research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Conversion of di­aryl­chalcones into 4,5-di­hydro­pyrazole-1-carbo­thio­amides: mol­ecular and supra­molecular structures of two precursors and three products

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574 199, India, cDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya-824236, India, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Zeller, Purdue University, USA (Received 3 February 2020; accepted 7 February 2020; online 14 February 2020)

Chalcones of type 4-XC6H4C(O)CH=CHC6H4(OCH2CCH)-4, where X = Cl, Br or MeO, have been converted to the corresponding 4,5-di­hydro­pyrazole-1-carbo­thio­amides using a cyclo­condensation reaction with thio­semicarbazide. The chalcones 1-(4-chloro­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13ClO2, (I), and 1-(4-bromo­phen­yl)-3-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C18H13BrO2, (II), are isomorphous, and their mol­ecules are linked into sheets by two independent C—H⋯π(arene) inter­actions, both involving the same aryl ring with one C—H donor approaching each face. In each of the products (RS)-3-(4-chloro­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16ClN3OS, (IV), (RS)-3-(4-bromo­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C19H16BrN3OS, (V), and (RS)-3-(4-meth­oxy­phen­yl)-5-[4-(prop-2-yn­yloxy)phen­yl]-4,5-di­hydro­pyrazole-1-carbo­thio­amide, C20H19N3O2S, (VI), the reduced pyrazole ring adopts an envelope conformation with the C atom bearing the 4-prop-2-yn­yloxy)phenyl substituent, which occupies the axial site, displaced from the plane of the four ring atoms. Compounds (IV) and (V) are isomorphous and their mol­ecules are linked into chains of edge-fused rings by a combination of N—H⋯S and C—H⋯S hydrogen bonds. The mol­ecules of (VI) are linked into sheets by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds. Comparisons are made with the structures of some related compounds.

1. Chemical context

Pyrazole derivatives exhibit a wide range of pharmacological activities, including analgesic (Badawey & El-Ashmawey, 1998[Badawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349-361.]), anti­bacterial (Zhang et al., 2017[Zhang, J., Tan, D.-J., Wang, T., Jing, S.-S., Kang, Y. & Zhang, Z.-T. (2017). J. Mol. Struct. 1149, 235-242.]), anti­cancer (Koca et al., 2013[Koca, I., Özgür, A., Coşkun, K. A. & Tutar, Y. (2013). Bioorg. Med. Chem. 21, 3859-3865.]) and anti-inflammatory (Vijesh et al., 2013[Vijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410-415.]) activity, and recent work on both the synthesis of pyrazole derivatives and their pharmacological activities has been reviewed recently (Karrouchi et al., 2018[Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134-220.]). With this background in mind, we have now employed three chalcones, compounds (I)–(III) as precursors for the synthesis of the corresponding 4,5-di­hydro­pyrazole-1-carbo­thio­amides, compounds (IV)–(VI), and we report here the mol­ecular and supra­molecular structures of two of the chalcone precursors, compounds (I)[link] and (II)[link], and of the three reduced pyrazole products (IV)–(VI): unfortunately, we have been unable to obtain satisfactory crystals of the chalcone (III). The chalcones were prepared (Fig. 6[link]) by base-promoted condensation (Yuan et al., 2009[Yuan, M., Yin, X., Zheng, H., Ouyang, C., Zuo, Z., Liu, H. & Li, Y. (2009). Chem. Asian J. 4, 707-713.]; Yu et al., 2016[Yu, B., Qi, P.-P., Shi, X.-J., Huang, R., Guo, H., Zheng, Y.-C., Yu, D.-Q. & Liu, H.-M. (2016). Eur. J. Med. Chem. 117, 241-255.]; Yadav et al., 2017[Yadav, P., Lal, K., Kumar, A., Guru, S. K., Jaglan, S. & Bhushan, S. (2017). Eur. J. Med. Chem. 126, 944-953.]) of the appropriately substituted aceto­phenones with 4-(prop-2-yn­yloxy)benz­aldehye (Hans et al., 2010[Hans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942-944.]). Subsequent base-promoted cyclo­addition of the chalcones (I)–(III) with thio­semicarbazide yielded the products (IV)–(VI).

[Scheme 1]
[Figure 6]
Figure 6
The synthetic route to compounds (I)–(VI).

2. Structural commentary

Compounds (I)[link] and (II)[link] are isomorphous in space group P21/c (Fig. 1[link] & 2). In each of these two compounds, the non-H atoms, apart from those of the ring (C11–C16) are almost coplanar: the r.m.s. deviations from the mean planes through the atoms C1 to C39 (Figs. 1[link] and 2[link]) are 0.0455 Å in (I)[link] and 0.0617 Å in (II)[link], with the maximum deviation from this plane exhibited in each case by atom C1, 0.087 (2) Å in (I)[link] and 0.092 (3) Å in (II)[link]. On the other hand, the ring (C11–C16) is twisted out of this plane, making a dihedral angle with it of 44.6 (6)° in (I)[link] and 44.47 (8)° in (II)[link].

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Compounds (IV)[link] and (V)[link] are likewise isomorphous, this time in space group P21/n (Figs. 3[link] and 4[link]). In each of compounds (IV)–(VI), there is a stereogenic centre at atom C5 (Figs. 3[link]–5[link][link]) and, in each case, the reference mol­ecule was selected to be the one having the R configuration at this centre: the centrosymmetric space groups confirm that compounds (IV)–(VI) have all crystallized as racemic mixtures. The reduced pyrazole rings all adopt envelope conformations, folded across the line N1⋯C4: the ring-puckering parameters, calculated for the atom sequence (N1,N2,C3,C4,C5) are Q2 = 0.204 (3), 0.285 (4) and 0.217 (3) Å, and φ2 = 15.9 (10), 316.5 (12) and 319.4 (7)°, for (IV)–(VI), respectively. The displacements of the atom C5 from the plane of the other four atoms in the reduced pyrazole ring are 0.330 (5), 0.332 (6) and 0.351 (4) Å in compounds (IV)–(VI), respectively, and, in each case, the aryl substituent at atom C5 occupies the axial site. In compound (VI)[link], the meth­oxy C atom is displaced from the plane of the adjacent aryl ring by only 0.215 (6) Å: associated with this near planarity, the two exocyclic O—C—C angles at atom C34 differ by almost 10°, as is frequently observed in near-planar alk­oxy­arene systems (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]).

[Figure 3]
Figure 3
The mol­ecular structure of compound (IV)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of compound (V)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The mol­ecular structure of compound (VI)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

Despite the presence of a carbonyl group in compounds (I)[link] and (II)[link], their structures do not contain any C—H⋯O hydrogen bonds (Table 1[link]): there are no inter­molecular C⋯H contact distances less than 2.8 Å, well beyond the sum of the van der Waals radii, 2.68 Å (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). The structures do, however, contain two C—H⋯π(arene) hydrogen bonds, both involving the same ring (C31–C36) as the acceptor, with one C—H donor on each face of the ring and with H13iCg1⋯H35ii angles of 158° in (I)[link] and 157° in (II)[link], where Cg1 represents the centroid of the (C31–C36) ring [symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, [{1\over 2}] − y, [{1\over 2}] + z]. The combination of these two C—H⋯π hydrogen bonds links the mol­ecules into a sheet lying parallel to (100) and occupying the whole domain 0 < x < 1.0 (Fig. 7[link]).

Table 1
Hydrogen bonds and short intra- and inter mol­ecular contacts (Å, °) for compounds (I)[link], (II)[link] and (IV)–(VI)

Cg1 and Cg2 represent the centroids of the rings (C31–C36) and (C51–C56), respectively

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) C13—H13⋯Cg1i 0.93 2.90 3.554 (3) 128
  C35—H35⋯Cg1ii 0.93 2.83 3.508 (3) 131
           
(II) C13—H13⋯Cg1i 0.93 2.95 3.602 (4) 128
  C35—H35⋯Cg1ii 0.93 2.80 3.484 (3) 131
           
(IV) N11—H11A⋯N2 0.80 (4) 2.23 (4) 2.614 (5) 110 (4)
  N11—H11B⋯S11iii 0.88 (4) 2.63 (4) 3.483 (4) 164 (4)
  C52—H52⋯S11iv 0.93 2.85 3.641 (4) 144
           
(V) N11—H11A⋯N2 0.82 (5) 2.24 (6) 2.611 (5) 108 (5)
  N11—H11A⋯Br34v 0.82 (5) 2.89 (6) 3.632 (5) 152 (5)
  N11—H11B⋯S11iii 0.83 (6) 2.70 (6) 3.500 (5) 162 (6)
  C52—H52⋯S11iv 0.93 2.87 3.650 (4) 143
           
(VI) N11—H11A⋯N2 0.88 (2) 2.32 (2) 2.637 (3) 101.2 (18)
  N11—H11A⋯S11vi 0.88 (2) 2.68 (2) 3.474 (2) 151 (2)
  N11—H11B⋯N2vii 0.89 (2) 2.17 (2) 3.049 (3) 175 (2)
  C37—H37B⋯O34viii 0.96 2.55 3.302 (4) 135
  C56—H56⋯Cg2ix 0.93 2.93 3.717 (3) 143
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, [{1\over 2}] − y, [{1\over 2}] + z; (iii) 1 − x, 2 − y, 1 − z; (iv) x, −1 + y, z; (v) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (vi) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (vii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (viii) 1 − x, −1 − y, 1 − z; (ix) −x, [{1\over 2}] + y, [{1\over 2}] − z.
[Figure 7]
Figure 7
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded sheet running parallel to (100). Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

In each of the reduced pyrazole products (IV)–(VI) there is an intra­molecular N—H⋯N hydrogen bond (Table 1[link]). In the isomorphous pair (IV)[link] and (V)[link], the mol­ecules are linked by a combination of N—H⋯S and C—H⋯S hydrogen bonds (Allen et al., 1997[Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 680-695.]) to form a ribbon in the form of a chain of centrosymmetric, edge-fused rings running parallel to the [010] direction, in which R22(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings centred at ([{1\over 2}], n, [{1\over 2}]) alternate with R42(18) rings centred at ([{1\over 2}], n + [{1\over 2}], [{1\over 2}]), where n represents an integer in each case (Fig. 8[link]). There is also a short N—H⋯Br contact in the structure of compound (V)[link], but it has been shown from database analyses (Brammer et al., 2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]; Thallypally & Nangia, 2001[Thallapally, P. K. & Nangia, A. (2001). CrystEngComm, 3, 114-119.]) that halogen atoms bonded to C atoms are extremely poor acceptors of hydrogen bonds, so that this contact should not be regarded as structurally significant.

[Figure 8]
Figure 8
Part of the crystal structure of compound (IV)[link], showing the formation of a hydrogen-bonded chain of rings lying parallel to [010]. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

The mol­ecules of compound (VI)[link] are linked by a combination of N—H⋯S, N—H⋯N and C—H⋯π(arene) hydrogen bonds to form a complex sheet lying parallel to (001) in the domain 0 < z < [{1\over 2}] (Fig. 9[link]): a second sheet, related to the first by inversion lies in the domain ([{1\over 2}] < z < 1.0). The only direction-specific inter­molecular contact between adjacent sheets is of the C—H⋯O type; however, this involves a C—H bond in a methyl group, which is probably undergoing fast rotation about the adjacent C—O bond (Riddell & Rogerson, 1996[Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493-504.], 1997[Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249-256.]) and, in addition, it has a very small D—H⋯A angle, indicating a very small inter­action energy (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). On both these grounds, this contact can be regarded as having negligible structural significance, so that the supra­molecular assembly in (VI)[link] is two-dimensional.

[Figure 9]
Figure 9
Part of the crystal structure of compound (VI)[link], showing the formation of a hydrogen-bonded sheet running parallel to (001). Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

4. Database survey

It is of inter­est to briefly compare the structures of the reduced pyrazole derivatives (IV)–(VI) reported here with those of some related compounds. Although there are no records of any 4,5-di­hydro­pyrazole-1-carbo­thio­amides recorded in the Cambridge Structural Database (CSD version 5.40, update of December 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are several examples of 4,5-di­hydro­pyrazole-1-carboxamides which contain a CONH2 substituent, as opposed to the CSNH2 substituent in compounds (IV)–(VI). Both 3-ethyl-5-hy­droxy-5- (tri­fluoro­meth­yl)-4,5-di­hydro­pyrazole-1-carboxamide (VII) (CSD refcode COJQUO; Sauzem et al., 2008[Sauzem, P. D., Machado, P., Rubin, M. A., da, S., Sant'Anna, G., Faber, H. B., de Souza, A. H., Mello, C. F., Beck, P., Burrow, R. A., Bonacorso, H. G., Zanatta, N. & Martins, M. A. P. (2008). Eur. J. Med. Chem. 43, 1237-1247.]) and 5-hy­droxy-4-methyl-5-(tri­fluoro­meth­yl)-4,5-di­hydro­pyrazole-1-carboxamide (VIII) (COJRAV; Sauzem et al., 2008[Sauzem, P. D., Machado, P., Rubin, M. A., da, S., Sant'Anna, G., Faber, H. B., de Souza, A. H., Mello, C. F., Beck, P., Burrow, R. A., Bonacorso, H. G., Zanatta, N. & Martins, M. A. P. (2008). Eur. J. Med. Chem. 43, 1237-1247.]) contain intra­molecular N—H⋯N hydrogen bonds analogous to those observed in compounds (IV)–(VI). In (VII), inversion-related pairs of mol­ecules are linked by paired N—H⋯O hydrogen bonds to form cyclic dimers characterized by an R22(8) motif, while in (VIII) a combination of O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds links the mol­ecules into complex sheets. In the enanti­opure disubstituted carboxamide (4S)-N-[4-(di­fluoro­meth­oxy)phen­yl]-4-(4-fluoro­phen­yl)-N-[(1S,4R)-4,7,7-trimethyl-3-oxo-2-oxabi­cyclo­(2.2.1)hept-1-ylcarbon­yl]-3-[4-(2,2,2-tri­fluoro­eth­oxy)phen­yl]-4,5-di­hydro­pyrazole-1-carboxamide (IX) (SOTBAE; Bosum-Dybus & Neh, 1991[Bosum-Dybus, A. & Neh, H. (1991). Liebigs Ann. Chem. pp. 823-825.]), the only inter­molecular hydrogen bonds are of the C—H⋯O type, and these link the mol­ecules into chains. We also note the structures of the simpler 4,5-di­hydro­pyrazoles 3-(2-naphth­yl)-5-hy­droxy-5-(tri­fluoro­meth­yl)-4,5-di­hydro­pyrazole (X) (MAFVUL; Yang & Raptis, 2003[Yang, G. & Raptis, R. G. (2003). J. Heterocycl. Chem. 40, 659-664.]) and 3-(2,2-di­cyano­ethen­yl)-1-phenyl-4,5-di­hydro-1H-pyrazole (XI) (XEHMOM; Cole et al., 2000[Cole, J. M., Wilson, C. C., Howard, J. A. K. & Cruickshank, F. R. (2000). Acta Cryst. B56, 1085-1093.]), which is a non-linear-optical material crystallizing in space group Cc, and which has been the subject of a variable-temperature study employing both X-ray and neutron diffraction. Finally, we note that structures have been reported for a number of reduced 3,4′-bi­pyrazoles (Cuartas et al., 2017[Cuartas, V., Insuasty, B., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 784-790.]; Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2019). Acta Cryst. C75, 768-776.]).

5. Synthesis and crystallization

Samples of the chalcones (I)–(III) were prepared using the published methods (Hans et al., 2010[Hans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942-944.]; Yuan et al., 2009[Yuan, M., Yin, X., Zheng, H., Ouyang, C., Zuo, Z., Liu, H. & Li, Y. (2009). Chem. Asian J. 4, 707-713.]; Yu et al., 2016[Yu, B., Qi, P.-P., Shi, X.-J., Huang, R., Guo, H., Zheng, Y.-C., Yu, D.-Q. & Liu, H.-M. (2016). Eur. J. Med. Chem. 117, 241-255.]; Yadav et al., 2017[Yadav, P., Lal, K., Kumar, A., Guru, S. K., Jaglan, S. & Bhushan, S. (2017). Eur. J. Med. Chem. 126, 944-953.]): crystals of compounds (I)[link] and (II)[link], which were suitable for single-crystal X-ray diffraction, were grown by slow evaporation, at ambient temperature and in the presence of air from a solution in methanol. Despite repeated attempts, no suitable crystals of (III) could be obtained.

For the synthesis of compounds (IV)–(VI), a solution of potassium hydroxide (0.2 g) in ethanol (20 ml) was added to a mixture of thio­semicarbazide (140 mg, 1.5 mol) and the corresponding chalcone (I)–(III) (1 mmol). These mixtures were then heated under reflux for 5 h, when thin-layer chromatography indicated that the reactions were complete. The mixtures were then allowed to cool to ambient temperature, and the resulting solid products were collected by filtration, washed with water, dried in air and crystallized from a mixture of ethanol and N,N-di­methyl­formamide (9:1, v/v) to give the products (IV)–(VI).

Compound (IV)[link]. Yield 81%, m. p. 421 K. Analysis found C 61.7, H 4.4, N 11.4%; C19H16ClN3OS requires C 61.7, H 4.4, N 11.4%. IR (KBr, cm−1) 3440 (NH), 2123 (C≡C). NMR (DMSO-d6) δ(1H) 3.09 (dd, 1H J = 18.0, 3.3 Hz) and 3.84 (dd, J = 18.0, 11.5 Hz) (pyrazole CH2), 3.32 (t, 1H, J = 2.4 Hz, ≡C—H), 4.56 (d, 2H, J = 2.4 Hz OCH2), 5.73 (dd, 1H, J = 11.5, 3.3 Hz, pyrazole CH), 6.65 (d, 2H, J = 8.6 Hz) and 7.10 (d, 2H, J = 8.6 Hz) (C6H4O), 7.2 (m, 4H,C6H4Cl).

Compound (V)[link]. Yield 71%, m. p. 455–457 K. Analysis found C 55.2, H 3.9, N 10.1%; C19H16BrN3OS requires C 55.1, H 3.9, N 10.1%. IR (KBr, cm−1) 3414 (NH), 2126 (C≡C). NMR (DMSO-d6) δ(1H) 3.09 (dd, 1H J = 18.0, 3.4 Hz) and 3.80 (dd, J = 18.0, 11.5 Hz) (pyrazole CH2), 3.32 (t, 1H, J = 2.2 Hz, ≡C—H), 4.70 (d, 2H, J = 2.2 Hz OCH2), 5.89 (dd, 1H, J = 11.5, 3.4 Hz, pyrazole CH), 6.88 (d, 2H, J = 8.6 Hz) and 7.07 (d, 2H, J = 8.6 Hz) (C6H4O), 7.58 (d, 2H, J = 8.5 Hz) and 8.56 (d, 2H, J = 8.5 Hz) (C6H4Br).

Compound (VI)[link]. Yield 79%, m. p. 422–423 K. Analysis found C 65.8, H 5.2, N 11.5%; C20H19N3O2S requires C 65.7, H 5.2, N 11.5%. IR (KBr, cm−1) 3339 (NH), 2120 (C≡C). NMR (DMSO-d6) δ(1H) 3.09 (dd, 1H J = 17.9, 3.2 Hz) and 3.71 (dd, J = 17.0, 11.5 Hz) (pyrazole CH2), 3.69 (t, 1H, J = 2.3 Hz, ≡C—H), 3.78 (s, 3H, OCh), 4.52 (d, 2H, J = 2.3 Hz OCH2), 5.76 (dd, 1H, J = 11.5, 3.2 Hz, pyrazole CH), 6.75 (d, 2H, J = 8.8 Hz) and 7.02 (d, 2H, J = 8.8 Hz) (C6H4OCH2), 7.13 (d, 2H, J = 8.1 Hz) and 7.63 (d, 2H, J = 8.1 Hz) (C6H4OCH3).

Crystals of compounds (IV)–(VI), which were suitable for single-crystal X-ray diffraction analysis, were selected directly from the analytical samples.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference maps, and then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (alkenyl, alkynyl and aromatic), 0.96 Å (CH3), 0.97 Å (CH2) or 0.98 Å (aliphatic C—H), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl group, which was permitted to rotate but not to tilt, and 1.2 for all other H atoms.

Table 2
Experimental details

  (I) (II) (IV) (V) (VI)
Crystal data
Chemical formula C18H13ClO2 C18H13BrO2 C19H16ClN3OS C19H16BrN3OS C20H19N3O2S
Mr 296.73 341.18 369.86 414.31 365.44
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 296 296 298 296 296
a, b, c (Å) 17.990 (3), 14.2529 (16), 5.8661 (8) 18.286 (6), 14.277 (4), 5.8489 (17) 15.0182 (9), 6.0579 (3), 20.8286 (12) 15.1255 (13), 6.0426 (5), 21.026 (2) 11.7852 (15), 7.5345 (11), 20.599 (3)
β (°) 94.419 (4) 94.521 (7) 110.573 (2) 110.555 (3) 93.555 (4)
V3) 1499.7 (3) 1522.2 (8) 1774.11 (17) 1799.4 (3) 1825.6 (4)
Z 4 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.26 2.70 0.35 2.41 0.20
Crystal size (mm) 0.20 × 0.20 × 0.15 0.20 × 0.15 × 0.15 0.20 × 0.15 × 0.10 0.20 × 0.15 × 0.10 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII Bruker APEXII Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.895, 0.962 0.491, 0.667 0.870, 0.966 0.584, 0.786 0.908, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 20193, 2912, 1777 23006, 2945, 1335 25833, 3326, 2571 18295, 3365, 2559 20467, 3822, 1864
Rint 0.048 0.119 0.064 0.053 0.100
(sin θ/λ)max−1) 0.614 0.621 0.607 0.607 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.132, 1.05 0.043, 0.089, 1.00 0.075, 0.133, 1.24 0.055, 0.113, 1.16 0.051, 0.118, 0.97
No. of reflections 2912 2945 3326 3365 3822
No. of parameters 190 190 232 232 242
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.23 0.43, −0.50 0.19, −0.28 0.50, −0.46 0.21, −0.24
Computer programs: APEX2, SAINT and XPREP (Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2012); cell refinement: APEX2/SAINT (Bruker, 2012); data reduction: SAINT/XPREP (Bruker, 2012); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

1-(4-Chlorophenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (I) top
Crystal data top
C18H13ClO2F(000) = 616
Mr = 296.73Dx = 1.314 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.990 (3) ÅCell parameters from 2914 reflections
b = 14.2529 (16) Åθ = 1.1–25.9°
c = 5.8661 (8) ŵ = 0.26 mm1
β = 94.419 (4)°T = 296 K
V = 1499.7 (3) Å3Block, orange
Z = 40.20 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII
diffractometer
2912 independent reflections
Radiation source: fine focussealed tube1777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 25.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2122
Tmin = 0.895, Tmax = 0.962k = 1717
20193 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.191P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2912 reflectionsΔρmax = 0.32 e Å3
190 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50644 (15)0.37616 (19)0.0035 (5)0.0454 (7)
O10.49123 (11)0.37815 (18)0.2039 (3)0.0705 (7)
C20.44832 (15)0.37402 (19)0.1650 (5)0.0470 (7)
H20.46120.35940.31750.056*
C30.37764 (15)0.39260 (17)0.0980 (4)0.0422 (6)
H30.36820.41150.05320.051*
C110.58630 (14)0.37539 (17)0.0931 (4)0.0388 (6)
C120.60937 (15)0.40870 (18)0.3093 (4)0.0443 (7)
H120.57420.43010.40520.053*
C130.68450 (16)0.41034 (18)0.3840 (5)0.0464 (7)
H130.70000.43400.52770.056*
C140.73548 (14)0.37664 (19)0.2428 (5)0.0455 (7)
Cl140.82940 (4)0.37534 (7)0.33965 (16)0.0789 (3)
C150.71402 (16)0.34316 (19)0.0276 (5)0.0506 (7)
H150.74940.32080.06650.061*
C160.63951 (15)0.34321 (18)0.0463 (5)0.0463 (7)
H160.62470.32130.19210.056*
C310.31322 (14)0.38698 (17)0.2325 (4)0.0385 (6)
C320.24378 (15)0.41655 (19)0.1399 (5)0.0472 (7)
H320.23980.44280.00570.057*
C330.18022 (16)0.4082 (2)0.2576 (5)0.0542 (8)
H330.13440.42890.19260.065*
C340.18612 (15)0.36873 (19)0.4728 (5)0.0478 (7)
C350.25439 (15)0.33836 (18)0.5696 (5)0.0460 (7)
H350.25800.31170.71470.055*
C360.31671 (15)0.34757 (17)0.4517 (4)0.0429 (7)
H360.36240.32720.51870.052*
O340.12808 (12)0.35634 (17)0.6100 (4)0.0737 (7)
C370.05810 (19)0.3821 (3)0.5204 (6)0.0851 (11)
H37A0.04280.34360.38860.102*
H37B0.05790.44730.47310.102*
C380.0066 (2)0.3679 (3)0.7054 (7)0.0920 (13)
C390.0365 (2)0.3578 (4)0.8370 (9)0.1210 (18)
H390.07150.34960.94390.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0503 (16)0.0486 (16)0.0372 (16)0.0022 (13)0.0016 (13)0.0008 (13)
O10.0613 (14)0.1132 (19)0.0362 (12)0.0033 (13)0.0009 (10)0.0013 (12)
C20.0497 (17)0.0545 (17)0.0366 (15)0.0013 (14)0.0012 (13)0.0043 (13)
C30.0512 (16)0.0407 (15)0.0343 (15)0.0051 (12)0.0010 (12)0.0014 (12)
C110.0483 (16)0.0374 (14)0.0308 (14)0.0001 (12)0.0041 (12)0.0018 (12)
C120.0509 (17)0.0470 (16)0.0361 (16)0.0048 (13)0.0101 (13)0.0026 (12)
C130.0573 (18)0.0476 (16)0.0340 (15)0.0031 (13)0.0018 (13)0.0036 (12)
C140.0445 (16)0.0420 (15)0.0496 (17)0.0016 (12)0.0009 (13)0.0031 (14)
Cl140.0491 (5)0.0928 (7)0.0938 (7)0.0010 (4)0.0009 (4)0.0102 (5)
C150.0517 (18)0.0534 (17)0.0487 (18)0.0009 (14)0.0155 (14)0.0081 (14)
C160.0573 (18)0.0478 (16)0.0345 (15)0.0058 (13)0.0086 (13)0.0037 (12)
C310.0479 (16)0.0349 (14)0.0320 (14)0.0017 (12)0.0011 (12)0.0018 (11)
C320.0562 (18)0.0474 (16)0.0373 (16)0.0020 (14)0.0020 (14)0.0041 (12)
C330.0449 (17)0.0627 (19)0.0540 (19)0.0079 (14)0.0035 (14)0.0037 (15)
C340.0476 (16)0.0528 (17)0.0435 (17)0.0019 (13)0.0077 (13)0.0031 (14)
C350.0576 (18)0.0475 (16)0.0326 (15)0.0032 (13)0.0015 (13)0.0022 (12)
C360.0466 (16)0.0420 (15)0.0392 (16)0.0014 (12)0.0029 (13)0.0020 (12)
O340.0523 (13)0.1029 (18)0.0666 (15)0.0097 (12)0.0101 (11)0.0078 (13)
C370.065 (2)0.111 (3)0.079 (3)0.008 (2)0.002 (2)0.019 (2)
C380.050 (2)0.128 (4)0.099 (3)0.001 (2)0.017 (2)0.011 (3)
C390.062 (3)0.189 (5)0.115 (4)0.007 (3)0.021 (3)0.034 (4)
Geometric parameters (Å, º) top
C1—O11.226 (3)C31—C321.389 (3)
C1—C21.465 (4)C31—C361.400 (3)
C1—C111.491 (4)C32—C331.386 (4)
C2—C31.328 (3)C32—H320.9300
C2—H20.9300C33—C341.379 (4)
C3—C311.454 (4)C33—H330.9300
C3—H30.9300C34—O341.378 (3)
C11—C161.385 (3)C34—C351.382 (4)
C11—C121.387 (3)C35—C361.368 (4)
C12—C131.388 (4)C35—H350.9300
C12—H120.9300C36—H360.9300
C13—C141.369 (4)O34—C371.376 (4)
C13—H130.9300C37—C381.494 (5)
C14—C151.377 (4)C37—H37A0.9700
C14—Cl141.741 (3)C37—H37B0.9700
C15—C161.377 (4)C38—C391.144 (5)
C15—H150.9300C39—H390.9300
C16—H160.9300
O1—C1—C2121.8 (3)C32—C31—C36117.2 (2)
O1—C1—C11119.0 (2)C32—C31—C3120.1 (2)
C2—C1—C11119.2 (2)C36—C31—C3122.6 (2)
C3—C2—C1121.3 (2)C33—C32—C31122.1 (3)
C3—C2—H2119.4C33—C32—H32119.0
C1—C2—H2119.4C31—C32—H32119.0
C2—C3—C31127.8 (2)C34—C33—C32118.9 (3)
C2—C3—H3116.1C34—C33—H33120.5
C31—C3—H3116.1C32—C33—H33120.5
C16—C11—C12118.8 (2)O34—C34—C33125.4 (3)
C16—C11—C1119.0 (2)O34—C34—C35114.2 (2)
C12—C11—C1122.2 (2)C33—C34—C35120.5 (3)
C11—C12—C13120.6 (2)C36—C35—C34119.9 (3)
C11—C12—H12119.7C36—C35—H35120.0
C13—C12—H12119.7C34—C35—H35120.0
C14—C13—C12119.0 (3)C35—C36—C31121.5 (3)
C14—C13—H13120.5C35—C36—H36119.3
C12—C13—H13120.5C31—C36—H36119.3
C13—C14—C15121.5 (3)C37—O34—C34117.1 (3)
C13—C14—Cl14119.0 (2)O34—C37—C38106.7 (3)
C15—C14—Cl14119.5 (2)O34—C37—H37A110.4
C16—C15—C14119.1 (3)C38—C37—H37A110.4
C16—C15—H15120.5O34—C37—H37B110.4
C14—C15—H15120.5C38—C37—H37B110.4
C15—C16—C11121.0 (2)H37A—C37—H37B108.6
C15—C16—H16119.5C39—C38—C37175.7 (5)
C11—C16—H16119.5C38—C39—H39180.0
O1—C1—C2—C313.4 (4)C1—C11—C16—C15178.6 (2)
C11—C1—C2—C3166.9 (2)C2—C3—C31—C32174.7 (3)
C1—C2—C3—C31175.3 (2)C2—C3—C31—C369.0 (4)
O1—C1—C11—C1623.3 (4)C36—C31—C32—C330.2 (4)
C2—C1—C11—C16156.4 (2)C3—C31—C32—C33176.8 (2)
O1—C1—C11—C12154.6 (3)C31—C32—C33—C340.4 (4)
C2—C1—C11—C1225.7 (4)C32—C33—C34—O34179.7 (3)
C16—C11—C12—C130.4 (4)C32—C33—C34—C350.2 (4)
C1—C11—C12—C13177.5 (2)O34—C34—C35—C36179.4 (2)
C11—C12—C13—C141.4 (4)C33—C34—C35—C360.1 (4)
C12—C13—C14—C151.4 (4)C34—C35—C36—C310.3 (4)
C12—C13—C14—Cl14178.0 (2)C32—C31—C36—C350.1 (4)
C13—C14—C15—C160.4 (4)C3—C31—C36—C35176.3 (2)
Cl14—C14—C15—C16179.1 (2)C33—C34—O34—C372.8 (4)
C14—C15—C16—C110.7 (4)C35—C34—O34—C37177.8 (3)
C12—C11—C16—C150.6 (4)C34—O34—C37—C38176.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.932.903.554 (3)128
C35—H35···Cg1ii0.932.833.508 (3)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
1-(4-Bromophenyl)-3-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one (II) top
Crystal data top
C18H13BrO2F(000) = 688
Mr = 341.18Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.286 (6) ÅCell parameters from 2047 reflections
b = 14.277 (4) Åθ = 1.1–26.2°
c = 5.8489 (17) ŵ = 2.70 mm1
β = 94.521 (7)°T = 296 K
V = 1522.2 (8) Å3Block, colourless
Z = 40.20 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII
diffractometer
2945 independent reflections
Radiation source: fine focussealed tube1335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
φ and ω scansθmax = 26.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2222
Tmin = 0.491, Tmax = 0.667k = 1717
23006 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.1591P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2945 reflectionsΔρmax = 0.43 e Å3
190 parametersΔρmin = 0.50 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5049 (2)0.3768 (3)0.0000 (7)0.0455 (10)
O10.48975 (14)0.3791 (2)0.2076 (4)0.0658 (8)
C20.4477 (2)0.3747 (3)0.1628 (6)0.0428 (10)
H20.46060.36050.31580.051*
C30.3782 (2)0.3926 (2)0.0970 (6)0.0398 (10)
H30.36890.41170.05450.048*
C110.5835 (2)0.3755 (2)0.0928 (6)0.0355 (9)
C120.6067 (2)0.4089 (2)0.3083 (6)0.0420 (11)
H120.57230.43090.40410.050*
C130.6798 (2)0.4103 (2)0.3835 (6)0.0433 (11)
H130.69480.43370.52810.052*
C140.7306 (2)0.3767 (3)0.2425 (6)0.0431 (10)
Br140.83135 (2)0.37416 (4)0.34974 (8)0.0703 (2)
C150.7097 (2)0.3428 (2)0.0268 (7)0.0458 (11)
H150.74440.32000.06680.055*
C160.6364 (2)0.3435 (2)0.0474 (6)0.0444 (11)
H160.62180.32230.19420.053*
C310.3145 (2)0.3864 (2)0.2299 (6)0.0350 (9)
C320.2465 (2)0.4154 (2)0.1353 (6)0.0448 (11)
H320.24330.44170.01070.054*
C330.1829 (2)0.4070 (3)0.2489 (7)0.0472 (11)
H330.13790.42730.18180.057*
C340.1890 (2)0.3672 (3)0.4658 (6)0.0433 (10)
C350.2557 (2)0.3374 (2)0.5652 (6)0.0404 (10)
H350.25880.31070.71070.049*
C360.3175 (2)0.3473 (2)0.4488 (6)0.0390 (10)
H360.36240.32750.51750.047*
O340.13136 (16)0.35477 (19)0.6007 (4)0.0638 (8)
C370.0619 (2)0.3799 (3)0.5085 (7)0.0726 (13)
H37A0.04740.34100.37660.087*
H37B0.06160.44480.45960.087*
C380.0106 (3)0.3664 (4)0.6897 (9)0.0806 (15)
C390.0320 (3)0.3582 (4)0.8233 (9)0.106 (2)
H390.06640.35160.93120.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (3)0.045 (3)0.041 (3)0.001 (2)0.003 (2)0.002 (2)
O10.058 (2)0.110 (2)0.0289 (16)0.0013 (18)0.0015 (14)0.0012 (17)
C20.044 (3)0.050 (2)0.034 (2)0.005 (2)0.002 (2)0.004 (2)
C30.051 (3)0.035 (3)0.032 (2)0.008 (2)0.002 (2)0.0031 (18)
C110.044 (3)0.033 (2)0.030 (2)0.002 (2)0.005 (2)0.004 (2)
C120.048 (3)0.046 (3)0.032 (2)0.006 (2)0.007 (2)0.0007 (18)
C130.054 (3)0.042 (3)0.034 (2)0.003 (2)0.000 (2)0.0056 (18)
C140.040 (3)0.039 (2)0.050 (3)0.001 (2)0.001 (2)0.001 (2)
Br140.0455 (3)0.0781 (3)0.0860 (4)0.0015 (3)0.0030 (2)0.0081 (3)
C150.045 (3)0.047 (3)0.048 (3)0.001 (2)0.014 (2)0.010 (2)
C160.058 (3)0.043 (3)0.032 (2)0.005 (2)0.003 (2)0.0052 (18)
C310.044 (3)0.033 (2)0.028 (2)0.001 (2)0.000 (2)0.0026 (19)
C320.051 (3)0.047 (3)0.034 (2)0.006 (2)0.008 (2)0.0047 (18)
C330.037 (3)0.057 (3)0.047 (3)0.010 (2)0.001 (2)0.004 (2)
C340.046 (3)0.046 (2)0.039 (2)0.001 (2)0.009 (2)0.005 (2)
C350.048 (3)0.041 (3)0.031 (2)0.001 (2)0.000 (2)0.0030 (18)
C360.038 (3)0.040 (3)0.037 (2)0.0017 (19)0.006 (2)0.0015 (18)
O340.0415 (19)0.091 (2)0.0588 (19)0.0127 (17)0.0053 (16)0.0078 (16)
C370.060 (4)0.088 (4)0.070 (3)0.009 (3)0.000 (3)0.008 (3)
C380.047 (4)0.109 (4)0.086 (4)0.003 (4)0.009 (3)0.004 (4)
C390.065 (4)0.162 (6)0.093 (4)0.014 (4)0.024 (3)0.023 (4)
Geometric parameters (Å, º) top
C1—O11.225 (4)C31—C321.383 (5)
C1—C21.470 (5)C31—C361.394 (5)
C1—C111.496 (5)C32—C331.390 (5)
C2—C31.323 (5)C32—H320.9300
C2—H20.9300C33—C341.386 (5)
C3—C311.453 (5)C33—H330.9300
C3—H30.9300C34—C351.376 (5)
C11—C121.383 (5)C34—O341.377 (4)
C11—C161.393 (5)C35—C361.373 (5)
C12—C131.373 (5)C35—H350.9300
C12—H120.9300C36—H360.9300
C13—C141.376 (5)O34—C371.388 (4)
C13—H130.9300C37—C381.483 (6)
C14—C151.377 (5)C37—H37A0.9700
C14—Br141.899 (4)C37—H37B0.9700
C15—C161.376 (5)C38—C391.152 (6)
C15—H150.9300C39—H390.9300
C16—H160.9300
O1—C1—C2121.7 (4)C32—C31—C36117.1 (3)
O1—C1—C11119.8 (3)C32—C31—C3120.0 (3)
C2—C1—C11118.5 (3)C36—C31—C3122.7 (4)
C3—C2—C1121.6 (3)C31—C32—C33122.8 (4)
C3—C2—H2119.2C31—C32—H32118.6
C1—C2—H2119.2C33—C32—H32118.6
C2—C3—C31128.6 (3)C34—C33—C32117.6 (4)
C2—C3—H3115.7C34—C33—H33121.2
C31—C3—H3115.7C32—C33—H33121.2
C12—C11—C16118.1 (4)C35—C34—O34114.2 (3)
C12—C11—C1123.0 (3)C35—C34—C33121.1 (4)
C16—C11—C1118.8 (3)O34—C34—C33124.6 (4)
C13—C12—C11121.2 (3)C36—C35—C34119.7 (3)
C13—C12—H12119.4C36—C35—H35120.1
C11—C12—H12119.4C34—C35—H35120.1
C12—C13—C14119.3 (3)C35—C36—C31121.5 (4)
C12—C13—H13120.4C35—C36—H36119.2
C14—C13—H13120.4C31—C36—H36119.2
C13—C14—C15121.3 (4)C34—O34—C37117.5 (3)
C13—C14—Br14119.5 (3)O34—C37—C38107.5 (4)
C15—C14—Br14119.2 (3)O34—C37—H37A110.2
C16—C15—C14118.7 (3)C38—C37—H37A110.2
C16—C15—H15120.7O34—C37—H37B110.2
C14—C15—H15120.7C38—C37—H37B110.2
C15—C16—C11121.4 (3)H37A—C37—H37B108.5
C15—C16—H16119.3C39—C38—C37176.5 (6)
C11—C16—H16119.3C38—C39—H39180.0
O1—C1—C2—C312.7 (6)C1—C11—C16—C15178.4 (3)
C11—C1—C2—C3167.6 (4)C2—C3—C31—C32174.8 (4)
C1—C2—C3—C31174.6 (3)C2—C3—C31—C368.7 (6)
O1—C1—C11—C12153.8 (4)C36—C31—C32—C330.0 (5)
C2—C1—C11—C1226.5 (6)C3—C31—C32—C33176.7 (3)
O1—C1—C11—C1622.9 (6)C31—C32—C33—C340.3 (6)
C2—C1—C11—C16156.8 (3)C32—C33—C34—C350.2 (6)
C16—C11—C12—C130.4 (5)C32—C33—C34—O34179.4 (3)
C1—C11—C12—C13177.1 (3)O34—C34—C35—C36179.1 (3)
C11—C12—C13—C140.8 (5)C33—C34—C35—C360.2 (6)
C12—C13—C14—C150.8 (5)C34—C35—C36—C310.5 (5)
C12—C13—C14—Br14177.7 (3)C32—C31—C36—C350.4 (5)
C13—C14—C15—C160.4 (5)C3—C31—C36—C35176.2 (3)
Br14—C14—C15—C16178.9 (3)C35—C34—O34—C37177.6 (3)
C14—C15—C16—C111.6 (5)C33—C34—O34—C373.1 (6)
C12—C11—C16—C151.6 (5)C34—O34—C37—C38176.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.932.953.602 (4)128
C35—H35···Cg1ii0.932.803.484 (3)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
(RS)-3-(4-Chlorophenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide (IV) top
Crystal data top
C19H16ClN3OSF(000) = 768
Mr = 369.86Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.0182 (9) ÅCell parameters from 4932 reflections
b = 6.0579 (3) Åθ = 2.9–29.5°
c = 20.8286 (12) ŵ = 0.35 mm1
β = 110.573 (2)°T = 298 K
V = 1774.11 (17) Å3Needle, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII
diffractometer
3326 independent reflections
Radiation source: fine focussealed tube2571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 25.6°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1818
Tmin = 0.870, Tmax = 0.966k = 77
25833 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.075H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0304P)2 + 1.7629P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
3326 reflectionsΔρmax = 0.19 e Å3
232 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5173 (2)0.7308 (4)0.34225 (14)0.0412 (7)
N20.45647 (18)0.5533 (4)0.31707 (14)0.0410 (7)
C30.4545 (2)0.5106 (6)0.25593 (17)0.0409 (8)
C40.5122 (2)0.6700 (6)0.23130 (17)0.0458 (9)
H4A0.47170.77510.19900.055*
H40.55130.59350.21000.055*
C50.5734 (2)0.7840 (6)0.29827 (17)0.0427 (8)
H50.57530.94390.29160.051*
C110.5230 (2)0.8250 (6)0.40229 (17)0.0402 (8)
S110.59292 (7)1.04457 (15)0.43338 (5)0.0499 (3)
N110.4696 (3)0.7346 (6)0.43395 (18)0.0623 (10)
H11B0.466 (3)0.803 (7)0.470 (2)0.075*
H11A0.439 (3)0.628 (7)0.417 (2)0.075*
C310.3970 (2)0.3293 (6)0.21696 (17)0.0411 (8)
C320.3691 (3)0.3240 (7)0.14614 (19)0.0619 (11)
H320.39090.43200.12360.074*
C330.3095 (3)0.1608 (8)0.1088 (2)0.0668 (12)
H330.29070.15930.06120.080*
C340.2781 (2)0.0015 (6)0.1419 (2)0.0531 (10)
Cl340.20074 (7)0.2014 (2)0.09434 (6)0.0773 (4)
C350.3074 (3)0.0024 (6)0.2126 (2)0.0535 (10)
H350.28740.11460.23480.064*
C360.3663 (2)0.1615 (6)0.24951 (19)0.0475 (9)
H360.38610.16000.29710.057*
C510.6726 (2)0.6900 (5)0.32626 (16)0.0397 (8)
C520.6902 (3)0.4924 (6)0.36169 (18)0.0497 (9)
H520.64040.42100.36980.060*
C530.7795 (2)0.3978 (6)0.38544 (18)0.0468 (9)
H530.78960.26430.40900.056*
C540.8535 (2)0.5047 (6)0.37368 (16)0.0417 (8)
C550.8367 (3)0.6981 (6)0.33696 (17)0.0457 (9)
H550.88630.76720.32780.055*
C560.7476 (3)0.7905 (6)0.31355 (17)0.0436 (8)
H560.73740.92190.28890.052*
O540.94624 (17)0.4330 (4)0.39776 (13)0.0540 (7)
C570.9668 (3)0.2523 (6)0.4444 (2)0.0563 (10)
H57A0.93420.12090.42110.068*
H57B0.94460.28470.48180.068*
C581.0686 (3)0.2143 (6)0.47095 (19)0.0526 (9)
C591.1497 (3)0.1775 (7)0.4949 (2)0.0631 (11)
H591.21450.14810.51410.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0464 (16)0.0399 (16)0.0436 (16)0.0078 (14)0.0237 (13)0.0016 (13)
N20.0408 (16)0.0402 (16)0.0450 (16)0.0051 (14)0.0186 (13)0.0003 (14)
C30.0390 (19)0.043 (2)0.0432 (19)0.0045 (16)0.0169 (16)0.0046 (16)
C40.048 (2)0.050 (2)0.0420 (19)0.0046 (18)0.0192 (17)0.0044 (17)
C50.052 (2)0.0373 (19)0.047 (2)0.0016 (17)0.0278 (17)0.0068 (16)
C110.0413 (19)0.0395 (19)0.0426 (19)0.0000 (16)0.0181 (16)0.0028 (16)
S110.0589 (6)0.0428 (5)0.0537 (6)0.0133 (5)0.0268 (5)0.0037 (5)
N110.079 (3)0.068 (2)0.057 (2)0.0352 (19)0.044 (2)0.0192 (18)
C310.0377 (19)0.0428 (19)0.0401 (19)0.0067 (16)0.0103 (15)0.0007 (16)
C320.072 (3)0.066 (3)0.045 (2)0.010 (2)0.017 (2)0.001 (2)
C330.073 (3)0.076 (3)0.044 (2)0.003 (3)0.013 (2)0.011 (2)
C340.038 (2)0.055 (2)0.064 (3)0.0043 (18)0.0144 (19)0.016 (2)
Cl340.0552 (6)0.0823 (8)0.0933 (8)0.0106 (6)0.0247 (6)0.0430 (7)
C350.051 (2)0.047 (2)0.066 (3)0.0004 (18)0.025 (2)0.0029 (19)
C360.050 (2)0.047 (2)0.046 (2)0.0060 (18)0.0171 (17)0.0010 (18)
C510.047 (2)0.0379 (19)0.0382 (18)0.0054 (16)0.0199 (16)0.0000 (15)
C520.049 (2)0.044 (2)0.063 (2)0.0090 (18)0.0285 (19)0.0071 (18)
C530.049 (2)0.0379 (19)0.057 (2)0.0033 (17)0.0227 (18)0.0087 (17)
C540.042 (2)0.046 (2)0.0390 (18)0.0056 (17)0.0177 (16)0.0067 (16)
C550.048 (2)0.050 (2)0.047 (2)0.0132 (18)0.0275 (17)0.0027 (18)
C560.055 (2)0.0383 (19)0.0429 (19)0.0081 (17)0.0241 (17)0.0071 (16)
O540.0466 (15)0.0592 (16)0.0609 (16)0.0010 (13)0.0247 (13)0.0083 (14)
C570.056 (2)0.056 (2)0.058 (2)0.0017 (19)0.022 (2)0.003 (2)
C580.055 (3)0.056 (2)0.049 (2)0.001 (2)0.021 (2)0.0060 (19)
C590.058 (3)0.078 (3)0.053 (2)0.002 (2)0.019 (2)0.001 (2)
Geometric parameters (Å, º) top
N1—C111.350 (4)C34—Cl341.741 (4)
N1—N21.389 (4)C35—C361.372 (5)
N1—C51.481 (4)C35—H350.9300
N2—C31.290 (4)C36—H360.9300
C3—C311.456 (5)C51—C521.382 (5)
C3—C41.502 (5)C51—C561.385 (4)
C4—C51.539 (5)C52—C531.380 (5)
C4—H4A0.9700C52—H520.9300
C4—H40.9700C53—C541.380 (4)
C5—C511.507 (5)C53—H530.9300
C5—H50.9800C54—C551.373 (5)
C11—N111.323 (4)C54—O541.375 (4)
C11—S111.677 (3)C55—C561.373 (5)
N11—H11B0.87 (4)C55—H550.9300
N11—H11A0.80 (4)C56—H560.9300
C31—C321.385 (5)O54—C571.423 (4)
C31—C361.387 (5)C57—C581.450 (5)
C32—C331.376 (6)C57—H57A0.9700
C32—H320.9300C57—H57B0.9700
C33—C341.364 (6)C58—C591.164 (5)
C33—H330.9300C59—H590.9300
C34—C351.380 (5)
C11—N1—N2119.7 (3)C33—C34—Cl34119.5 (3)
C11—N1—C5128.1 (3)C35—C34—Cl34119.6 (3)
N2—N1—C5112.1 (2)C36—C35—C34119.1 (4)
C3—N2—N1108.1 (3)C36—C35—H35120.4
N2—C3—C31120.3 (3)C34—C35—H35120.4
N2—C3—C4113.1 (3)C35—C36—C31121.0 (3)
C31—C3—C4126.5 (3)C35—C36—H36119.5
C3—C4—C5102.2 (3)C31—C36—H36119.5
C3—C4—H4A111.3C52—C51—C56117.8 (3)
C5—C4—H4A111.3C52—C51—C5120.8 (3)
C3—C4—H4111.3C56—C51—C5121.3 (3)
C5—C4—H4111.3C53—C52—C51122.1 (3)
H4A—C4—H4109.2C53—C52—H52119.0
N1—C5—C51112.2 (3)C51—C52—H52119.0
N1—C5—C4100.0 (3)C54—C53—C52118.9 (3)
C51—C5—C4112.1 (3)C54—C53—H53120.6
N1—C5—H5110.7C52—C53—H53120.6
C51—C5—H5110.7C55—C54—O54115.9 (3)
C4—C5—H5110.7C55—C54—C53119.9 (3)
N11—C11—N1115.8 (3)O54—C54—C53124.2 (3)
N11—C11—S11122.9 (3)C54—C55—C56120.7 (3)
N1—C11—S11121.3 (2)C54—C55—H55119.7
C11—N11—H11B117 (3)C56—C55—H55119.7
C11—N11—H11A118 (3)C55—C56—C51120.7 (3)
H11B—N11—H11A124 (4)C55—C56—H56119.7
C32—C31—C36118.4 (3)C51—C56—H56119.7
C32—C31—C3120.6 (3)C54—O54—C57116.2 (3)
C36—C31—C3121.0 (3)O54—C57—C58109.2 (3)
C33—C32—C31120.8 (4)O54—C57—H57A109.8
C33—C32—H32119.6C58—C57—H57A109.8
C31—C32—H32119.6O54—C57—H57B109.8
C34—C33—C32119.6 (4)C58—C57—H57B109.8
C34—C33—H33120.2H57A—C57—H57B108.3
C32—C33—H33120.2C59—C58—C57176.5 (4)
C33—C34—C35121.0 (4)C58—C59—H59180.0
C11—N1—N2—C3172.1 (3)C32—C33—C34—Cl34178.7 (3)
C5—N1—N2—C311.1 (4)C33—C34—C35—C362.3 (5)
N1—N2—C3—C31179.3 (3)Cl34—C34—C35—C36178.3 (3)
N1—N2—C3—C43.4 (4)C34—C35—C36—C310.2 (5)
N2—C3—C4—C515.3 (4)C32—C31—C36—C352.1 (5)
C31—C3—C4—C5167.6 (3)C3—C31—C36—C35176.1 (3)
C11—N1—C5—C5177.1 (4)N1—C5—C51—C5232.9 (4)
N2—N1—C5—C5199.5 (3)C4—C5—C51—C5278.7 (4)
C11—N1—C5—C4164.0 (3)N1—C5—C51—C56151.4 (3)
N2—N1—C5—C419.5 (3)C4—C5—C51—C5697.0 (4)
C3—C4—C5—N119.2 (3)C56—C51—C52—C531.4 (5)
C3—C4—C5—C5199.8 (3)C5—C51—C52—C53177.3 (3)
N2—N1—C11—N111.3 (5)C51—C52—C53—C540.3 (5)
C5—N1—C11—N11175.0 (3)C52—C53—C54—C552.1 (5)
N2—N1—C11—S11178.0 (2)C52—C53—C54—O54176.5 (3)
C5—N1—C11—S115.6 (5)O54—C54—C55—C56176.7 (3)
N2—C3—C31—C32158.8 (3)C53—C54—C55—C562.1 (5)
C4—C3—C31—C3218.1 (5)C54—C55—C56—C510.3 (5)
N2—C3—C31—C3619.3 (5)C52—C51—C56—C551.5 (5)
C4—C3—C31—C36163.8 (3)C5—C51—C56—C55177.3 (3)
C36—C31—C32—C332.5 (6)C55—C54—O54—C57170.8 (3)
C3—C31—C32—C33175.7 (4)C53—C54—O54—C577.9 (5)
C31—C32—C33—C340.5 (6)C54—O54—C57—C58173.3 (3)
C32—C33—C34—C351.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···N20.80 (4)2.23 (4)2.614 (5)110 (4)
N11—H11B···S11i0.88 (4)2.63 (4)3.483 (4)164 (4)
C52—H52···S11ii0.932.853.641 (4)144
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y1, z.
(RS)-3-(4-Bromophenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide (V) top
Crystal data top
C19H16BrN3OSF(000) = 840
Mr = 414.31Dx = 1.529 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.1255 (13) ÅCell parameters from 3513 reflections
b = 6.0426 (5) Åθ = 2.9–26.0°
c = 21.026 (2) ŵ = 2.41 mm1
β = 110.555 (3)°T = 296 K
V = 1799.4 (3) Å3Needle, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII
diffractometer
3365 independent reflections
Radiation source: fine focussealed tube2559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1818
Tmin = 0.584, Tmax = 0.786k = 77
18295 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.026P)2 + 3.0352P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
3365 reflectionsΔρmax = 0.50 e Å3
232 parametersΔρmin = 0.46 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5170 (2)0.7430 (5)0.34130 (16)0.0407 (8)
N20.4573 (2)0.5650 (5)0.31602 (17)0.0402 (8)
C30.4559 (3)0.5230 (7)0.2555 (2)0.0398 (9)
C40.5136 (3)0.6835 (7)0.2315 (2)0.0451 (10)
H4A0.47370.78910.19940.054*
H40.55310.60730.21080.054*
C50.5736 (3)0.7972 (7)0.2985 (2)0.0406 (9)
H50.57590.95750.29220.049*
C110.5228 (3)0.8343 (6)0.4015 (2)0.0387 (9)
S110.59333 (9)1.05265 (18)0.43388 (6)0.0490 (3)
N110.4689 (3)0.7426 (8)0.4319 (2)0.0596 (12)
H11B0.467 (4)0.803 (8)0.467 (3)0.071*
H11A0.438 (4)0.632 (9)0.415 (3)0.071*
C310.3993 (3)0.3401 (7)0.2168 (2)0.0408 (10)
C320.3746 (4)0.3310 (8)0.1462 (2)0.0583 (13)
H320.39830.43650.12430.070*
C330.3154 (4)0.1675 (9)0.1088 (2)0.0634 (14)
H330.29920.16280.06190.076*
C340.2812 (3)0.0132 (8)0.1412 (2)0.0481 (11)
Br340.19753 (4)0.20866 (10)0.08901 (3)0.0711 (2)
C350.3073 (3)0.0108 (8)0.2113 (2)0.0522 (11)
H350.28540.09920.23300.063*
C360.3664 (3)0.1757 (7)0.2483 (2)0.0469 (11)
H360.38450.17580.29530.056*
C510.6719 (3)0.7015 (7)0.3267 (2)0.0392 (9)
C520.6889 (3)0.5033 (7)0.3620 (2)0.0469 (11)
H520.63930.43310.37030.056*
C530.7771 (3)0.4068 (7)0.3853 (2)0.0478 (11)
H530.78650.27300.40860.057*
C540.8517 (3)0.5110 (7)0.3737 (2)0.0414 (10)
C550.8359 (3)0.7055 (7)0.3372 (2)0.0443 (10)
H550.88550.77410.32840.053*
C560.7474 (3)0.7991 (7)0.3137 (2)0.0425 (10)
H560.73780.92960.28870.051*
O540.9434 (2)0.4368 (5)0.39764 (15)0.0508 (8)
C570.9628 (3)0.2555 (7)0.4439 (2)0.0517 (11)
H57A0.93040.12400.42070.062*
H57B0.94020.28870.48070.062*
C581.0635 (3)0.2166 (8)0.4707 (2)0.0501 (11)
C591.1443 (4)0.1780 (8)0.4958 (2)0.0589 (13)
H591.20840.14740.51570.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0450 (19)0.045 (2)0.0376 (19)0.0074 (16)0.0215 (16)0.0019 (16)
N20.0406 (19)0.0416 (19)0.039 (2)0.0028 (16)0.0142 (16)0.0026 (16)
C30.039 (2)0.044 (2)0.035 (2)0.0038 (19)0.0108 (19)0.0046 (19)
C40.049 (2)0.052 (3)0.037 (2)0.004 (2)0.019 (2)0.007 (2)
C50.047 (2)0.039 (2)0.042 (2)0.005 (2)0.024 (2)0.0069 (19)
C110.040 (2)0.037 (2)0.040 (2)0.0015 (18)0.0150 (19)0.0032 (18)
S110.0598 (7)0.0428 (6)0.0489 (7)0.0136 (5)0.0247 (6)0.0035 (5)
N110.071 (3)0.068 (3)0.053 (3)0.033 (2)0.038 (2)0.019 (2)
C310.037 (2)0.046 (2)0.038 (2)0.0051 (19)0.0122 (19)0.0017 (19)
C320.067 (3)0.067 (3)0.040 (3)0.008 (3)0.018 (2)0.002 (2)
C330.068 (3)0.078 (4)0.038 (3)0.000 (3)0.011 (3)0.007 (3)
C340.036 (2)0.051 (3)0.054 (3)0.000 (2)0.012 (2)0.017 (2)
Br340.0495 (3)0.0782 (4)0.0824 (4)0.0050 (3)0.0191 (3)0.0385 (3)
C350.052 (3)0.050 (3)0.059 (3)0.003 (2)0.024 (2)0.006 (2)
C360.047 (2)0.052 (3)0.043 (3)0.001 (2)0.017 (2)0.002 (2)
C510.047 (2)0.037 (2)0.038 (2)0.0083 (19)0.019 (2)0.0013 (18)
C520.046 (3)0.044 (2)0.058 (3)0.008 (2)0.027 (2)0.010 (2)
C530.053 (3)0.039 (2)0.055 (3)0.002 (2)0.022 (2)0.010 (2)
C540.045 (2)0.045 (2)0.038 (2)0.006 (2)0.019 (2)0.0059 (19)
C550.046 (2)0.051 (3)0.042 (2)0.011 (2)0.023 (2)0.000 (2)
C560.054 (3)0.041 (2)0.036 (2)0.010 (2)0.021 (2)0.0056 (19)
O540.0446 (17)0.061 (2)0.0516 (18)0.0007 (15)0.0223 (15)0.0057 (15)
C570.053 (3)0.049 (3)0.055 (3)0.002 (2)0.021 (2)0.003 (2)
C580.057 (3)0.055 (3)0.042 (3)0.002 (2)0.021 (2)0.009 (2)
C590.055 (3)0.072 (3)0.052 (3)0.005 (3)0.023 (3)0.003 (3)
Geometric parameters (Å, º) top
N1—C111.354 (5)C34—Br341.904 (4)
N1—N21.385 (4)C35—C361.381 (6)
N1—C51.480 (5)C35—H350.9300
N2—C31.292 (5)C36—H360.9300
C3—C311.458 (6)C51—C521.385 (6)
C3—C41.505 (5)C51—C561.396 (5)
C4—C51.542 (6)C52—C531.378 (6)
C4—H4A0.9700C52—H520.9300
C4—H40.9700C53—C541.387 (6)
C5—C511.509 (6)C53—H530.9300
C5—H50.9800C54—O541.374 (5)
C11—N111.323 (5)C54—C551.378 (6)
C11—S111.683 (4)C55—C561.375 (6)
N11—H11B0.83 (5)C55—H550.9300
N11—H11A0.82 (5)C56—H560.9300
C31—C361.380 (6)O54—C571.425 (5)
C31—C321.398 (6)C57—C581.446 (6)
C32—C331.379 (7)C57—H57A0.9700
C32—H320.9300C57—H57B0.9700
C33—C341.360 (6)C58—C591.172 (6)
C33—H330.9300C59—H590.9300
C34—C351.387 (6)
C11—N1—N2119.6 (3)C33—C34—Br34119.2 (4)
C11—N1—C5128.0 (3)C35—C34—Br34119.3 (4)
N2—N1—C5112.1 (3)C36—C35—C34118.5 (4)
C3—N2—N1108.2 (3)C36—C35—H35120.8
N2—C3—C31120.1 (4)C34—C35—H35120.8
N2—C3—C4113.1 (4)C31—C36—C35121.4 (4)
C31—C3—C4126.7 (4)C31—C36—H36119.3
C3—C4—C5101.9 (3)C35—C36—H36119.3
C3—C4—H4A111.4C52—C51—C56117.3 (4)
C5—C4—H4A111.4C52—C51—C5121.0 (3)
C3—C4—H4111.4C56—C51—C5121.5 (4)
C5—C4—H4111.4C53—C52—C51122.0 (4)
H4A—C4—H4109.3C53—C52—H52119.0
N1—C5—C51112.1 (3)C51—C52—H52119.0
N1—C5—C4100.2 (3)C52—C53—C54119.5 (4)
C51—C5—C4111.7 (3)C52—C53—H53120.3
N1—C5—H5110.8C54—C53—H53120.3
C51—C5—H5110.8O54—C54—C55116.0 (3)
C4—C5—H5110.8O54—C54—C53124.5 (4)
N11—C11—N1115.6 (4)C55—C54—C53119.5 (4)
N11—C11—S11122.9 (3)C56—C55—C54120.5 (4)
N1—C11—S11121.5 (3)C56—C55—H55119.7
C11—N11—H11B117 (4)C54—C55—H55119.7
C11—N11—H11A119 (4)C55—C56—C51121.1 (4)
H11B—N11—H11A124 (5)C55—C56—H56119.5
C36—C31—C32118.2 (4)C51—C56—H56119.5
C36—C31—C3121.2 (4)C54—O54—C57116.1 (3)
C32—C31—C3120.5 (4)O54—C57—C58109.1 (4)
C33—C32—C31120.9 (5)O54—C57—H57A109.9
C33—C32—H32119.6C58—C57—H57A109.9
C31—C32—H32119.6O54—C57—H57B109.9
C34—C33—C32119.4 (4)C58—C57—H57B109.9
C34—C33—H33120.3H57A—C57—H57B108.3
C32—C33—H33120.3C59—C58—C57175.8 (5)
C33—C34—C35121.5 (4)C58—C59—H59180.0
C11—N1—N2—C3173.1 (4)C32—C33—C34—Br34178.7 (4)
C5—N1—N2—C311.5 (4)C33—C34—C35—C362.7 (7)
N1—N2—C3—C31179.2 (3)Br34—C34—C35—C36178.7 (3)
N1—N2—C3—C43.1 (5)C32—C31—C36—C352.7 (6)
N2—C3—C4—C515.1 (5)C3—C31—C36—C35175.3 (4)
C31—C3—C4—C5167.3 (4)C34—C35—C36—C310.1 (6)
C11—N1—C5—C5176.1 (5)N1—C5—C51—C5232.2 (5)
N2—N1—C5—C5198.8 (4)C4—C5—C51—C5279.4 (5)
C11—N1—C5—C4165.2 (4)N1—C5—C51—C56153.0 (4)
N2—N1—C5—C419.8 (4)C4—C5—C51—C5695.5 (4)
C3—C4—C5—N119.2 (4)C56—C51—C52—C531.6 (6)
C3—C4—C5—C5199.6 (4)C5—C51—C52—C53176.6 (4)
N2—N1—C11—N110.1 (6)C51—C52—C53—C540.5 (7)
C5—N1—C11—N11174.8 (4)C52—C53—C54—O54176.2 (4)
N2—N1—C11—S11179.2 (3)C52—C53—C54—C552.1 (6)
C5—N1—C11—S116.1 (6)O54—C54—C55—C56177.0 (4)
N2—C3—C31—C3617.0 (6)C53—C54—C55—C561.5 (6)
C4—C3—C31—C36165.6 (4)C54—C55—C56—C510.7 (6)
N2—C3—C31—C32161.0 (4)C52—C51—C56—C552.2 (6)
C4—C3—C31—C3216.4 (6)C5—C51—C56—C55177.2 (4)
C36—C31—C32—C332.8 (7)C55—C54—O54—C57170.7 (4)
C3—C31—C32—C33175.3 (4)C53—C54—O54—C577.6 (6)
C31—C32—C33—C340.2 (8)C54—O54—C57—C58172.7 (3)
C32—C33—C34—C352.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···N20.82 (5)2.24 (6)2.611 (5)108 (5)
N11—H11A···Br34i0.82 (5)2.89 (6)3.632 (5)152 (5)
N11—H11B···S11ii0.83 (6)2.70 (6)3.500 (5)162 (6)
C52—H52···S11iii0.932.873.650 (5)143
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x, y1, z.
(RS)-3-(4-Methoxyphenyl)-5-[4-(prop-2-ynyloxy)phenyl]-4,5-dihydropyrazole-1-carbothioamide (VI) top
Crystal data top
C20H19N3O2SF(000) = 768
Mr = 365.44Dx = 1.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7852 (15) ÅCell parameters from 3824 reflections
b = 7.5345 (11) Åθ = 1.7–26.6°
c = 20.599 (3) ŵ = 0.20 mm1
β = 93.555 (4)°T = 296 K
V = 1825.6 (4) Å3Block, colourless
Z = 40.20 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII
diffractometer
3822 independent reflections
Radiation source: fine focussealed tube1864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
φ and ω scansθmax = 26.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1414
Tmin = 0.908, Tmax = 0.971k = 99
20467 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0424P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3822 reflectionsΔρmax = 0.21 e Å3
242 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.32812 (16)0.5906 (3)0.30356 (11)0.0359 (6)
N20.39265 (16)0.4472 (3)0.32813 (11)0.0359 (6)
C30.3292 (2)0.3478 (3)0.36206 (13)0.0358 (7)
C40.2109 (2)0.4218 (4)0.36538 (14)0.0431 (8)
H4A0.20060.47590.40730.052*
H4B0.15380.33030.35730.052*
C50.20546 (19)0.5611 (3)0.31084 (15)0.0396 (7)
H50.16990.67020.32570.047*
C110.3763 (2)0.7190 (3)0.26933 (13)0.0341 (7)
S110.29954 (5)0.88567 (9)0.23445 (4)0.0462 (3)
N110.48918 (18)0.7072 (3)0.26592 (12)0.0398 (7)
H11A0.529 (2)0.614 (3)0.2788 (13)0.048*
H11B0.520 (2)0.781 (3)0.2386 (13)0.048*
C310.3722 (2)0.1830 (3)0.39094 (13)0.0375 (7)
C320.3004 (2)0.0594 (4)0.41761 (14)0.0452 (8)
H320.22430.08810.42130.054*
C330.3393 (2)0.1033 (4)0.43855 (14)0.0499 (8)
H330.28980.18340.45630.060*
C340.4514 (3)0.1485 (4)0.43337 (14)0.0456 (8)
C350.5260 (2)0.0259 (4)0.40995 (14)0.0444 (8)
H350.60260.05410.40830.053*
C360.4869 (2)0.1379 (3)0.38909 (14)0.0414 (7)
H360.53760.21980.37350.050*
O340.48126 (17)0.3164 (3)0.45311 (10)0.0614 (6)
C370.5942 (3)0.3754 (4)0.44406 (16)0.0660 (10)
H37A0.60850.36910.39870.099*
H37B0.60280.49580.45880.099*
H37C0.64740.30100.46850.099*
C510.1451 (2)0.4974 (3)0.24816 (14)0.0350 (7)
C520.1993 (2)0.4027 (4)0.20147 (15)0.0476 (8)
H520.27640.37770.20830.057*
C530.1417 (2)0.3442 (4)0.14482 (15)0.0493 (8)
H530.17980.28150.11400.059*
C540.0272 (2)0.3798 (3)0.13462 (15)0.0394 (7)
C550.0289 (2)0.4687 (3)0.18155 (15)0.0408 (8)
H550.10650.48990.17540.049*
C560.0297 (2)0.5260 (3)0.23739 (15)0.0406 (8)
H560.00940.58550.26870.049*
O540.03798 (14)0.3313 (3)0.07948 (10)0.0550 (6)
C570.0190 (3)0.2607 (4)0.02690 (16)0.0612 (9)
H57A0.05380.14820.03950.073*
H57B0.07870.34140.01540.073*
C580.0612 (3)0.2348 (4)0.02888 (19)0.0612 (10)
C590.1219 (3)0.2176 (5)0.0749 (2)0.0854 (12)
H590.17070.20380.11190.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0287 (12)0.0365 (13)0.0423 (17)0.0015 (10)0.0015 (11)0.0019 (12)
N20.0345 (12)0.0368 (13)0.0361 (16)0.0009 (11)0.0003 (11)0.0000 (11)
C30.0376 (15)0.0399 (17)0.0298 (19)0.0063 (13)0.0020 (13)0.0049 (14)
C40.0382 (16)0.0501 (18)0.042 (2)0.0060 (13)0.0076 (14)0.0019 (16)
C50.0267 (14)0.0425 (17)0.050 (2)0.0007 (13)0.0072 (14)0.0051 (16)
C110.0336 (15)0.0344 (15)0.0344 (19)0.0045 (13)0.0017 (13)0.0058 (14)
S110.0388 (4)0.0429 (4)0.0565 (6)0.0027 (3)0.0007 (4)0.0048 (4)
N110.0334 (14)0.0378 (15)0.0482 (19)0.0000 (11)0.0028 (12)0.0077 (13)
C310.0434 (16)0.0404 (17)0.0287 (19)0.0072 (14)0.0021 (13)0.0002 (14)
C320.0457 (16)0.056 (2)0.034 (2)0.0095 (15)0.0025 (15)0.0001 (16)
C330.062 (2)0.0484 (19)0.039 (2)0.0154 (16)0.0031 (16)0.0061 (16)
C340.061 (2)0.0429 (19)0.032 (2)0.0076 (16)0.0019 (15)0.0014 (15)
C350.0454 (17)0.0462 (19)0.041 (2)0.0009 (15)0.0015 (15)0.0031 (16)
C360.0452 (17)0.0422 (18)0.037 (2)0.0067 (14)0.0016 (14)0.0024 (15)
O340.0796 (15)0.0455 (13)0.0592 (17)0.0021 (11)0.0061 (12)0.0134 (12)
C370.087 (2)0.048 (2)0.063 (3)0.0078 (18)0.000 (2)0.0058 (18)
C510.0295 (14)0.0343 (15)0.041 (2)0.0005 (12)0.0029 (14)0.0024 (14)
C520.0303 (15)0.0586 (19)0.054 (2)0.0087 (14)0.0045 (15)0.0084 (18)
C530.0416 (17)0.063 (2)0.044 (2)0.0055 (15)0.0041 (15)0.0163 (17)
C540.0345 (16)0.0405 (17)0.043 (2)0.0038 (13)0.0021 (15)0.0003 (15)
C550.0283 (14)0.0414 (17)0.052 (2)0.0005 (13)0.0005 (15)0.0002 (16)
C560.0325 (15)0.0390 (16)0.051 (2)0.0005 (13)0.0083 (15)0.0066 (15)
O540.0442 (12)0.0752 (15)0.0446 (16)0.0039 (10)0.0042 (11)0.0093 (12)
C570.067 (2)0.063 (2)0.053 (3)0.0021 (18)0.0025 (19)0.0076 (19)
C580.075 (2)0.054 (2)0.053 (3)0.0026 (18)0.009 (2)0.0034 (19)
C590.111 (3)0.075 (3)0.066 (3)0.001 (2)0.029 (2)0.005 (2)
Geometric parameters (Å, º) top
N1—C111.343 (3)C35—H350.9300
N1—N21.398 (3)C36—H360.9300
N1—C51.479 (3)O34—C371.426 (3)
N2—C31.294 (3)C37—H37A0.9600
C3—C311.455 (3)C37—H37B0.9600
C3—C41.507 (3)C37—H37C0.9600
C4—C51.536 (4)C51—C561.381 (3)
C4—H4A0.9700C51—C521.385 (3)
C4—H4B0.9700C52—C531.385 (4)
C5—C511.513 (4)C52—H520.9300
C5—H50.9800C53—C541.379 (3)
C11—N111.339 (3)C53—H530.9300
C11—S111.683 (3)C54—C551.378 (4)
N11—H11A0.88 (2)C54—O541.380 (3)
N11—H11B0.89 (3)C55—C561.374 (4)
C31—C321.394 (3)C55—H550.9300
C31—C361.396 (3)C56—H560.9300
C32—C331.369 (4)O54—C571.413 (3)
C32—H320.9300C57—C581.455 (4)
C33—C341.375 (4)C57—H57A0.9700
C33—H330.9300C57—H57B0.9700
C34—O341.368 (3)C58—C591.160 (4)
C34—C351.383 (3)C59—H590.9300
C35—C361.377 (3)
C11—N1—N2120.55 (19)C34—C35—H35120.0
C11—N1—C5127.5 (2)C35—C36—C31121.0 (2)
N2—N1—C5111.11 (19)C35—C36—H36119.5
C3—N2—N1108.86 (19)C31—C36—H36119.5
N2—C3—C31121.1 (2)C34—O34—C37118.3 (2)
N2—C3—C4112.2 (2)O34—C37—H37A109.5
C31—C3—C4126.7 (2)O34—C37—H37B109.5
C3—C4—C5102.5 (2)H37A—C37—H37B109.5
C3—C4—H4A111.3O34—C37—H37C109.5
C5—C4—H4A111.3H37A—C37—H37C109.5
C3—C4—H4B111.3H37B—C37—H37C109.5
C5—C4—H4B111.3C56—C51—C52117.4 (3)
H4A—C4—H4B109.2C56—C51—C5119.6 (2)
N1—C5—C51111.8 (2)C52—C51—C5122.9 (2)
N1—C5—C4100.4 (2)C51—C52—C53121.7 (2)
C51—C5—C4113.8 (2)C51—C52—H52119.1
N1—C5—H5110.2C53—C52—H52119.1
C51—C5—H5110.2C54—C53—C52119.3 (3)
C4—C5—H5110.2C54—C53—H53120.3
N11—C11—N1115.7 (2)C52—C53—H53120.3
N11—C11—S11122.4 (2)C55—C54—C53119.6 (3)
N1—C11—S11121.85 (18)C55—C54—O54116.1 (2)
C11—N11—H11A123.2 (16)C53—C54—O54124.3 (3)
C11—N11—H11B116.0 (16)C56—C55—C54120.2 (2)
H11A—N11—H11B118 (2)C56—C55—H55119.9
C32—C31—C36117.4 (3)C54—C55—H55119.9
C32—C31—C3121.7 (2)C55—C56—C51121.6 (3)
C36—C31—C3120.7 (2)C55—C56—H56119.2
C33—C32—C31121.5 (3)C51—C56—H56119.2
C33—C32—H32119.3C54—O54—C57117.6 (2)
C31—C32—H32119.3O54—C57—C58109.9 (3)
C32—C33—C34120.1 (3)O54—C57—H57A109.7
C32—C33—H33119.9C58—C57—H57A109.7
C34—C33—H33119.9O54—C57—H57B109.7
O34—C34—C33115.9 (3)C58—C57—H57B109.7
O34—C34—C35124.3 (3)H57A—C57—H57B108.2
C33—C34—C35119.8 (3)C59—C58—C57177.2 (4)
C36—C35—C34120.0 (3)C58—C59—H59180.0
C36—C35—H35120.0
C11—N1—N2—C3176.5 (2)O34—C34—C35—C36177.7 (3)
C5—N1—N2—C313.2 (3)C33—C34—C35—C363.0 (4)
N1—N2—C3—C31176.8 (2)C34—C35—C36—C310.2 (4)
N1—N2—C3—C41.8 (3)C32—C31—C36—C353.1 (4)
N2—C3—C4—C515.0 (3)C3—C31—C36—C35172.9 (3)
C31—C3—C4—C5163.6 (3)C33—C34—O34—C37175.1 (3)
C11—N1—C5—C5169.8 (3)C35—C34—O34—C375.5 (4)
N2—N1—C5—C5199.7 (2)N1—C5—C51—C56155.6 (2)
C11—N1—C5—C4169.2 (2)C4—C5—C51—C5691.5 (3)
N2—N1—C5—C421.3 (3)N1—C5—C51—C5227.6 (4)
C3—C4—C5—N120.3 (3)C4—C5—C51—C5285.3 (3)
C3—C4—C5—C5199.3 (2)C56—C51—C52—C532.4 (4)
N2—N1—C11—N115.7 (4)C5—C51—C52—C53179.2 (3)
C5—N1—C11—N11174.3 (2)C51—C52—C53—C540.5 (5)
N2—N1—C11—S11175.50 (18)C52—C53—C54—C551.7 (4)
C5—N1—C11—S116.9 (4)C52—C53—C54—O54178.6 (3)
N2—C3—C31—C32168.5 (3)C53—C54—C55—C561.9 (4)
C4—C3—C31—C3210.0 (4)O54—C54—C55—C56178.4 (2)
N2—C3—C31—C367.4 (4)C54—C55—C56—C510.2 (4)
C4—C3—C31—C36174.2 (3)C52—C51—C56—C552.3 (4)
C36—C31—C32—C332.9 (4)C5—C51—C56—C55179.2 (2)
C3—C31—C32—C33173.1 (3)C55—C54—O54—C57172.0 (2)
C31—C32—C33—C340.2 (5)C53—C54—O54—C578.3 (4)
C32—C33—C34—O34177.4 (3)C54—O54—C57—C58174.1 (2)
C32—C33—C34—C353.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···N20.88 (2)2.32 (2)2.637 (3)101.2 (18)
N11—H11A···S11i0.88 (2)2.68 (2)3.474 (2)151 (2)
N11—H11B···N2ii0.89 (2)2.17 (2)3.049 (3)175 (2)
C37—H37B···O34iii0.962.553.302 (4)135
C56—H56···Cg2iv0.932.933.717 (3)143
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1, z+1; (iv) x, y+1/2, z+1/2.
Hydrogen bonds and short intra- and inter molecular contacts (Å, °) for compounds (I), (II) and (IV)–(VI) top
Cg1 and Cg2 represent the centroids of the rings (C31–C36) and (C51–C456), respectively
CompoundD—H···AD—HH···AD···AD—H···A
(I)C13—H13···Cg1i0.932.903.554 (3)128
C35—H35···Cg1ii0.932.833.508 (3)131
(II)C13—H13···Cg1i0.932.953.602 (4)128
C35—H35···Cg1ii0.932.803.484 (3)131
(IV)N11—H11A···N20.80 (4)2.23 (4)2.614 (5)110 (4)
N11—H11B···S11iii0.88 (4)2.63 (4)3.483 (4)164 (4)
C52—H52···S11iv0.932.853.641 (4)144
(V)N11—H11A···N20.82 (5)2.24 (6)2.611 (5)108 (5)
N11—H11A···Br34v0.82 (5)2.89 (6)3.632 (5)152 (5)
N11—H11B···S11iii0.83 (6)2.70 (6)3.500 (5)162 (6)
C52—H52···S11iv0.932.873.650 (4)143
(VI)N11—H11A···N20.88 (2)2.32 (2)2.637 (3)101.2 (18)
N11—H11A···S11vi0.88 (2)2.68 (2)3.474 (2)151 (2)
N11—H11B···N2vii0.89 (2)2.17 (2)3.049 (3)175 (2)
C37—H37B···O34viii0.962.553.302 (4)135
C56—H56···Cg2ix0.932.933.717 (3)143
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, 1/2 - y, 1/2 + z; (iii) 1 - x, 2 - y, 1 - z; (iv) x, -1 + y, z; (v) 1/2 - x, 1/2 + y, 1/2 - z; (vi) 1 - x, -1/2 + y, 1/2 - z; (vii) 1 - x, 1/2 + y, 1/2 - z; (viii) 1 - x, -1 - y, 1 - z; (ix) -x, 1/2 + y, 1/2 - z.
 

Acknowledgements

MAES thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

First citationAllen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 680–695.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBadawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349–361.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBosum-Dybus, A. & Neh, H. (1991). Liebigs Ann. Chem. pp. 823–825.  Google Scholar
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCole, J. M., Wilson, C. C., Howard, J. A. K. & Cruickshank, F. R. (2000). Acta Cryst. B56, 1085–1093.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCuartas, V., Insuasty, B., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 784–790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHans, R. H., Guantai, E. M., Lategan, C., Smith, P. J., Wan, B., Franzblau, S. G., Gut, J., Rosenthal, P. J. & Chibale, K. (2010). Bioorg. Med. Chem. Lett. 20, 942–944.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKarrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A. & Ansar, M. (2018). Molecules, 23, 134–220.  Web of Science CrossRef Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2019). Acta Cryst. C75, 768–776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoca, I., Özgür, A., Coşkun, K. A. & Tutar, Y. (2013). Bioorg. Med. Chem. 21, 3859–3865.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.  CrossRef Web of Science Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.  CrossRef Web of Science Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSauzem, P. D., Machado, P., Rubin, M. A., da, S., Sant'Anna, G., Faber, H. B., de Souza, A. H., Mello, C. F., Beck, P., Burrow, R. A., Bonacorso, H. G., Zanatta, N. & Martins, M. A. P. (2008). Eur. J. Med. Chem. 43, 1237–1247.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThallapally, P. K. & Nangia, A. (2001). CrystEngComm, 3, 114–119.  CrossRef Google Scholar
First citationVijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410–415.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationYadav, P., Lal, K., Kumar, A., Guru, S. K., Jaglan, S. & Bhushan, S. (2017). Eur. J. Med. Chem. 126, 944–953.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, G. & Raptis, R. G. (2003). J. Heterocycl. Chem. 40, 659–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, B., Qi, P.-P., Shi, X.-J., Huang, R., Guo, H., Zheng, Y.-C., Yu, D.-Q. & Liu, H.-M. (2016). Eur. J. Med. Chem. 117, 241–255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYuan, M., Yin, X., Zheng, H., Ouyang, C., Zuo, Z., Liu, H. & Li, Y. (2009). Chem. Asian J. 4, 707–713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, J., Tan, D.-J., Wang, T., Jing, S.-S., Kang, Y. & Zhang, Z.-T. (2017). J. Mol. Struct. 1149, 235–242.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds