research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of NaCuIn(PO4)2

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, B.P. 1014, Rabat, Morocco
*Correspondence e-mail: el_benhsina@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 January 2020; accepted 10 February 2020; online 14 February 2020)

Single crystals of sodium copper(II) indium bis­[phosphate(V)], NaCuIn(PO4)2, were grown from the melt under atmospheric conditions. The title phosphate crystallizes in the space group P21/n and is isotypic with KCuFe(PO4)2. In the crystal, two [CuO5] trigonal bipyramids share an edge to form a dimer [Cu2O8] that is connected to two PO4 tetra­hedra. The obtained [Cu2P2O12] units are inter­connected through vertices to form sheets that are sandwiched between undulating layers resulting from the junction of PO4 tetra­hedra and [InO6] octa­hedra. The two types of layers are alternately stacked along [101] and are joined into a three-dimensional framework through vertex- and edge-sharing, leaving channels parallel to the stacking direction. The channels host the sodium cations that are surrounded by four oxygen atoms in form of a distorted disphenoid.

1. Chemical context

Transition-metal phosphates have been the subject of intensive research as a result of their inter­esting physical properties and potential applications in wide-ranging fields such as catalysis, electrochemistry, luminescence (Tie et al., 1995[Tie, S., Su, Q. & Yu, Y. (1995). Phys. Status Solidi A, 147, 267-276.]; Pan et al., 2006[Pan, Y., Zhang, Q. & Jiang, Z. (2006). Mater. Sci. Eng. B, 133, 186-190.]; Yang et al., 2016[Yang, Z., Bai, Q., Li, T., Xu, S., Dong, H., Wang, Z. & Li, P. (2016). Optik, 127, 9338-9343.]) and ion exchange (Cheetham et al., 1999[Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]; Han et al., 2015[Han, M. H., Gonzalo, E., Singh, G. & Rojo, T. (2015). Energy Environ. Sci. 8, 81-102.]; Manos et al., 2005[Manos, M. J., Iyer, R. G., Quarez, E., Liao, J. H. & Kanatzidis, M. G. (2005). Angew. Chem. Int. Ed. 44, 3552-3555.], 2007[Manos, M. J., Malliakas, C. D. & Kanatzidis, M. G. (2007). Chem. Eur. J. 13, 51-58.]; Plabst et al., 2009[Plabst, M., McCusker, L. B. & Bein, T. (2009). J. Am. Chem. Soc. 131, 18112-18118.]; Stadie et al., 2017[Stadie, N. P., Wang, S., Kravchyk, K. V. & Kovalenko, M. V. (2017). ACS Nano, 11, 1911-1919.]). In these materials, the anionic framework is built up from PO4 tetra­hedra linked to different kinds of transition metal (TM) coordination polyhedra of the form [TMOn] (n = 4, 5 and 6), leading to a large variety of crystal structure families. This structural diversity is mainly associated with the ability of TM cations to adopt different oxidation states in various coordination polyhedra. Based on previous hydro­thermal investigations aimed at orthophosphates of general formula (M,M′′)3(PO4)2·nH2O (M and M′′ = bivalent cations), we have reported on synthesis and characterization of the phosphates Ni2Sr(PO4)2·2H2O (Assani et al., 2010[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2010). Acta Cryst. E66, i86-i87.]), Mg1.65Cu1.35(PO4)2·H2O (Khmiyas et al., 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 55-57.]) and Mn2Zn(PO4)2·H2O (Alhakmi et al., 2015[Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 154-156.]). In this context, the aim of the present study was to develop new phases belonging to the series AM′′M′′′(PO4)2 where A, M′′ and M′′′ are mono-, bi- and trivalent cations, respectively. As a result, we report here on synthesis and crystal structure of the new compound NaCuIn(PO4)2.

2. Structural commentary

The principal building units of the crystal structure of NaCuIn(PO4)2 are two PO4 tetra­hedra linked to a [CuO5] triangular bipyramid [Cu—O bond-length range of 1.9088 (9) to 2.1939 (9) Å] and to an [InO6] octa­hedron [In—O bond lengths range from 2.1028 (10) to 2.2051 (9) Å], and is completed by a distorted [NaO4] polyhedron (Fig. 1[link]). The P—O bond lengths in the two phosphate tetra­hedra are similar and comparable with those of similar phosphates. However, the P1—O distances, varying between 1.5035 (10) and 1.5729 (9) Å, indicate a somewhat higher distortion of this tetra­hedron than the P2—O distances [between 1.5297 (9) and 1.5488 (9) Å] of the other tetra­hedron.

[Figure 1]
Figure 1
The principal building units in the crystal structure of NaCuIn(PO4)2. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x + [{1\over 2}], −y − [{1\over 2}], z + [{1\over 2}]; (ii) −x + 1, −y, −z + 2; (iii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (iv) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (v) −x + 1, −y, −z + 1; (vi) x, y, z + 1; (vii) −x, −y, −z + 1; (viii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ix) x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].]

In this phosphate, two [CuO5] triangular bipyramids share one edge to form a [Cu2O8] dimer, the ends of which are linked to two P1O4 tetra­hedra by edge-sharing. The obtained [Cu2P2O12] groups are linked together via the vertices to form sheets extending parallel to (10[\overline{1}]), as shown in Fig. 2[link]. On the other hand, the [InO6] octa­hedra and the P2O4 tetra­hedra are inter­connected through common vertices to build up an undulating layer extending in the same direction (Fig. 3[link]). The copper phosphate layers are sandwiched between the undulating indium phosphate layers. By sharing corners and edges, an alternating stacking of the layers along [101] leads to a three-dimensional framework structure with channels in which the Na+ cations are located (Fig. 4[link]). The four nearest oxygen atoms around the alkali metal cation form a distorted disphenoid with Na—O distances between 2.3213 (12) and 2.4275 (11) Å (Fig. 1[link]).

[Figure 2]
Figure 2
Projection along [001] of [Cu2P2O12] copper phosphate sheets in the crystal structure of NaCuIn(PO4)2.
[Figure 3]
Figure 3
(a) A view approximately along [101] showing the undulating layer formed by [InO6] octa­hedra linked to PO4 tetra­hedra and (b) a projection of this layer onto (101).
[Figure 4]
Figure 4
The sodium cations located in channels running parallel to [101] in the crystal structure of NaCuIn(PO4)2.

NaCuIn(PO4)2 is isotypic with KCuFe(PO4)2 (Badri et al., 2011[Badri, A., Hidouri, M., López, M. L., Pico, C., Wattiaux, A. & Amara, M. B. (2011). J. Solid State Chem. 184, 937-944.]), whereby potassium is substituted by sodium and iron by indium. However, we note a significant difference in the coordination number of sodium and potassium in the two structures. Whereas sodium has a fourfold coordination in NaCuIn(PO4)2, potassium is surrounded by nine oxygen atoms in KCuFe(PO4)2 because of its greater ionic radius.

Bond-valence-sum calculations (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) are in good agreement with the expected values (in valence units) for sodium(I), copper(II), indium(III) and the phospho­rus(V) cations, viz. NaI = 0.845 (2), CuII = 2.102 (3), InIII = 3.152 (4), P1V = 4.930 (8), and P2V = 4.992 (8). For the oxygen anions, the calculated values range between 1.940 (5) and 2.076 (3).

3. Database survey

Phosphate-based materials with general formula AMIIMIII(PO4)2 commonly show crystal structures where channels or, more rarely, layers are formed by the [MIIMII(PO4)2] framework to delimit suitable environments to accommodate the A+ cations. A recent survey given by Yakubovich et al. (2019[Yakubovich, O., Kiriukhina, G., Volkov, A. & Dimitrova, O. (2019). Acta Cryst. C75, 514-522.]) revealed that all compounds of the morphotropic series AMIIMIII(PO4)2, where A = Na, K, Rb or NH4, M′′ = Cu, Ni, Co, Fe, Zn or Mg and M′′′ = Fe, Al or Ga, crystallize in the monoclinic crystal system and can be classified into seven subgroups according to their structure types, viz. (i) KNiFe(PO4)2 (space-group type P21/c, Z = 4; Strutynska et al., 2014[Strutynska, N. Yu., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. & Slobodyanik, N. S. (2014). Acta Cryst. C70, 160-164.]); (ii) KFeIIFeIII(PO4)2 (space-group type P21/c, Z = 4; Yakubovich et al., 1986[Yakubovich, O. V., Evdokimova, O. A., Mel'nikov, O. K. & Simonov, M. A. (1986). Kristallografiya, 31, 906-912.]); (iii) (NH4)FeIIFeIII(PO4)2 (space-group type C2/c, Z =16; Boudin & Lii, 1998[Boudin, S. & Lii, K.-H. (1998). Inorg. Chem. 37, 799-803.]); (iv) K(Co,Al)2(PO4)2 (space-group type C2/c, Z = 8; Chen et al., 1997[Chen, X.-A., Zhao, L., Li, Y., Guo, F. & Chen, B.-M. (1997). Acta Cryst. C53, 1754-1756.]); (v) (NH4)(Zn,Ga)2(PO4)2 (space-group type P21/a, Z = 4; Logar et al., 2001[Logar, N. Z., Mrak, M., Kaučič, V. & Golobič, A. (2001). J. Solid State Chem. 156, 480-486.]); (vi) KMgFe(PO4)2 (space-group type C2/c, Z = 4; Badri et al., 2009[Badri, A., Hidouri, M., López, M. L., Veiga, M. L., Wattiaux, A. & Amara, M. B. (2009). Solid State Ionics, 180, 1558-1563.]); (vii) NaZnAl(PO4)2 (space-group type P21/c, Z = 4; Yakubovich et al., 2019[Yakubovich, O., Kiriukhina, G., Volkov, A. & Dimitrova, O. (2019). Acta Cryst. C75, 514-522.]). NaCuIn(PO4)2 belongs to the second subgroup of this classification.

In addition, the structures of certain members of this phosphate family are similar to those of the zeolite-ABW structural type (Badri et al., 2014[Badri, A., Hidouri, M., Wattiaux, A., López, M. L., Veiga, M. L. & Amara, M. B. (2014). Mater. Res. Bull. 55, 61-66.]). When the trivalent cation is lanthanum or yttrium, the crystal structures KMIILa(PO4)2 (MII = Mg or Zn) are isotypes of the monazite monoclinic structure of LaPO4 with space-group type P21/n (Pan et al., 2006[Pan, Y., Zhang, Q. & Jiang, Z. (2006). Mater. Sci. Eng. B, 133, 186-190.]; Tie et al., 1995[Tie, S., Su, Q. & Yu, Y. (1995). Phys. Status Solidi A, 147, 267-276.]), while KMgY(PO4)2 turns out to be an isotype of the xenotime structure YPO4 adopting a tetra­gonal symmetry with space-group type I41/amd (Tie et al., 1996[Tie, S., Su, Q., Yu, Y. & Ma, J. (1996). Chin. J. Chem. 14, 25-30.]).

4. Synthesis and crystallization

Stoichiometric amounts of NaNO3, CuO, In2O3 and NH4H2PO4 as precursors in the molar ratio 1:1:0.5:2 were ground in an agate mortar and pre-heated at 473 and 673 K in a platinum crucible to eliminate gaseous products. The resulting powder was subsequently heated to a temperature of 1473 K. The product was then cooled to room temperature at a rate of 5 K h−1. The obtained product contained green single crystals corresponding to the title phosphate.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula NaCuIn(PO4)2
Mr 391.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 8.2563 (3), 10.1382 (4), 8.8060 (3)
β (°) 114.444 (1)
V3) 671.03 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.16
Crystal size (mm) 0.34 × 0.25 × 0.19
 
Data collection
Diffractometer Bruker X8 APEX Diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.528, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 24292, 3106, 2996
Rint 0.026
(sin θ/λ)max−1) 0.820
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.033, 1.11
No. of reflections 3106
No. of parameters 119
Δρmax, Δρmin (e Å−3) 0.66, −0.59
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Labelling of atoms and their coordinates were adapted from isotypic KCuFe(PO4)2 (Badri et al., 2011[Badri, A., Hidouri, M., López, M. L., Pico, C., Wattiaux, A. & Amara, M. B. (2011). J. Solid State Chem. 184, 937-944.]). Since not all atoms in the latter description are part of one unit cell, a translation by (z + 1) relative to the original coordinates brings all corresponding atoms inside one unit cell. Moreover, oxygen atoms O11 and O14 were translated by (x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]) and (x, y, z − 1), respectively, to be linked directly to P1.

The maximum and minimum electron densities in the final difference-Fourier map are at 0.70 Å from O14 and 0.50 Å from Cu1, respectively.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Sodium copper(II) indium bis[phosphate(V)] top
Crystal data top
NaCuIn(PO4)2F(000) = 732
Mr = 391.29Dx = 3.873 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2563 (3) ÅCell parameters from 3106 reflections
b = 10.1382 (4) Åθ = 2.9–35.6°
c = 8.8060 (3) ŵ = 7.16 mm1
β = 114.444 (1)°T = 296 K
V = 671.03 (4) Å3Block, green
Z = 40.34 × 0.25 × 0.19 mm
Data collection top
Bruker X8 APEX Diffractometer3106 independent reflections
Radiation source: fine-focus sealed tube2996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 35.6°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1213
Tmin = 0.528, Tmax = 0.747k = 1616
24292 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0139P)2 + 0.5758P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.013(Δ/σ)max = 0.004
wR(F2) = 0.033Δρmax = 0.66 e Å3
S = 1.11Δρmin = 0.59 e Å3
3106 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
119 parametersExtinction coefficient: 0.0093 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.51418 (10)0.16856 (7)1.09748 (8)0.01965 (13)
Cu10.37225 (2)0.11940 (2)0.45881 (2)0.00706 (3)
In10.00214 (2)0.12812 (2)0.73403 (2)0.00463 (3)
P10.12997 (4)0.17027 (3)0.15664 (4)0.00494 (5)
O110.03216 (13)0.25215 (10)0.13588 (12)0.01037 (15)
O120.30223 (12)0.24790 (9)0.27141 (11)0.00812 (14)
O130.14612 (12)0.04925 (9)0.27222 (11)0.00824 (14)
O140.13759 (14)0.12965 (10)0.00448 (12)0.01159 (16)
P20.28460 (4)0.08358 (3)0.66933 (4)0.00448 (5)
O210.11495 (13)0.13653 (9)0.52826 (12)0.00993 (15)
O220.37706 (12)0.19241 (8)0.79630 (11)0.00787 (14)
O230.24068 (13)0.03111 (9)0.75876 (12)0.00903 (15)
O240.41607 (13)0.03247 (9)0.59836 (12)0.00962 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0288 (3)0.0145 (3)0.0146 (3)0.0042 (2)0.0079 (3)0.0035 (2)
Cu10.00887 (7)0.00557 (6)0.00492 (6)0.00104 (4)0.00104 (5)0.00126 (4)
In10.00517 (4)0.00405 (4)0.00432 (4)0.00022 (2)0.00161 (3)0.00042 (2)
P10.00552 (11)0.00490 (11)0.00367 (11)0.00020 (9)0.00119 (9)0.00053 (8)
O110.0096 (4)0.0125 (4)0.0094 (4)0.0054 (3)0.0044 (3)0.0042 (3)
O120.0085 (4)0.0077 (3)0.0063 (3)0.0034 (3)0.0012 (3)0.0008 (3)
O130.0091 (4)0.0055 (3)0.0071 (3)0.0028 (3)0.0004 (3)0.0020 (3)
O140.0129 (4)0.0165 (4)0.0043 (3)0.0025 (3)0.0025 (3)0.0014 (3)
P20.00536 (11)0.00392 (11)0.00410 (11)0.00089 (8)0.00189 (9)0.00025 (8)
O210.0096 (4)0.0119 (4)0.0054 (3)0.0026 (3)0.0002 (3)0.0013 (3)
O220.0109 (4)0.0058 (3)0.0073 (3)0.0032 (3)0.0041 (3)0.0027 (3)
O230.0088 (4)0.0071 (3)0.0113 (4)0.0018 (3)0.0042 (3)0.0034 (3)
O240.0101 (4)0.0092 (4)0.0125 (4)0.0030 (3)0.0077 (3)0.0056 (3)
Geometric parameters (Å, º) top
Na1—O21i2.3213 (12)In1—O22viii2.1441 (9)
Na1—O23ii2.3496 (12)In1—O13vii2.1632 (9)
Na1—O222.4268 (11)In1—O12ix2.2051 (9)
Na1—O11iii2.4275 (11)P1—O141.5035 (10)
Cu1—O241.9088 (9)P1—O111.5205 (10)
Cu1—O11iv1.9317 (9)P1—O131.5642 (9)
Cu1—O121.9913 (9)P1—O121.5729 (9)
Cu1—O132.0378 (9)P2—O231.5297 (9)
Cu1—O24v2.1939 (9)P2—O221.5310 (9)
In1—O14vi2.1028 (10)P2—O211.5340 (10)
In1—O21vii2.1044 (9)P2—O241.5488 (9)
In1—O232.1303 (9)
O21i—Na1—O23ii108.90 (4)O14vi—In1—O13vii94.18 (4)
O21i—Na1—O2271.58 (4)O21vii—In1—O13vii90.44 (4)
O23ii—Na1—O22123.80 (4)O23—In1—O13vii96.21 (4)
O21i—Na1—O11iii94.99 (4)O22viii—In1—O13vii171.80 (3)
O23ii—Na1—O11iii88.91 (4)O14vi—In1—O12ix85.65 (4)
O22—Na1—O11iii146.95 (4)O21vii—In1—O12ix96.23 (4)
O24—Cu1—O11iv96.82 (4)O23—In1—O12ix164.87 (3)
O24—Cu1—O12166.88 (4)O22viii—In1—O12ix87.16 (3)
O11iv—Cu1—O1296.28 (4)O13vii—In1—O12ix91.55 (3)
O24—Cu1—O1395.96 (4)O14—P1—O11114.50 (6)
O11iv—Cu1—O13144.90 (4)O14—P1—O13111.94 (5)
O12—Cu1—O1372.85 (3)O11—P1—O13109.89 (5)
O24—Cu1—O24v82.35 (4)O14—P1—O12111.32 (5)
O11iv—Cu1—O24v110.97 (4)O11—P1—O12108.72 (5)
O12—Cu1—O24v93.34 (4)O13—P1—O1299.40 (5)
O13—Cu1—O24v103.05 (4)O23—P2—O22108.94 (5)
O14vi—In1—O21vii174.97 (4)O23—P2—O21110.57 (5)
O14vi—In1—O2380.87 (4)O22—P2—O21110.58 (5)
O21vii—In1—O2396.68 (4)O23—P2—O24107.97 (5)
O14vi—In1—O22viii93.79 (4)O22—P2—O24108.36 (5)
O21vii—In1—O22viii81.66 (3)O21—P2—O24110.35 (5)
O23—In1—O22viii86.94 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z+2; (iii) x+1/2, y1/2, z+3/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y, z+1; (vi) x, y, z+1; (vii) x, y, z+1; (viii) x+1/2, y+1/2, z+3/2; (ix) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Funding information

Mohammed V University, Rabat, Morocco, is thanked for financial support.

References

First citationAlhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 154–156.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2010). Acta Cryst. E66, i86–i87.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationBadri, A., Hidouri, M., López, M. L., Pico, C., Wattiaux, A. & Amara, M. B. (2011). J. Solid State Chem. 184, 937–944.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBadri, A., Hidouri, M., López, M. L., Veiga, M. L., Wattiaux, A. & Amara, M. B. (2009). Solid State Ionics, 180, 1558–1563.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBadri, A., Hidouri, M., Wattiaux, A., López, M. L., Veiga, M. L. & Amara, M. B. (2014). Mater. Res. Bull. 55, 61–66.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBoudin, S. & Lii, K.-H. (1998). Inorg. Chem. 37, 799–803.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationChen, X.-A., Zhao, L., Li, Y., Guo, F. & Chen, B.-M. (1997). Acta Cryst. C53, 1754–1756.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHan, M. H., Gonzalo, E., Singh, G. & Rojo, T. (2015). Energy Environ. Sci. 8, 81–102.  Web of Science CrossRef Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 55–57.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLogar, N. Z., Mrak, M., Kaučič, V. & Golobič, A. (2001). J. Solid State Chem. 156, 480–486.  Web of Science CrossRef ICSD CAS Google Scholar
First citationManos, M. J., Iyer, R. G., Quarez, E., Liao, J. H. & Kanatzidis, M. G. (2005). Angew. Chem. Int. Ed. 44, 3552–3555.  Web of Science CrossRef ICSD CAS Google Scholar
First citationManos, M. J., Malliakas, C. D. & Kanatzidis, M. G. (2007). Chem. Eur. J. 13, 51–58.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationPan, Y., Zhang, Q. & Jiang, Z. (2006). Mater. Sci. Eng. B, 133, 186–190.  Web of Science CrossRef CAS Google Scholar
First citationPlabst, M., McCusker, L. B. & Bein, T. (2009). J. Am. Chem. Soc. 131, 18112–18118.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStadie, N. P., Wang, S., Kravchyk, K. V. & Kovalenko, M. V. (2017). ACS Nano, 11, 1911–1919.  Web of Science CrossRef CAS PubMed Google Scholar
First citationStrutynska, N. Yu., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. & Slobodyanik, N. S. (2014). Acta Cryst. C70, 160–164.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTie, S., Su, Q. & Yu, Y. (1995). Phys. Status Solidi A, 147, 267–276.  CrossRef CAS Web of Science Google Scholar
First citationTie, S., Su, Q., Yu, Y. & Ma, J. (1996). Chin. J. Chem. 14, 25–30.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakubovich, O., Kiriukhina, G., Volkov, A. & Dimitrova, O. (2019). Acta Cryst. C75, 514–522.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationYakubovich, O. V., Evdokimova, O. A., Mel'nikov, O. K. & Simonov, M. A. (1986). Kristallografiya, 31, 906–912.  CAS Google Scholar
First citationYang, Z., Bai, Q., Li, T., Xu, S., Dong, H., Wang, Z. & Li, P. (2016). Optik, 127, 9338–9343.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds