research communications
Synthesis and 4)2
of NaCuIn(POaLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, B.P. 1014, Rabat, Morocco
*Correspondence e-mail: el_benhsina@yahoo.fr
Single crystals of sodium copper(II) indium bis[phosphate(V)], NaCuIn(PO4)2, were grown from the melt under atmospheric conditions. The title phosphate crystallizes in the P21/n and is isotypic with KCuFe(PO4)2. In the crystal, two [CuO5] trigonal bipyramids share an edge to form a dimer [Cu2O8] that is connected to two PO4 tetrahedra. The obtained [Cu2P2O12] units are interconnected through vertices to form sheets that are sandwiched between undulating layers resulting from the junction of PO4 tetrahedra and [InO6] octahedra. The two types of layers are alternately stacked along [101] and are joined into a three-dimensional framework through vertex- and edge-sharing, leaving channels parallel to the stacking direction. The channels host the sodium cations that are surrounded by four oxygen atoms in form of a distorted disphenoid.
Keywords: crystal structure; phosphate; AMM'(PO4)2 family; trigonal–bipyramidal coordination; isotypism.
CCDC reference: 1983244
1. Chemical context
Transition-metal phosphates have been the subject of intensive research as a result of their interesting physical properties and potential applications in wide-ranging fields such as catalysis, electrochemistry, luminescence (Tie et al., 1995; Pan et al., 2006; Yang et al., 2016) and ion exchange (Cheetham et al., 1999; Han et al., 2015; Manos et al., 2005, 2007; Plabst et al., 2009; Stadie et al., 2017). In these materials, the anionic framework is built up from PO4 tetrahedra linked to different kinds of transition metal (TM) coordination polyhedra of the form [TMOn] (n = 4, 5 and 6), leading to a large variety of families. This structural diversity is mainly associated with the ability of TM cations to adopt different oxidation states in various coordination polyhedra. Based on previous hydrothermal investigations aimed at orthophosphates of general formula (M,M′′)3(PO4)2·nH2O (M and M′′ = bivalent cations), we have reported on synthesis and characterization of the phosphates Ni2Sr(PO4)2·2H2O (Assani et al., 2010), Mg1.65Cu1.35(PO4)2·H2O (Khmiyas et al., 2015) and Mn2Zn(PO4)2·H2O (Alhakmi et al., 2015). In this context, the aim of the present study was to develop new phases belonging to the series AM′′M′′′(PO4)2 where A, M′′ and M′′′ are mono-, bi- and trivalent cations, respectively. As a result, we report here on synthesis and of the new compound NaCuIn(PO4)2.
2. Structural commentary
The principal building units of the 4)2 are two PO4 tetrahedra linked to a [CuO5] triangular bipyramid [Cu—O bond-length range of 1.9088 (9) to 2.1939 (9) Å] and to an [InO6] octahedron [In—O bond lengths range from 2.1028 (10) to 2.2051 (9) Å], and is completed by a distorted [NaO4] polyhedron (Fig. 1). The P—O bond lengths in the two phosphate tetrahedra are similar and comparable with those of similar phosphates. However, the P1—O distances, varying between 1.5035 (10) and 1.5729 (9) Å, indicate a somewhat higher distortion of this tetrahedron than the P2—O distances [between 1.5297 (9) and 1.5488 (9) Å] of the other tetrahedron.
of NaCuIn(POIn this phosphate, two [CuO5] triangular bipyramids share one edge to form a [Cu2O8] dimer, the ends of which are linked to two P1O4 tetrahedra by edge-sharing. The obtained [Cu2P2O12] groups are linked together via the vertices to form sheets extending parallel to (10), as shown in Fig. 2. On the other hand, the [InO6] octahedra and the P2O4 tetrahedra are interconnected through common vertices to build up an undulating layer extending in the same direction (Fig. 3). The copper phosphate layers are sandwiched between the undulating indium phosphate layers. By sharing corners and edges, an alternating stacking of the layers along [101] leads to a three-dimensional framework structure with channels in which the Na+ cations are located (Fig. 4). The four nearest oxygen atoms around the alkali metal cation form a distorted disphenoid with Na—O distances between 2.3213 (12) and 2.4275 (11) Å (Fig. 1).
NaCuIn(PO4)2 is isotypic with KCuFe(PO4)2 (Badri et al., 2011), whereby potassium is substituted by sodium and iron by indium. However, we note a significant difference in the of sodium and potassium in the two structures. Whereas sodium has a fourfold coordination in NaCuIn(PO4)2, potassium is surrounded by nine oxygen atoms in KCuFe(PO4)2 because of its greater ionic radius.
Bond-valence-sum calculations (Brown & Altermatt, 1985) are in good agreement with the expected values (in valence units) for sodium(I), copper(II), indium(III) and the phosphorus(V) cations, viz. NaI = 0.845 (2), CuII = 2.102 (3), InIII = 3.152 (4), P1V = 4.930 (8), and P2V = 4.992 (8). For the oxygen anions, the calculated values range between 1.940 (5) and 2.076 (3).
3. Database survey
Phosphate-based materials with general formula AMIIM′III(PO4)2 commonly show crystal structures where channels or, more rarely, layers are formed by the [MIIM′II(PO4)2]− framework to delimit suitable environments to accommodate the A+ cations. A recent survey given by Yakubovich et al. (2019) revealed that all compounds of the morphotropic series AMIIM′III(PO4)2, where A = Na, K, Rb or NH4, M′′ = Cu, Ni, Co, Fe, Zn or Mg and M′′′ = Fe, Al or Ga, crystallize in the monoclinic and can be classified into seven subgroups according to their structure types, viz. (i) KNiFe(PO4)2 (space-group type P21/c, Z = 4; Strutynska et al., 2014); (ii) KFeIIFeIII(PO4)2 (space-group type P21/c, Z = 4; Yakubovich et al., 1986); (iii) (NH4)FeIIFeIII(PO4)2 (space-group type C2/c, Z =16; Boudin & Lii, 1998); (iv) K(Co,Al)2(PO4)2 (space-group type C2/c, Z = 8; Chen et al., 1997); (v) (NH4)(Zn,Ga)2(PO4)2 (space-group type P21/a, Z = 4; Logar et al., 2001); (vi) KMgFe(PO4)2 (space-group type C2/c, Z = 4; Badri et al., 2009); (vii) NaZnAl(PO4)2 (space-group type P21/c, Z = 4; Yakubovich et al., 2019). NaCuIn(PO4)2 belongs to the second of this classification.
In addition, the structures of certain members of this phosphate family are similar to those of the zeolite-ABW structural type (Badri et al., 2014). When the trivalent cation is lanthanum or yttrium, the crystal structures KMIILa(PO4)2 (MII = Mg or Zn) are isotypes of the monazite monoclinic structure of LaPO4 with space-group type P21/n (Pan et al., 2006; Tie et al., 1995), while KMgY(PO4)2 turns out to be an isotype of the xenotime structure YPO4 adopting a tetragonal symmetry with space-group type I41/amd (Tie et al., 1996).
4. Synthesis and crystallization
Stoichiometric amounts of NaNO3, CuO, In2O3 and NH4H2PO4 as precursors in the molar ratio 1:1:0.5:2 were ground in an agate mortar and pre-heated at 473 and 673 K in a platinum crucible to eliminate gaseous products. The resulting powder was subsequently heated to a temperature of 1473 K. The product was then cooled to room temperature at a rate of 5 K h−1. The obtained product contained green single crystals corresponding to the title phosphate.
5. Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Labelling of atoms and their coordinates were adapted from isotypic KCuFe(PO4)2 (Badri et al., 2011). Since not all atoms in the latter description are part of one a translation by (z + 1) relative to the original coordinates brings all corresponding atoms inside one Moreover, oxygen atoms O11 and O14 were translated by (x − , −y + , z − ) and (x, y, z − 1), respectively, to be linked directly to P1.
The maximum and minimum electron densities in the final difference-Fourier map are at 0.70 Å from O14 and 0.50 Å from Cu1, respectively.
Supporting information
CCDC reference: 1983244
https://doi.org/10.1107/S2056989020001929/wm5539sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020001929/wm5539Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).NaCuIn(PO4)2 | F(000) = 732 |
Mr = 391.29 | Dx = 3.873 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2563 (3) Å | Cell parameters from 3106 reflections |
b = 10.1382 (4) Å | θ = 2.9–35.6° |
c = 8.8060 (3) Å | µ = 7.16 mm−1 |
β = 114.444 (1)° | T = 296 K |
V = 671.03 (4) Å3 | Block, green |
Z = 4 | 0.34 × 0.25 × 0.19 mm |
Bruker X8 APEX Diffractometer | 3106 independent reflections |
Radiation source: fine-focus sealed tube | 2996 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
φ and ω scans | θmax = 35.6°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −12→13 |
Tmin = 0.528, Tmax = 0.747 | k = −16→16 |
24292 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0139P)2 + 0.5758P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.013 | (Δ/σ)max = 0.004 |
wR(F2) = 0.033 | Δρmax = 0.66 e Å−3 |
S = 1.11 | Δρmin = −0.59 e Å−3 |
3106 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
119 parameters | Extinction coefficient: 0.0093 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.51418 (10) | −0.16856 (7) | 1.09748 (8) | 0.01965 (13) | |
Cu1 | 0.37225 (2) | 0.11940 (2) | 0.45881 (2) | 0.00706 (3) | |
In1 | 0.00214 (2) | 0.12812 (2) | 0.73403 (2) | 0.00463 (3) | |
P1 | 0.12997 (4) | 0.17027 (3) | 0.15664 (4) | 0.00494 (5) | |
O11 | −0.03216 (13) | 0.25215 (10) | 0.13588 (12) | 0.01037 (15) | |
O12 | 0.30223 (12) | 0.24790 (9) | 0.27141 (11) | 0.00812 (14) | |
O13 | 0.14612 (12) | 0.04925 (9) | 0.27222 (11) | 0.00824 (14) | |
O14 | 0.13759 (14) | 0.12965 (10) | −0.00448 (12) | 0.01159 (16) | |
P2 | 0.28460 (4) | −0.08358 (3) | 0.66933 (4) | 0.00448 (5) | |
O21 | 0.11495 (13) | −0.13653 (9) | 0.52826 (12) | 0.00993 (15) | |
O22 | 0.37706 (12) | −0.19241 (8) | 0.79630 (11) | 0.00787 (14) | |
O23 | 0.24068 (13) | 0.03111 (9) | 0.75876 (12) | 0.00903 (15) | |
O24 | 0.41607 (13) | −0.03247 (9) | 0.59836 (12) | 0.00962 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0288 (3) | 0.0145 (3) | 0.0146 (3) | −0.0042 (2) | 0.0079 (3) | −0.0035 (2) |
Cu1 | 0.00887 (7) | 0.00557 (6) | 0.00492 (6) | −0.00104 (4) | 0.00104 (5) | 0.00126 (4) |
In1 | 0.00517 (4) | 0.00405 (4) | 0.00432 (4) | −0.00022 (2) | 0.00161 (3) | −0.00042 (2) |
P1 | 0.00552 (11) | 0.00490 (11) | 0.00367 (11) | −0.00020 (9) | 0.00119 (9) | 0.00053 (8) |
O11 | 0.0096 (4) | 0.0125 (4) | 0.0094 (4) | 0.0054 (3) | 0.0044 (3) | 0.0042 (3) |
O12 | 0.0085 (4) | 0.0077 (3) | 0.0063 (3) | −0.0034 (3) | 0.0012 (3) | 0.0008 (3) |
O13 | 0.0091 (4) | 0.0055 (3) | 0.0071 (3) | −0.0028 (3) | 0.0004 (3) | 0.0020 (3) |
O14 | 0.0129 (4) | 0.0165 (4) | 0.0043 (3) | 0.0025 (3) | 0.0025 (3) | −0.0014 (3) |
P2 | 0.00536 (11) | 0.00392 (11) | 0.00410 (11) | 0.00089 (8) | 0.00189 (9) | 0.00025 (8) |
O21 | 0.0096 (4) | 0.0119 (4) | 0.0054 (3) | −0.0026 (3) | 0.0002 (3) | −0.0013 (3) |
O22 | 0.0109 (4) | 0.0058 (3) | 0.0073 (3) | 0.0032 (3) | 0.0041 (3) | 0.0027 (3) |
O23 | 0.0088 (4) | 0.0071 (3) | 0.0113 (4) | 0.0018 (3) | 0.0042 (3) | −0.0034 (3) |
O24 | 0.0101 (4) | 0.0092 (4) | 0.0125 (4) | 0.0030 (3) | 0.0077 (3) | 0.0056 (3) |
Na1—O21i | 2.3213 (12) | In1—O22viii | 2.1441 (9) |
Na1—O23ii | 2.3496 (12) | In1—O13vii | 2.1632 (9) |
Na1—O22 | 2.4268 (11) | In1—O12ix | 2.2051 (9) |
Na1—O11iii | 2.4275 (11) | P1—O14 | 1.5035 (10) |
Cu1—O24 | 1.9088 (9) | P1—O11 | 1.5205 (10) |
Cu1—O11iv | 1.9317 (9) | P1—O13 | 1.5642 (9) |
Cu1—O12 | 1.9913 (9) | P1—O12 | 1.5729 (9) |
Cu1—O13 | 2.0378 (9) | P2—O23 | 1.5297 (9) |
Cu1—O24v | 2.1939 (9) | P2—O22 | 1.5310 (9) |
In1—O14vi | 2.1028 (10) | P2—O21 | 1.5340 (10) |
In1—O21vii | 2.1044 (9) | P2—O24 | 1.5488 (9) |
In1—O23 | 2.1303 (9) | ||
O21i—Na1—O23ii | 108.90 (4) | O14vi—In1—O13vii | 94.18 (4) |
O21i—Na1—O22 | 71.58 (4) | O21vii—In1—O13vii | 90.44 (4) |
O23ii—Na1—O22 | 123.80 (4) | O23—In1—O13vii | 96.21 (4) |
O21i—Na1—O11iii | 94.99 (4) | O22viii—In1—O13vii | 171.80 (3) |
O23ii—Na1—O11iii | 88.91 (4) | O14vi—In1—O12ix | 85.65 (4) |
O22—Na1—O11iii | 146.95 (4) | O21vii—In1—O12ix | 96.23 (4) |
O24—Cu1—O11iv | 96.82 (4) | O23—In1—O12ix | 164.87 (3) |
O24—Cu1—O12 | 166.88 (4) | O22viii—In1—O12ix | 87.16 (3) |
O11iv—Cu1—O12 | 96.28 (4) | O13vii—In1—O12ix | 91.55 (3) |
O24—Cu1—O13 | 95.96 (4) | O14—P1—O11 | 114.50 (6) |
O11iv—Cu1—O13 | 144.90 (4) | O14—P1—O13 | 111.94 (5) |
O12—Cu1—O13 | 72.85 (3) | O11—P1—O13 | 109.89 (5) |
O24—Cu1—O24v | 82.35 (4) | O14—P1—O12 | 111.32 (5) |
O11iv—Cu1—O24v | 110.97 (4) | O11—P1—O12 | 108.72 (5) |
O12—Cu1—O24v | 93.34 (4) | O13—P1—O12 | 99.40 (5) |
O13—Cu1—O24v | 103.05 (4) | O23—P2—O22 | 108.94 (5) |
O14vi—In1—O21vii | 174.97 (4) | O23—P2—O21 | 110.57 (5) |
O14vi—In1—O23 | 80.87 (4) | O22—P2—O21 | 110.58 (5) |
O21vii—In1—O23 | 96.68 (4) | O23—P2—O24 | 107.97 (5) |
O14vi—In1—O22viii | 93.79 (4) | O22—P2—O24 | 108.36 (5) |
O21vii—In1—O22viii | 81.66 (3) | O21—P2—O24 | 110.35 (5) |
O23—In1—O22viii | 86.94 (4) |
Symmetry codes: (i) x+1/2, −y−1/2, z+1/2; (ii) −x+1, −y, −z+2; (iii) −x+1/2, y−1/2, −z+3/2; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+1, −y, −z+1; (vi) x, y, z+1; (vii) −x, −y, −z+1; (viii) −x+1/2, y+1/2, −z+3/2; (ix) x−1/2, −y+1/2, z+1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
Funding information
Mohammed V University, Rabat, Morocco, is thanked for financial support.
References
Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 154–156. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2010). Acta Cryst. E66, i86–i87. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Badri, A., Hidouri, M., López, M. L., Pico, C., Wattiaux, A. & Amara, M. B. (2011). J. Solid State Chem. 184, 937–944. Web of Science CrossRef ICSD CAS Google Scholar
Badri, A., Hidouri, M., López, M. L., Veiga, M. L., Wattiaux, A. & Amara, M. B. (2009). Solid State Ionics, 180, 1558–1563. Web of Science CrossRef ICSD CAS Google Scholar
Badri, A., Hidouri, M., Wattiaux, A., López, M. L., Veiga, M. L. & Amara, M. B. (2014). Mater. Res. Bull. 55, 61–66. Web of Science CrossRef ICSD CAS Google Scholar
Boudin, S. & Lii, K.-H. (1998). Inorg. Chem. 37, 799–803. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292. Web of Science CrossRef CAS Google Scholar
Chen, X.-A., Zhao, L., Li, Y., Guo, F. & Chen, B.-M. (1997). Acta Cryst. C53, 1754–1756. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Han, M. H., Gonzalo, E., Singh, G. & Rojo, T. (2015). Energy Environ. Sci. 8, 81–102. Web of Science CrossRef Google Scholar
Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 55–57. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Logar, N. Z., Mrak, M., Kaučič, V. & Golobič, A. (2001). J. Solid State Chem. 156, 480–486. Web of Science CrossRef ICSD CAS Google Scholar
Manos, M. J., Iyer, R. G., Quarez, E., Liao, J. H. & Kanatzidis, M. G. (2005). Angew. Chem. Int. Ed. 44, 3552–3555. Web of Science CrossRef ICSD CAS Google Scholar
Manos, M. J., Malliakas, C. D. & Kanatzidis, M. G. (2007). Chem. Eur. J. 13, 51–58. Web of Science CrossRef ICSD PubMed CAS Google Scholar
Pan, Y., Zhang, Q. & Jiang, Z. (2006). Mater. Sci. Eng. B, 133, 186–190. Web of Science CrossRef CAS Google Scholar
Plabst, M., McCusker, L. B. & Bein, T. (2009). J. Am. Chem. Soc. 131, 18112–18118. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stadie, N. P., Wang, S., Kravchyk, K. V. & Kovalenko, M. V. (2017). ACS Nano, 11, 1911–1919. Web of Science CrossRef CAS PubMed Google Scholar
Strutynska, N. Yu., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. & Slobodyanik, N. S. (2014). Acta Cryst. C70, 160–164. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tie, S., Su, Q. & Yu, Y. (1995). Phys. Status Solidi A, 147, 267–276. CrossRef CAS Web of Science Google Scholar
Tie, S., Su, Q., Yu, Y. & Ma, J. (1996). Chin. J. Chem. 14, 25–30. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yakubovich, O., Kiriukhina, G., Volkov, A. & Dimitrova, O. (2019). Acta Cryst. C75, 514–522. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Yakubovich, O. V., Evdokimova, O. A., Mel'nikov, O. K. & Simonov, M. A. (1986). Kristallografiya, 31, 906–912. CAS Google Scholar
Yang, Z., Bai, Q., Li, T., Xu, S., Dong, H., Wang, Z. & Li, P. (2016). Optik, 127, 9338–9343. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.