research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(4,5-di­phenyl-1H-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, St. Joseph's College, Darjeeling 734 104, India, bDepartment of Chemistry, University of North Bengal, Darjeeling 734 013, India, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and dResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 October 2019; accepted 8 October 2019; online 22 October 2019)

The crystal and mol­ecular structures of the title CuII complex, isolated as a dihydrate, [Cu(C21H14N3O3)2]·2H2O, reveals a highly distorted coordination geometry inter­mediate between square-planar and tetra­hedral defined by an N2O2 donor set derived from two mono-anionic bidentate ligands. Furthermore, each six-membered chelate ring adopts an envelope conformation with the Cu atom being the flap. In the crystal, imidazolyl-amine-N—H⋯O(water), water-O—H⋯O(coordinated, nitro and water), phenyl-C—H⋯O(nitro) and π(imidazol­yl)–π(nitro­benzene) [inter-centroid distances = 3.7452 (14) and 3.6647 (13) Å] contacts link the components into a supra­molecular layer lying parallel to (101). The connections between layers forming a three-dimensional architecture are of the types nitro­benzene-C—H⋯O(nitro) and phenyl-C—H⋯π(phen­yl). The distorted coordination geometry for the CuII atom is highlighted in an analysis of the Hirshfeld surface calculated for the metal centre alone. The significance of the inter­molecular contacts is also revealed in a study of the calculated Hirshfeld surfaces; the dominant contacts in the crystal are H⋯H (41.0%), O⋯H/H⋯O (27.1%) and C⋯H/H⋯C (19.6%).

1. Chemical context

The title copper(II) complex, (I)[link], was isolated during an on-going research programme on the catalytic activity of copper borate (CuB4O7) for C—N heterocyclic bond formation reactions. Complex (I)[link] was formed during the attempted synthesis of a tri­aryl­imidazole derivative using benzil and the respective aromatic aldehyde with copper borate, using ammonium acetate as a nitro­gen source. The single-crystal analysis of the synthesized product revealed that in the copper(II) complex, the tri­aryl­imidazole moiety acts as a bidentate ligand for the copper atom. During the successful synthesis of the tri­aryl­imidazole, the desired product formed in good yield at a temperature in the range 100–110 °C. However, when the reaction was conducted at 130 °C and above, the title copper(II) complex formed instead of the targeted tri­aryl­imidazole. The crystal and mol­ecular structures of (I)[link] are described herein, along with a detailed analysis of the mol­ecular packing via an analysis of the calculated Hirshfeld surfaces.

2. Structural commentary

The crystallographic asymmetric unit of (I)[link] comprises a complex mol­ecule and two water mol­ecules of crystallization. The copper(II) centre in (I)[link], Fig. 1[link], is bis-N,O-chelated by two 2-(4,5-diphenyl-1H-imidazol-2-yl)-4-nitrophenolate mono-anions. The resulting N2O2 donor set defines a highly distorted coordination geometry, as seen in the angles included in Table 1[link] and in the view of Fig. 2[link]. The angles range from a narrow 89.36 (7)°, for O1—Cu—O2, to a wide 147.34 (8)°, for O1—Cu—N2. The distortion is highlighted in the dihedral angle between the best planes through the two chelate rings of 49.82 (7)°. The value of τ4 is a geometric measure of the distortion of a four-coordinate geometry (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). For (I)[link], the value computes as 0.48 which is almost exactly inter­mediate between the values of τ4 = 0 for an ideal tetra­hedron and τ4 = 1.0 for an ideal square-planar geometry. In fact, the six-membered chelate rings are not planar, each adopting an envelope conformation with the Cu atom being the flap atom. In this description, the r.m.s. deviation for the least-squares plane through the O1/N1/C1/C2 atoms is 0.036 Å with the Cu atom lying 0.410 (3) Å out of the plane. The comparable parameters for the O2-chelate ring are 0.033 and 0.354 (3) Å, respectively. The dihedral angle formed between the two planar regions of the chelate rings is 49.38 (8)°. The dihedral angles between the best plane through the O1-chelate ring and each of the fused six- and five-membered rings are 9.18 (12) and 5.54 (14)°, respectively; the equivalent angles for the O2-chelate rings are 8.44 (8) and 2.71 (9)°, respectively. The N1-imidazol-2-yl ring forms dihedral angles of 41.20 (11) and 37.46 (10)° with the C10- and C16-phenyl substituents, respectively, and the dihedral angle between the phenyl rings is 59.92 (8)°, i.e. all indicating splayed relationships. A similar situation pertains to the N2-imidazol-2-yl ring, where the comparable dihedral angles formed with the C31- and C37-phenyl rings are 38.29 (10), 48.5 (9) and 50.84 (7)°, respectively. Finally, the nitro groups are not strictly coplanar with the benzene rings to which they are connected, as seen in the dihedral angles of 14.2 (4)° for C1–C6/N4/O3/O4 and 5.9 (3)° for C22–C27/N6/O5/O6.

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

Cu—O1 1.9291 (17) Cu—N1 1.9586 (19)
Cu—O2 1.9304 (17) Cu—N2 1.957 (2)
       
O1—Cu—O2 89.36 (7) O2—Cu—N1 144.41 (8)
O1—Cu—N2 147.34 (8) O2—Cu—N2 93.56 (7)
O1—Cu—N1 92.83 (8) N1—Cu—N2 103.14 (8)
[Figure 1]
Figure 1
The mol­ecular structure of the complex mol­ecule in (I)[link], showing the atom-labelling scheme and with displacement ellipsoids drawn at the 70% probability level.
[Figure 2]
Figure 2
A view of the mol­ecular structure of the complex mol­ecule in (I)[link], highlighting the distorted coordination geometry about the copper(II) atom.

3. Supra­molecular features

As each component of the asymmetric unit has hydrogen-bonding functionality, conventional hydrogen bonds are found in the crystal of (I)[link]; the geometric parameters characterizing the identified inter­molecular inter­actions operating in the crystal of (I)[link] are collated in Table 2[link]. Each of the imidazolyl-amine-N—H atoms forms a donor inter­action to a water mol­ecule to generate a three-mol­ecule aggregate. The O1W water mol­ecule forms donor inter­actions to the coordinated O2 atom and to a symmetry-related O2W water mol­ecule. The O2W water mol­ecule connects to the coordinated O1 atom as well as to a nitro-O3 atom. Hence, the O2W water mol­ecule is involved in four hydrogen-bonding inter­actions. The fourth contact involving the O1W water mol­ecule, a C—H⋯O acceptor contact, is provided by the nitro­benzene ring. There is also a phenyl-C—H⋯O(nitro) contact of note, Table 2[link]. The aforementioned inter­actions combine to stabilize a supra­molecular layer lying parallel to (101), as shown in Fig. 3[link](a). There are also ππ stacking and C—H⋯O inter­actions in the crystal, Fig. 3[link](b). Within layers, there are ππ inter­actions occurring between the imidazolyl and nitro­benzene rings [inter-centroid distances: Cg(N1/N3/C7–C9)⋯Cg(C1–C6) = 3.7452 (14) Å and angle of inclination = 9.70 (13)° for symmetry operation (−x + 2, −y + 1, −z + 1); Cg(N2/N5/C28–C30)⋯Cg(C22–C27) = 3.6647 (13) Å and angle of inclination = 8.15 (12)° for (−x + 1, −y + 1, −z + 1)]. The connections between layers along [010] are of the type nitro­benzene-C—H⋯O(nitro) and phenyl-C—H⋯π(phen­yl), as detailed in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the ring centroid of the C16–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1Wi 0.89 (2) 1.91 (2) 2.790 (3) 173 (3)
N5—H5N⋯O2W 0.88 (2) 1.95 (2) 2.822 (3) 172 (3)
O1W—H1W⋯O2 0.85 (2) 1.92 (2) 2.745 (2) 164 (2)
O1W—H2W⋯O2Wii 0.85 (2) 2.21 (2) 2.868 (2) 134 (2)
O2W—H3W⋯O1ii 0.84 (2) 2.01 (2) 2.841 (2) 172 (2)
O2W—H4W⋯O3iii 0.84 (2) 2.27 (2) 2.938 (2) 136 (2)
C3—H3⋯O1Wi 0.95 2.57 3.435 (3) 151
C33—H33⋯O5iv 0.95 2.48 3.345 (3) 151
C5—H5⋯O6v 0.95 2.50 3.361 (3) 151
C34—H34⋯Cg1vi 0.95 2.49 3.426 (3) 168
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z-1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x+1, y, z+1; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The mol­ecular packing in the crystal of (I)[link]: (a) a supra­molecular layer parallel to (101) sustained by O—H⋯O, N—H⋯O and C—H⋯O inter­actions shown as orange, blue and green dashed lines, respectively, and (b) a view of the unit-cell contents in projection down the c axis, with ππ and C—H⋯π inter­actions shown as purple and pink dashed lines, respectively.

4. Hirshfeld surface analysis

The Hirshfeld surface calculations for (I)[link] were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. The University of Western Australia.]) and published protocols (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]), and serve to indicate the significant role of the two water mol­ecules in the supra­molecular association in the crystal. The involvement of both the water mol­ecules in hydrogen bonds, Table 2[link], are evident as bright-red spots near the respective atoms on the Hirshfeld surfaces mapped over dnorm for the O1W-, Fig. 4[link](a), and O2W-water, Fig. 4[link](b), mol­ecules. In addition, the presence of faint-red spots near the O1W, O2W and H1W atoms in Figs. 4[link](a) and 4(b) are indicative of the other contacts of these atoms with those of the CuII complex mol­ecule (Table 2[link]). The donors and acceptors of the hydrogen bonds involving atoms of the complex mol­ecule are also apparent as bright-red spots near the participating atoms in the views of the Hirshfeld surfaces calculated for the complex mol­ecule shown in Figs. 4[link](c)–(e).

[Figure 4]
Figure 4
Different views of the Hirshfeld surfaces for the constituents of (I)[link] mapped over dnorm for the (a) water-O1W mol­ecule [in the range −0.2369 to +1.2173 arbitrary units (au)], (b) water-O2W mol­ecule (−0.2114 to + 0.7500 au) and (c)–(e) complex mol­ecule (−0.1170 to + 1.6287 au).

The presence of a short inter­atomic C⋯C contact between atoms C22 and C28 (Table 3[link]) arises from ππ stacking between symmetry-related imidazole and nitro­benzene rings, and is observable as the faint-red spots near these atoms on the dnorm-mapped Hirshfeld surface in Fig. 4[link](c). The pair of faint-red spots appearing near the phenyl-C36 and H36 atoms, and also near the nitro-O5 atom on the surface indicating short inter­atomic contacts that characterize the weak C—H⋯O inter­action, Table 3[link]. The influence of the C—H⋯π contact on the mol­ecular packing is recognized from the three faint-red spots in the phenyl-(C16–C21) ring and another near atom H34 in Fig. 4[link](e). The donors and acceptors of this inter­action are also evident as the blue bump and a bright-orange spot enclosed within the black circle on the Hirshfeld surface mapped with the shape-index property in Fig. 5[link](a). The bright-orange region enclosed within a black circle in Fig. 5[link](b) is also an indication of the O2W—H4WCg(C16–C21) contact. The Hirshfeld surfaces mapped over the calculated electrostatic potential for the water and complex mol­ecules in Fig. 6[link] also illustrate the donors and acceptors of inter­molecular inter­actions through blue and red regions corresponding to positive and negative electrostatic potentials, respectively. The ππ stacking between symmetry-related imidazolyl and nitro­benzene rings are viewed as the flat regions enclosing them on the Hirshfeld surfaces mapped over curvedness in Fig. 7[link]. On the Hirshfeld surfaces mapped over dnorm illustrated in Figs. 4[link](c)–(e), faint-red spots also appear near other atoms indicating their involvement in other short inter­atomic contacts, as summarized in Table 3[link].

Table 3
Summary of short inter­atomic contacts (Å) in (I)a

Contact Distance Symmetry operation
H12⋯H12 1.92 x + 1, −y + 1, −z + 1
H1W⋯H3N 2.22 x + 2, −y + 1, −z + 1
H2W⋯H3N 2.26 x + 2, −y + 1, −z + 1
O4⋯H40 2.54 x + 1, −y + [{3\over 2}], z + [{1\over 2}]
C1⋯H3W 2.74 x + 1, −y + 1, −z + 1
C6⋯O6 3.206 (3) x + 1, −y + 1, −z + 1
C12⋯H12 2.55 x + 1, −y + 1, −z
C13⋯C25 3.347 (3) x + 1, −y + 1, −z
C14⋯O5 3.197 (3) x + 1, −y + 1, −z
H17⋯O6 2.55 x + 1, −y + 1, −z
C19⋯H34 2.68 x, −y + [{3\over 2}], z − [{1\over 2}]
C20⋯H34 2.60 x, −y + [{3\over 2}], z − [{1\over 2}]
C21⋯H34 2.67 x, −y + [{3\over 2}], z − [{1\over 2}]
C21⋯H2W 2.64 x + 2, −y + 1, −z + 1
C21⋯O1W 3.161 (3) x + 2, −y + 1, −z + 1
C22⋯C28 3.267 (3) x + 1, −y + 1, −z + 1
C36⋯O5 3.146 (3) x + 1, −y + 1, −z + 1
H36⋯O5 2.49 x + 1, −y + 1, −z + 1
C41⋯H20 2.76 x + 1, y, z
Notes: (a) the inter­atomic distances are calculated in CrystalExplorer17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. The University of Western Australia.]), whereby the X—H bond lengths are adjusted to their neutron values.
[Figure 5]
Figure 5
Two views of the Hirshfeld surface mapped with the shape-index property for the complex mol­ecule in (I)[link] from −1.0 to +1.0 arbitrary units highlighting (a) the donor and acceptor atoms of the C—H⋯π inter­action through a blue bump near the H34 atom and bright-orange curvature, enclosed within the black circle, and (b) the O2W—H4Wπ inter­action by the bright-orange region enclosed within the black circle.
[Figure 6]
Figure 6
Different views of the Hirshfeld surfaces for the constituents of (I)[link] mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively) for the (a) water-O1W mol­ecule [in the range −0.1001 to +0.1943 atomic units (a.u.)], (b) water-O2W mol­ecule (−0.1013 to +0.1751 a.u.) and (c) complex mol­ecule (−0.1209 to +0.2076 a.u.). The hydrogen bonds involving water mol­ecules in (c) are indicated by green dashed lines.
[Figure 7]
Figure 7
Two views of the Hirshfeld surface mapped over curvedness for the complex mol­ecule in (I)[link], highlighting flat regions enclosing symmetry-related imidazole and nitro­benzene rings involved in ππ stacking, labelled Cg1 and Cg3 for one pair of rings in (a), and Cg2 and Cg4 for the other pair in (b).

The Hirshfeld surfaces also provide an insight into the distortion in the coordination geometry formed by the N2O4 donor set about the copper(II) centre in the complex mol­ecule. This is performed by considering the Hirshfeld surface about the metal centre alone (Pinto et al., 2019[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707-716.]). The distortion in the coordination geometry is observed on the Hirshfeld surface mapped with the shape-index property as the bright-orange patches of irregular shape covering a major region for the Cu—O bonds in Fig. 8[link](a) and the small orange regions on the surface relatively far from the Cu—N bonds in Fig. 8[link](b). The different curvature of the Hirshfeld surfaces coordinated by the N2O4 donor set in Figs. 8[link](c) and 8(d) also support this observation. The Cu—O and Cu—N bonds are rationalized in the two-dimensional fingerprint plot taking into account only the Hirshfeld surface for the copper atom shown in Fig. 9[link]. The distribution of points in the fingerprint plot through the pair of aligned red points at different inclinations from de + di ∼ 2.0 Å for the Cu—N bonds (upper region) and the Cu—O bonds (lower region) are indicative of the distorted geometry (Pinto et al., 2019[Pinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707-716.]).

[Figure 8]
Figure 8
Different views of the Hirshfeld surfaces calculated for the copper(II) centre in (I)[link] highlighting the coordination by the N2O4 donor set mapped over (a)/(b) shape-index in the range −1.0 to +1.0 arbitrary units and (c)/(d) curvedness in the range −4.0 to +0.4 arbitrary units.
[Figure 9]
Figure 9
The two-dimensional fingerprint plot taking into account only the Hirshfeld surface calculated about the copper(II) atom.

The overall two-dimensional fingerprint plot for (I)[link], i.e. the entire asymmetric unit, Fig. 10[link](a), and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, C⋯C and C⋯O/O⋯C contacts are illustrated in Figs. 10[link](b)–(f), respectively. The percentage contribution from different inter­atomic contacts to the Hirshfeld surfaces of the complex mol­ecule and for overall (I)[link] are summarized in Table 4[link]. The presence of water mol­ecules in the crystal of (I)[link] increases the percentage contribution from O⋯H/H⋯O contacts (Table 4[link]) to the Hirshfeld surface of the asymmetric unit compared with the complex mol­ecule alone. This results in slight decreases in the percentage contributions from other inter­atomic contacts for (I)[link] (Table 4[link]). A single conical tip at de + di ∼ 1.9 Å in the fingerprint plot delineated into H⋯H contacts shown in Fig. 10[link](b) is the result of the involvement of the H12 atom in a short inter­atomic H⋯H contact, Table 3[link]. The points due to short inter­atomic contacts between amine hydrogen-H3N and water hydrogen atoms, H1W and H2W, Table 3[link], are merged within the plot. Although the mol­ecular packing of (I)[link] is influenced by several inter­molecular O—H⋯O and C—H⋯O inter­actions, the presence of a pair of long spikes at de + di ∼ 1.8 Å in the plot delineated into O⋯H/H⋯O contacts, Fig. 10[link](c), arise from the N—H⋯O hydrogen bond, while the merged points correspond to other inter­actions at greater inter­atomic distances. The significant contribution from inter­atomic C⋯H/H⋯C contacts (Table 4[link]) to the Hirshfeld surface of (I)[link] reflect the combined influence of inter­molecular C—H⋯π inter­actions (Table 2[link]) and the short inter­atomic C⋯H/H⋯C contacts, summarized in Table 3[link], and viewed as the distribution of points in the form of characteristic wings in Fig. 10[link](d). The presence of short inter­atomic C⋯C contacts are evident as the points near a rocket shape tip at de + di ∼ 3.2 Å in the respective delineated fingerprint plot, Fig. 10[link](e), while the points corresponding ππ stacking between the imidazole and nitro­benzene rings are distributed about de = di = 1.7 Å in the plot. The small, i.e. 2.7%, contribution from C⋯N/N⋯C contacts to the surface is also due to these ππ stacking inter­actions (delineated plot not shown). The contribution of 3.2% from C⋯O/O⋯C contacts is due to the presence of short inter­atomic contacts involving nitro-O atoms, Table 2[link], and are apparent as the pair of parabolic tips at de + di ∼ 3.2 Å in the delineated plot of Fig. 10[link](f). The contribution from other inter­atomic contacts to the surface summarized in Table 4[link] have negligible influence on the mol­ecular packing.

Table 4
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the complex mol­ecule in (I)[link] and overall (I)

Contact Percentage contribution  
  complex mol­ecule (I)
H⋯H 41.3 41.0
O⋯H/H⋯O 25.6 27.1
C⋯H/H⋯C 19.8 19.6
C⋯C 3.5 3.3
C⋯O/O⋯C 3.4 3.2
C⋯N/N⋯C 2.8 2.7
N⋯H/H⋯N 2.2 2.1
O⋯O 0.6 0.5
N⋯O/O⋯N 0.2 0.2
Cu⋯O/O⋯Cu 0.0 0.3
Cu⋯C/C⋯Cu 0.3 0.0
[Figure 10]
Figure 10
(a) A comparison of the full two-dimensional fingerprint plot for (I)[link] and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) C⋯C and (f) C⋯O/O⋯C contacts.

5. Database survey

There are five crystal structures of copper complexes with related 2-(4,5-diphenyl-1H-imidazol-2-yl)phenolate ligands in the literature [Cambridge Structural Database (CSD): Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]]. The first of these is the 4-bromo derivative of (I)[link], isolated as a di­methyl­formamide solvate [(II); CSD refcode YUKSOO] (Parween et al., 2015[Parween, A., Mandal, T. K., Guillot, R. & Naskar, S. (2015). Polyhedron, 99, 34-46.]). The remaining four structures are 2,4-(t-Bu)2-phenolate derivatives, three of which are copper(II) complexes and the other, a copper(III) complex. Three of these four species have no additional substitution (Benisvy et al., 2003[Benisvy, L., Blake, A. J., Collison, D., Stephen Davies, E., David Garner, C., McInnes, E. J. L., McMaster, J., Whittaker, G. & Wilson, C. (2003). Dalton Trans. pp. 1975-1985.]). One was isolated as a methanol tris­olvate [(III); JADZUK], another as a di­methyl­formamide tetra­solvate [(IV); NEPLAV01] and the third an oxidized species, i.e. a copper(III) complex, was isolated as a tetra­fluoro­borate salt/di­chloro­methane disolvate [(V); NEP­LEZ01]; complex (IV) has crystallographic twofold symmetry. The final structure, a copper(II) complex (Benisvy et al., 2006[Benisvy, L., Bill, E., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., McArdle, G., McInnes, E. J. L., McMaster, J., Ross, S. H. K. & Wilson, C. (2006). Dalton Trans. pp. 258-267.]), has additional 4-meth­oxy­phenyl substituents on the imidazol-2-yl rings and was isolated as a methanol disolvate [(VI); JEBRUE]. The common feature of all the structures is the `cis'-N2O2 set but the coordination geometries are highly distorted, as seen in the sequence of τ4 values for (I)–(VI) of 0.48, 0.53, 0.44, 0.37, 0.47 and 0.35, respectively.

6. Synthesis and crystallization

In a typical procedure, benzil (0.3 g, 1 mmol), ammonium acetate (0.19 g, 2.5 mmol), 2-hy­droxy-5-nitro­benzalaldehyde (0.167 g, 1 mmol) and copper(II) borate (0.218 mg, 1 mmol) were ground in an agate mortar with a pestle. To this mixture, about 1.5 g of dried silica gel (column chromatography, 60–120 mesh) was added and the reaction mixture was ground again for 30 min. The whole reaction mixture was then transferred to a 100 ml round-bottomed flask and heated at 130 °C with constant stirring for 4 h. The reaction mixture was then extracted with dry acetone and dried over MgSO4. After a few days, a dark-brown solid was obtained. The product was recrystallized from dry di­methyl­formamide and, after 5 d, light-blue crystals of (I)[link] were obtained (yield 60%; m.p. > 300 °C).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) values set at 1.2Ueq(C). The O- and N-bound H atoms were located in a difference Fourier map but were refined with distance restraints of O—H = 0.84 ± 0.01 Å and N—H = 0.88 ± 0.01 Å, respectively, and with Uiso(H) set at 1.5Ueq(O) or 1.2Ueq(N).

Table 5
Experimental details

Crystal data
Chemical formula [Cu(C21H14N3O3)2]·2H2O
Mr 812.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.2752 (2), 25.1602 (4), 11.1166 (2)
β (°) 104.256 (1)
V3) 3598.68 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.42
Crystal size (mm) 0.14 × 0.11 × 0.07
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, AtlasS2
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.757, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 46023, 7490, 6420
Rint 0.058
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.05
No. of reflections 7490
No. of parameters 532
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.74
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXS (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[2-(4,5-diphenyl-1H-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate top
Crystal data top
[Cu(C21H14N3O3)2]·2H2OF(000) = 1676
Mr = 812.27Dx = 1.499 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 13.2752 (2) ÅCell parameters from 17322 reflections
b = 25.1602 (4) Åθ = 3.4–75.1°
c = 11.1166 (2) ŵ = 1.42 mm1
β = 104.256 (1)°T = 100 K
V = 3598.68 (10) Å3Block, light-blue
Z = 40.14 × 0.11 × 0.07 mm
Data collection top
XtaLAB Synergy, Dualflex, AtlasS2
diffractometer
7490 independent reflections
Radiation source: micro-focus sealed X-ray tube6420 reflections with I > 2σ(I)
Detector resolution: 5.2558 pixels mm-1Rint = 0.058
ω scansθmax = 76.5°, θmin = 3.4°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
h = 1615
Tmin = 0.757, Tmax = 1.000k = 3118
46023 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0612P)2 + 4.3316P]
where P = (Fo2 + 2Fc2)/3
7490 reflections(Δ/σ)max = 0.001
532 parametersΔρmax = 0.61 e Å3
8 restraintsΔρmin = 0.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.74255 (2)0.52876 (2)0.48001 (3)0.01988 (11)
O10.83947 (13)0.50064 (7)0.62462 (16)0.0252 (4)
O20.66268 (12)0.46402 (7)0.46842 (16)0.0230 (3)
O31.24824 (14)0.57484 (8)0.99386 (16)0.0330 (4)
O41.27722 (17)0.60469 (10)0.82272 (19)0.0473 (6)
O50.24188 (14)0.37240 (7)0.15743 (17)0.0293 (4)
O60.22116 (14)0.45563 (7)0.10696 (17)0.0306 (4)
N10.85211 (14)0.56519 (8)0.42190 (18)0.0205 (4)
N20.62006 (14)0.57293 (8)0.41429 (17)0.0195 (4)
N31.00287 (15)0.60284 (8)0.43184 (18)0.0208 (4)
H3N1.0706 (14)0.6096 (12)0.456 (3)0.025*
N41.22194 (17)0.58167 (9)0.8805 (2)0.0288 (5)
N50.46035 (15)0.59145 (8)0.31342 (18)0.0209 (4)
H5N0.3926 (14)0.5882 (12)0.288 (3)0.025*
N60.27280 (15)0.41869 (8)0.16466 (18)0.0232 (4)
C10.93103 (18)0.52034 (9)0.6799 (2)0.0217 (5)
C20.98664 (18)0.55672 (9)0.6228 (2)0.0206 (4)
C31.08255 (18)0.57635 (10)0.6906 (2)0.0239 (5)
H31.12000.60080.65320.029*
C41.12307 (18)0.56018 (10)0.8122 (2)0.0232 (5)
C51.07118 (19)0.52365 (10)0.8690 (2)0.0246 (5)
H51.10010.51240.95190.030*
C60.97736 (18)0.50408 (10)0.8029 (2)0.0246 (5)
H60.94230.47870.84110.029*
C70.94688 (17)0.57399 (9)0.4945 (2)0.0201 (4)
C80.84752 (17)0.58953 (9)0.3082 (2)0.0202 (4)
C90.94244 (17)0.61300 (9)0.3143 (2)0.0205 (4)
C100.75336 (18)0.58906 (10)0.2072 (2)0.0224 (5)
C110.69242 (19)0.54320 (11)0.1822 (2)0.0250 (5)
H110.71520.51150.22690.030*
C120.5990 (2)0.54366 (12)0.0927 (2)0.0320 (6)
H120.55780.51240.07720.038*
C130.5652 (2)0.58977 (13)0.0253 (2)0.0326 (6)
H130.50060.59030.03510.039*
C140.6269 (2)0.63488 (12)0.0476 (2)0.0299 (6)
H140.60510.66620.00050.036*
C150.71990 (19)0.63494 (11)0.1373 (2)0.0254 (5)
H150.76120.66620.15170.031*
C160.98685 (17)0.64082 (10)0.2229 (2)0.0217 (5)
C170.96256 (18)0.62504 (10)0.0983 (2)0.0239 (5)
H170.91220.59810.07010.029*
C181.0124 (2)0.64895 (11)0.0159 (2)0.0291 (5)
H180.99540.63830.06870.035*
C191.0863 (2)0.68803 (12)0.0558 (3)0.0323 (6)
H191.12180.70320.00030.039*
C201.1084 (2)0.70494 (11)0.1786 (3)0.0311 (6)
H201.15780.73240.20600.037*
C211.05857 (18)0.68174 (10)0.2611 (2)0.0247 (5)
H211.07340.69380.34460.030*
C220.56875 (17)0.45490 (9)0.3982 (2)0.0200 (4)
C230.50083 (18)0.49614 (9)0.3407 (2)0.0204 (4)
C240.40437 (18)0.48271 (10)0.2621 (2)0.0214 (5)
H240.35980.50990.21980.026*
C250.37391 (17)0.43039 (10)0.2459 (2)0.0209 (5)
C260.43829 (18)0.38910 (10)0.3045 (2)0.0225 (5)
H260.41630.35310.29300.027*
C270.53397 (18)0.40181 (10)0.3791 (2)0.0230 (5)
H270.57820.37400.41910.028*
C280.52750 (17)0.55192 (9)0.3586 (2)0.0195 (4)
C290.61089 (17)0.62771 (9)0.4033 (2)0.0192 (4)
C300.51046 (18)0.63939 (9)0.3401 (2)0.0212 (5)
C310.69704 (18)0.66474 (9)0.4539 (2)0.0214 (5)
C320.70930 (19)0.71076 (10)0.3893 (2)0.0255 (5)
H320.66350.71790.31070.031*
C330.7886 (2)0.74629 (11)0.4399 (3)0.0318 (6)
H330.79710.77770.39590.038*
C340.8553 (2)0.73593 (11)0.5545 (3)0.0340 (6)
H340.90890.76050.58920.041*
C350.8443 (2)0.69010 (11)0.6187 (3)0.0316 (6)
H350.89060.68300.69680.038*
C360.76519 (19)0.65455 (10)0.5684 (2)0.0245 (5)
H360.75750.62300.61240.029*
C370.45587 (18)0.68949 (10)0.2984 (2)0.0228 (5)
C380.46133 (19)0.73260 (10)0.3798 (2)0.0262 (5)
H380.50020.72960.46350.031*
C390.4098 (2)0.77969 (10)0.3378 (3)0.0289 (5)
H390.41350.80880.39330.035*
C400.35291 (19)0.78459 (10)0.2151 (3)0.0284 (5)
H400.31800.81690.18680.034*
C410.34751 (19)0.74196 (11)0.1343 (2)0.0279 (5)
H410.30900.74520.05040.034*
C420.39843 (19)0.69450 (10)0.1760 (2)0.0255 (5)
H420.39390.66540.12050.031*
O1W0.78491 (13)0.37472 (7)0.51477 (16)0.0256 (4)
H1W0.753 (2)0.4034 (8)0.489 (2)0.038*
H2W0.778 (2)0.3679 (11)0.5869 (15)0.038*
O2W0.24174 (13)0.58295 (7)0.25549 (16)0.0255 (4)
H3W0.221 (2)0.5561 (9)0.287 (2)0.038*
H4W0.210 (2)0.5863 (12)0.1806 (12)0.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01593 (17)0.02201 (19)0.02094 (18)0.00086 (12)0.00306 (13)0.00226 (13)
O10.0202 (8)0.0287 (9)0.0257 (8)0.0045 (7)0.0035 (7)0.0039 (7)
O20.0167 (7)0.0238 (8)0.0271 (9)0.0004 (6)0.0026 (6)0.0021 (7)
O30.0316 (10)0.0436 (11)0.0194 (8)0.0056 (8)0.0023 (7)0.0008 (8)
O40.0359 (11)0.0665 (15)0.0329 (11)0.0253 (10)0.0043 (9)0.0158 (10)
O50.0302 (9)0.0269 (9)0.0290 (9)0.0097 (7)0.0040 (7)0.0014 (7)
O60.0245 (9)0.0302 (10)0.0315 (9)0.0023 (7)0.0037 (7)0.0009 (8)
N10.0161 (9)0.0247 (10)0.0195 (9)0.0003 (7)0.0024 (7)0.0011 (7)
N20.0175 (9)0.0212 (9)0.0199 (9)0.0027 (7)0.0046 (7)0.0009 (7)
N30.0152 (9)0.0259 (10)0.0201 (9)0.0000 (7)0.0025 (7)0.0026 (8)
N40.0279 (11)0.0312 (11)0.0243 (10)0.0061 (9)0.0007 (8)0.0025 (9)
N50.0171 (9)0.0217 (10)0.0233 (10)0.0004 (7)0.0039 (8)0.0002 (8)
N60.0229 (10)0.0268 (10)0.0195 (9)0.0028 (8)0.0046 (8)0.0019 (8)
C10.0182 (10)0.0230 (11)0.0233 (11)0.0010 (9)0.0036 (9)0.0015 (9)
C20.0200 (11)0.0219 (11)0.0194 (11)0.0009 (9)0.0041 (9)0.0003 (9)
C30.0217 (11)0.0261 (12)0.0229 (11)0.0026 (9)0.0037 (9)0.0020 (9)
C40.0199 (11)0.0268 (12)0.0207 (11)0.0012 (9)0.0009 (9)0.0013 (9)
C50.0243 (12)0.0265 (12)0.0222 (11)0.0011 (9)0.0044 (9)0.0021 (9)
C60.0227 (11)0.0274 (12)0.0234 (11)0.0011 (9)0.0053 (9)0.0039 (9)
C70.0152 (10)0.0231 (11)0.0218 (11)0.0018 (8)0.0042 (8)0.0006 (9)
C80.0188 (11)0.0244 (11)0.0171 (10)0.0009 (9)0.0040 (8)0.0010 (8)
C90.0171 (10)0.0242 (12)0.0190 (11)0.0008 (9)0.0021 (8)0.0015 (9)
C100.0183 (11)0.0293 (12)0.0199 (11)0.0002 (9)0.0052 (9)0.0009 (9)
C110.0221 (11)0.0329 (13)0.0194 (11)0.0035 (10)0.0041 (9)0.0004 (9)
C120.0261 (13)0.0445 (16)0.0248 (12)0.0091 (11)0.0054 (10)0.0060 (11)
C130.0215 (12)0.0552 (18)0.0192 (11)0.0012 (11)0.0012 (9)0.0006 (11)
C140.0259 (12)0.0422 (15)0.0212 (11)0.0086 (11)0.0053 (10)0.0054 (10)
C150.0232 (12)0.0321 (13)0.0218 (11)0.0012 (10)0.0070 (9)0.0023 (10)
C160.0174 (10)0.0251 (12)0.0225 (11)0.0018 (9)0.0048 (9)0.0034 (9)
C170.0207 (11)0.0288 (12)0.0218 (11)0.0017 (9)0.0045 (9)0.0029 (9)
C180.0268 (12)0.0362 (14)0.0251 (12)0.0071 (10)0.0083 (10)0.0061 (10)
C190.0254 (12)0.0389 (15)0.0357 (14)0.0031 (11)0.0133 (11)0.0113 (11)
C200.0220 (12)0.0316 (14)0.0395 (14)0.0026 (10)0.0074 (11)0.0086 (11)
C210.0193 (11)0.0271 (12)0.0255 (12)0.0004 (9)0.0015 (9)0.0046 (9)
C220.0176 (10)0.0242 (11)0.0190 (10)0.0023 (9)0.0058 (8)0.0010 (9)
C230.0212 (11)0.0209 (11)0.0201 (10)0.0008 (9)0.0067 (9)0.0002 (9)
C240.0221 (11)0.0235 (11)0.0191 (11)0.0006 (9)0.0060 (9)0.0012 (9)
C250.0178 (11)0.0254 (12)0.0195 (10)0.0025 (9)0.0047 (9)0.0020 (9)
C260.0219 (11)0.0229 (12)0.0232 (11)0.0025 (9)0.0061 (9)0.0018 (9)
C270.0224 (11)0.0225 (12)0.0246 (11)0.0016 (9)0.0066 (9)0.0010 (9)
C280.0169 (10)0.0242 (12)0.0184 (10)0.0001 (8)0.0059 (8)0.0005 (8)
C290.0174 (10)0.0218 (11)0.0178 (10)0.0012 (8)0.0032 (8)0.0004 (8)
C300.0206 (11)0.0219 (11)0.0217 (11)0.0018 (9)0.0063 (9)0.0008 (9)
C310.0195 (11)0.0221 (11)0.0237 (11)0.0018 (9)0.0074 (9)0.0023 (9)
C320.0248 (12)0.0227 (12)0.0290 (12)0.0007 (9)0.0065 (10)0.0003 (10)
C330.0287 (13)0.0234 (12)0.0439 (15)0.0040 (10)0.0103 (11)0.0004 (11)
C340.0278 (13)0.0293 (14)0.0431 (16)0.0086 (10)0.0052 (12)0.0086 (11)
C350.0261 (13)0.0351 (14)0.0307 (13)0.0042 (10)0.0017 (10)0.0066 (11)
C360.0228 (11)0.0279 (12)0.0230 (11)0.0015 (9)0.0060 (9)0.0011 (9)
C370.0205 (11)0.0229 (12)0.0260 (12)0.0004 (9)0.0078 (9)0.0007 (9)
C380.0252 (12)0.0245 (12)0.0285 (12)0.0008 (9)0.0060 (10)0.0016 (10)
C390.0254 (12)0.0249 (12)0.0373 (14)0.0010 (10)0.0098 (11)0.0016 (10)
C400.0232 (12)0.0261 (13)0.0379 (14)0.0015 (10)0.0115 (10)0.0064 (10)
C410.0238 (12)0.0322 (13)0.0279 (13)0.0021 (10)0.0065 (10)0.0060 (10)
C420.0242 (12)0.0256 (12)0.0264 (12)0.0008 (9)0.0059 (10)0.0019 (9)
O1W0.0210 (8)0.0285 (9)0.0263 (9)0.0014 (7)0.0038 (7)0.0020 (7)
O2W0.0213 (8)0.0295 (9)0.0246 (8)0.0014 (7)0.0035 (7)0.0039 (7)
Geometric parameters (Å, º) top
Cu—O11.9291 (17)C17—C181.392 (3)
Cu—O21.9304 (17)C17—H170.9500
Cu—N11.9586 (19)C18—C191.383 (4)
Cu—N21.957 (2)C18—H180.9500
O1—C11.316 (3)C19—C201.391 (4)
O2—C221.318 (3)C19—H190.9500
O3—N41.234 (3)C20—C211.384 (4)
O4—N41.232 (3)C20—H200.9500
O5—N61.231 (3)C21—H210.9500
O6—N61.236 (3)C22—C271.412 (3)
N1—C71.335 (3)C22—C231.420 (3)
N1—C81.392 (3)C23—C241.402 (3)
N2—C281.341 (3)C23—C281.449 (3)
N2—C291.386 (3)C24—C251.376 (3)
N3—C71.349 (3)C24—H240.9500
N3—C91.378 (3)C25—C261.400 (3)
N3—H3N0.889 (17)C26—C271.373 (3)
N4—C41.449 (3)C26—H260.9500
N5—C281.347 (3)C27—H270.9500
N5—C301.374 (3)C29—C301.377 (3)
N5—H5N0.877 (17)C29—C311.475 (3)
N6—C251.452 (3)C30—C371.471 (3)
C1—C61.415 (3)C31—C361.392 (3)
C1—C21.420 (3)C31—C321.393 (3)
C2—C31.400 (3)C32—C331.390 (4)
C2—C71.459 (3)C32—H320.9500
C3—C41.387 (3)C33—C341.385 (4)
C3—H30.9500C33—H330.9500
C4—C51.390 (3)C34—C351.382 (4)
C5—C61.372 (3)C34—H340.9500
C5—H50.9500C35—C361.388 (3)
C6—H60.9500C35—H350.9500
C8—C91.378 (3)C36—H360.9500
C8—C101.460 (3)C37—C421.392 (3)
C9—C161.471 (3)C37—C381.403 (3)
C10—C111.397 (3)C38—C391.390 (4)
C10—C151.401 (4)C38—H380.9500
C11—C121.385 (4)C39—C401.393 (4)
C11—H110.9500C39—H390.9500
C12—C131.394 (4)C40—C411.390 (4)
C12—H120.9500C40—H400.9500
C13—C141.386 (4)C41—C421.394 (4)
C13—H130.9500C41—H410.9500
C14—C151.383 (3)C42—H420.9500
C14—H140.9500O1W—H1W0.851 (10)
C15—H150.9500O1W—H2W0.847 (10)
C16—C211.396 (3)O2W—H3W0.843 (10)
C16—C171.400 (3)O2W—H4W0.840 (10)
O1—Cu—O289.36 (7)C19—C18—C17120.7 (2)
O1—Cu—N2147.34 (8)C19—C18—H18119.6
O1—Cu—N192.83 (8)C17—C18—H18119.6
O2—Cu—N1144.41 (8)C18—C19—C20119.6 (2)
O2—Cu—N293.56 (7)C18—C19—H19120.2
N1—Cu—N2103.14 (8)C20—C19—H19120.2
C1—O1—Cu126.91 (15)C21—C20—C19120.1 (2)
C22—O2—Cu127.61 (15)C21—C20—H20120.0
C7—N1—C8107.45 (19)C19—C20—H20120.0
C7—N1—Cu122.96 (16)C20—C21—C16120.8 (2)
C8—N1—Cu129.44 (15)C20—C21—H21119.6
C28—N2—C29107.50 (19)C16—C21—H21119.6
C28—N2—Cu122.09 (16)O2—C22—C27118.7 (2)
C29—N2—Cu130.13 (15)O2—C22—C23122.9 (2)
C7—N3—C9108.85 (19)C27—C22—C23118.4 (2)
C7—N3—H3N126.5 (19)C24—C23—C22119.1 (2)
C9—N3—H3N123.8 (19)C24—C23—C28118.3 (2)
O4—N4—O3122.9 (2)C22—C23—C28122.6 (2)
O4—N4—C4118.8 (2)C25—C24—C23120.4 (2)
O3—N4—C4118.4 (2)C25—C24—H24119.8
C28—N5—C30109.1 (2)C23—C24—H24119.8
C28—N5—H5N126 (2)C24—C25—C26121.5 (2)
C30—N5—H5N124 (2)C24—C25—N6118.2 (2)
O5—N6—O6123.0 (2)C26—C25—N6120.3 (2)
O5—N6—C25118.4 (2)C27—C26—C25118.4 (2)
O6—N6—C25118.7 (2)C27—C26—H26120.8
O1—C1—C6118.3 (2)C25—C26—H26120.8
O1—C1—C2123.8 (2)C26—C27—C22122.1 (2)
C6—C1—C2117.9 (2)C26—C27—H27119.0
C3—C2—C1119.3 (2)C22—C27—H27119.0
C3—C2—C7118.9 (2)N2—C28—N5109.2 (2)
C1—C2—C7121.7 (2)N2—C28—C23127.6 (2)
C4—C3—C2120.3 (2)N5—C28—C23123.1 (2)
C4—C3—H3119.8C30—C29—N2108.06 (19)
C2—C3—H3119.8C30—C29—C31128.5 (2)
C5—C4—C3121.3 (2)N2—C29—C31123.5 (2)
C5—C4—N4119.7 (2)N5—C30—C29106.2 (2)
C3—C4—N4119.0 (2)N5—C30—C37120.6 (2)
C6—C5—C4118.7 (2)C29—C30—C37133.1 (2)
C6—C5—H5120.7C36—C31—C32119.5 (2)
C4—C5—H5120.7C36—C31—C29120.0 (2)
C5—C6—C1122.3 (2)C32—C31—C29120.4 (2)
C5—C6—H6118.8C33—C32—C31119.9 (2)
C1—C6—H6118.8C33—C32—H32120.0
N1—C7—N3109.5 (2)C31—C32—H32120.0
N1—C7—C2127.0 (2)C34—C33—C32120.0 (3)
N3—C7—C2123.5 (2)C34—C33—H33120.0
C9—C8—N1107.98 (19)C32—C33—H33120.0
C9—C8—C10129.8 (2)C33—C34—C35120.4 (2)
N1—C8—C10122.2 (2)C33—C34—H34119.8
N3—C9—C8106.2 (2)C35—C34—H34119.8
N3—C9—C16120.3 (2)C34—C35—C36119.7 (3)
C8—C9—C16133.4 (2)C34—C35—H35120.2
C11—C10—C15118.8 (2)C36—C35—H35120.2
C11—C10—C8120.2 (2)C35—C36—C31120.4 (2)
C15—C10—C8120.9 (2)C35—C36—H36119.8
C12—C11—C10120.5 (2)C31—C36—H36119.8
C12—C11—H11119.7C42—C37—C38119.3 (2)
C10—C11—H11119.7C42—C37—C30119.6 (2)
C11—C12—C13120.4 (3)C38—C37—C30121.1 (2)
C11—C12—H12119.8C39—C38—C37120.0 (2)
C13—C12—H12119.8C39—C38—H38120.0
C14—C13—C12119.1 (2)C37—C38—H38120.0
C14—C13—H13120.4C38—C39—C40120.5 (2)
C12—C13—H13120.4C38—C39—H39119.8
C15—C14—C13120.9 (3)C40—C39—H39119.8
C15—C14—H14119.6C41—C40—C39119.6 (2)
C13—C14—H14119.6C41—C40—H40120.2
C14—C15—C10120.3 (2)C39—C40—H40120.2
C14—C15—H15119.9C40—C41—C42120.2 (2)
C10—C15—H15119.9C40—C41—H41119.9
C21—C16—C17118.9 (2)C42—C41—H41119.9
C21—C16—C9120.0 (2)C37—C42—C41120.4 (2)
C17—C16—C9120.9 (2)C37—C42—H42119.8
C18—C17—C16119.9 (2)C41—C42—H42119.8
C18—C17—H17120.1H1W—O1W—H2W108.7 (16)
C16—C17—H17120.1H3W—O2W—H4W111.1 (16)
Cu—O1—C1—C6161.82 (17)Cu—O2—C22—C27164.29 (16)
Cu—O1—C1—C218.7 (3)Cu—O2—C22—C2315.6 (3)
O1—C1—C2—C3178.5 (2)O2—C22—C23—C24176.6 (2)
C6—C1—C2—C32.1 (3)C27—C22—C23—C243.3 (3)
O1—C1—C2—C72.0 (4)O2—C22—C23—C282.7 (3)
C6—C1—C2—C7177.4 (2)C27—C22—C23—C28177.4 (2)
C1—C2—C3—C40.4 (4)C22—C23—C24—C253.2 (3)
C7—C2—C3—C4179.2 (2)C28—C23—C24—C25177.5 (2)
C2—C3—C4—C51.2 (4)C23—C24—C25—C261.4 (3)
C2—C3—C4—N4179.3 (2)C23—C24—C25—N6179.3 (2)
O4—N4—C4—C5164.7 (3)O5—N6—C25—C24174.5 (2)
O3—N4—C4—C513.4 (4)O6—N6—C25—C244.7 (3)
O4—N4—C4—C314.8 (4)O5—N6—C25—C266.2 (3)
O3—N4—C4—C3167.0 (2)O6—N6—C25—C26174.6 (2)
C3—C4—C5—C60.9 (4)C24—C25—C26—C270.3 (3)
N4—C4—C5—C6179.6 (2)N6—C25—C26—C27179.0 (2)
C4—C5—C6—C10.9 (4)C25—C26—C27—C220.1 (3)
O1—C1—C6—C5178.1 (2)O2—C22—C27—C26178.2 (2)
C2—C1—C6—C52.4 (4)C23—C22—C27—C261.7 (3)
C8—N1—C7—N30.0 (3)C29—N2—C28—N50.2 (2)
Cu—N1—C7—N3175.88 (15)Cu—N2—C28—N5174.71 (14)
C8—N1—C7—C2178.9 (2)C29—N2—C28—C23176.4 (2)
Cu—N1—C7—C23.1 (3)Cu—N2—C28—C231.9 (3)
C9—N3—C7—N10.2 (3)C30—N5—C28—N20.1 (3)
C9—N3—C7—C2179.2 (2)C30—N5—C28—C23176.7 (2)
C3—C2—C7—N1170.4 (2)C24—C23—C28—N2169.5 (2)
C1—C2—C7—N110.1 (4)C22—C23—C28—N29.8 (4)
C3—C2—C7—N38.4 (4)C24—C23—C28—N56.7 (3)
C1—C2—C7—N3171.1 (2)C22—C23—C28—N5174.0 (2)
C7—N1—C8—C90.3 (3)C28—N2—C29—C300.2 (2)
Cu—N1—C8—C9175.74 (17)Cu—N2—C29—C30174.12 (16)
C7—N1—C8—C10178.3 (2)C28—N2—C29—C31179.8 (2)
Cu—N1—C8—C102.8 (3)Cu—N2—C29—C316.3 (3)
C7—N3—C9—C80.4 (3)C28—N5—C30—C290.0 (2)
C7—N3—C9—C16175.8 (2)C28—N5—C30—C37178.4 (2)
N1—C8—C9—N30.4 (3)N2—C29—C30—N50.1 (2)
C10—C8—C9—N3178.0 (2)C31—C29—C30—N5179.7 (2)
N1—C8—C9—C16175.1 (2)N2—C29—C30—C37178.2 (2)
C10—C8—C9—C166.6 (5)C31—C29—C30—C372.2 (4)
C9—C8—C10—C11141.4 (3)C30—C29—C31—C36140.7 (3)
N1—C8—C10—C1140.4 (3)N2—C29—C31—C3638.8 (3)
C9—C8—C10—C1541.4 (4)C30—C29—C31—C3237.7 (4)
N1—C8—C10—C15136.8 (2)N2—C29—C31—C32142.9 (2)
C15—C10—C11—C122.1 (4)C36—C31—C32—C330.6 (4)
C8—C10—C11—C12175.1 (2)C29—C31—C32—C33177.8 (2)
C10—C11—C12—C130.8 (4)C31—C32—C33—C340.0 (4)
C11—C12—C13—C141.0 (4)C32—C33—C34—C350.7 (4)
C12—C13—C14—C151.5 (4)C33—C34—C35—C360.7 (4)
C13—C14—C15—C100.2 (4)C34—C35—C36—C310.0 (4)
C11—C10—C15—C141.6 (3)C32—C31—C36—C350.6 (4)
C8—C10—C15—C14175.6 (2)C29—C31—C36—C35177.8 (2)
N3—C9—C16—C2136.9 (3)N5—C30—C37—C4247.8 (3)
C8—C9—C16—C21148.2 (3)C29—C30—C37—C42130.1 (3)
N3—C9—C16—C17139.6 (2)N5—C30—C37—C38132.7 (2)
C8—C9—C16—C1735.3 (4)C29—C30—C37—C3849.4 (4)
C21—C16—C17—C182.1 (4)C42—C37—C38—C390.1 (4)
C9—C16—C17—C18174.5 (2)C30—C37—C38—C39179.4 (2)
C16—C17—C18—C190.4 (4)C37—C38—C39—C400.2 (4)
C17—C18—C19—C202.3 (4)C38—C39—C40—C410.2 (4)
C18—C19—C20—C211.7 (4)C39—C40—C41—C420.2 (4)
C19—C20—C21—C160.8 (4)C38—C37—C42—C410.5 (4)
C17—C16—C21—C202.7 (4)C30—C37—C42—C41179.0 (2)
C9—C16—C21—C20173.9 (2)C40—C41—C42—C370.6 (4)
Hydrogen-bond geometry (Å, º) top
Hydrogen-bond geometry (Å, °) for (I). Cg1 is the ring centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1Wi0.89 (2)1.91 (2)2.790 (3)173 (3)
N5—H5N···O2W0.88 (2)1.95 (2)2.822 (3)172 (3)
O1W—H1W···O20.85 (2)1.92 (2)2.745 (2)164 (2)
O1W—H2W···O2Wii0.85 (2)2.21 (2)2.868 (2)134 (2)
O2W—H3W···O1ii0.84 (2)2.01 (2)2.841 (2)172 (2)
O2W—H4W···O3iii0.84 (2)2.27 (2)2.938 (2)136 (2)
C3—H3···O1Wi0.952.573.435 (3)151
C33—H33···O5iv0.952.483.345 (3)151
C5—H5···O6v0.952.503.361 (3)151
C34—H34···Cg1vi0.952.493.426 (3)168
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z1; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z+1; (vi) x, y+1/2, z1/2.
Summary of short interatomic contacts (Å) in (I)a top
ContactDistanceSymmetry operation
H12···H121.92-x+1, -y+1, -z+1
H1W···H3N2.22-x+2, -y+1, -z+1
H2W···H3N2.26-x+2, -y+1, -z+1
O4···H402.54x+1, -y+3/2, z+1/2
C1···H3W2.74-x+1, -y+1, -z+1
C6···O63.206 (3)-x+1, -y+1, -z+1
C12···H122.55-x+1, -y+1, -z
C13···C253.347 (3)-x+1, -y+1, -z
C14···O53.197 (3)-x+1, -y+1, -z
H17···O62.55-x+1, -y+1, -z
C19···H342.68x, -y+3/2, z-1/2
C20···H342.60x, -y+3/2, z-1/2
C21···H342.67x, -y+3/2, z-1/2
C21···H2W2.64-x+2, -y+1, -z+1
C21···O1W3.161 (3)-x+2, -y+1, -z+1
C22···C283.267 (3)-x+1, -y+1, -z+1
C36···O53.146 (3)-x+1, -y+1, -z+1
H36···O52.49-x+1, -y+1, -z+1
C41···H202.76-x+1, y, z
Notes: (a) the interatomic distances are calculated in CrystalExplorer17 (Turner et al., 2017), whereby the X—H bond lengths are adjusted to their neutron values.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the complex molecule in (I) and overall (I) top
ContactPercentage contribution
complex molecule(I)
H···H41.341.0
O···H/H···O25.627.1
C···H/H···C19.819.6
C···C3.53.3
C···O/O···C3.43.2
C···N/N···C2.82.7
N···H/H···N2.22.1
O···O0.60.5
N···O/O···N0.20.2
Cu···O/O···Cu0.00.3
Cu···C/C···Cu0.30.0
 

Footnotes

Additional correspondence author: dhirajslg2@gmail.com

Acknowledgements

The authors thank the Research Centre of Crystalline Materials X-ray crystallography laboratory for the X-ray intensity data. Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd.

Funding information

Funding for this research was provided by: Sunway University Sdn Bhd (grant No. STR-RCTR-RCCM-001-2019).

References

First citationBenisvy, L., Bill, E., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., McArdle, G., McInnes, E. J. L., McMaster, J., Ross, S. H. K. & Wilson, C. (2006). Dalton Trans. pp. 258–267.  CSD CrossRef Google Scholar
First citationBenisvy, L., Blake, A. J., Collison, D., Stephen Davies, E., David Garner, C., McInnes, E. J. L., McMaster, J., Whittaker, G. & Wilson, C. (2003). Dalton Trans. pp. 1975–1985.  CSD CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationParween, A., Mandal, T. K., Guillot, R. & Naskar, S. (2015). Polyhedron, 99, 34–46.  CSD CrossRef CAS Google Scholar
First citationPinto, C. B., Dos Santos, L. H. R. & Rodrigues, B. L. (2019). Acta Cryst. C75, 707–716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. Version 17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds