research communications
Intermolecular interactions in a phenol-substituted benzimidazole
aDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu
Hydrogen bonding plays an important role in the design of solid-state structures and gels with desirable properties. 1-(4-Hydroxybenzyl)-2-(4-hydroxyphenyl)-5,6-dimethyl-1H-benzimidazole was isolated as the acetone disolvate, C22H20N2O2·2C3H6O. O—H⋯N hydrogen bonding between benzimidazole molecules results in chains parallel to [010]. One of the acetone solvate molecules participates in O—H⋯O hydrogen bonding with the benzimidazole derivative. C—H⋯π interactions are observed in the extended structure. Hirshfeld surface analysis was used to explore the intermolecular interactions and density functional theory was used to estimate the strength of the hydrogen bonds.
Keywords: crystal structure; hydrogen bonds; C—H⋯π interactions; Hirshfeld surface; density functional theory; interaction energy; benzimidazole.
CCDC reference: 1893078
1. Chemical context
The formation of a gel rather than a crystalline solid depends on the ability of the dissolved gelator to self-assemble into a three-dimensional network structure incorporating the solvent via non-covalent interactions rather than self-assembly followed by crystallization. The study of the gelation properties of small organic compounds (organogelators) is of importance in soft-matter research because of possible biomedical applications (Lau & Kiick, 2015; Huynh et al., 2011; Ye et al., 2014), including potential use in tissue engineering (Xavier et al., 2015; Yan et al., 2015), drug delivery and diagnostics (Wu & Wang, 2016; Tibbitt et al., 2016), and medical implants (Liow et al., 2016; Yasmeen et al., 2014).
Our efforts in this area include the preparation, structural characterization and exploration of the intermolecular interactions in long-chain ester-substituted biphenyl derivatives (Geiger, Geiger, Moore et al., 2017; Geiger, Geiger, Roberts et al., 2018) and phenyphenol derivatives (Geiger, Geiger & Morell, 2018). We have also reported a novel long-chain ester-substituted benzimidazole gelator (Geiger, Zick et al., 2017).
In our continuing efforts to exploit benzimidazole as a gelator core, we synthesized 1-(4-hydroxybenzyl)-2-(4-hydroxyphenyl)-5,6-dimethyl-1H-benzimidazole in the hope of using it as a starting material to prepare derivatives with a propensity for gelation. This compound was isolated as the di-acetone solvate, (1), and we report herein its structural characterization and an exploration of its three-dimensional including an examination of hydrogen-bond strengths.
2. Structural commentary
A view of the molecular structure of (1) with the atom-labeling scheme employed is seen in Fig. 1. The bond lengths and angles are all within the range reported for similar disubstituted benzimidazole derivatives (c.f. Geiger & DeStefano, 2016). The benzimidazole moiety is planar with the largest deviation for C7 [0.0344 (13) Å]. The 2-(4-hydroxyphenyl) substituent is canted at an angle of 44.18 (7)° from the benzimidazole plane and the N2—C7—C8—C13 torsion angle is −43.7 (2)°.
In addition to the benzimidazole, the ). The hydrogen-bonded acetone molecule exhibits a slightly longer C—O bond distance than the other acetone molecule [1.212 (3) Å versus 1.192 (3) Å]. This observation is consistent with previous results (Ichikawa, 1979).
of (1) contains two acetone molecules, one of which uses its carbonyl oxygen atom as acceptor in an O—H⋯O hydrogen bond (see Table 13. Supramolecular features
Fig. 2 and Table 1 show the hydrogen-bonding network exhibited by (1). Each of the phenol groups behaves as a donor in a hydrogen bond. The 2-(4-hydroxyphenyl) substituent participates in an O—H⋯O interaction with one of the acetone solvate molecules as the acceptor. The 1-(4-hydroxyphenyl)methyl substituent forms an O—H⋯N hydrogen bond in which an adjacent benzimidazole moiety serves as the acceptor. The result is a chain structure that runs parallel to [010].
Fig. 3 shows the Hirshfeld surface and fingerprint plot for the disubstituted benzimidazole moiety. The prinicpal hydrogen-bonding interactions are clearly visible. The surface coverages corresponding to H⋯O and H⋯N interactions are 16.0% and 5.9%, respectively. There are no significant π–π interactions observed. The fingerprint plot does, however, reveal a weak C—H⋯π interaction that involves C16—H16 with the 2-(4-hydroxyphenyl) substituent ring system and C13—H13 with the benzene ring of the benzimidazole moiety (see Table 1 and Fig. 4). These interactions are between molecules translated along the a axis. The corresponding to H⋯C interactions is 24.7%.
The interaction energies were calculated using density functional theory with the CE-B3LYP/6-31G(d,p) functional/basis set combination (see Section 7 for details). The results of the calculations are reported in Table 2. As expected, the electrostatic component is the primary contributor to the traditional hydrogen-bonding interactions and the dispersive component dominates for the C—H⋯π interactions. The C—H⋯π interactions appear to reinforce each other with the sum of their contributions exceeding that of the traditional hydrogen-bond energies.
|
The M06 suite of density functionals are reported to outperform B3LYP for dispersion and ionic hydrogen-bonding interactions (Walker et al., 2013; Zhao & Truhlar, 2008) and so the M06-2X/6-31G(d,p) functional/basis set combination was also used to calculate the interaction energies. The results are found in Table 2. The value obtained using the M06-2X functional compares favorably with the CE-B3LYP functional result for the phenol⋯acetone hydrogen bond, but the values are decidedly less for the C—H⋯π and the inter-benzimidazole O—H⋯N hydrogen bonds. The calculations employing the M06-2X functional were performed in the gas phase; however, in the solid state, intermolecular interactions do not occur in isolation, which may account for the difference in results.
O—H⋯O hydrogen bonds exhibit a large range of energies. For example, reported o-hydryoxy have intramolecular hydrogen-bond strengths of −26.8 to −54.8 kJ mol−1 (Rusiniska-Roszak, 2017) and a series of CX[4} and CX[5] have calculated O—H⋯O energies ranging from −19.2 to −34.4 kJ mol−1 (Khedkar et al., 2012). The O—H⋯O hydrogen-bond energies in cyclodextrin conformers were found to range from −4.6 to −34.7 kJ mol−1 (Deshmukh et al., 2011). As a final example, the hydrogen-bond energy in the optimized water dimer is −21 kJ mol−1 and in the hexamer water cluster it is −42 kJ mol−1 (Wendler et al., 2010). The value obtained in the present study (Table 2) is comparable to these values.
The O—H⋯N hydrogen-bond strength is greater than the O—H⋯O hydrogen-bond strength in this example (Table 2), as has been observed for H3SiOH with O- and N-atom acceptors (Beckmann & Grabowsky, 2007). For comparison, the intramolecular O—H⋯N hydrogen-bond strengths for a series of 2-hydroxybenzaldimine compounds range from −55 to −80 kJ mol−1, depending on the imine substituent (Simperler & Mikenda, 1997); and the interaction energy for pyridine and formic acid is −46.4 kJ mol−1 (Fernandez-Berridi et al., 2002).
4. Database survey
In 3-[1-(3-hydroxybenzyl)-1H-benzimidazol-2-yl]phenol, the 3-hydroxyphenyl substituent forms a dihedral angle of 56.55 (3)° with the benzimidazole moiety (Eltayeb, Teoh, Fun et al., 2009). The structure of 1-(2-hydroxybenzyl)-2-(2-hydroxyphenyl)-1H-benzimidazol-3-ium chloride displays a dihedral angle of 55.49 (9)° between the benzimidazole core and the 2-hydroxyphenyl substituent (Khan et al., 2017). 2-(1H-Benzimidazol-2-yl)phenol is essentially planar and exhibits an intramolecular hydrogen bond (Prakash et al., 2014). In the hydrochloride salt of 2-(4-hydroxyphenyl)-1H-benzimidazole, the hydroxyphenyl substituent is essentially coplanar with the benzimidazole moiety (González-Padilla et al., 2013). Other benzimidazole derivatives that have hydroxyphenyl substituents include 2-{[2-(pyridin-4-yl)-1H-benzimidazol-1-yl]methyl}phenol (Omer et al., 2013), 2-[(1H-benzimidazol-1-yl)methyl]phenol benzene hemisolvate (Rivera et al., 2014), 2-(1-phenyl-1H-benzimidazol-2-yl)phenol (Thiruvalluvar et al., 2013), and 2-methoxy-6-(6-methyl-1H-benzimidazol-2-yl)phenol (Eltayeb, Teoh, Quah et al., 2009).
5. Synthesis and crystallization
5,6-Dimethyl-2-(4-hydroxyphenyl)-1-[(4-hydroxyphenyl)methyl]-1H-benzimidazole: 1.96 g (14.37 mmol) of 4,5-dimethyl-1,2-diaminobenzene were dissolved in 50 mL of ethanol and stirred under nitrogen. 3.65 g (29.9 mmol) of 4-hydroxybenzaldehyde were dissolved in ethanol, purged with nitrogen for 5 min., and then added dropwise to the solution. The solution was refluxed for 24 h and cooled, after which a yellow solid formed. This solid was filtered and washed with cold ethanol. 4.23 g (12.3 mmol, 85.5% yield) of the yellow solid was obtained. Rf (3:1 acetone/hexane) = 0.64. 1H NMR (400MHz, DMSO): δ 2.23 ppm (s, 3H), δ 2.28 ppm (s, 3H), δ 5.33 ppm (s, 2H), δ 6.64 ppm (d, 2H), δ 6.78 ppm (d, 2H), δ 6.85 ppm (d, 2H), δ 7.15 ppm (s, 1H) δ 7.40 ppm (s, 1H), δ 7.50 ppm (d, 2H), δ 9.34 ppm (s, 1H), δ 9.88 ppm (s, 1H).
Single crystals of (1) were obtained by slow evaporation of a dilute acetone solution of the product.
6. Refinement
Crystal data, data collection and structure . A refined extinction coefficient [0.006 (2)] was employed to calculate the correction factor applied to the structure-factor data. H atoms bonded to C were refined using a riding model with C—H = 0.95 Å for H bonded to aromatic C atoms, 0.99 Å for methylene H atoms, and 0.98 Å for the methyl H atoms. Uiso(H) = kUeq(C), where k = 1.2 for H atoms bonded to aromatic and methylene C atoms and 1.5 for H atoms bonded to methyl C atoms. H atoms bonded to oxygen were refined freely, including isotropic displacement parameters.
details are summarized in Table 3
|
7. Hirshfeld surface, fingerprint plots, interaction energy calculations
Hirshfeld surfaces, fingerprint plots, and interaction energies were calculated using CrystalExplorer17 (Turner et al., 2017), in which the C—H bond lengths were converted to normalized values based on neutron diffraction results (Allen et al., 2004). Interaction energies were calculated employing the CE-B3LYP/6-31G(d,p) functional/basis set combination and are corrected for basis set superposition energy (BSSE) using the counterpoise (CP) method (Boys & Bernardi, 1970). The interaction energy is broken down as
Etot = keleE′ele + kpolE′pol + kdisE′dis + krepE′rep
where the k values are scale factors, E′ele represents the electrostatic component, E′pol the polarization energy, E′dis the dispersion energy, and E′rep the exchange-repulsion energy (Turner et al., 2014; Mackenzie et al., 2017).
Interaction energy calculations were also performed on molecules in the gas phase using SPARTAN'16 (Wavefunction, 2016). DFT calculations using the M06-2X (Zhao & Truhlar, 2008) functional with a 6-31G(d,p) basis set were employed for the determination of interaction energies, which were corrected for BSSE employing the CP method (Boys & Bernardi, 1970). Atomic coordinates obtained from the crystallographic analysis were used for all non-H atoms. Because bond lengths obtained for H atoms from X-ray crystallographic analyses are unreliable, the positions of the H atoms were optimized to their energy minima using the M06-2X/6-31G(d,p) functional/basis set combination.
Supporting information
CCDC reference: 1893078
https://doi.org/10.1107/S2056989019001270/zl2750sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019001270/zl2750Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019001270/zl2750Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989019001270/zl2750Isup4.cml
Data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C22H20N2O2·2C3H6O | F(000) = 984 |
Mr = 460.55 | Dx = 1.207 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7307 (6) Å | Cell parameters from 7680 reflections |
b = 19.733 (2) Å | θ = 2.3–25.0° |
c = 22.436 (3) Å | µ = 0.08 mm−1 |
β = 92.400 (4)° | T = 200 K |
V = 2534.9 (5) Å3 | Prism, clear colourless |
Z = 4 | 0.60 × 0.30 × 0.30 mm |
Bruker SMART X2S benchtop diffractometer | 4489 independent reflections |
Radiation source: XOS X-beam microfocus source | 3268 reflections with I > 2σ(I) |
Doubly curved silicon crystal monochromator | Rint = 0.093 |
Detector resolution: 8.3330 pixels mm-1 | θmax = 25.1°, θmin = 2.1° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −22→23 |
Tmin = 0.35, Tmax = 0.98 | l = −26→26 |
26416 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.195 | w = 1/[σ2(Fo2) + (0.124P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
4489 reflections | Δρmax = 0.28 e Å−3 |
322 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL-2014/7 (Sheldrick 2015) |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.006 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0984 (3) | 0.33911 (10) | 0.39918 (10) | 0.0665 (6) | |
H1 | 0.154 (7) | 0.3632 (18) | 0.425 (2) | 0.110 (14)* | |
O2 | 1.3625 (3) | 0.65683 (6) | 0.31799 (8) | 0.0513 (5) | |
H2 | 1.304 (5) | 0.7006 (14) | 0.3166 (12) | 0.066 (7)* | |
O3 | 0.3839 (4) | 0.58204 (10) | 0.11484 (12) | 0.0973 (8) | |
O4 | 0.2047 (4) | 0.42019 (11) | 0.49612 (10) | 0.0795 (6) | |
N1 | 0.8301 (3) | 0.40174 (7) | 0.19126 (8) | 0.0357 (5) | |
N2 | 0.7935 (3) | 0.28900 (7) | 0.18639 (8) | 0.0378 (5) | |
C1 | 0.9855 (3) | 0.37992 (8) | 0.14968 (10) | 0.0367 (5) | |
C2 | 0.9600 (3) | 0.30963 (8) | 0.14685 (10) | 0.0379 (5) | |
C3 | 1.1005 (4) | 0.27223 (9) | 0.11001 (11) | 0.0459 (6) | |
H3 | 1.0836 | 0.2244 | 0.1076 | 0.055* | |
C4 | 1.2651 (4) | 0.30477 (11) | 0.07677 (11) | 0.0487 (6) | |
C5 | 1.2878 (4) | 0.37676 (10) | 0.07961 (11) | 0.0469 (6) | |
C6 | 1.1473 (4) | 0.41409 (9) | 0.11616 (10) | 0.0435 (6) | |
H6 | 1.161 | 0.462 | 0.1183 | 0.052* | |
C7 | 0.7220 (3) | 0.34487 (8) | 0.21232 (10) | 0.0341 (5) | |
C8 | 0.5588 (3) | 0.34613 (8) | 0.26094 (10) | 0.0362 (5) | |
C9 | 0.6028 (4) | 0.38479 (9) | 0.31208 (11) | 0.0405 (6) | |
H9 | 0.7375 | 0.4129 | 0.3149 | 0.049* | |
C10 | 0.4532 (4) | 0.38297 (9) | 0.35902 (11) | 0.0446 (6) | |
H10 | 0.4866 | 0.4093 | 0.3938 | 0.054* | |
C11 | 0.2546 (4) | 0.34270 (10) | 0.35521 (11) | 0.0444 (6) | |
C12 | 0.2085 (4) | 0.30419 (10) | 0.30451 (11) | 0.0474 (6) | |
H12 | 0.0719 | 0.2769 | 0.3015 | 0.057* | |
C13 | 0.3607 (4) | 0.30533 (9) | 0.25829 (10) | 0.0409 (6) | |
H13 | 0.3294 | 0.2778 | 0.2242 | 0.049* | |
C14 | 0.7491 (3) | 0.47223 (8) | 0.19678 (10) | 0.0387 (5) | |
H14A | 0.5982 | 0.4719 | 0.2167 | 0.046* | |
H14B | 0.7199 | 0.4909 | 0.1562 | 0.046* | |
C15 | 0.9149 (3) | 0.51921 (8) | 0.23098 (9) | 0.0326 (5) | |
C16 | 1.1243 (3) | 0.49868 (8) | 0.25815 (10) | 0.0367 (5) | |
H16 | 1.1679 | 0.4523 | 0.257 | 0.044* | |
C17 | 1.2716 (3) | 0.54515 (8) | 0.28710 (10) | 0.0378 (5) | |
H17 | 1.4148 | 0.5302 | 0.3055 | 0.045* | |
C18 | 1.2115 (4) | 0.61319 (8) | 0.28943 (10) | 0.0359 (5) | |
C19 | 0.9987 (4) | 0.63368 (8) | 0.26372 (10) | 0.0414 (6) | |
H19 | 0.953 | 0.6798 | 0.266 | 0.05* | |
C20 | 0.8527 (3) | 0.58733 (9) | 0.23476 (10) | 0.0405 (6) | |
H20 | 0.7079 | 0.6021 | 0.2172 | 0.049* | |
C21 | 0.2570 (5) | 0.62914 (14) | 0.10570 (13) | 0.0626 (7) | |
C22 | 0.0308 (7) | 0.6214 (2) | 0.0731 (2) | 0.1300 (18) | |
H22A | 0.0203 | 0.5759 | 0.0555 | 0.195* | |
H22B | 0.0169 | 0.6554 | 0.0413 | 0.195* | |
H22C | −0.0957 | 0.6276 | 0.1006 | 0.195* | |
C23 | 0.3276 (7) | 0.69718 (15) | 0.1289 (2) | 0.1050 (13) | |
H23A | 0.2746 | 0.7026 | 0.1696 | 0.158* | |
H23B | 0.2566 | 0.7324 | 0.1032 | 0.158* | |
H23C | 0.4981 | 0.7013 | 0.1292 | 0.158* | |
C24 | 0.0807 (5) | 0.42468 (12) | 0.53839 (13) | 0.0580 (7) | |
C25 | −0.1601 (5) | 0.39762 (17) | 0.53648 (16) | 0.0822 (10) | |
H25A | −0.2715 | 0.4351 | 0.5316 | 0.123* | |
H25B | −0.1877 | 0.3736 | 0.5738 | 0.123* | |
H25C | −0.1808 | 0.3662 | 0.5028 | 0.123* | |
C26 | 0.1701 (7) | 0.45779 (19) | 0.59377 (15) | 0.0916 (11) | |
H26A | 0.3078 | 0.485 | 0.5853 | 0.137* | |
H26B | 0.2131 | 0.4231 | 0.6235 | 0.137* | |
H26C | 0.0488 | 0.4872 | 0.6092 | 0.137* | |
C41 | 1.4225 (5) | 0.26394 (14) | 0.03844 (15) | 0.0718 (8) | |
H41A | 1.3985 | 0.2155 | 0.0458 | 0.108* | |
H41B | 1.5858 | 0.2757 | 0.0483 | 0.108* | |
H41C | 1.3858 | 0.274 | −0.0037 | 0.108* | |
C51 | 1.4674 (5) | 0.41265 (14) | 0.04431 (13) | 0.0649 (7) | |
H51A | 1.4655 | 0.4612 | 0.0537 | 0.097* | |
H51B | 1.4314 | 0.4062 | 0.0016 | 0.097* | |
H51C | 1.6224 | 0.394 | 0.0546 | 0.097* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0602 (12) | 0.0842 (12) | 0.0556 (13) | −0.0163 (9) | 0.0101 (10) | −0.0131 (10) |
O2 | 0.0532 (10) | 0.0285 (7) | 0.0705 (12) | −0.0013 (6) | −0.0172 (9) | −0.0070 (6) |
O3 | 0.1049 (17) | 0.0705 (11) | 0.114 (2) | 0.0236 (12) | −0.0186 (15) | −0.0043 (13) |
O4 | 0.0804 (14) | 0.0976 (14) | 0.0612 (15) | −0.0162 (11) | 0.0109 (11) | −0.0186 (12) |
N1 | 0.0392 (9) | 0.0242 (7) | 0.0432 (11) | 0.0010 (6) | −0.0033 (8) | −0.0035 (7) |
N2 | 0.0433 (10) | 0.0270 (7) | 0.0429 (11) | 0.0003 (6) | −0.0030 (8) | −0.0021 (7) |
C1 | 0.0390 (12) | 0.0320 (8) | 0.0386 (12) | 0.0010 (8) | −0.0061 (10) | −0.0018 (8) |
C2 | 0.0418 (12) | 0.0298 (8) | 0.0411 (13) | 0.0024 (8) | −0.0089 (10) | −0.0020 (8) |
C3 | 0.0534 (14) | 0.0358 (9) | 0.0476 (14) | 0.0036 (9) | −0.0057 (11) | −0.0073 (9) |
C4 | 0.0509 (13) | 0.0519 (11) | 0.0427 (14) | 0.0081 (10) | −0.0043 (11) | −0.0119 (10) |
C5 | 0.0464 (13) | 0.0519 (11) | 0.0416 (14) | −0.0005 (10) | −0.0055 (11) | −0.0007 (10) |
C6 | 0.0481 (13) | 0.0375 (9) | 0.0443 (14) | −0.0036 (9) | −0.0049 (11) | 0.0016 (9) |
C7 | 0.0342 (11) | 0.0282 (8) | 0.0394 (12) | −0.0011 (7) | −0.0068 (9) | −0.0003 (8) |
C8 | 0.0361 (11) | 0.0286 (8) | 0.0430 (13) | 0.0008 (7) | −0.0076 (10) | 0.0001 (8) |
C9 | 0.0402 (12) | 0.0356 (9) | 0.0451 (14) | −0.0048 (8) | −0.0056 (10) | −0.0027 (9) |
C10 | 0.0483 (13) | 0.0413 (9) | 0.0434 (14) | −0.0034 (9) | −0.0079 (11) | −0.0086 (9) |
C11 | 0.0416 (12) | 0.0499 (11) | 0.0416 (13) | −0.0003 (9) | −0.0005 (10) | −0.0004 (10) |
C12 | 0.0449 (13) | 0.0449 (10) | 0.0520 (15) | −0.0122 (9) | −0.0038 (12) | −0.0032 (10) |
C13 | 0.0418 (12) | 0.0354 (9) | 0.0447 (13) | −0.0035 (8) | −0.0076 (10) | −0.0060 (9) |
C14 | 0.0399 (11) | 0.0242 (8) | 0.0513 (14) | 0.0044 (7) | −0.0073 (9) | −0.0029 (8) |
C15 | 0.0370 (11) | 0.0250 (8) | 0.0358 (12) | 0.0011 (7) | −0.0001 (9) | 0.0004 (8) |
C16 | 0.0405 (11) | 0.0230 (7) | 0.0463 (13) | 0.0053 (7) | 0.0001 (9) | −0.0016 (8) |
C17 | 0.0364 (11) | 0.0312 (8) | 0.0455 (13) | 0.0056 (7) | −0.0048 (9) | −0.0025 (8) |
C18 | 0.0422 (11) | 0.0252 (7) | 0.0400 (12) | −0.0016 (7) | −0.0013 (9) | −0.0004 (8) |
C19 | 0.0492 (12) | 0.0216 (7) | 0.0530 (14) | 0.0060 (8) | −0.0034 (10) | −0.0011 (8) |
C20 | 0.0400 (11) | 0.0290 (8) | 0.0518 (14) | 0.0062 (7) | −0.0072 (10) | 0.0025 (8) |
C21 | 0.0641 (17) | 0.0717 (15) | 0.0526 (17) | 0.0047 (13) | 0.0095 (13) | 0.0064 (13) |
C22 | 0.094 (3) | 0.183 (4) | 0.110 (4) | −0.017 (3) | −0.031 (3) | 0.046 (3) |
C23 | 0.124 (3) | 0.0691 (17) | 0.124 (4) | 0.0031 (19) | 0.026 (3) | −0.017 (2) |
C24 | 0.0678 (17) | 0.0531 (12) | 0.0526 (17) | −0.0043 (12) | −0.0010 (13) | 0.0046 (12) |
C25 | 0.071 (2) | 0.100 (2) | 0.075 (2) | −0.0180 (17) | −0.0023 (16) | 0.0165 (18) |
C26 | 0.112 (3) | 0.108 (2) | 0.056 (2) | −0.038 (2) | 0.0110 (18) | −0.0129 (18) |
C41 | 0.0707 (18) | 0.0746 (16) | 0.071 (2) | 0.0101 (14) | 0.0105 (15) | −0.0199 (15) |
C51 | 0.0612 (16) | 0.0765 (15) | 0.0573 (18) | −0.0092 (13) | 0.0066 (13) | −0.0028 (14) |
O1—C11 | 1.361 (3) | C14—H14B | 0.99 |
O1—H1 | 0.81 (4) | C15—C16 | 1.384 (2) |
O2—C18 | 1.362 (2) | C15—C20 | 1.394 (2) |
O2—H2 | 0.93 (3) | C16—C17 | 1.389 (2) |
O3—C21 | 1.192 (3) | C16—H16 | 0.95 |
O4—C24 | 1.212 (3) | C17—C18 | 1.388 (2) |
N1—C7 | 1.375 (2) | C17—H17 | 0.95 |
N1—C1 | 1.385 (3) | C18—C19 | 1.387 (3) |
N1—C14 | 1.473 (2) | C19—C20 | 1.383 (3) |
N2—C7 | 1.320 (2) | C19—H19 | 0.95 |
N2—C2 | 1.391 (3) | C20—H20 | 0.95 |
C1—C6 | 1.392 (3) | C21—C22 | 1.470 (4) |
C1—C2 | 1.396 (2) | C21—C23 | 1.490 (4) |
C2—C3 | 1.390 (3) | C22—H22A | 0.98 |
C3—C4 | 1.385 (3) | C22—H22B | 0.98 |
C3—H3 | 0.95 | C22—H22C | 0.98 |
C4—C5 | 1.428 (3) | C23—H23A | 0.98 |
C4—C41 | 1.506 (4) | C23—H23B | 0.98 |
C5—C6 | 1.385 (3) | C23—H23C | 0.98 |
C5—C51 | 1.502 (4) | C24—C26 | 1.477 (4) |
C6—H6 | 0.95 | C24—C25 | 1.479 (4) |
C7—C8 | 1.466 (3) | C25—H25A | 0.98 |
C8—C13 | 1.391 (3) | C25—H25B | 0.98 |
C8—C9 | 1.392 (3) | C25—H25C | 0.98 |
C9—C10 | 1.386 (3) | C26—H26A | 0.98 |
C9—H9 | 0.95 | C26—H26B | 0.98 |
C10—C11 | 1.388 (3) | C26—H26C | 0.98 |
C10—H10 | 0.95 | C41—H41A | 0.98 |
C11—C12 | 1.384 (3) | C41—H41B | 0.98 |
C12—C13 | 1.383 (3) | C41—H41C | 0.98 |
C12—H12 | 0.95 | C51—H51A | 0.98 |
C13—H13 | 0.95 | C51—H51B | 0.98 |
C14—C15 | 1.513 (2) | C51—H51C | 0.98 |
C14—H14A | 0.99 | ||
C11—O1—H1 | 104 (3) | C17—C16—H16 | 119.6 |
C18—O2—H2 | 110.6 (17) | C18—C17—C16 | 120.63 (16) |
C7—N1—C1 | 106.82 (15) | C18—C17—H17 | 119.7 |
C7—N1—C14 | 126.42 (18) | C16—C17—H17 | 119.7 |
C1—N1—C14 | 124.31 (17) | O2—C18—C19 | 122.80 (15) |
C7—N2—C2 | 105.70 (15) | O2—C18—C17 | 118.41 (16) |
N1—C1—C6 | 132.44 (16) | C19—C18—C17 | 118.78 (16) |
N1—C1—C2 | 105.69 (19) | C20—C19—C18 | 120.44 (15) |
C6—C1—C2 | 121.8 (2) | C20—C19—H19 | 119.8 |
C3—C2—N2 | 130.84 (16) | C18—C19—H19 | 119.8 |
C3—C2—C1 | 119.5 (2) | C19—C20—C15 | 121.00 (16) |
N2—C2—C1 | 109.58 (19) | C19—C20—H20 | 119.5 |
C4—C3—C2 | 119.92 (18) | C15—C20—H20 | 119.5 |
C4—C3—H3 | 120.0 | O3—C21—C22 | 121.5 (3) |
C2—C3—H3 | 120.0 | O3—C21—C23 | 119.2 (3) |
C3—C4—C5 | 120.0 (2) | C22—C21—C23 | 119.3 (3) |
C3—C4—C41 | 119.8 (2) | C21—C22—H22A | 109.5 |
C5—C4—C41 | 120.2 (2) | C21—C22—H22B | 109.5 |
C6—C5—C4 | 120.1 (2) | H22A—C22—H22B | 109.5 |
C6—C5—C51 | 119.3 (2) | C21—C22—H22C | 109.5 |
C4—C5—C51 | 120.6 (2) | H22A—C22—H22C | 109.5 |
C5—C6—C1 | 118.62 (18) | H22B—C22—H22C | 109.5 |
C5—C6—H6 | 120.7 | C21—C23—H23A | 109.5 |
C1—C6—H6 | 120.7 | C21—C23—H23B | 109.5 |
N2—C7—N1 | 112.2 (2) | H23A—C23—H23B | 109.5 |
N2—C7—C8 | 124.15 (16) | C21—C23—H23C | 109.5 |
N1—C7—C8 | 123.52 (16) | H23A—C23—H23C | 109.5 |
C13—C8—C9 | 118.1 (2) | H23B—C23—H23C | 109.5 |
C13—C8—C7 | 120.22 (18) | O4—C24—C26 | 119.8 (3) |
C9—C8—C7 | 121.54 (17) | O4—C24—C25 | 121.9 (3) |
C10—C9—C8 | 121.03 (18) | C26—C24—C25 | 118.4 (3) |
C10—C9—H9 | 119.5 | C24—C25—H25A | 109.5 |
C8—C9—H9 | 119.5 | C24—C25—H25B | 109.5 |
C9—C10—C11 | 120.0 (2) | H25A—C25—H25B | 109.5 |
C9—C10—H10 | 120.0 | C24—C25—H25C | 109.5 |
C11—C10—H10 | 120.0 | H25A—C25—H25C | 109.5 |
O1—C11—C12 | 117.3 (2) | H25B—C25—H25C | 109.5 |
O1—C11—C10 | 123.2 (2) | C24—C26—H26A | 109.5 |
C12—C11—C10 | 119.5 (2) | C24—C26—H26B | 109.5 |
C13—C12—C11 | 120.17 (19) | H26A—C26—H26B | 109.5 |
C13—C12—H12 | 119.9 | C24—C26—H26C | 109.5 |
C11—C12—H12 | 119.9 | H26A—C26—H26C | 109.5 |
C12—C13—C8 | 121.11 (19) | H26B—C26—H26C | 109.5 |
C12—C13—H13 | 119.4 | C4—C41—H41A | 109.5 |
C8—C13—H13 | 119.4 | C4—C41—H41B | 109.5 |
N1—C14—C15 | 115.33 (14) | H41A—C41—H41B | 109.5 |
N1—C14—H14A | 108.4 | C4—C41—H41C | 109.5 |
C15—C14—H14A | 108.4 | H41A—C41—H41C | 109.5 |
N1—C14—H14B | 108.4 | H41B—C41—H41C | 109.5 |
C15—C14—H14B | 108.4 | C5—C51—H51A | 109.5 |
H14A—C14—H14B | 107.5 | C5—C51—H51B | 109.5 |
C16—C15—C20 | 118.32 (15) | H51A—C51—H51B | 109.5 |
C16—C15—C14 | 123.96 (14) | C5—C51—H51C | 109.5 |
C20—C15—C14 | 117.72 (15) | H51A—C51—H51C | 109.5 |
C15—C16—C17 | 120.78 (15) | H51B—C51—H51C | 109.5 |
C15—C16—H16 | 119.6 | ||
C7—N1—C1—C6 | −176.90 (19) | N2—C7—C8—C13 | −43.7 (2) |
C14—N1—C1—C6 | 19.9 (3) | N1—C7—C8—C13 | 140.81 (17) |
C7—N1—C1—C2 | 1.05 (18) | N2—C7—C8—C9 | 132.74 (18) |
C14—N1—C1—C2 | −162.14 (15) | N1—C7—C8—C9 | −42.8 (2) |
C7—N2—C2—C3 | 176.53 (19) | C13—C8—C9—C10 | −0.2 (3) |
C7—N2—C2—C1 | −0.28 (19) | C7—C8—C9—C10 | −176.75 (16) |
N1—C1—C2—C3 | −177.72 (16) | C8—C9—C10—C11 | −0.7 (3) |
C6—C1—C2—C3 | 0.5 (3) | C9—C10—C11—O1 | −179.10 (19) |
N1—C1—C2—N2 | −0.49 (19) | C9—C10—C11—C12 | 0.5 (3) |
C6—C1—C2—N2 | 177.73 (16) | O1—C11—C12—C13 | −179.72 (19) |
N2—C2—C3—C4 | −176.16 (18) | C10—C11—C12—C13 | 0.7 (3) |
C1—C2—C3—C4 | 0.4 (3) | C11—C12—C13—C8 | −1.7 (3) |
C2—C3—C4—C5 | −1.0 (3) | C9—C8—C13—C12 | 1.4 (3) |
C2—C3—C4—C41 | 178.0 (2) | C7—C8—C13—C12 | 177.96 (17) |
C3—C4—C5—C6 | 0.8 (3) | C7—N1—C14—C15 | 119.1 (2) |
C41—C4—C5—C6 | −178.2 (2) | C1—N1—C14—C15 | −81.0 (2) |
C3—C4—C5—C51 | 179.3 (2) | N1—C14—C15—C16 | −2.9 (3) |
C41—C4—C5—C51 | 0.3 (3) | N1—C14—C15—C20 | 176.6 (2) |
C4—C5—C6—C1 | 0.0 (3) | C20—C15—C16—C17 | −1.7 (3) |
C51—C5—C6—C1 | −178.48 (19) | C14—C15—C16—C17 | 177.8 (2) |
N1—C1—C6—C5 | 176.97 (19) | C15—C16—C17—C18 | 0.1 (4) |
C2—C1—C6—C5 | −0.7 (3) | C16—C17—C18—O2 | −179.6 (2) |
C2—N2—C7—N1 | 0.98 (19) | C16—C17—C18—C19 | 1.7 (4) |
C2—N2—C7—C8 | −174.96 (16) | O2—C18—C19—C20 | 179.4 (2) |
C1—N1—C7—N2 | −1.31 (19) | C17—C18—C19—C20 | −1.9 (4) |
C14—N1—C7—N2 | 161.42 (17) | C18—C19—C20—C15 | 0.3 (4) |
C1—N1—C7—C8 | 174.66 (16) | C16—C15—C20—C19 | 1.5 (4) |
C14—N1—C7—C8 | −22.6 (3) | C14—C15—C20—C19 | −178.0 (2) |
Cg3 is ring centroid of the 2-(4-hydroxyphenyl) substituent. Cg2 is ring centroid of the benzene ring of the benzimidazole ring system. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4 | 0.81 (4) | 1.96 (4) | 2.748 (3) | 165 (4) |
O2—H2···N2i | 0.93 (3) | 1.83 (3) | 2.757 (2) | 176 (2) |
C16—H16···Cg3ii | 0.95 | 2.76 | 3.6061 (19) | 149 |
C13—H13···Cg2iii | 0.95 | 3.00 | 3.552 (2) | 119 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x+1, y, z; (iii) x−1, y, z. |
Energies are in kJ mol-1 and are corrected for BSSE. |
Interaction | E'ele | E'pol | E'dis | E'rep | Etot1,2 | E3 |
O—H···N | -73.0 | -19.9 | -20.2 | 82 | -58.8 | -39.2 |
O—H···O | -48.9 | -11.0 | -9.0 | 50.1 | -36.7 | -35.7 |
C—H···π | -15.1 | -4.5 | -90.5 | 56.1 | -63.5 | -48.5 |
Notes: (i) Scale factors used to determine Etot: kele = 1.057, kpol = 0.740, kdisp = 0.871, krep = 0.618 (Mackenzie et al., 2017). See Section 7 for calculation details. (ii) Interaction energies were calculated employing the CE-B3LYP/6-31G(d,p) functional/basis set combination. (iii) Interaction energies were calculated employing the M06-2X/6-31G(d,p) functional/basis set combination. |
Funding information
This work was supported by a Congressionally directed grant from the US Department of Education for the X-ray diffractometer (award No. P116Z100020) and a grant from the Geneseo Foundation.
References
Allen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2004). International Tables for Crystallography, 3rd ed., edited by E. Prince, pp. 790–811. Heidelberg: Springer Verlag. Google Scholar
Beckmann, J. & Grabowsky, S. (2007). J. Phys. Chem. A, 111, 2011–2019. CrossRef CAS Google Scholar
Boys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553–566. CrossRef CAS Web of Science Google Scholar
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Deshmukh, M. M., Bartolotti, L. J. & Gadre, S. (2011). J. Comput. Chem. 32, 2996–3004. CrossRef CAS Google Scholar
Eltayeb, N. E., Teoh, S. G., Fun, H.-K., Jebas, S. R. & Adnan, R. (2009). Acta Cryst. E65, o1374–o1375. Web of Science CrossRef IUCr Journals Google Scholar
Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614. Web of Science CrossRef IUCr Journals Google Scholar
Fernandez-Berridi, M. J., Iruin, J. J., Irusta, L., Mercero, J. M. & Ugalde, J. M. (2002). J. Phys. Chem. A, 106, 4187–4191. CAS Google Scholar
Geiger, D. K. & DeStefano, M. R. (2016). Acta Cryst. C72, 867–874. Web of Science CrossRef IUCr Journals Google Scholar
Geiger, D. K., Geiger, H. C., Moore, S. M. & Roberts, W. R. (2017). Acta Cryst. C73, 791–796. CrossRef IUCr Journals Google Scholar
Geiger, D. K., Geiger, H. C. & Morell, D. L. (2018). Acta Cryst. E74, 594–599. CrossRef IUCr Journals Google Scholar
Geiger, H. C., Geiger, D. K., Roberts, W. R., Morell, D. L., Huttunen, P., Schulman, J. L., Tran, M. & Farthing, D. (2018). Gels, 4, 34–49. CrossRef Google Scholar
Geiger, H. C., Zick, P. L., Roberts, W. R. & Geiger, D. K. (2017). Acta Cryst. C73, 350–356. Web of Science CrossRef IUCr Journals Google Scholar
González-Padilla, J. E., Rosales-Hernández, M. C., Padilla-Martínez, I. I., García-Báez, E. V. & Rojas-Lima, S. (2013). Acta Cryst. E69, o1485–o1486. CrossRef IUCr Journals Google Scholar
Huynh, C. T., Nguyen, M. K. & Lee, D. S. (2011). Macromolecules, 44, 6629–6636. Web of Science CrossRef CAS Google Scholar
Ichikawa, M. (1979). J. Cryst. Mol. Struct. 9, 87–105. CrossRef CAS Google Scholar
Khan, T., Mishra, N., Mhatre, D. S. & Datta, A. (2017). Acta Cryst. E73, 1143–1147. CrossRef IUCr Journals Google Scholar
Khedkar, J. K., Deshmukh, M. M., Gadre, S. R. & Gejji, S. P. (2012). J. Phys. Chem. A, 116, 3739–3744. CrossRef CAS Google Scholar
Lau, H. K. & Kiick, K. L. (2015). Biomacromolecules, 16, 28–42. Web of Science CrossRef CAS PubMed Google Scholar
Liow, S. S., Dou, Q., Kai, D., Karim, A. A., Zhang, K., Xu, F. & Loh, X. J. (2016). ACS Biomater. Sci. Eng. 2, 295–316. Web of Science CrossRef CAS Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Omer, M. A. S., Liu, J. & Xiao, C. (2013). Acta Cryst. E69, o700. CrossRef IUCr Journals Google Scholar
Prakash, S. M., Thiruvalluvar, A., Rosepriya, S. & Srinivasan, N. (2014). Acta Cryst. E70, o184. CrossRef IUCr Journals Google Scholar
Rivera, A., Jiménez-Cruz, L. & Bolte, M. (2014). Acta Cryst. E70, o177. CrossRef IUCr Journals Google Scholar
Rusiniska-Roszak, D. (2017). Molecules, 22, 481–581. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simperler, A. & Mikenda, W. (1997). Monatshefte für Chemie 128, 969–980. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thiruvalluvar, A., Rosepriya, S., Jayamoorthy, K., Jayabharathi, J., Öztürk Yildirim, S. & Butcher, R. J. (2013). Acta Cryst. E69, o62. CrossRef IUCr Journals Google Scholar
Tibbitt, M. W., Dahlman, J. E. & Langer, R. (2016). J. Am. Chem. Soc. 138, 704–717. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au Google Scholar
Walker, M., Harvey, A. J. A., Sen, A. & Dessent, C. E. H. (2013). J. Phys. Chem. A, 117, 12590–12600. CrossRef CAS Google Scholar
Wavefunction. (2016). SPARTAN'16. Wavefunction Inc. Irvine, CA, USA. Google Scholar
Wendler, K., Thar, J., Zahn, S. & Kirchner, B. (2010). J. Phys. Chem. A, 114, 9529–9536. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, H.-Q. & Wang, C.-C. (2016). Langmuir, 32, 6211–6225. Web of Science CrossRef CAS PubMed Google Scholar
Xavier, J. R., Thakur, T., Desai, P., Jaiswal, M. K., Sears, N., Cosgriff-Hernandez, E., Kaunas, R. & Gaharwar, A. K. (2015). ACS Nano, 9, 3109–3118. Web of Science CrossRef CAS PubMed Google Scholar
Yan, L.-P., Oliveira, J. M., Oliveira, A. L. & Reis, R. L. (2015). ACS Biomater. Sci. Eng. 1, 183–200. Web of Science CrossRef CAS Google Scholar
Yasmeen, S., Lo, M. K., Bajracharya, S. & Roldo, M. (2014). Langmuir, 30, 12977–12985. Web of Science CrossRef CAS PubMed Google Scholar
Ye, E., Chee, P. L., Prasad, A., Fang, X., Owh, C., Yeo, V. J. J. & Loh, X. J. (2014). Mater. Today, 17, 194–202. Web of Science CrossRef CAS Google Scholar
Zhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215–241. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.