research communications
Synthesis, R,4S)- and 1-[(1S,4R)-1,7,7-trimethyl-2-oxobicyclo[2.2.1]heptan-3-ylidene]hydrazinecarbothioamide
and Hirshfeld analysis of a crystalline compound comprising a 1/1 mixture of 1-[(1aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima s/n, Campus Universitário, 97105-900 Santa Maria-RS, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus Universitário, 49100-000 São Cristóvão-SE, Brazil
*Correspondence e-mail: leandro_bresolin@yahoo.com.br
The equimolar reaction between a R)- and (S)-camphorquinone with thiosemicarbazide yielded the title compound, C11H17N3OS [common name: (R)- and (S)-camphor thiosemicarbazone], which maintains the of the methylated chiral carbon atoms and crystallizes in the centrosymmetric C2/c. There are two molecules in general positions in the one of them being the (1R)-camphor thiosemicarbazone isomer and the second the (1S)- isomer. In the crystal, the molecular units are linked by C—H⋯S, N—H⋯O and N—H⋯S interactions, building a tape-like structure parallel to the (01) plane, generating R21(7) and R22(8) graph-set motifs for the H⋯S interactions. The Hirshfeld surface analysis indicates that the major contributions for crystal cohesion are from H⋯H (55.00%), H⋯S (22.00%), H⋯N (8.90%) and H⋯O (8.40%) interactions.
of (CCDC reference: 1973095
1. Chemical context
The origin of thiosemicarbazone (TSC) chemistry can be traced back to the beginning of the 20th century, when thiosemicarbazide was used for the chemical characterization of the R1R2C=O group and it was pointed out that the R1R2C=N—N(H)C(=S)NH2 compound was the main product of the condensation reaction (Freund & Schander, 1902). In the second half of the 1940′s, new insight into the TSC chemistry emerged, namely the applications in medicinal chemistry as chemotherapeutic agents against tuberculosis (Domagk et al., 1946; Hoggarth et al., 1949). Initially, the biological research concerning TSC derivatives was focused on the molecules as free ligands, but very quickly the scope expanded to coordination compounds. One of the first reports about metal compounds of thiosemicarbazones in medicinal chemistry regards a CuII complex with Mycobacterium tuberculosis growth inhibition activity that was published few years later (Kuhn & Zilliken, 1954). Another milestone in this chemistry, after the reported tuberculostatic property, was the discovery of the antineoplastic activity of TSC derivatives in the 1960′s (Sartorelli & Booth, 1967). Concerning the molecular structure of the title compound class, the N–N–C–S entity is a key feature, which has hard (N) and soft (S) donor atoms in chain (Pearson & Songstad, 1967), and so TSCs can act as N,S, O,N,S or N,N,S donors depending on the derivative.
As a result of its molecular geometry, the sulfur-containing group enables the formation of several different coordination modes, including complexes with five-membered metallarings, that are well-known chelate arrangements in coordination chemistry (Lobana et al., 2009). The biochemical and pharmacological applications of the TSCs is a topic that remains up-to-date and two different approaches can be considered. One is how the chemotherapeutic activity deals with the TSC compounds in form of uncoordinated ligands, so they can act as metal ion-sequestering agents for CuII, ZnII and FeII/III and reducing the bioavailability of these essential metals, which impacts the growth of tumor cells (Kowol et al., 2016; Miklos et al., 2015). The biological activity of thiosemicarbazones as metal-free molecules is also possible because of the hydrogen-bonding and π–π intermolecular interactions with selected biomolecules, as reported for one isatin derivative on replication inhibition of the Chikungunya virus in silico and in vitro (Mishra et al., 2016). The second approach deals with the biological activity of coordination compounds, with TSCs acting as ligands. For example, PdII complexes with cinnamaldehyde-thiosemicarbazone turned out to be very active on Human Topoisomerase IIα (TOP2A) inhibition in vitro, a key biological target for cancer research (Rocha et al., 2019), and the AuIII coordination compound with vaniline-thiosemicarbazone, which has shown antimalarial and antitubercular activity in in vitro assays (Khanye et al., 2011). Thus, the synthesis and structural determination of new thiosemicarbazone derivatives is a topic of current interest in the field of medicinal chemistry.
2. Structural commentary
A R)- and the other the (1S)-isomer. For the first molecule, the 1R and the 4S chiral centers are labelled C2 and C5, and the thiosemicarbazone unit is nearly planar with a N1—N2—C11—N3 torsion angle of −4.7 (2)° (Fig. 1). In the second molecule, the 1S and 4R chiral centers are at C13 and C15, and the thiosemicarbazone fragment shows also a slight distortion from the planarity, the torsion angle for the N4—N5—C22—N6 chain being 2.4 (2)° (Fig. 2). The two molecules of the are shown separately for clarity and the torsion angles about the chiral C atoms are listed in Table 1.
of camphorquinone was used for the synthesis of the title compound and as a result the thiosemicarbazone derivative was obtained in a 1/1 mixture of the two isomers. The comprises two molecules of the camphor thiosemicarbazone derivative, one of them being the (1
|
3. Supramolecular features and Hirshfeld surface analysis
In the i, N3—H17⋯O1ii, C5—H5⋯S2i and N5—H32⋯S1iii interactions (Figs. 3 and 4, Table 2) into a two-dimensional hydrogen-bonded network parallel to the (01) plane (Fig. 5). In addition, the S2–C22–N5–H32 and S1–C11–N2–H15 atom chains are subunits of the periodic arrangement, with graph-set motif R22(8). Another ring-like structure is observed for the S2⋯H5–C5–C6–N1–N2–H15 atom sequence, in which the sulfur atom acts as a hydrogen-bond acceptor and bridges two D—H⋯S interactions, building an R21(7) motif. Since the molecules crystallize in the centrosymmetric C2/c, does not rise from the molecular to the level.
the molecules in general positions are connected by the N6—H33⋯O1 interaction. As suggested by the apolar organic periphery of the camphor fragment, the relevant and the strongest intermolecular interactions are observed mainly in the thiosemicarbazone and the ketone groups. In the crystal, the molecular units are linked by N2—H15⋯S2 | Figure 5 is drawn in space-filling mode and the figure is simplified for clarity. |
The Hirshfeld surface analysis (Hirshfeld, 1977) of the suggests that the most important intermolecular interactions for crystal cohesion are the following (in %): H⋯H = 50.0, H⋯S/S⋯H = 22.0, H⋯N/N⋯H = 8.9 and H⋯O/O⋯H = 8.4. For clarity, the molecules in the are represented using a `ball-and-stick' model with transparency, in two opposite views and separate figures. The strongest intermolecular interactions are located over the thiosemicarbazone and the ketone entities, as show by the graphical representation of the Hirshfeld surface for the molecular units in magenta, e.g. the N—H, C—H, O and S atoms (Figs. 6 and 7). The contributions to the crystal packing are also shown as two-dimensional Hirshfeld surface fingerprint plots with cyan dots (Wolff et al., 2012). The de (y axis) and di (x axis) values are the closest external and internal distances (values in Å) from given points on the Hirshfeld surface contacts (Fig. 8).
4. Database survey
To the best of pur knowledge and from using database tools such as SciFinder (Chemical Abstracts Service, 2019), there are very few examples of thiosemicarbazone derivatives from camphorquinone. The molecule selected for comparison with the title compound is (R)-camphor 4-phenylthiosemicarbazone (Oliveira et al., 2016). In both of the crystal structures, the camphor entity, with the apolar periphery and leads to a high contribution of the H⋯H intermolecular interactions for the crystal packing, being 55.00% for the title compound and 55.90% for (R)-camphor 4-phenylthiosemicarbazone. For the literature structure, the decrease of the contributions from other possible interactions is assumed to be due to the geometric impediment of the phenyl ring. The impact of steric effects on the intermolecular interactions sites can be seen in the graphical representation of the Hirshfeld surface in Fig. 9. In addition, the two-dimensional Hirshfeld surface fingerprint plots confirm the relationship between the molecular structure and the contribution of the intermolecular interactions for crystal cohesion (Fig. 10). Thus, it can be assumed that (R)-camphor 4-phenyl-TSC molecules crystallize as discrete units, being connect by very weak interactions. The most frequent intermolecular interactions for the crystal cohesion of the phenyl-TSC derivative are (in %) H⋯H = 55.9, H⋯C/C⋯H = 16.8, H⋯S/S⋯H = 11.0, H⋯O/O⋯H = 7.8 and H⋯N/N⋯H = 7.0. The replacement of one H atom by the phenyl group in the terminal amine entity strongly impacts on, for example, the contribution of the intermolecular H⋯S/S⋯H interactions, which changed from 22.00% to 11.00%. Finally and remarkably, in the comparison molecule, intermolecular H⋯C/C⋯H interactions make the next highest contibution to the Hirshfeld surface; this interaction is comparatively less relevant for the title compound (4.5%).
5. Synthesis and crystallization
The starting materials were commercially available and were used without further purification. The R- and S-camphor was oxidized with SeO2 to the respective 1,2-diketone (Młochowski & Wójtowicz-Młochowska, 2015). The synthesis of the 1R- and 1S-camphor thiosemicarbazone derivative was adapted from a procedure reported previously (Freund & Schander, 1902; Oliveira et al. 2016). The glacial acetic acid-catalysed reaction of the 1,2-diketone (3 mmol) and thiosemicarbazide (3 mmol) in ethanol (50 ml) was refluxed funder stirring or 6 h. Single crystals suitable for X-ray diffraction were obtained from an ethanol solution by solvent evaporation. The of the reagent remains unchanged during the synthesis and after crystallization.
of6. Refinement
Crystal data, data collection and structure . H atoms were located in a difference-Fourier map but were positioned with idealized geometry and were refined with isotropic displacement parameters using a riding model (HFIX command) with Uiso(H) = 1.2Ueq(C, N) and C—H bond distances of 0.98 Å for tertiary carbon atoms and 0.97 Å for secondary C atoms. The N—H bond distances are 0.86 Å. Finally, Uiso(H) = 1.5Ueq(C) for the methyl groups, with C—H bond distances of 0.96 Å. A rotating model was used for the latter H atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1973095
https://doi.org/10.1107/S2056989019016980/rz5268sup1.cif
contains datablocks I, publication_text. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019016980/rz5268Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).C11H17N3OS | F(000) = 2048 |
Mr = 239.34 | Dx = 1.293 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
a = 26.6370 (9) Å | Cell parameters from 9117 reflections |
b = 10.7617 (4) Å | θ = 2.6–71.9° |
c = 20.2108 (7) Å | µ = 2.21 mm−1 |
β = 121.932 (1)° | T = 296 K |
V = 4916.9 (3) Å3 | Block, yellow |
Z = 16 | 0.70 × 0.46 × 0.44 mm |
Bruker D8 Quest Photon II area detector diffractometer | 4791 independent reflections |
Radiation source: microfocus X ray tube, Bruker D8 Quest diffractometer | 4783 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
φ and ω scans | θmax = 72.3°, θmin = 3.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −32→32 |
Tmin = 0.647, Tmax = 0.754 | k = −13→13 |
47973 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0548P)2 + 5.1392P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
4791 reflections | Δρmax = 0.58 e Å−3 |
295 parameters | Δρmin = −0.33 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.47215 (6) | 0.67297 (13) | 0.56684 (9) | 0.0290 (3) | |
C2 | 0.44283 (7) | 0.55276 (14) | 0.56677 (10) | 0.0333 (3) | |
C3 | 0.40744 (9) | 0.51737 (17) | 0.47745 (11) | 0.0454 (4) | |
H1 | 0.432607 | 0.523543 | 0.456262 | 0.054* | |
H2 | 0.392154 | 0.433334 | 0.469767 | 0.054* | |
C4 | 0.35698 (8) | 0.61129 (18) | 0.43863 (10) | 0.0446 (4) | |
H3 | 0.318823 | 0.570310 | 0.414527 | 0.054* | |
H4 | 0.358922 | 0.659504 | 0.399497 | 0.054* | |
C5 | 0.36791 (7) | 0.69483 (14) | 0.50817 (10) | 0.0323 (3) | |
H5 | 0.334022 | 0.744562 | 0.499147 | 0.039* | |
C6 | 0.42275 (6) | 0.76678 (13) | 0.52963 (8) | 0.0268 (3) | |
C7 | 0.39200 (7) | 0.60096 (15) | 0.57601 (10) | 0.0354 (4) | |
C8 | 0.48372 (9) | 0.45231 (17) | 0.61983 (14) | 0.0520 (5) | |
H6 | 0.461153 | 0.379307 | 0.614501 | 0.078* | |
H7 | 0.503900 | 0.480704 | 0.672855 | 0.078* | |
H8 | 0.512161 | 0.432889 | 0.605930 | 0.078* | |
C9 | 0.34649 (9) | 0.50093 (19) | 0.56284 (14) | 0.0525 (5) | |
H9 | 0.312158 | 0.539765 | 0.557730 | 0.079* | |
H10 | 0.363552 | 0.445007 | 0.606443 | 0.079* | |
H11 | 0.335304 | 0.455496 | 0.516133 | 0.079* | |
C10 | 0.41428 (10) | 0.6656 (2) | 0.65375 (12) | 0.0535 (5) | |
H12 | 0.442420 | 0.728491 | 0.661405 | 0.080* | |
H13 | 0.432888 | 0.605766 | 0.695165 | 0.080* | |
H14 | 0.381582 | 0.703184 | 0.653700 | 0.080* | |
C11 | 0.39284 (6) | 1.07609 (13) | 0.46828 (8) | 0.0278 (3) | |
N1 | 0.43231 (5) | 0.87874 (11) | 0.51846 (7) | 0.0278 (3) | |
N2 | 0.38434 (5) | 0.95560 (11) | 0.47974 (7) | 0.0289 (3) | |
H15 | 0.349298 | 0.927963 | 0.462906 | 0.035* | |
N3 | 0.44793 (6) | 1.11372 (13) | 0.50042 (10) | 0.0442 (4) | |
H16 | 0.476553 | 1.062668 | 0.527236 | 0.053* | |
H17 | 0.455324 | 1.189360 | 0.494626 | 0.053* | |
O1 | 0.52341 (5) | 0.68916 (11) | 0.58743 (9) | 0.0468 (3) | |
S1 | 0.33432 (2) | 1.17000 (4) | 0.41603 (3) | 0.04027 (14) | |
C12 | 0.60455 (7) | 0.18053 (14) | 0.70270 (9) | 0.0326 (3) | |
C13 | 0.62027 (7) | 0.05885 (14) | 0.74694 (9) | 0.0336 (3) | |
C14 | 0.64045 (8) | 0.10625 (15) | 0.83037 (10) | 0.0360 (4) | |
C15 | 0.68608 (7) | 0.20029 (14) | 0.83429 (9) | 0.0304 (3) | |
H18 | 0.707310 | 0.249557 | 0.882240 | 0.037* | |
C16 | 0.64834 (6) | 0.27314 (14) | 0.76081 (8) | 0.0286 (3) | |
C17 | 0.72519 (8) | 0.11841 (18) | 0.81668 (11) | 0.0430 (4) | |
H19 | 0.743585 | 0.167292 | 0.794814 | 0.052* | |
H20 | 0.755765 | 0.076849 | 0.863374 | 0.052* | |
C18 | 0.68091 (8) | 0.02417 (17) | 0.75681 (11) | 0.0427 (4) | |
H21 | 0.692203 | −0.060168 | 0.775970 | 0.051* | |
H22 | 0.678872 | 0.031572 | 0.707610 | 0.051* | |
C19 | 0.57337 (9) | −0.04084 (18) | 0.70953 (12) | 0.0519 (5) | |
H23 | 0.566827 | −0.061530 | 0.659344 | 0.078* | |
H24 | 0.537211 | −0.010857 | 0.703438 | 0.078* | |
H25 | 0.586284 | −0.113455 | 0.742033 | 0.078* | |
C20 | 0.66905 (11) | 0.00551 (19) | 0.89344 (12) | 0.0575 (5) | |
H26 | 0.638971 | −0.049251 | 0.889026 | 0.086* | |
H27 | 0.689268 | 0.043811 | 0.943989 | 0.086* | |
H28 | 0.696813 | −0.041077 | 0.886781 | 0.086* | |
C21 | 0.59098 (10) | 0.1688 (2) | 0.83491 (14) | 0.0557 (5) | |
H29 | 0.572709 | 0.231527 | 0.795304 | 0.084* | |
H30 | 0.607109 | 0.206331 | 0.885284 | 0.084* | |
H31 | 0.561987 | 0.107843 | 0.827013 | 0.084* | |
C22 | 0.69157 (6) | 0.58441 (14) | 0.78063 (9) | 0.0283 (3) | |
N4 | 0.64898 (6) | 0.38585 (12) | 0.74130 (7) | 0.0304 (3) | |
N5 | 0.69233 (6) | 0.46162 (12) | 0.79634 (7) | 0.0304 (3) | |
H32 | 0.719686 | 0.431717 | 0.840322 | 0.036* | |
N6 | 0.64711 (6) | 0.62416 (14) | 0.71318 (8) | 0.0415 (3) | |
H33 | 0.620314 | 0.572941 | 0.681514 | 0.050* | |
H34 | 0.644878 | 0.701311 | 0.700831 | 0.050* | |
O2 | 0.56715 (6) | 0.19987 (12) | 0.63517 (7) | 0.0497 (3) | |
S2 | 0.74475 (2) | 0.67806 (4) | 0.84696 (3) | 0.04220 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0244 (7) | 0.0234 (7) | 0.0352 (8) | 0.0009 (5) | 0.0130 (6) | 0.0013 (6) |
C2 | 0.0304 (7) | 0.0230 (7) | 0.0484 (9) | 0.0029 (6) | 0.0222 (7) | 0.0060 (6) |
C3 | 0.0524 (10) | 0.0368 (9) | 0.0563 (11) | −0.0113 (8) | 0.0351 (9) | −0.0143 (8) |
C4 | 0.0413 (9) | 0.0499 (11) | 0.0352 (9) | −0.0157 (8) | 0.0152 (7) | −0.0049 (8) |
C5 | 0.0237 (7) | 0.0280 (7) | 0.0427 (9) | 0.0014 (6) | 0.0159 (6) | 0.0078 (6) |
C6 | 0.0234 (7) | 0.0237 (7) | 0.0299 (7) | 0.0000 (5) | 0.0117 (6) | 0.0014 (5) |
C7 | 0.0363 (8) | 0.0321 (8) | 0.0417 (9) | 0.0052 (7) | 0.0233 (7) | 0.0085 (7) |
C8 | 0.0439 (10) | 0.0310 (9) | 0.0818 (14) | 0.0130 (8) | 0.0337 (10) | 0.0203 (9) |
C9 | 0.0470 (10) | 0.0422 (10) | 0.0816 (14) | 0.0027 (8) | 0.0430 (11) | 0.0195 (10) |
C10 | 0.0655 (13) | 0.0601 (12) | 0.0417 (10) | 0.0051 (10) | 0.0330 (10) | 0.0005 (9) |
C11 | 0.0277 (7) | 0.0222 (7) | 0.0305 (7) | −0.0009 (5) | 0.0134 (6) | 0.0013 (5) |
N1 | 0.0239 (6) | 0.0226 (6) | 0.0330 (6) | 0.0014 (5) | 0.0125 (5) | 0.0023 (5) |
N2 | 0.0216 (6) | 0.0226 (6) | 0.0379 (7) | 0.0001 (5) | 0.0126 (5) | 0.0055 (5) |
N3 | 0.0270 (7) | 0.0284 (7) | 0.0634 (10) | −0.0042 (5) | 0.0144 (7) | 0.0093 (6) |
O1 | 0.0240 (6) | 0.0349 (6) | 0.0721 (9) | 0.0016 (5) | 0.0191 (6) | 0.0102 (6) |
S1 | 0.0298 (2) | 0.0244 (2) | 0.0521 (3) | 0.00304 (14) | 0.01176 (19) | 0.00846 (16) |
C12 | 0.0287 (8) | 0.0290 (8) | 0.0332 (8) | −0.0022 (6) | 0.0117 (7) | −0.0041 (6) |
C13 | 0.0372 (8) | 0.0249 (7) | 0.0352 (8) | −0.0038 (6) | 0.0169 (7) | −0.0043 (6) |
C14 | 0.0436 (9) | 0.0301 (8) | 0.0381 (8) | −0.0052 (7) | 0.0242 (7) | −0.0030 (6) |
C15 | 0.0300 (7) | 0.0276 (7) | 0.0279 (7) | −0.0014 (6) | 0.0114 (6) | −0.0008 (6) |
C16 | 0.0265 (7) | 0.0261 (7) | 0.0286 (7) | −0.0012 (6) | 0.0114 (6) | −0.0020 (6) |
C17 | 0.0313 (8) | 0.0442 (10) | 0.0486 (10) | 0.0079 (7) | 0.0179 (8) | 0.0005 (8) |
C18 | 0.0485 (10) | 0.0343 (9) | 0.0485 (10) | 0.0074 (7) | 0.0278 (9) | −0.0030 (7) |
C19 | 0.0571 (12) | 0.0353 (9) | 0.0558 (11) | −0.0174 (9) | 0.0248 (10) | −0.0104 (8) |
C20 | 0.0831 (15) | 0.0427 (11) | 0.0451 (10) | −0.0081 (10) | 0.0329 (11) | 0.0068 (9) |
C21 | 0.0590 (13) | 0.0559 (12) | 0.0738 (14) | −0.0085 (10) | 0.0499 (12) | −0.0129 (10) |
C22 | 0.0261 (7) | 0.0262 (7) | 0.0328 (7) | 0.0011 (6) | 0.0157 (6) | −0.0003 (6) |
N4 | 0.0289 (6) | 0.0268 (6) | 0.0294 (6) | −0.0026 (5) | 0.0113 (5) | −0.0020 (5) |
N5 | 0.0290 (6) | 0.0243 (6) | 0.0284 (6) | −0.0027 (5) | 0.0087 (5) | 0.0000 (5) |
N6 | 0.0361 (7) | 0.0310 (7) | 0.0390 (8) | −0.0008 (6) | 0.0073 (6) | 0.0067 (6) |
O2 | 0.0445 (7) | 0.0422 (7) | 0.0343 (6) | −0.0051 (6) | 0.0016 (5) | −0.0020 (5) |
S2 | 0.0339 (2) | 0.0266 (2) | 0.0470 (3) | −0.00303 (15) | 0.00842 (19) | −0.00593 (16) |
C1—O1 | 1.2111 (19) | C12—O2 | 1.208 (2) |
C1—C6 | 1.506 (2) | C12—C16 | 1.511 (2) |
C1—C2 | 1.511 (2) | C12—C13 | 1.514 (2) |
C2—C8 | 1.506 (2) | C13—C19 | 1.511 (2) |
C2—C7 | 1.550 (2) | C13—C14 | 1.560 (2) |
C2—C3 | 1.579 (2) | C13—C18 | 1.564 (2) |
C3—C4 | 1.526 (3) | C14—C21 | 1.525 (3) |
C3—H1 | 0.9700 | C14—C20 | 1.534 (3) |
C3—H2 | 0.9700 | C14—C15 | 1.551 (2) |
C4—C5 | 1.561 (2) | C15—C16 | 1.500 (2) |
C4—H3 | 0.9700 | C15—C17 | 1.543 (2) |
C4—H4 | 0.9700 | C15—H18 | 0.9800 |
C5—C6 | 1.500 (2) | C16—N4 | 1.278 (2) |
C5—C7 | 1.543 (2) | C17—C18 | 1.541 (3) |
C5—H5 | 0.9800 | C17—H19 | 0.9700 |
C6—N1 | 1.2760 (19) | C17—H20 | 0.9700 |
C7—C10 | 1.523 (3) | C18—H21 | 0.9700 |
C7—C9 | 1.536 (2) | C18—H22 | 0.9700 |
C8—H6 | 0.9600 | C19—H23 | 0.9600 |
C8—H7 | 0.9600 | C19—H24 | 0.9600 |
C8—H8 | 0.9600 | C19—H25 | 0.9600 |
C9—H9 | 0.9600 | C20—H26 | 0.9600 |
C9—H10 | 0.9600 | C20—H27 | 0.9600 |
C9—H11 | 0.9600 | C20—H28 | 0.9600 |
C10—H12 | 0.9600 | C21—H29 | 0.9600 |
C10—H13 | 0.9600 | C21—H30 | 0.9600 |
C10—H14 | 0.9600 | C21—H31 | 0.9600 |
C11—N3 | 1.316 (2) | C22—N6 | 1.318 (2) |
C11—N2 | 1.3571 (19) | C22—N5 | 1.3567 (19) |
C11—S1 | 1.6810 (15) | C22—S2 | 1.6764 (15) |
N1—N2 | 1.3680 (17) | N4—N5 | 1.3700 (17) |
N2—H15 | 0.8600 | N5—H32 | 0.8600 |
N3—H16 | 0.8600 | N6—H33 | 0.8600 |
N3—H17 | 0.8600 | N6—H34 | 0.8600 |
O1—C1—C6 | 127.11 (14) | O2—C12—C16 | 126.90 (15) |
O1—C1—C2 | 127.73 (14) | O2—C12—C13 | 128.39 (14) |
C6—C1—C2 | 105.00 (12) | C16—C12—C13 | 104.64 (12) |
C8—C2—C1 | 115.78 (14) | C19—C13—C12 | 114.91 (14) |
C8—C2—C7 | 120.20 (14) | C19—C13—C14 | 119.60 (15) |
C1—C2—C7 | 101.38 (12) | C12—C13—C14 | 100.66 (12) |
C8—C2—C3 | 114.23 (15) | C19—C13—C18 | 114.77 (15) |
C1—C2—C3 | 101.74 (13) | C12—C13—C18 | 103.07 (13) |
C7—C2—C3 | 100.78 (13) | C14—C13—C18 | 101.41 (13) |
C4—C3—C2 | 105.01 (13) | C21—C14—C20 | 109.08 (16) |
C4—C3—H1 | 110.7 | C21—C14—C15 | 112.81 (14) |
C2—C3—H1 | 110.7 | C20—C14—C15 | 112.79 (15) |
C4—C3—H2 | 110.7 | C21—C14—C13 | 113.24 (15) |
C2—C3—H2 | 110.7 | C20—C14—C13 | 113.76 (14) |
H1—C3—H2 | 108.8 | C15—C14—C13 | 94.66 (12) |
C3—C4—C5 | 102.97 (14) | C16—C15—C17 | 104.52 (13) |
C3—C4—H3 | 111.2 | C16—C15—C14 | 101.17 (12) |
C5—C4—H3 | 111.2 | C17—C15—C14 | 102.83 (13) |
C3—C4—H4 | 111.2 | C16—C15—H18 | 115.5 |
C5—C4—H4 | 111.2 | C17—C15—H18 | 115.5 |
H3—C4—H4 | 109.1 | C14—C15—H18 | 115.5 |
C6—C5—C7 | 101.38 (12) | N4—C16—C15 | 133.61 (14) |
C6—C5—C4 | 104.30 (13) | N4—C16—C12 | 121.12 (13) |
C7—C5—C4 | 102.40 (13) | C15—C16—C12 | 105.20 (12) |
C6—C5—H5 | 115.6 | C18—C17—C15 | 103.13 (13) |
C7—C5—H5 | 115.6 | C18—C17—H19 | 111.1 |
C4—C5—H5 | 115.6 | C15—C17—H19 | 111.1 |
N1—C6—C5 | 133.70 (13) | C18—C17—H20 | 111.1 |
N1—C6—C1 | 121.19 (13) | C15—C17—H20 | 111.1 |
C5—C6—C1 | 104.97 (12) | H19—C17—H20 | 109.1 |
C10—C7—C9 | 109.87 (16) | C17—C18—C13 | 104.66 (13) |
C10—C7—C5 | 111.71 (15) | C17—C18—H21 | 110.8 |
C9—C7—C5 | 112.69 (14) | C13—C18—H21 | 110.8 |
C10—C7—C2 | 112.86 (15) | C17—C18—H22 | 110.8 |
C9—C7—C2 | 113.84 (14) | C13—C18—H22 | 110.8 |
C5—C7—C2 | 95.24 (12) | H21—C18—H22 | 108.9 |
C2—C8—H6 | 109.5 | C13—C19—H23 | 109.5 |
C2—C8—H7 | 109.5 | C13—C19—H24 | 109.5 |
H6—C8—H7 | 109.5 | H23—C19—H24 | 109.5 |
C2—C8—H8 | 109.5 | C13—C19—H25 | 109.5 |
H6—C8—H8 | 109.5 | H23—C19—H25 | 109.5 |
H7—C8—H8 | 109.5 | H24—C19—H25 | 109.5 |
C7—C9—H9 | 109.5 | C14—C20—H26 | 109.5 |
C7—C9—H10 | 109.5 | C14—C20—H27 | 109.5 |
H9—C9—H10 | 109.5 | H26—C20—H27 | 109.5 |
C7—C9—H11 | 109.5 | C14—C20—H28 | 109.5 |
H9—C9—H11 | 109.5 | H26—C20—H28 | 109.5 |
H10—C9—H11 | 109.5 | H27—C20—H28 | 109.5 |
C7—C10—H12 | 109.5 | C14—C21—H29 | 109.5 |
C7—C10—H13 | 109.5 | C14—C21—H30 | 109.5 |
H12—C10—H13 | 109.5 | H29—C21—H30 | 109.5 |
C7—C10—H14 | 109.5 | C14—C21—H31 | 109.5 |
H12—C10—H14 | 109.5 | H29—C21—H31 | 109.5 |
H13—C10—H14 | 109.5 | H30—C21—H31 | 109.5 |
N3—C11—N2 | 116.94 (13) | N6—C22—N5 | 116.89 (14) |
N3—C11—S1 | 123.15 (12) | N6—C22—S2 | 123.31 (12) |
N2—C11—S1 | 119.91 (11) | N5—C22—S2 | 119.78 (11) |
C6—N1—N2 | 117.31 (12) | C16—N4—N5 | 117.22 (12) |
C11—N2—N1 | 119.05 (12) | C22—N5—N4 | 119.21 (12) |
C11—N2—H15 | 120.5 | C22—N5—H32 | 120.4 |
N1—N2—H15 | 120.5 | N4—N5—H32 | 120.4 |
C11—N3—H16 | 120.0 | C22—N6—H33 | 120.0 |
C11—N3—H17 | 120.0 | C22—N6—H34 | 120.0 |
H16—N3—H17 | 120.0 | H33—N6—H34 | 120.0 |
O1—C1—C2—C8 | 20.6 (3) | O2—C12—C13—C19 | −18.6 (3) |
C6—C1—C2—C8 | −163.87 (15) | C16—C12—C13—C19 | 164.22 (15) |
O1—C1—C2—C7 | 152.42 (18) | O2—C12—C13—C14 | −148.48 (18) |
C6—C1—C2—C7 | −32.03 (15) | C16—C12—C13—C14 | 34.31 (15) |
O1—C1—C2—C3 | −103.9 (2) | O2—C12—C13—C18 | 107.0 (2) |
C6—C1—C2—C3 | 71.67 (14) | C16—C12—C13—C18 | −70.19 (15) |
C8—C2—C3—C4 | 163.31 (14) | C19—C13—C14—C21 | −62.9 (2) |
C1—C2—C3—C4 | −71.19 (15) | C12—C13—C14—C21 | 63.92 (17) |
C7—C2—C3—C4 | 32.98 (16) | C18—C13—C14—C21 | 169.75 (15) |
C2—C3—C4—C5 | 1.05 (17) | C19—C13—C14—C20 | 62.4 (2) |
C3—C4—C5—C6 | 70.16 (15) | C12—C13—C14—C20 | −170.78 (15) |
C3—C4—C5—C7 | −35.17 (16) | C18—C13—C14—C20 | −64.95 (18) |
C7—C5—C6—N1 | −149.53 (17) | C19—C13—C14—C15 | 179.78 (15) |
C4—C5—C6—N1 | 104.4 (2) | C12—C13—C14—C15 | −53.36 (14) |
C7—C5—C6—C1 | 34.96 (15) | C18—C13—C14—C15 | 52.47 (14) |
C4—C5—C6—C1 | −71.15 (15) | C21—C14—C15—C16 | −64.17 (17) |
O1—C1—C6—N1 | −2.3 (3) | C20—C14—C15—C16 | 171.67 (14) |
C2—C1—C6—N1 | −177.88 (14) | C13—C14—C15—C16 | 53.46 (14) |
O1—C1—C6—C5 | 173.92 (17) | C21—C14—C15—C17 | −172.06 (15) |
C2—C1—C6—C5 | −1.68 (16) | C20—C14—C15—C17 | 63.79 (18) |
C6—C5—C7—C10 | 64.28 (17) | C13—C14—C15—C17 | −54.42 (14) |
C4—C5—C7—C10 | 171.87 (15) | C17—C15—C16—N4 | −104.6 (2) |
C6—C5—C7—C9 | −171.46 (14) | C14—C15—C16—N4 | 148.82 (17) |
C4—C5—C7—C9 | −63.87 (17) | C17—C15—C16—C12 | 72.31 (15) |
C6—C5—C7—C2 | −52.88 (14) | C14—C15—C16—C12 | −34.24 (15) |
C4—C5—C7—C2 | 54.71 (14) | O2—C12—C16—N4 | −0.1 (3) |
C8—C2—C7—C10 | 64.5 (2) | C13—C12—C16—N4 | 177.19 (14) |
C1—C2—C7—C10 | −64.58 (17) | O2—C12—C16—C15 | −177.49 (17) |
C3—C2—C7—C10 | −169.03 (14) | C13—C12—C16—C15 | −0.22 (16) |
C8—C2—C7—C9 | −61.6 (2) | C16—C15—C17—C18 | −69.89 (16) |
C1—C2—C7—C9 | 169.29 (15) | C14—C15—C17—C18 | 35.43 (17) |
C3—C2—C7—C9 | 64.84 (17) | C15—C17—C18—C13 | −1.30 (18) |
C8—C2—C7—C5 | −179.27 (16) | C19—C13—C18—C17 | −163.20 (16) |
C1—C2—C7—C5 | 51.64 (14) | C12—C13—C18—C17 | 71.12 (16) |
C3—C2—C7—C5 | −52.81 (14) | C14—C13—C18—C17 | −32.81 (17) |
C5—C6—N1—N2 | 0.9 (3) | C15—C16—N4—N5 | 0.2 (3) |
C1—C6—N1—N2 | 175.84 (13) | C12—C16—N4—N5 | −176.32 (13) |
N3—C11—N2—N1 | −4.7 (2) | N6—C22—N5—N4 | 2.4 (2) |
S1—C11—N2—N1 | 176.18 (10) | S2—C22—N5—N4 | −179.29 (11) |
C6—N1—N2—C11 | 178.54 (14) | C16—N4—N5—C22 | −174.20 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H33···O1 | 0.86 | 2.58 | 2.9912 (18) | 111 |
N2—H15···S2i | 0.86 | 2.76 | 3.5413 (13) | 151 |
N3—H17···O1ii | 0.86 | 2.40 | 3.110 (2) | 140 |
C5—H5···S2i | 0.98 | 2.84 | 3.4559 (16) | 122 |
N5—H32···S1iii | 0.86 | 2.81 | 3.5334 (13) | 142 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z+1; (iii) x+1/2, −y+3/2, z+1/2. |
Isomer | Chiral center | Atom chain | Torsion angle |
S | C5 | N1—C6—C5—C4 | 104.4 (2) |
S | C5 | N1—C6—C5—C7 | -149.53 (17) |
R | C2 | O1—C1—C2—C3 | -103.9 (2) |
R | C2 | O1—C1—C2—C7 | 152.42 (18) |
R | C2 | O1—C1—C2—C8 | 20.6 (3) |
R | C15 | N4—C16—C15—C17 | -104.6 (2) |
R | C15 | N4—C16—C15—C14 | 148.82 (17) |
S | C13 | O2—C12—C13—C18 | 107.0 (2) |
S | C13 | O2—C12—C13—C14 | -148.48 (18) |
S | C13 | O2—C12—C13—C19 | -18.6 (3) |
Acknowledgements
ABO is a former DAAD scholarship holder and alumnus of the University of Bonn, Germany, and thanks both institutions for the long-term support, in particular Professor Johannes Beck and Dr Jörg Daniels.
Funding information
Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chemical Abstracts Service (2019). RN, 58–08–2 Columbus, Ohio, USA (accessed via SciFinder on December 09, 2019). Google Scholar
Domagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315. CrossRef Web of Science Google Scholar
Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606. CrossRef CAS Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hoggarth, H. & Martin, A. R. (1949). Brit. J. Pharmacol. 4, 248–253. PubMed CAS Google Scholar
Khanye, S. D., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J., Smith, G. S. & Chibale, K. (2011). J. Organomet. Chem. 696, 3392–3396. Web of Science CrossRef CAS Google Scholar
Kowol, C. R., Miklos, W., Pfaff, S., Hager, S., Kallus, S., Pelivan, K., Kubanik, M., Enyedy, É. A., ÉA, , Berger, W., Heffeter, P. & Keppler, B. K. (2016). J. Med. Chem. 59, 6739–6752. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kuhn, R. & Zilliken, F. (1954). US Patent No. 2,695,911. Google Scholar
Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055. Web of Science CrossRef CAS Google Scholar
Miklos, W., Pelivan, K., Kowol, C. R., Pirker, C., Dornetshuber-Fleiss, R., Spitzwieser, M., Englinger, B., van Schoonhoven, S., Cichna-Markl, M., Koellensperger, G., Keppler, B. K., Berger, W. & Heffeter, P. (2015). Cancer Lett. 361, 112–120. CrossRef CAS PubMed Google Scholar
Mishra, P., Kumar, A., Mamidi, P., Kumar, S., Basantray, I., Saswat, T., Das, I., Nayak, T. K., Chattopadhyay, S., Subudhi, B. B. & Chattopadhyay, S. (2016). Sci. Rep. 6, 20122. Web of Science CrossRef PubMed Google Scholar
Młochowski, J. & Wójtowicz-Młochowska, H. (2015). Molecules, 20, 10205–10243. Web of Science PubMed Google Scholar
Oliveira, G. P., Bresolin, L., Nogueira, V. S., Zambiazi, P. J. & Oliveira, A. B. (2016). IUCrDATA 1, x161730. Google Scholar
Pearson, R. G. & Songstad, J. (1967). J. Am. Chem. Soc. 89, 1827–1836. CrossRef CAS Google Scholar
Rocha, F. V., Farias, R. L., Lima, M. A., Batista, V. S., Nascimento-Júnior, N. M., Garrido, S. S., Leopoldino, A. M., Goto, R. N., Oliveira, A. B., Beck, J., Landvogt, C., Mauro, A. E. & Netto, A. V. G. (2019). J. Inorg. Biochem. 199, 110725. CrossRef PubMed Google Scholar
Sartorelli, A. C. & Booth, B. A. (1967). Cancer Res. 27, 1614–1619. CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer3.1. University of Western Australia, Perth, Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.