research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane bis­­(perchlorate) dichloride from synchrotron X-ray data

CROSSMARK_Color_square_no_text.svg

aBeamline Department, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 27 January 2020; accepted 30 January 2020; online 11 February 2020)

The crystal structure of title salt, C14H36N44+·2ClO4·2Cl, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit contains one half-cation (completed by crystallographic inversion symmetry), one perchlorate anion and one chloride anion. A distortion of the perchlorate anion is due to its involvement in hydrogen-bonding inter­actions with the cations. The crystal structure is consolidated by inter­molecular hydrogen bonds involving the 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane N—H and C—H groups as donor groups, and the O atoms of the perchlorate and chloride anion as acceptor groups, giving rise to a three-dimensional network.

1. Chemical context

Tetra­aza­macrocycle 1,4,8,11-tetra­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane (TMC, C14H32N4) is one of the most useful aza­macrocycles because of its ability to act as an effective metal-ion binding site and its basic properties. N-Substituted TMC is a basic amine that may form a dication, C14H34N42+, or a tetra­cation, C14H36N44+, in which the N—H bonds are generally active in hydrogen-bond formation. These di- or tetra­ammonium cations may be suitable for the removal of toxic heavy-metal ions. Because of a difference in the chirality of the secondary NH centers, the macrocyclic compounds can exhibit five conformations, viz. trans-I (RSRS), trans-II (RSRR), trans-III (RRSS), trans-IV (SRRS) and trans-V (RRRR) (Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]). Previously, the crystal structures for trans-[Ni(TMC)(H2O)2]Cl2·2H2O, [Ni(TMC)](O3SCF3) (Barefield et al., 1986[Barefield, E. K., Freeman, G. M. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 552-558.]), [Cu(TMC)(H2O)](ClO4)2·H2O (Lee et al., 1986[Lee, T.-J., Lee, T.-Y., Hong, C.-Y., Wu, D.-T. & Chung, C.-S. (1986). Acta Cryst. C42, 999-1001.]), [Cu(TMC)](ClO4)2 (Maimon et al., 2001[Maimon, E., Zilbermann, I., Golub, G., Ellern, A., Shames, A. I., Cohen, H. & Meyerstein, D. (2001). Inorg. Chim. Acta, 324, 65-72.]), [Ag(TMC)](ClO4)2 (Po et al., 1991[Po, H. N., Brinkman, E. & Doedens, R. J. (1991). Acta Cryst. C47, 2310-2312.]), [Cu(NCS)(TMC)]ClO4 (Lu et al., 1998[Lu, T.-H., Shui, W.-Z., Tung, S.-F., Chi, T.-Y., Liao, F.-L. & Chung, C.-S. (1998). Acta Cryst. C54, 1071-1072.]) and [Cu(TMC)](BF4)2 (Bucher et al., 2001b[Bucher, C., Duval, E., Espinosa, E., Barbe, J. M., Verpeaux, J. N., Amatore, C. & Guilard, R. (2001b). Eur. J. Inorg. Chem. pp. 1077-1079.]) have been characterized crystallographically. In addition, first-row transition-metal complexes of the form [MIICl(TMC)]+ [M = Zn (Alcock et al., 1978[Alcock, N. W., Herron, N. & Moore, P. (1978). J. Chem. Soc. Dalton Trans. pp. 1282-1288.]), Mn (Bucher et al., 2001a[Bucher, C., Duval, E., Barbe, J. M., Verpeaux, J. N., Amatore, C., Guilard, R., Le Pape, L., Latour, J.-M., Dahaoui, S. & Lecomte, C. (2001a). Inorg. Chem. 40, 5722-5726.]), Ni (Nishigaki et al., 2010[Nishigaki, J.-I., Matsumoto, T. & Tatsumi, K. (2010). Eur. J. Inorg. Chem. pp. 5011-5017.]), Fe (Bedford et al., 2016[Bedford, R. B., Brenner, P. B., Elorriaga, D., Harvey, J. N. & Nunn, J. (2016). Dalton Trans. 45, 15811-15817.]) and Co (Van Heuvelen et al., 2017[Van Heuvelen, K. M., Lee, I., Arriola, K., Griffin, R., Ye, C. & Takase, M. K. (2017). Acta Cryst. C73, 620-624.])] have been determined. Two independent ring conformations, trans-III and trans-IV, in the crystal structure of free TMC were also found (Willey et al., 1994[Willey, G. R., Lakin, M. T., Alcock, N. W. & Samuel, C. J. (1994). J. Incl. Phenom. Macrocycl. Chem. 15, 293-304.]), but there is no report of a structure with any combination of the 1,4,8,11-tetra­methyl-1,4,8,11-tetra­azonia­cyclo­tetra­decane cation and ClO4 and Cl anions. We report here the preparation of a new compound [H4TMC](ClO4)2Cl2, (I)[link], and its structural characterization by synchrotron single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

An ellipsoid plot of the mol­ecular components in (I)[link] is shown in Fig. 1[link] along with the atom-numbering scheme. The asymmetric unit consists of one half of the macrocycle, which lies about a center of inversion, one perchlorate anion and one chloride anion. The tetra-protonated amine of the title compound has a distorted trans-IV conformation, which is comparable to the trans-I or trans-III conformations of the dications in [H2TMC][As4O2Cl10] and [H2TMC][Sb2OCl6], respectively (Willey et al., 1993[Willey, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365-370.]). Within the centrosymmetric tetra-protonated C14H36N44+ amine unit, the C—C and N—C bond lengths vary from 1.522 (2) to 1.527 (2) Å and from 1.5033 (19) to 1.5181 (18) Å, respectively. The N—C—C and C—N—C angles range from 113.55 (12) to 116.19 (12)° and 108.49 (12) to 112.37 (11)°, respectively. The bond lengths and angles within the tetra­ammonium cations are comparable to the corresponding values determined for the TMC moiety in [H4TMC]2[Sb4F15][HF2]F4 (Becker & Mattes, 1996[Becker, I. K. & Mattes, R. (1996). Z. Anorg. Allg. Chem. 622, 105-111.]), [H2TMC][As4O2Cl10], [H2TMC][Sb2OCl6] (Willey et al., 1993[Willey, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365-370.]), [H4TMC][H2TMC][W(CN)8]2·4H2O (Nowicka et al., 2012[Nowicka, B., Reczyński, M., Nitek, W. & Sieklucka, B. (2012). Polyhedron, 47, 73-78.]), [Ga2(C3H7)4(OH)2](TMC) (Boag et al., 2000[Boag, N. M., Coward, K. M., Jones, A. C., Pemble, M. E. & Thompson, J. R. (2000). Acta Cryst. C56, 1438-1439.]), TMC (Willey et al., 1994[Willey, G. R., Lakin, M. T., Alcock, N. W. & Samuel, C. J. (1994). J. Incl. Phenom. Macrocycl. Chem. 15, 293-304.]), trans-[Ni(TMC)(H2O)2]Cl2·2H2O (Barefield et al., 1986[Barefield, E. K., Freeman, G. M. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 552-558.]), trans-[Os(TMC)(O)2](PF6)2 (Kelly et al., 1996[Kelly, C., Szalda, D. J., Creutz, C., Schwarz, H. A. & Sutin, N. (1996). Inorg. Chim. Acta, 243, 39-45.]), [Cu(TMC)(H2O)](ClO4)2·H2O (Lee et al., 1986[Lee, T.-J., Lee, T.-Y., Hong, C.-Y., Wu, D.-T. & Chung, C.-S. (1986). Acta Cryst. C42, 999-1001.]), [Cu(NCS)(TMC)]ClO4 (Lu et al., 1998[Lu, T.-H., Shui, W.-Z., Tung, S.-F., Chi, T.-Y., Liao, F.-L. & Chung, C.-S. (1998). Acta Cryst. C54, 1071-1072.]) and [Cu(TMC)](BF4)2 (Bucher et al., 2001b[Bucher, C., Duval, E., Espinosa, E., Barbe, J. M., Verpeaux, J. N., Amatore, C. & Guilard, R. (2001b). Eur. J. Inorg. Chem. pp. 1077-1079.]). The Cl—O bond distances in the tetra­hedral ClO4 anion range from 1.4180 (17) to 1.4380 (16) Å and the O—Cl—O angles from 106.85 (14)–110.94 (12)°. A distortion of the ClO4 anion undoubtedly results from its involvement in hydrogen-bonding inter­actions with the cations.

[Figure 1]
Figure 1
The structures of the mol­ecular components in (I)[link], drawn with displacement ellipsoids at the 50% probability level. Dashed lines represent hydrogen-bonding inter­actions and primed atoms are related by the symmetry operation (−x + 1, −y + 1, −z).

3. Supra­molecular features

Extensive N—H⋯Cl, C—H⋯Cl and C—H⋯O hydrogen-bonding inter­actions occur in the crystal structure (Table 1[link]). A crystal packing diagram of (I)[link] viewed perpendicular to the ab plane is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.99 2.13 3.0701 (14) 159
N2—H2⋯Cl2 0.99 2.17 3.1038 (15) 156
C1—H1A⋯Cl2 0.98 2.77 3.6868 (17) 157
C5—H5AB⋯O3 0.98 2.39 3.351 (3) 167
C3—H3A⋯Cl2i 0.98 2.67 3.6274 (17) 164
C3—H3AB⋯O2ii 0.98 2.52 3.288 (3) 135
C4—H4A⋯O4iii 0.97 2.49 3.429 (3) 164
C4—H4C⋯O2ii 0.97 2.39 3.171 (3) 137
C5—H5A⋯O3iii 0.98 2.34 3.317 (3) 173
C6—H6AB⋯O4iv 0.98 2.31 3.231 (3) 156
C6—H6A⋯Cl2i 0.98 2.80 3.7414 (17) 161
C7—H7B⋯O3iii 0.97 2.40 3.333 (3) 161
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1.
[Figure 2]
Figure 2
The crystal packing of compound (I)[link], viewed perpendicular to the ab plane. Dashed lines represent N—H⋯Cl (purple), C—H⋯Cl (blue) and C—H⋯O (green) hydrogen-bonding inter­actions, respectively.

The N—H⋯Cl and C—H⋯Cl hydrogen bonds link the two Cl anions to the C14H36N44+ cation while C—H⋯O hydrogen bonds inter­connect neighboring cations with the ClO4 anions. An extensive array of these contacts generates a three-dimensional network of mol­ecules, and these hydrogen-bonding inter­actions help to consolidate the crystal structure.

4. Database survey

A search of the Cambridge Structural Database (Version 5.41, November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave just seven hits for organic compounds containing C14H36N44+, C14H34N42+ or C14H32N4 macrocycles: [C14H36N4]2[Sb4F15][HF2]F4 (Becker et al., 1996[Becker, I. K. & Mattes, R. (1996). Z. Anorg. Allg. Chem. 622, 105-111.]), [C14H34N4][As4O2Cl10] and [C14H34N4][Sb2OCl6] (Willey et al., 1993[Willey, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365-370.]), [C14H36N4][C14H34N4][W(CN)8]2·4H2O (Nowicka et al., 2012[Nowicka, B., Reczyński, M., Nitek, W. & Sieklucka, B. (2012). Polyhedron, 47, 73-78.]), [Ga2(C3H7)4(OH)2](C14H32N4) (Boag et al., 2000[Boag, N. M., Coward, K. M., Jones, A. C., Pemble, M. E. & Thompson, J. R. (2000). Acta Cryst. C56, 1438-1439.]) and (C14H32N4) (Willey et al., 1994[Willey, G. R., Lakin, M. T., Alcock, N. W. & Samuel, C. J. (1994). J. Incl. Phenom. Macrocycl. Chem. 15, 293-304.]). However, the crystal structure of the title compound had not been deposited until now. The tetra-protonated amine of the title compound has a trans-IV conformation, which is comparable to the trans-I or trans-III conformation of the dications in [H2TMC][As4O2Cl10] and [H2TMC][Sb2OCl6], respectively (Willey et al., 1993[Willey, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365-370.]).

5. Synthesis and crystallization

The free ligand TMC (98%) was purchased from Sigma–Aldrich and used without further purification. All chemicals were reagent grade materials, and were used as received. TMC (0.128 g, 0.5 mmol) was dissolved in 15 mL of 6 M HCl, and 5 mL of a saturated solution of sodium perchlorate including chromium trioxide (0.1 g, 1 mmol) was added to the resulting solution at 298 K. The mixture was stirred for 2 h and the solution was filtered. Block-like pale yellow crystals of (I)[link] suitable for X-ray structural analysis were unexpectedly obtained from the solution at 298 K over a period of a few days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97–0.98 Å and N—H = 0.99 Å, and with Uiso(H) values of 1.5 and 1.2 times the Ueq of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula C14H36N44+·2ClO4·2Cl
Mr 530.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 220
a, b, c (Å) 7.4990 (15), 8.0790 (16), 9.980 (2)
α, β, γ (°) 81.31 (3), 77.32 (3), 78.39 (3)
V3) 574.2 (2)
Z 1
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 0.36
Crystal size (mm) 0.10 × 0.10 × 0.08
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.710, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6573, 3361, 3208
Rint 0.038
(sin θ/λ)max−1) 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.147, 1.05
No. of reflections 3361
No. of parameters 138
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.97, −0.56
Computer programs: PAL BL2D-SMDC Program (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC Program (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

1,4,8,11-Tetramethyl-1,4,8,11-tetraazoniacyclotetradecane bis(perchlorate) dichloride top
Crystal data top
C14H36N44+·2ClO4·2ClZ = 1
Mr = 530.27F(000) = 280
Triclinic, P1Dx = 1.533 Mg m3
a = 7.4990 (15) ÅSynchrotron radiation, λ = 0.610 Å
b = 8.0790 (16) ÅCell parameters from 91694 reflections
c = 9.980 (2) Åθ = 0.4–33.7°
α = 81.31 (3)°µ = 0.36 mm1
β = 77.32 (3)°T = 220 K
γ = 78.39 (3)°Block, pale yellow
V = 574.2 (2) Å30.10 × 0.10 × 0.08 mm
Data collection top
Rayonix MX225HS CCD area detector
diffractometer
3208 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.038
ω scanθmax = 25.5°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.710, Tmax = 1.000k = 1111
6573 measured reflectionsl = 1414
3361 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.1013P)2 + 0.2815P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3361 reflectionsΔρmax = 0.97 e Å3
138 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.67545 (16)0.40154 (15)0.21687 (13)0.0182 (2)
H10.7023370.4803950.1318120.022*
N20.32976 (16)0.70943 (15)0.15397 (13)0.0187 (2)
H20.4479690.6986340.0856230.022*
C10.82761 (19)0.26947 (19)0.07624 (16)0.0213 (3)
H1A0.8444760.3821680.0616780.026*
H1AB0.9425700.2165660.1333360.026*
C20.7951 (2)0.16181 (18)0.06343 (16)0.0222 (3)
H2A0.9114940.1358090.0979510.027*
H2AB0.7660410.0537190.0488510.027*
C30.6416 (2)0.24003 (18)0.17554 (15)0.0202 (3)
H3A0.5242350.2643240.1425440.024*
H3AB0.6282530.1563920.2575390.024*
C40.8394 (2)0.3698 (2)0.2869 (2)0.0289 (3)
H4A0.8520000.4749310.3168370.043*
H4B0.9510960.3287120.2225550.043*
H4C0.8207470.2853890.3664160.043*
C50.5084 (2)0.48877 (19)0.31152 (15)0.0219 (3)
H5A0.5419770.5880410.3390660.026*
H5AB0.4803400.4105690.3953860.026*
C60.3326 (2)0.54741 (19)0.25240 (16)0.0220 (3)
H6A0.3159430.4565300.2038640.026*
H6AB0.2264990.5641600.3292740.026*
C70.3152 (2)0.8628 (2)0.22684 (18)0.0267 (3)
H7A0.3054310.9644660.1613790.040*
H7B0.4248220.8526810.2660820.040*
H7C0.2057910.8703540.3000870.040*
Cl10.21029 (5)0.17202 (5)0.52791 (4)0.02439 (13)
O10.2471 (3)0.1745 (2)0.38061 (17)0.0494 (4)
O20.1539 (3)0.0175 (3)0.5935 (3)0.0669 (6)
O30.3753 (3)0.1946 (3)0.5690 (2)0.0560 (5)
O40.0647 (3)0.3129 (3)0.5618 (3)0.0662 (6)
Cl20.73888 (5)0.71235 (4)0.00536 (4)0.02198 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0174 (5)0.0170 (5)0.0224 (5)0.0036 (4)0.0087 (4)0.0011 (4)
N20.0150 (5)0.0180 (5)0.0242 (5)0.0023 (4)0.0058 (4)0.0042 (4)
C10.0144 (6)0.0238 (6)0.0281 (7)0.0034 (5)0.0074 (5)0.0056 (5)
C20.0200 (6)0.0181 (6)0.0301 (7)0.0004 (5)0.0105 (5)0.0041 (5)
C30.0201 (6)0.0175 (6)0.0263 (6)0.0051 (5)0.0095 (5)0.0026 (5)
C40.0247 (7)0.0285 (8)0.0402 (8)0.0049 (6)0.0196 (6)0.0047 (6)
C50.0237 (6)0.0216 (6)0.0213 (6)0.0028 (5)0.0066 (5)0.0032 (5)
C60.0183 (6)0.0193 (6)0.0278 (7)0.0035 (5)0.0043 (5)0.0012 (5)
C70.0304 (8)0.0198 (7)0.0346 (8)0.0038 (5)0.0133 (6)0.0085 (6)
Cl10.0237 (2)0.0222 (2)0.0294 (2)0.00633 (14)0.00871 (15)0.00105 (14)
O10.0545 (10)0.0648 (11)0.0346 (7)0.0209 (8)0.0060 (7)0.0131 (7)
O20.0720 (13)0.0481 (10)0.0887 (15)0.0350 (9)0.0404 (12)0.0356 (10)
O30.0533 (10)0.0629 (11)0.0691 (12)0.0267 (9)0.0400 (9)0.0023 (9)
O40.0504 (10)0.0561 (11)0.0837 (15)0.0128 (9)0.0007 (10)0.0290 (10)
Cl20.01828 (19)0.0202 (2)0.0293 (2)0.00692 (13)0.00735 (14)0.00056 (13)
Geometric parameters (Å, º) top
N1—C41.5037 (19)C4—H4A0.9700
N1—C31.5095 (18)C4—H4B0.9700
N1—C51.5116 (19)C4—H4C0.9700
N1—H10.9900C5—C61.522 (2)
N2—C71.5033 (19)C5—H5A0.9800
N2—C61.513 (2)C5—H5AB0.9800
N2—C1i1.5181 (18)C6—H6A0.9800
N2—H20.9900C6—H6AB0.9800
C1—C21.526 (2)C7—H7A0.9700
C1—H1A0.9800C7—H7B0.9700
C1—H1AB0.9800C7—H7C0.9700
C2—C31.527 (2)Cl1—O21.4180 (17)
C2—H2A0.9800Cl1—O11.4328 (16)
C2—H2AB0.9800Cl1—O41.4342 (19)
C3—H3A0.9800Cl1—O31.4380 (16)
C3—H3AB0.9800
C4—N1—C3111.91 (12)N1—C4—H4A109.5
C4—N1—C5108.49 (12)N1—C4—H4B109.5
C3—N1—C5112.37 (11)H4A—C4—H4B109.5
C4—N1—H1108.0N1—C4—H4C109.5
C3—N1—H1108.0H4A—C4—H4C109.5
C5—N1—H1108.0H4B—C4—H4C109.5
C7—N2—C6112.12 (12)N1—C5—C6116.19 (12)
C7—N2—C1i111.00 (11)N1—C5—H5A108.2
C6—N2—C1i109.81 (11)C6—C5—H5A108.2
C7—N2—H2107.9N1—C5—H5AB108.2
C6—N2—H2107.9C6—C5—H5AB108.2
C1i—N2—H2107.9H5A—C5—H5AB107.4
N2i—C1—C2113.55 (12)N2—C6—C5115.16 (12)
N2i—C1—H1A108.9N2—C6—H6A108.5
C2—C1—H1A108.9C5—C6—H6A108.5
N2i—C1—H1AB108.9N2—C6—H6AB108.5
C2—C1—H1AB108.9C5—C6—H6AB108.5
H1A—C1—H1AB107.7H6A—C6—H6AB107.5
C1—C2—C3116.36 (12)N2—C7—H7A109.5
C1—C2—H2A108.2N2—C7—H7B109.5
C3—C2—H2A108.2H7A—C7—H7B109.5
C1—C2—H2AB108.2N2—C7—H7C109.5
C3—C2—H2AB108.2H7A—C7—H7C109.5
H2A—C2—H2AB107.4H7B—C7—H7C109.5
N1—C3—C2114.13 (12)O2—Cl1—O1110.75 (13)
N1—C3—H3A108.7O2—Cl1—O4110.14 (15)
C2—C3—H3A108.7O1—Cl1—O4106.85 (14)
N1—C3—H3AB108.7O2—Cl1—O3110.94 (12)
C2—C3—H3AB108.7O1—Cl1—O3108.56 (12)
H3A—C3—H3AB107.6O4—Cl1—O3109.50 (14)
N2i—C1—C2—C369.05 (16)C3—N1—C5—C661.62 (16)
C4—N1—C3—C266.31 (16)C7—N2—C6—C569.95 (16)
C5—N1—C3—C2171.33 (11)C1i—N2—C6—C5166.15 (12)
C1—C2—C3—N162.42 (16)N1—C5—C6—N277.80 (16)
C4—N1—C5—C6174.11 (13)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.992.133.0701 (14)159
N2—H2···Cl20.992.173.1038 (15)156
C1—H1A···Cl20.982.773.6868 (17)157
C5—H5AB···O30.982.393.351 (3)167
C3—H3A···Cl2i0.982.673.6274 (17)164
C3—H3AB···O2ii0.982.523.288 (3)135
C4—H4A···O4iii0.972.493.429 (3)164
C4—H4C···O2ii0.972.393.171 (3)137
C5—H5A···O3iii0.982.343.317 (3)173
C6—H6AB···O4iv0.982.313.231 (3)156
C6—H6A···Cl2i0.982.803.7414 (17)161
C7—H7B···O3iii0.972.403.333 (3)161
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

References

First citationAlcock, N. W., Herron, N. & Moore, P. (1978). J. Chem. Soc. Dalton Trans. pp. 1282–1288.  CSD CrossRef Web of Science Google Scholar
First citationBarefield, E. K., Freeman, G. M. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 552–558.  CSD CrossRef CAS Web of Science Google Scholar
First citationBecker, I. K. & Mattes, R. (1996). Z. Anorg. Allg. Chem. 622, 105–111.  CSD CrossRef CAS Web of Science Google Scholar
First citationBedford, R. B., Brenner, P. B., Elorriaga, D., Harvey, J. N. & Nunn, J. (2016). Dalton Trans. 45, 15811–15817.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoag, N. M., Coward, K. M., Jones, A. C., Pemble, M. E. & Thompson, J. R. (2000). Acta Cryst. C56, 1438–1439.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBucher, C., Duval, E., Barbe, J. M., Verpeaux, J. N., Amatore, C., Guilard, R., Le Pape, L., Latour, J.-M., Dahaoui, S. & Lecomte, C. (2001a). Inorg. Chem. 40, 5722–5726.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBucher, C., Duval, E., Espinosa, E., Barbe, J. M., Verpeaux, J. N., Amatore, C. & Guilard, R. (2001b). Eur. J. Inorg. Chem. pp. 1077–1079.  CrossRef Google Scholar
First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKelly, C., Szalda, D. J., Creutz, C., Schwarz, H. A. & Sutin, N. (1996). Inorg. Chim. Acta, 243, 39–45.  CSD CrossRef CAS Web of Science Google Scholar
First citationLee, T.-J., Lee, T.-Y., Hong, C.-Y., Wu, D.-T. & Chung, C.-S. (1986). Acta Cryst. C42, 999–1001.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLu, T.-H., Shui, W.-Z., Tung, S.-F., Chi, T.-Y., Liao, F.-L. & Chung, C.-S. (1998). Acta Cryst. C54, 1071–1072.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaimon, E., Zilbermann, I., Golub, G., Ellern, A., Shames, A. I., Cohen, H. & Meyerstein, D. (2001). Inorg. Chim. Acta, 324, 65–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationNishigaki, J.-I., Matsumoto, T. & Tatsumi, K. (2010). Eur. J. Inorg. Chem. pp. 5011–5017.  Web of Science CSD CrossRef Google Scholar
First citationNowicka, B., Reczyński, M., Nitek, W. & Sieklucka, B. (2012). Polyhedron, 47, 73–78.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPo, H. N., Brinkman, E. & Doedens, R. J. (1991). Acta Cryst. C47, 2310–2312.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVan Heuvelen, K. M., Lee, I., Arriola, K., Griffin, R., Ye, C. & Takase, M. K. (2017). Acta Cryst. C73, 620–624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilley, G. R., Asab, A., Lakin, M. T. & Alcock, N. W. (1993). J. Chem. Soc. Dalton Trans. pp. 365–370.  CSD CrossRef Web of Science Google Scholar
First citationWilley, G. R., Lakin, M. T., Alcock, N. W. & Samuel, C. J. (1994). J. Incl. Phenom. Macrocycl. Chem. 15, 293-304.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds