590.05550.195*
H22B0.01690.65540.04130.195*
H22C0.09570.62760.10060.195*
C230.3276 (7)0.69718 (15)0.1289 (2)0.1050 (13)
H23A0.27460.70260.16960.158*
H23B0.25660.73240.10320.158*
H23C0.49810.70130.12920.158*
C240.0807 (5)0.42468 (12)0.53839 (13)0.0580 (7)
C250.1601 (5)0.39762 (17)0.53648 (16)0.0822 (10)
H25A0.27150.43510.53160.123*
H25B0.18770.37360.57380.123*
H25C0.18080.36620.50280.123*
C260.1701 (7)0.45779 (19)0.59377 (15)0.0916 (11)
H26A0.30780.4850.58530.137*
H26B0.21310.42310.62350.137*
H26C0.04880.48720.60920.137*
C411.4225 (5)0.26394 (14)0.03844 (15)0.0718 (8)
H41A1.39850.21550.04580.108*
H41B1.58580.27570.04830.108*
H41C1.38580.2740.00370.108*
C511.4674 (5)0.41265 (14)0.04431 (13)0.0649 (7)
H51A1.46550.46120.05370.097*
H51B1.43140.40620.00160.097*
H51C1.62240.3940.05460.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0602 (12)0.0842 (12)0.0556 (13)0.0163 (9)0.0101 (10)0.0131 (10)
O20.0532 (10)0.0285 (7)0.0705 (12)0.0013 (6)0.0172 (9)0.0070 (6)
O30.1049 (17)0.0705 (11)0.114 (2)0.0236 (12)0.0186 (15)0.0043 (13)
O40.0804 (14)0.0976 (14)0.0612 (15)0.0162 (11)0.0109 (11)0.0186 (12)
N10.0392 (9)0.0242 (7)0.0432 (11)0.0010 (6)0.0033 (8)0.0035 (7)
N20.0433 (10)0.0270 (7)0.0429 (11)0.0003 (6)0.0030 (8)0.0021 (7)
C10.0390 (12)0.0320 (8)0.0386 (12)0.0010 (8)0.0061 (10)0.0018 (8)
C20.0418 (12)0.0298 (8)0.0411 (13)0.0024 (8)0.0089 (10)0.0020 (8)
C30.0534 (14)0.0358 (9)0.0476 (14)0.0036 (9)0.0057 (11)0.0073 (9)
C40.0509 (13)0.0519 (11)0.0427 (14)0.0081 (10)0.0043 (11)0.0119 (10)
C50.0464 (13)0.0519 (11)0.0416 (14)0.0005 (10)0.0055 (11)0.0007 (10)
C60.0481 (13)0.0375 (9)0.0443 (14)0.0036 (9)0.0049 (11)0.0016 (9)
C70.0342 (11)0.0282 (8)0.0394 (12)0.0011 (7)0.0068 (9)0.0003 (8)
C80.0361 (11)0.0286 (8)0.0430 (13)0.0008 (7)0.0076 (10)0.0001 (8)
C90.0402 (12)0.0356 (9)0.0451 (14)0.0048 (8)0.0056 (10)0.0027 (9)
C100.0483 (13)0.0413 (9)0.0434 (14)0.0034 (9)0.0079 (11)0.0086 (9)
C110.0416 (12)0.0499 (11)0.0416 (13)0.0003 (9)0.0005 (10)0.0004 (10)
C120.0449 (13)0.0449 (10)0.0520 (15)0.0122 (9)0.0038 (12)0.0032 (10)
C130.0418 (12)0.0354 (9)0.0447 (13)0.0035 (8)0.0076 (10)0.0060 (9)
C140.0399 (11)0.0242 (8)0.0513 (14)0.0044 (7)0.0073 (9)0.0029 (8)
C150.0370 (11)0.0250 (8)0.0358 (12)0.0011 (7)0.0001 (9)0.0004 (8)
C160.0405 (11)0.0230 (7)0.0463 (13)0.0053 (7)0.0001 (9)0.0016 (8)
C170.0364 (11)0.0312 (8)0.0455 (13)0.0056 (7)0.0048 (9)0.0025 (8)
C180.0422 (11)0.0252 (7)0.0400 (12)0.0016 (7)0.0013 (9)0.0004 (8)
C190.0492 (12)0.0216 (7)0.0530 (14)0.0060 (8)0.0034 (10)0.0011 (8)
C200.0400 (11)0.0290 (8)0.0518 (14)0.0062 (7)0.0072 (10)0.0025 (8)
C210.0641 (17)0.0717 (15)0.0526 (17)0.0047 (13)0.0095 (13)0.0064 (13)
C220.094 (3)0.183 (4)0.110 (4)0.017 (3)0.031 (3)0.046 (3)
C230.124 (3)0.0691 (17)0.124 (4)0.0031 (19)0.026 (3)0.017 (2)
C240.0678 (17)0.0531 (12)0.0526 (17)0.0043 (12)0.0010 (13)0.0046 (12)
C250.071 (2)0.100 (2)0.075 (2)0.0180 (17)0.0023 (16)0.0165 (18)
C260.112 (3)0.108 (2)0.056 (2)0.038 (2)0.0110 (18)0.0129 (18)
C410.0707 (18)0.0746 (16)0.071 (2)0.0101 (14)0.0105 (15)0.0199 (15)
C510.0612 (16)0.0765 (15)0.0573 (18)0.0092 (13)0.0066 (13)0.0028 (14)
Geometric parameters (Å, º) top
O1—C111.361 (3)C14—H14B0.99
O1—H10.81 (4)C15—C161.384 (2)
O2—C181.362 (2)C15—C201.394 (2)
O2—H20.93 (3)C16—C171.389 (2)
O3—C211.192 (3)C16—H160.95
O4—C241.212 (3)C17—C181.388 (2)
N1—C71.375 (2)C17—H170.95
N1—C11.385 (3)C18—C191.387 (3)
N1—C141.473 (2)C19—C201.383 (3)
N2—C71.320 (2)C19—H190.95
N2—C21.391 (3)C20—H200.95
C1—C61.392 (3)C21—C221.470 (4)
C1—C21.396 (2)C21—C231.490 (4)
C2—C31.390 (3)C22—H22A0.98
C3—C41.385 (3)C22—H22B0.98
C3—H30.95C22—H22C0.98
C4—C51.428 (3)C23—H23A0.98
C4—C411.506 (4)C23—H23B0.98
C5—C61.385 (3)C23—H23C0.98
C5—C511.502 (4)C24—C261.477 (4)
C6—H60.95C24—C251.479 (4)
C7—C81.466 (3)C25—H25A0.98
C8—C131.391 (3)C25—H25B0.98
C8—C91.392 (3)C25—H25C0.98
C9—C101.386 (3)C26—H26A0.98
C9—H90.95C26—H26B0.98
C10—C111.388 (3)C26—H26C0.98
C10—H100.95C41—H41A0.98
C11—C121.384 (3)C41—H41B0.98
C12—C131.383 (3)C41—H41C0.98
C12—H120.95C51—H51A0.98
C13—H130.95C51—H51B0.98
C14—C151.513 (2)C51—H51C0.98
C14—H14A0.99
C11—O1—H1104 (3)C17—C16—H16119.6
C18—O2—H2110.6 (17)C18—C17—C16120.63 (16)
C7—N1—C1106.82 (15)C18—C17—H17119.7
C7—N1—C14126.42 (18)C16—C17—H17119.7
C1—N1—C14124.31 (17)O2—C18—C19122.80 (15)
C7—N2—C2105.70 (15)O2—C18—C17118.41 (16)
N1—C1—C6132.44 (16)C19—C18—C17118.78 (16)
N1—C1—C2105.69 (19)C20—C19—C18120.44 (15)
C6—C1—C2121.8 (2)C20—C19—H19119.8
C3—C2—N2130.84 (16)C18—C19—H19119.8
C3—C2—C1119.5 (2)C19—C20—C15121.00 (16)
N2—C2—C1109.58 (19)C19—C20—H20119.5
C4—C3—C2119.92 (18)C15—C20—H20119.5
C4—C3—H3120.0O3—C21—C22121.5 (3)
C2—C3—H3120.0O3—C21—C23119.2 (3)
C3—C4—C5120.0 (2)C22—C21—C23119.3 (3)
C3—C4—C41119.8 (2)C21—C22—H22A109.5
C5—C4—C41120.2 (2)C21—C22—H22B109.5
C6—C5—C4120.1 (2)H22A—C22—H22B109.5
C6—C5—C51119.3 (2)C21—C22—H22C109.5
C4—C5—C51120.6 (2)H22A—C22—H22C109.5
C5—C6—C1118.62 (18)H22B—C22—H22C109.5
C5—C6—H6120.7C21—C23—H23A109.5
C1—C6—H6120.7C21—C23—H23B109.5
N2—C7—N1112.2 (2)H23A—C23—H23B109.5
N2—C7—C8124.15 (16)C21—C23—H23C109.5
N1—C7—C8123.52 (16)H23A—C23—H23C109.5
C13—C8—C9118.1 (2)H23B—C23—H23C109.5
C13—C8—C7120.22 (18)O4—C24—C26119.8 (3)
C9—C8—C7121.54 (17)O4—C24—C25121.9 (3)
C10—C9—C8121.03 (18)C26—C24—C25118.4 (3)
C10—C9—H9119.5C24—C25—H25A109.5
C8—C9—H9119.5C24—C25—H25B109.5
C9—C10—C11120.0 (2)H25A—C25—H25B109.5
C9—C10—H10120.0C24—C25—H25C109.5
C11—C10—H10120.0H25A—C25—H25C109.5
O1—C11—C12117.3 (2)H25B—C25—H25C109.5
O1—C11—C10123.2 (2)C24—C26—H26A109.5
C12—C11—C10119.5 (2)C24—C26—H26B109.5
C13—C12—C11120.17 (19)H26A—C26—H26B109.5
C13—C12—H12119.9C24—C26—H26C109.5
C11—C12—H12119.9H26A—C26—H26C109.5
C12—C13—C8121.11 (19)H26B—C26—H26C109.5
C12—C13—H13119.4C4—C41—H41A109.5
C8—C13—H13119.4C4—C41—H41B109.5
N1—C14—C15115.33 (14)H41A—C41—H41B109.5
N1—C14—H14A108.4C4—C41—H41C109.5
C15—C14—H14A108.4H41A—C41—H41C109.5
N1—C14—H14B108.4H41B—C41—H41C109.5
C15—C14—H14B108.4C5—C51—H51A109.5
H14A—C14—H14B107.5C5—C51—H51B109.5
C16—C15—C20118.32 (15)H51A—C51—H51B109.5
C16—C15—C14123.96 (14)C5—C51—H51C109.5
C20—C15—C14117.72 (15)H51A—C51—H51C109.5
C15—C16—C17120.78 (15)H51B—C51—H51C109.5
C15—C16—H16119.6
C7—N1—C1—C6176.90 (19)N2—C7—C8—C1343.7 (2)
C14—N1—C1—C619.9 (3)N1—C7—C8—C13140.81 (17)
C7—N1—C1—C21.05 (18)N2—C7—C8—C9132.74 (18)
C14—N1—C1—C2162.14 (15)N1—C7—C8—C942.8 (2)
C7—N2—C2—C3176.53 (19)C13—C8—C9—C100.2 (3)
C7—N2—C2—C10.28 (19)C7—C8—C9—C10176.75 (16)
N1—C1—C2—C3177.72 (16)C8—C9—C10—C110.7 (3)
C6—C1—C2—C30.5 (3)C9—C10—C11—O1179.10 (19)
N1—C1—C2—N20.49 (19)C9—C10—C11—C120.5 (3)
C6—C1—C2—N2177.73 (16)O1—C11—C12—C13179.72 (19)
N2—C2—C3—C4176.16 (18)C10—C11—C12—C130.7 (3)
C1—C2—C3—C40.4 (3)C11—C12—C13—C81.7 (3)
C2—C3—C4—C51.0 (3)C9—C8—C13—C121.4 (3)
C2—C3—C4—C41178.0 (2)C7—C8—C13—C12177.96 (17)
C3—C4—C5—C60.8 (3)C7—N1—C14—C15119.1 (2)
C41—C4—C5—C6178.2 (2)C1—N1—C14—C1581.0 (2)
C3—C4—C5—C51179.3 (2)N1—C14—C15—C162.9 (3)
C41—C4—C5—C510.3 (3)N1—C14—C15—C20176.6 (2)
C4—C5—C6—C10.0 (3)C20—C15—C16—C171.7 (3)
C51—C5—C6—C1178.48 (19)C14—C15—C16—C17177.8 (2)
N1—C1—C6—C5176.97 (19)C15—C16—C17—C180.1 (4)
C2—C1—C6—C50.7 (3)C16—C17—C18—O2179.6 (2)
C2—N2—C7—N10.98 (19)C16—C17—C18—C191.7 (4)
C2—N2—C7—C8174.96 (16)O2—C18—C19—C20179.4 (2)
C1—N1—C7—N21.31 (19)C17—C18—C19—C201.9 (4)
C14—N1—C7—N2161.42 (17)C18—C19—C20—C150.3 (4)
C1—N1—C7—C8174.66 (16)C16—C15—C20—C191.5 (4)
C14—N1—C7—C822.6 (3)C14—C15—C20—C19178.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is ring centroid of the 2-(4-hydroxyphenyl) substituent. Cg2 is ring centroid of the benzene ring of the benzimidazole ring system.
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.81 (4)1.96 (4)2.748 (3)165 (4)
O2—H2···N2i0.93 (3)1.83 (3)2.757 (2)176 (2)
C16—H16···Cg3ii0.952.763.6061 (19)149
C13—H13···Cg2iii0.953.003.552 (2)119
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z.
Interaction energies calculated for (1) top
Energies are in kJ mol-1 and are corrected for BSSE.
InteractionE'eleE'polE'disE'repEtot1,2E3
O—H···N-73.0-19.9-20.282-58.8-39.2
O—H···O-48.9-11.0-9.050.1-36.7-35.7
C—H···π-15.1-4.5-90.556.1-63.5-48.5
Notes: (i) Scale factors used to determine Etot: kele = 1.057, kpol = 0.740, kdisp = 0.871, krep = 0.618 (Mackenzie et al., 2017). See Section 7 for calculation details. (ii) Interaction energies were calculated employing the CE-B3LYP/6-31G(d,p) functional/basis set combination. (iii) Interaction energies were calculated employing the M06-2X/6-31G(d,p) functional/basis set combination.
 

Funding information

This work was supported by a Congressionally directed grant from the US Department of Education for the X-ray diffractometer (award No. P116Z100020) and a grant from the Geneseo Foundation.

References

First citationAllen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2004). International Tables for Crystallography, 3rd ed., edited by E. Prince, pp. 790–811. Heidelberg: Springer Verlag.  Google Scholar
First citationBeckmann, J. & Grabowsky, S. (2007). J. Phys. Chem. A, 111, 2011–2019.  CrossRef CAS Google Scholar
First citationBoys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553–566.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeshmukh, M. M., Bartolotti, L. J. & Gadre, S. (2011). J. Comput. Chem. 32, 2996–3004.  CrossRef CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Fun, H.-K., Jebas, S. R. & Adnan, R. (2009). Acta Cryst. E65, o1374–o1375.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFernandez-Berridi, M. J., Iruin, J. J., Irusta, L., Mercero, J. M. & Ugalde, J. M. (2002). J. Phys. Chem. A, 106, 4187–4191.  CAS Google Scholar
First citationGeiger, D. K. & DeStefano, M. R. (2016). Acta Cryst. C72, 867–874.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K., Geiger, H. C., Moore, S. M. & Roberts, W. R. (2017). Acta Cryst. C73, 791–796.  CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K., Geiger, H. C. & Morell, D. L. (2018). Acta Cryst. E74, 594–599.  CrossRef IUCr Journals Google Scholar
First citationGeiger, H. C., Geiger, D. K., Roberts, W. R., Morell, D. L., Huttunen, P., Schulman, J. L., Tran, M. & Farthing, D. (2018). Gels, 4, 34–49.  CrossRef Google Scholar
First citationGeiger, H. C., Zick, P. L., Roberts, W. R. & Geiger, D. K. (2017). Acta Cryst. C73, 350–356.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGonzález-Padilla, J. E., Rosales-Hernández, M. C., Padilla-Martínez, I. I., García-Báez, E. V. & Rojas-Lima, S. (2013). Acta Cryst. E69, o1485–o1486.  CrossRef IUCr Journals Google Scholar
First citationHuynh, C. T., Nguyen, M. K. & Lee, D. S. (2011). Macromolecules, 44, 6629–6636.  Web of Science CrossRef CAS Google Scholar
First citationIchikawa, M. (1979). J. Cryst. Mol. Struct. 9, 87–105.  CrossRef CAS Google Scholar
First citationKhan, T., Mishra, N., Mhatre, D. S. & Datta, A. (2017). Acta Cryst. E73, 1143–1147.  CrossRef IUCr Journals Google Scholar
First citationKhedkar, J. K., Deshmukh, M. M., Gadre, S. R. & Gejji, S. P. (2012). J. Phys. Chem. A, 116, 3739–3744.  CrossRef CAS Google Scholar
First citationLau, H. K. & Kiick, K. L. (2015). Biomacromolecules, 16, 28–42.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiow, S. S., Dou, Q., Kai, D., Karim, A. A., Zhang, K., Xu, F. & Loh, X. J. (2016). ACS Biomater. Sci. Eng. 2, 295–316.  Web of Science CrossRef CAS Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOmer, M. A. S., Liu, J. & Xiao, C. (2013). Acta Cryst. E69, o700.  CrossRef IUCr Journals Google Scholar
First citationPrakash, S. M., Thiruvalluvar, A., Rosepriya, S. & Srinivasan, N. (2014). Acta Cryst. E70, o184.  CrossRef IUCr Journals Google Scholar
First citationRivera, A., Jiménez-Cruz, L. & Bolte, M. (2014). Acta Cryst. E70, o177.  CrossRef IUCr Journals Google Scholar
First citationRusiniska-Roszak, D. (2017). Molecules, 22, 481–581.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimperler, A. & Mikenda, W. (1997). Monatshefte für Chemie 128, 969–980.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Rosepriya, S., Jayamoorthy, K., Jayabharathi, J., Öztürk Yildirim, S. & Butcher, R. J. (2013). Acta Cryst. E69, o62.  CrossRef IUCr Journals Google Scholar
First citationTibbitt, M. W., Dahlman, J. E. & Langer, R. (2016). J. Am. Chem. Soc. 138, 704–717.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au  Google Scholar
First citationWalker, M., Harvey, A. J. A., Sen, A. & Dessent, C. E. H. (2013). J. Phys. Chem. A, 117, 12590–12600.  CrossRef CAS Google Scholar
First citationWavefunction. (2016). SPARTAN'16. Wavefunction Inc. Irvine, CA, USA.  Google Scholar
First citationWendler, K., Thar, J., Zahn, S. & Kirchner, B. (2010). J. Phys. Chem. A, 114, 9529–9536.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H.-Q. & Wang, C.-C. (2016). Langmuir, 32, 6211–6225.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXavier, J. R., Thakur, T., Desai, P., Jaiswal, M. K., Sears, N., Cosgriff-Hernandez, E., Kaunas, R. & Gaharwar, A. K. (2015). ACS Nano, 9, 3109–3118.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYan, L.-P., Oliveira, J. M., Oliveira, A. L. & Reis, R. L. (2015). ACS Biomater. Sci. Eng. 1, 183–200.  Web of Science CrossRef CAS Google Scholar
First citationYasmeen, S., Lo, M. K., Bajracharya, S. & Roldo, M. (2014). Langmuir, 30, 12977–12985.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYe, E., Chee, P. L., Prasad, A., Fang, X., Owh, C., Yeo, V. J. J. & Loh, X. J. (2014). Mater. Today, 17, 194–202.  Web of Science CrossRef CAS Google Scholar
First citationZhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215–241.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds