research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of a new pyrazine dicarboxamide ligand, N2,N3-bis­­(quinolin-8-yl)pyrazine-2,3-dicarboxamide, and of a copper perchlorate binuclear complex

CROSSMARK_Color_square_no_text.svg

aDebiopharm International S.A., Chemin Messidor 5-7, CH-1002 Lausanne, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by M. Zeller, Purdue University, USA (Received 7 February 2020; accepted 9 February 2020; online 14 February 2020)

The title pyrazine dicarboxamide ligand, N2,N3-bis­(quinolin-8-yl)pyrazine-2,3-dicarboxamide (H2L1), C24H16N6O2, has a twisted conformation with the outer quinoline groups being inclined to the central pyrazine ring by 9.00 (6) and 78.67 (5)°, and by 79.94 (4)° to each other. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the (10[\overline{1}]) plane, which are in turn linked by offset ππ inter­actions [inter­centroid distances 3.4779 (9) and 3.6526 (8) Å], forming a supra­molecular three-dimensional structure. Reaction of the ligand H2L1 with Cu(ClO4)2 in aceto­nitrile leads to the formation of the binuclear complex, [μ-(3-{hy­droxy[(quinolin-8-yl)imino]­meth­yl}pyrazin-2-yl)[(quinolin-8-yl)imino]­methano­lato]bis­[diaceto­nitrile­copper(II)] tris­(per­chlor­ate) aceto­nitrile disolvate, [Cu2(C24H15N6O2)(CH3CN)4](ClO4)3·2CH3CN or [Cu2(HL1)(CH3CN)4](ClO4)3·2CH3CN (I). In the cation of complex I, the ligand coordinates to the copper(II) atoms in a bis-tridentate fashion. A resonance-assisted O—H⋯O hydrogen bond is present in the ligand; the position of this H atom was located in a difference-Fourier map. Both copper(II) atoms are fivefold coordinate, being ligated by three N atoms of the ligand and by the N atoms of two aceto­nitrile mol­ecules. The first copper atom has a perfect square-pyramidal geometry while the second copper atom has a distorted shape. In the crystal, the cation and perchlorate anions are linked by a number of C—H⋯O hydrogen bonds, forming a supra­molecular three-dimensional structure.

1. Chemical context

The title ligand, N2,N3-bis­(quinolin-8-yl)pyrazine-2,3-dicarboxamide (H2L1), is very similar to ligand N2-[(2,3-di­hydro­pyridin-2-yl)meth­yl]-N3-(pyridin-2-ylmeth­yl)pyrazine-2,3-di­carboxamide (H2L2), for which two polymorphs have been reported (Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]; Cati & Stoeckli-Evans, 2004[Cati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, o210-o212.]). These and other pyrazine-carboxamide ligands were synthesized to explore their coordination behaviour with first-row transition metals and to study the magnetic exchange behaviour of the complexes (Cati, 2002[Cati, D. S. (2002). PhD Thesis, University of Neuchâtel, Switzerland.]). With ligand H2L2, grid [2 × 2] complexes have been synthesized using Cu(BF4)2 (Hausmann et al., 2003[Hausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992-2993.]), and with Cu(ClO4)2 and NiCl2 (Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]). The latter complexes were shown to exhibit multiple anion encapsulation and anti­ferromagnetic exchange behaviour. In all of these complexes, the ligand is monodeprotonated and the bis-tridentate coordinated ligands have relatively planar conformations. Herein, we report on the syntheses and crystal structures of the title pyrazine dicarboxamide ligand (H2L1), and of a binuclear copper complex, I, which was synthesized by the reaction of H2L1 with copper perchlorate using aceto­nitrile as solvent. The various inter­molecular contacts in the crystal of H2L1 have been studied by Hirshfeld surface analysis.

[Scheme 1]
[Scheme 2]

2. Structural commentary

The mol­ecular structure of ligand H2L1 is illustrated in Fig. 1[link]. The quinoline ring (N4/C6–C14, r.m.s. deviation 0.008 Å) is inclined to the pyrazine ring (N1/N2/C1–C4) by 9.00 (6)°. The NH hydrogen atom H3N is involved in two intra­molecular N—H⋯N contacts (Fig. 1[link], Table 1[link]). On the opposite side of the mol­ecule, the quinoline ring system (N6/C16–C124, r.m.s. deviation 0.009 Å) is inclined to the pyrazine ring by 78.67 (5)°, with a single intra­molecular N—H⋯N contact (Fig. 1[link], Table 1[link]). Both carboxamide O atoms, O1 and O2, are involved in short C—H⋯O intra­molecular contacts, enclosing S(6) ring motifs (Fig. 1[link], Table 1[link]). Hence, the mol­ecule is L-shaped with the two quinoline ring systems being inclined to each other by 79.94 (4)°.

Table 1
Hydrogen-bond geometry (Å, °) for H2L1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N1 0.88 (2) 2.256 (16) 2.6791 (18) 109 (1)
N3—H3N⋯N4 0.88 (2) 2.218 (16) 2.6657 (16) 111 (1)
N5—H5N⋯N6 0.85 (2) 2.233 (16) 2.6759 (17) 113 (1)
C7—H7⋯O1 0.94 2.31 2.9136 (19) 122
C17—H17⋯O2 0.94 2.28 2.8818 (18) 122
C4—H4⋯O1i 0.94 2.57 3.4249 (18) 151
C12—H12⋯O2ii 0.94 2.60 3.3589 (19) 138
C18—H18⋯O2iii 0.94 2.48 3.3289 (19) 151
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z.
[Figure 1]
Figure 1
Mol­ecular structure of ligand H2L1, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular contacts are shown as dashed lines (see Table 1[link]).

In the binuclear copper complex I (Fig. 2[link]), which was formed by the reaction of H2L1 with Cu(ClO4)2·2H2O, the bond lengths and angles involving the two amide moieties (Table 2[link]; notably the bond lengths involving atoms C5 and C15) indicate that the situation in the crystal resembles that shown in the scheme for HL1. On coordinating to two metal ions the ligand H2L1 becomes negatively charged, and is stabilized by a hydrogen bond to the adjacent neutral amide tautomer. In order to locate the H atom of this resonance-assisted O—H⋯O hydrogen bond (Table 4[link]), and as recommended by Fábry (Fábry, 2018[Fábry, J. (2018). Acta Cryst. E74, 1344-1357.]) and Spek (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), a difference-Fourier map (Fig. 3[link]) was examined and the position of the H atom was located closest to atom O2.

Table 2
A comparison of bond lengths and angles (Å, °) in the carboxamide units of H2L1 and I

  H2L1 I
O1—C5 1.222 (2) 1.289 (5)
N3—C5 1.347 (2) 1.319 (6)
C1—C5 1.506 (2) 1.477 (7)
O2—C15 1.219 (2) 1.267 (5)
N5—C15 1.348 (2) 1.310 (6)
C2—C15 1.508 (2) 1.518 (5)
     
N3—C5—O1 125.78 (13) 123.9 (4)
N3—C5—C1 113.91 (12) 114.4 (4)
O1—C5—C1 120.32 (12) 121.7 (4)
N5—C15—O2 125.13 (13) 125.7 (4)
N5—C15—C2 115.76 (12) 112.1 (4)
O2—C15—C2 118.87 (12) 122.1 (4)

Table 4
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1 1.12 (6) 1.29 (6) 2.397 (4) 169 (6)
C7—H7⋯O1 0.95 2.35 2.920 (6) 118
C17—H17⋯O2 0.95 2.32 2.897 (5) 119
C17—H17⋯O32i 0.95 2.36 3.175 (7) 144
C22—H22⋯O12ii 0.95 2.50 3.108 (6) 122
C23—H23⋯O34ii 0.95 2.41 3.255 (7) 148
C34—H34A⋯O24 0.98 2.31 3.130 (10) 140
C34—H34C⋯O11iii 0.98 2.56 3.272 (9) 130
C36—H36A⋯O21iv 0.98 2.46 3.429 (8) 168
C38—H38B⋯N31iv 0.98 2.57 3.454 (10) 150
C40—H40C⋯O32v 0.98 2.57 3.516 (8) 162
Symmetry codes: (i) x+1, y-1, z; (ii) x, y-1, z; (iii) x, y, z-1; (iv) -x, -y, -z+1; (v) -x, -y+1, -z+1.
[Figure 2]
Figure 2
Mol­ecular structure of the cation of complex I, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For clarity, the perchlorate anions and the solvate aceto­nitrile mol­ecules have been omitted.
[Figure 3]
Figure 3
A difference-Fourier map showing the position (X) of the hydroxyl H atom, H2O, in complex I.

The asymmetric unit of compound I is composed of the binuclear 3+ cation, three perchlorate anions and two aceto­nitrile solvate mol­ecules. In the cation (Fig. 2[link]), the ligand coordinates to the copper(II) atoms in a bis-tridentate fashion. Selected bond lengths and angles involving atoms Cu1 and Cu2 are given in Table 3[link]. Atom Cu1 has a perfect square-pyramidal fivefold CuN5 coordination sphere with a τ5 value of 0.0 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal–pyramidal coordination sphere; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The Cu—N bond lengths in the equatorial plane vary from 1.936 (3) to 2.013 (4) Å, while the apical Cu—N12 bond length is 2.266 (4) Å. Atom Cu2 also has a fivefold CuN5 coordination sphere but the value of τ5 is 0.38, indicating a distorted shape. The Cu—N bond lengths in the approximate equatorial plane vary from 1.943 (4) to 2.054 (4) Å, while the apical Cu—N21 bond length is 2.137 (4) Å. The ligand is essentially planar with the quinoline ring systems (involving atoms N4 and N6) being inclined to the central pyrazine ring by 1.78 (17) and 1.80 (17)°, respectively, and by 2.65 (13)° to each other.

Table 3
Selected geometric parameters (Å, °) for I[link]

Cu1—N1 2.013 (4) Cu2—N2 1.996 (4)
Cu1—N3 1.936 (3) Cu2—N5 1.943 (4)
Cu1—N4 1.952 (4) Cu2—N6 1.961 (3)
Cu1—N11 1.982 (4) Cu2—N21 2.137 (4)
Cu1—N12 2.266 (4) Cu2—N22 2.054 (4)
       
N4—Cu1—N1 163.76 (14) N6—Cu2—N2 163.51 (16)
N3—Cu1—N11 163.66 (16) N5—Cu2—N22 140.74 (16)

3. Supra­molecular features

In the crystal of H2L1, mol­ecules are linked by two pairs of C—H⋯O hydrogen bonds (C12—H12⋯O2ii and C18—H18⋯O2iii), each involving inversion-related mol­ecules, forming chains of loops propagating along the [10[\overline{1}]] direction. The loops enclose R22(14) and R22(24) ring motifs (see Fig. 4[link], Table 1[link]). A third C—H⋯O hydrogen bond (C4—H4⋯O1i) links the chains in the b-axis direction (Table 1[link]), so forming layers lying parallel to the (10[\overline{1}]) plane. Finally the layers are linked by offset ππ inter­actions involving the pyrazine ring and an inversion-related quinoline ring system, and by inversion-related quinoline ring systems, so forming a supra­molecular three-dimensional structure (Fig. 5[link]). The first offset ππ inter­action involves pyrazine ring N1/N2/C1–C4 (centroid Cg1) and quinoline ring system N4/C6–C14 (centroid Cg2) with Cg1⋯Cg2i = 3.4779 (9) Å, α = 9.00 (6)°, β = 17.5 °, γ = 11.3°; the inter­planar distances are 3.4106 (6) and 3.3162 (5) Å, with an offset of 1.048 Å [symmetry code: (i) −x, −y + 2, −z + 1]. The second offset ππ inter­action involves inversion-related N6/C16–C24 (centroid Cg3) quinoline ring systems with Cg3⋯Cg3ii = 3.6526 (8) Å, α = 0.00 (4)°, β = 24.1°, γ = 24.1°, inter­planar distance = 3.3333 (4) Å, with an offset of 1.494 Å [symmetry code: (ii) −x − 1, −y + 1, −z].

[Figure 4]
Figure 4
A partial view along the b axis of the crystal packing of ligand H2L1. Hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, in this and subsequent crystal packing figures, only the H atoms involved in these inter­actions have been included.
[Figure 5]
Figure 5
The crystal packing of ligand H2L1, viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1[link]).

In the crystal of complex I, the cations are arranged in layers parallel to the (012) plane. They are linked via the perchlorate anions by a number of C—H⋯O hydrogen bonds (Table 4[link]), so forming a supra­molecular three-dimensional structure (Figs. 6[link] and 7[link]). There is only one significant C—H⋯N hydrogen bond present involving the solvate aceto­nitrile N atom, N31, linking it to the CH3 group of a coordinated aceto­nitrile mol­ecule on atom Cu2 (Table 4[link]).

[Figure 6]
Figure 6
The crystal packing of complex I, viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 4[link]).
[Figure 7]
Figure 7
The crystal packing of complex I, viewed along the c axis. Hydrogen bonds are shown as dashed lines (see Table 4[link]).

4. Hirshfeld surface analysis of ligand HL1

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). A view of the Hirshfeld surface of H2L1 mapped over dnorm is shown in Fig. 8[link]a, where short inter­atomic contacts are indicated by the faint red spots. The ππ stacking in the crystal is confirmed by the small blue regions surrounding bright-red spots in the various aromatic rings in Fig. 8[link]b, the Hirshfeld surface mapped over the shape-index. The ππ stacking is also confirmed by the flat regions around the aromatic units in Fig. 8[link]c, the Hirshfeld surface mapped over the curvedness.

[Figure 8]
Figure 8
(a) A view of the Hirshfeld surface for H2L1 mapped over dnorm, with colour code −0.1884 to 1.1906 a.u., (b) a view of the Hirshfeld surface mapped over the shape-index for H2L1, (c) a view of the Hirshfeld surface mapped over the curvedness for H2L1.

The two-dimensional fingerprint plots for H2L1 are given in Fig. 9[link]. The principal inter­molecular contact types are delineated into H⋯H at 36.4% (Fig. 9[link]b), C⋯H/H⋯C at 24.1% (Fig. 9[link]c), O⋯H/H⋯O at 12.2% (Fig. 9[link]d) and N⋯H/H⋯N at 11.8% (Fig. 9[link]e) contacts. The contributions of the C⋯N (Fig. 9[link]f) and C⋯C (Fig. 9[link]g) contacts are 7.7 and 6.7%, respectively.

[Figure 9]
Figure 9
(a) The full two-dimensional fingerprint plot for H2L1 and the fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) N⋯H/H⋯N, (f) C⋯N, (g) C⋯C contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for pyrazine carboxamides including a quinoline group yielded 28 hits. Many of these structures concern the ligand N-(quinolin-8-yl)pyrazine-2-carboxamide (CSD refcode EFODIP; Cati & Stoeckli-Evans, 2019[Cati, D. S. & Stoeckli-Evans, H. (2019). Acta Cryst. E75, 755-761.]) and metal complexes of this ligand, such as (acetato)[N-(quinolin-8-yl)pyrazine-2-carboxamidato]copper(II) monohydrate (AYIFOF; Meghdadi et al., 2013[Meghdadi, S., Amirnasr, M., Azarkamanzad, Z., Schenk Joss, K., Fadaee, F., Amiri, A. & Abbasi, S. (2013). J. Coord. Chem. 66, 4330-4343.]) and hexa­kis­(μ-acetato)­bis­(methanol)bis­[N-(quniolin-8-yl)pyrazine-2-carboxamide]­tetra­copper(II) methanol solvate (EFODOV; Cati & Stoeckli-Evans, 2019[Cati, D. S. & Stoeckli-Evans, H. (2019). Acta Cryst. E75, 755-761.]). However, the majority of the structures are hetero bimetallic iron–mangan­ese cyano complexes that exhibit super-exchange magnetic properties (see file S1 in the supporting information).

6. Synthesis and crystallization

Synthesis of the ligand N2,N3-di(quinolin-8-yl)pyrazine-2,3-dicarboxamide (H2L1): 8-amino­quinoline (3.18g, 22 mmol) was added to a solution of pyrazine-2,3-di­carb­oxy­lic acid (1.68g, 10 mmol) and 1,1′-carbonyl­diimidazole (4.20g, 26 mmol) in 180 ml of DMF (anhydride) in a two-necked flask (500 ml). The solution was mixed for 15 min at room temperature and then heated gradually for 1 h and then refluxed for 7 h. The reaction mixture was then cooled and added directly to a column (10 g of SiO2, diameter of the column 1 cm), and eluted with DMF. After evaporation of the solvent the solid obtained was refluxed in 80 ml of ethanol for 10 min and then filtered. The brown–yellow solid obtained was recrystallized from DMF and on slow evaporation of the solvent pale-yellow rod-like crystals of H2L1 were obtained (yield 22%; m.p. 569 K). 1H NMR (400 MHz, DMSO-d6): 11.47 (s, 1H, HN3); 9.04 (s, 1H, H3 = H4); 8.95 (dd, 1H, J13,12 = 4.2, J13,11 = 1.7, H13); 8.82 (dd, 1H, J7,8 = 7.7, J7,9 = 1.2, H7); 8.47 (dd, 1H, J11,12 = 8.3, J11,13 = 1.7, H11); 7.77 (dd, 1H, J9,8 = 8.3, J9,7 = 1.2, H9); 7.66 (m, 2H, H12 & H8). IR (KBr pellet, cm−1): 3350 (s), 3300 (s), 1678 (vs), 1560 (vs), 1530 (vs), 1520 (vs), 1488 (vs), 1465 (s), 1427 (vs), 1385 (s), 1326 (s), 1151 (s), 1109 (s), 919 (s), 829 (vs), 792 (vs), 752 (s), 652 (s), 607 (s). Analysis. for C24H16N6O2 (Mr = 420.43 g mol−1) calculated (%) C: 68.56, H: 3.84, N: 19.99; found (%) C: 68.70, H: 3.92, N: 20.40.

Synthesis of complex [Cu2(HL)(CH3CN)4]·3(ClO4)·2(CH3CN) (I)[link]: Cu(ClO4)2·6H2O (28 mg, 0.075 mmol) and H2L (15 mg, 0.036 mmol) were added to 10 ml of aceto­nitrile. The green solution obtained was stirred at room temperature for 10 min, then left at ambient temperature. After slow evaporation of the solvent green plate-like crystals of I were obtained (yield: 15 mg, 40%). IR (KBr pellet, cm−1): 1660 (vs), 1645 (vs), 1615 (vs), 1581 (s), 1566 (s), 1389 (s), 1147 (s), 1089 (vs), 625 (s).

During this experiment, two types of crystals were obtained on slow evaporation of the filtrate of the reaction mixture; green plate-like crystals of the binuclear complex I and thin colourless crystals of a second binuclear complex, [(H2O)Cu2(HL1)(ClO4)2(CH3CN)]·(ClO4)·2(CH3CN) (II). The data set for II, measured at 153 K, has only 20% observed data; the crystal did not diffract beyond 20° in θ. While the structure is perfectly clear (Fig. 10[link]), the analysis is probably at the limit of being acceptable: Rint = 0.36 and GoF = 0.43, with the s.u.s. of the Cu—O/N bond lengths varying between 0.008 and 0.014 Å. The final values of R[F2 > 2σ(F2)] and wR(F2) are 0.0558 and 0.1328. The CIF, including the HKL file, has been deposited with the Cambridge Structural Database (refcode XUFZAC; CCDC 1981495; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). It is supplied here as supporting information file S2.

[Figure 10]
Figure 10
The structure of complex [(H2O)Cu2(HL1)(ClO4)2(CH3CN)]·(ClO4)·2(CH3CN) (II).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For ligand H2L1, the NH H atoms were located in a difference-Fourier map and freely refined. For both H2L1 and complex I, the C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.94–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. For complex I, a resonance assisted O2—H2O⋯O1 hydrogen bond (Table 4[link]) is present in the ligand; the position of the H atom, H2O, was located closest to atom O2 in a difference-Fourier map (Fig. 3[link]) and was freely refined.

Table 5
Experimental details

  H2L1 I
Crystal data
Chemical formula C24H16N6O2 [Cu2(C24H15N6O2)(C2H3N)4](ClO4)3·2C2H3N
Mr 420.43 1091.17
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 223 153
a, b, c (Å) 7.9633 (11), 8.0043 (12), 15.615 (2) 12.6281 (10), 13.4938 (11), 14.7884 (14)
α, β, γ (°) 97.629 (14), 98.349 (11), 100.407 (17) 74.678 (10), 89.115 (10), 65.170 (9)
V3) 955.6 (2) 2192.5 (4)
Z 2 2
Radiation type Cu Kα Mo Kα
μ (mm−1) 0.80 1.23
Crystal size (mm) 0.46 × 0.23 × 0.15 0.30 × 0.30 × 0.15
 
Data collection
Diffractometer STOE-Siemens AED2, 4-circle STOE IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.984, 1.000 0.857, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5536, 2791, 2596 17344, 7942, 4757
Rint 0.017 0.077
θmax (°) 59.6 25.9
(sin θ/λ)max−1) 0.560 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.04 0.053, 0.138, 0.86
No. of reflections 2791 7942
No. of parameters 298 615
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.17 0.91, −0.93
Computer programs: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED Software. Stoe & Cie GmbH, Damstadt, Germany.]), EXPOSE, CELL and INTEGRATE in IPDS1 (Stoe & Cie, 2004[Stoe & Cie (2004). IPDS1 Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED Software. Stoe & Cie GmbH, Damstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 and SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

With the STOE IPDS I, a one-circle diffractometer, for the triclinic system often only 93% of the Ewald sphere is accessible. Hence, for complex I the `diffrn_reflns_Laue_measured_fraction_full' of 0.941 is below the required minimum of 0.95.

Supporting information


Computing details top

Data collection: STADI4 (Stoe & Cie, 1997) for H2L1; EXPOSE in IPDS1 (Stoe & Cie, 2004) for (I). Cell refinement: STADI4 (Stoe & Cie, 1997) for H2L1; CELL in IPDS1 (Stoe & Cie, 2004) for (I). Data reduction: X-RED (Stoe & Cie, 1997) for H2L1; INTEGRATE in IPDS1 (Stoe & Cie, 2004) for (I). For both structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020). Software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010) for H2L1; SHELXL2016/6 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010) for (I).

N2,N3-Bis(quinolin-8-yl)pyrazine-2,3-dicarboxamide (H2L1) top
Crystal data top
C24H16N6O2Z = 2
Mr = 420.43F(000) = 436
Triclinic, P1Dx = 1.461 Mg m3
a = 7.9633 (11) ÅCu Kα radiation, λ = 1.54186 Å
b = 8.0043 (12) ÅCell parameters from 21 reflections
c = 15.615 (2) Åθ = 15.5–27.3°
α = 97.629 (14)°µ = 0.80 mm1
β = 98.349 (11)°T = 223 K
γ = 100.407 (17)°Rod, pale_yellow
V = 955.6 (2) Å30.46 × 0.23 × 0.15 mm
Data collection top
STOE-Siemens AED2, 4-circle
diffractometer
2596 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Plane graphite monochromatorθmax = 59.6°, θmin = 2.9°
ω/2θ scansh = 88
Absorption correction: multi-scan
(MULABS; Spek, 2009)
k = 88
Tmin = 0.984, Tmax = 1.000l = 1717
5536 measured reflections2 standard reflections every 60 min
2791 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.1623P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2791 reflectionsΔρmax = 0.20 e Å3
298 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: (SHELXL-2016/6; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03840 (15)1.12688 (15)0.36884 (8)0.0351 (3)
N20.16596 (15)1.03169 (15)0.20236 (8)0.0365 (3)
N30.17902 (15)0.89849 (16)0.45078 (7)0.0334 (3)
H3N0.200 (2)1.011 (2)0.4667 (10)0.038 (4)*
N40.38594 (14)1.09265 (14)0.59206 (7)0.0317 (3)
N50.26526 (15)0.64169 (15)0.16840 (7)0.0298 (3)
H5N0.343 (2)0.668 (2)0.1963 (11)0.039 (4)*
N60.59109 (14)0.47298 (14)0.15991 (7)0.0307 (3)
O10.02271 (14)0.67866 (12)0.34455 (7)0.0449 (3)
O20.01629 (13)0.72082 (14)0.15181 (7)0.0454 (3)
C10.00279 (16)0.96459 (17)0.32722 (8)0.0291 (3)
C20.09398 (16)0.91763 (17)0.24276 (9)0.0295 (3)
C30.13458 (19)1.19183 (19)0.24608 (10)0.0389 (4)
H30.1857771.2746050.2206280.047*
C40.03009 (19)1.24052 (18)0.32706 (10)0.0385 (4)
H40.0062431.3566540.3536770.046*
C50.06931 (17)0.83168 (17)0.37497 (9)0.0314 (3)
C60.26615 (18)0.81207 (17)0.50976 (9)0.0321 (3)
C70.2510 (2)0.63717 (19)0.50045 (10)0.0446 (4)
H70.1777710.5660950.4514850.054*
C80.3440 (2)0.5635 (2)0.56341 (11)0.0529 (5)
H80.3317490.4431460.5561240.063*
C90.4514 (2)0.6625 (2)0.63477 (11)0.0486 (4)
H90.5128160.6104210.6761680.058*
C100.47108 (19)0.84334 (18)0.64690 (9)0.0347 (3)
C110.57800 (19)0.95486 (19)0.71977 (9)0.0372 (4)
H110.6423810.9098660.7632260.045*
C120.58759 (18)1.12744 (19)0.72692 (9)0.0364 (3)
H120.6588631.2033310.7749060.044*
C130.48898 (19)1.18985 (18)0.66126 (9)0.0354 (3)
H130.4969001.3095360.6669690.043*
C140.37686 (17)0.91962 (17)0.58438 (8)0.0294 (3)
C150.10800 (17)0.74740 (18)0.18488 (8)0.0304 (3)
C160.32246 (17)0.49008 (16)0.10646 (8)0.0270 (3)
C170.22451 (18)0.42460 (17)0.04976 (9)0.0311 (3)
H170.1078180.4780270.0535400.037*
C180.29793 (19)0.27840 (18)0.01373 (9)0.0339 (3)
H180.2291320.2353310.0519400.041*
C190.46653 (19)0.19748 (18)0.02128 (9)0.0341 (3)
H190.5139860.1016110.0652810.041*
C200.56981 (17)0.25848 (16)0.03745 (8)0.0297 (3)
C210.74570 (18)0.18132 (18)0.03417 (9)0.0360 (4)
H210.7989830.0835710.0077140.043*
C220.83701 (19)0.24976 (19)0.09212 (10)0.0374 (4)
H220.9537140.1994820.0908780.045*
C230.75489 (18)0.39644 (18)0.15383 (9)0.0350 (3)
H230.8201650.4427440.1930100.042*
C240.49857 (17)0.40505 (16)0.10189 (8)0.0262 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0356 (6)0.0310 (7)0.0333 (6)0.0009 (5)0.0001 (5)0.0007 (5)
N20.0365 (7)0.0386 (7)0.0330 (6)0.0065 (5)0.0003 (5)0.0081 (5)
N30.0414 (7)0.0272 (7)0.0266 (6)0.0034 (5)0.0045 (5)0.0022 (5)
N40.0353 (7)0.0290 (6)0.0277 (6)0.0045 (5)0.0006 (5)0.0022 (5)
N50.0260 (6)0.0329 (6)0.0275 (6)0.0042 (5)0.0027 (5)0.0012 (5)
N60.0311 (6)0.0322 (6)0.0288 (6)0.0073 (5)0.0036 (5)0.0058 (5)
O10.0560 (7)0.0293 (6)0.0385 (6)0.0005 (5)0.0121 (5)0.0013 (5)
O20.0286 (6)0.0562 (7)0.0446 (6)0.0027 (5)0.0065 (5)0.0079 (5)
C10.0264 (7)0.0301 (7)0.0268 (7)0.0012 (5)0.0024 (5)0.0022 (6)
C20.0237 (7)0.0343 (7)0.0287 (7)0.0010 (5)0.0035 (5)0.0070 (6)
C30.0418 (8)0.0353 (8)0.0397 (8)0.0077 (6)0.0032 (7)0.0110 (7)
C40.0419 (8)0.0283 (8)0.0421 (8)0.0035 (6)0.0031 (7)0.0039 (6)
C50.0327 (7)0.0301 (8)0.0271 (7)0.0001 (6)0.0011 (6)0.0022 (6)
C60.0374 (8)0.0311 (8)0.0250 (7)0.0043 (6)0.0004 (6)0.0036 (6)
C70.0574 (10)0.0325 (8)0.0350 (8)0.0033 (7)0.0095 (7)0.0011 (6)
C80.0745 (12)0.0291 (8)0.0466 (9)0.0086 (8)0.0125 (9)0.0038 (7)
C90.0643 (11)0.0352 (8)0.0417 (9)0.0136 (8)0.0116 (8)0.0079 (7)
C100.0377 (8)0.0355 (8)0.0290 (7)0.0072 (6)0.0006 (6)0.0050 (6)
C110.0371 (8)0.0424 (9)0.0298 (8)0.0095 (6)0.0032 (6)0.0054 (6)
C120.0335 (8)0.0401 (8)0.0292 (7)0.0022 (6)0.0019 (6)0.0026 (6)
C130.0391 (8)0.0309 (8)0.0320 (8)0.0034 (6)0.0021 (6)0.0005 (6)
C140.0309 (7)0.0303 (7)0.0258 (7)0.0043 (6)0.0046 (6)0.0032 (5)
C150.0265 (7)0.0378 (8)0.0241 (7)0.0045 (6)0.0014 (5)0.0045 (6)
C160.0294 (7)0.0281 (7)0.0225 (6)0.0069 (5)0.0007 (5)0.0047 (5)
C170.0304 (7)0.0343 (7)0.0301 (7)0.0099 (6)0.0036 (6)0.0071 (6)
C180.0432 (8)0.0334 (8)0.0283 (7)0.0150 (6)0.0078 (6)0.0047 (6)
C190.0454 (9)0.0278 (7)0.0283 (7)0.0101 (6)0.0018 (6)0.0031 (6)
C200.0358 (8)0.0256 (7)0.0270 (7)0.0076 (6)0.0014 (6)0.0070 (5)
C210.0379 (8)0.0282 (7)0.0364 (8)0.0015 (6)0.0041 (6)0.0050 (6)
C220.0299 (7)0.0372 (8)0.0426 (8)0.0017 (6)0.0008 (6)0.0107 (7)
C230.0304 (8)0.0377 (8)0.0384 (8)0.0073 (6)0.0066 (6)0.0099 (6)
C240.0293 (7)0.0257 (7)0.0239 (7)0.0080 (5)0.0002 (5)0.0068 (5)
Geometric parameters (Å, º) top
N1—C11.3339 (18)C8—C91.359 (2)
N1—C41.3358 (19)C8—H80.9400
N2—C31.3319 (19)C9—C101.412 (2)
N2—C21.3406 (18)C9—H90.9400
N3—C51.3466 (18)C10—C111.411 (2)
N3—C61.4018 (18)C10—C141.414 (2)
N3—H3N0.880 (17)C11—C121.358 (2)
N4—C131.3171 (18)C11—H110.9400
N4—C141.3620 (18)C12—C131.401 (2)
N5—C151.3477 (18)C12—H120.9400
N5—C161.4058 (17)C13—H130.9400
N5—H5N0.846 (17)C16—C171.3756 (19)
N6—C231.3212 (18)C16—C241.4312 (19)
N6—C241.3663 (18)C17—C181.404 (2)
O1—C51.2222 (17)C17—H170.9400
O2—C151.2193 (16)C18—C191.362 (2)
C1—C21.3940 (19)C18—H180.9400
C1—C51.506 (2)C19—C201.415 (2)
C2—C151.5082 (19)C19—H190.9400
C3—C41.375 (2)C20—C241.4111 (19)
C3—H30.9400C20—C211.416 (2)
C4—H40.9400C21—C221.360 (2)
C6—C71.369 (2)C21—H210.9400
C6—C141.4273 (19)C22—C231.405 (2)
C7—C81.401 (2)C22—H220.9400
C7—H70.9400C23—H230.9400
C1—N1—C4116.56 (12)C12—C11—H11120.1
C3—N2—C2116.33 (12)C10—C11—H11120.1
C5—N3—C6128.53 (12)C11—C12—C13118.55 (13)
C5—N3—H3N117.3 (10)C11—C12—H12120.7
C6—N3—H3N114.2 (10)C13—C12—H12120.7
C13—N4—C14116.99 (12)N4—C13—C12124.61 (13)
C15—N5—C16127.71 (12)N4—C13—H13117.7
C15—N5—H5N118.6 (11)C12—C13—H13117.7
C16—N5—H5N113.7 (11)N4—C14—C10122.93 (12)
C23—N6—C24117.39 (12)N4—C14—C6117.86 (12)
N1—C1—C2121.70 (13)C10—C14—C6119.21 (12)
N1—C1—C5117.72 (12)O2—C15—N5125.13 (13)
C2—C1—C5120.58 (12)O2—C15—C2118.87 (12)
N2—C2—C1121.15 (13)N5—C15—C2115.76 (12)
N2—C2—C15114.00 (11)C17—C16—N5124.89 (12)
C1—C2—C15124.37 (12)C17—C16—C24119.45 (12)
N2—C3—C4122.43 (14)N5—C16—C24115.61 (12)
N2—C3—H3118.8C16—C17—C18120.33 (13)
C4—C3—H3118.8C16—C17—H17119.8
N1—C4—C3121.62 (14)C18—C17—H17119.8
N1—C4—H4119.2C19—C18—C17121.56 (13)
C3—C4—H4119.2C19—C18—H18119.2
O1—C5—N3125.78 (13)C17—C18—H18119.2
O1—C5—C1120.32 (12)C18—C19—C20119.65 (13)
N3—C5—C1113.91 (12)C18—C19—H19120.2
C7—C6—N3124.96 (13)C20—C19—H19120.2
C7—C6—C14119.65 (13)C24—C20—C21117.14 (13)
N3—C6—C14115.39 (12)C24—C20—C19119.73 (12)
C6—C7—C8120.45 (14)C21—C20—C19123.12 (13)
C6—C7—H7119.8C22—C21—C20119.48 (13)
C8—C7—H7119.8C22—C21—H21120.3
C9—C8—C7121.29 (15)C20—C21—H21120.3
C9—C8—H8119.4C21—C22—C23119.24 (13)
C7—C8—H8119.4C21—C22—H22120.4
C8—C9—C10120.14 (14)C23—C22—H22120.4
C8—C9—H9119.9N6—C23—C22123.70 (13)
C10—C9—H9119.9N6—C23—H23118.1
C11—C10—C9123.61 (13)C22—C23—H23118.1
C11—C10—C14117.12 (13)N6—C24—C20123.04 (12)
C9—C10—C14119.26 (13)N6—C24—C16117.72 (12)
C12—C11—C10119.79 (13)C20—C24—C16119.23 (12)
C4—N1—C1—C23.0 (2)C9—C10—C14—C61.0 (2)
C4—N1—C1—C5176.41 (12)C7—C6—C14—N4178.83 (13)
C3—N2—C2—C12.27 (19)N3—C6—C14—N40.86 (19)
C3—N2—C2—C15170.17 (12)C7—C6—C14—C100.9 (2)
N1—C1—C2—N24.9 (2)N3—C6—C14—C10179.42 (12)
C5—C1—C2—N2174.45 (12)C16—N5—C15—O25.5 (2)
N1—C1—C2—C15166.71 (12)C16—N5—C15—C2168.88 (12)
C5—C1—C2—C1513.9 (2)N2—C2—C15—O299.14 (15)
C2—N2—C3—C41.9 (2)C1—C2—C15—O273.02 (18)
C1—N1—C4—C31.2 (2)N2—C2—C15—N575.58 (15)
N2—C3—C4—N13.8 (2)C1—C2—C15—N5112.26 (14)
C6—N3—C5—O11.6 (2)C15—N5—C16—C171.2 (2)
C6—N3—C5—C1178.64 (13)C15—N5—C16—C24178.69 (12)
N1—C1—C5—O1170.92 (13)N5—C16—C17—C18175.64 (12)
C2—C1—C5—O18.5 (2)C24—C16—C17—C181.78 (19)
N1—C1—C5—N38.81 (18)C16—C17—C18—C190.0 (2)
C2—C1—C5—N3171.79 (12)C17—C18—C19—C201.7 (2)
C5—N3—C6—C71.3 (2)C18—C19—C20—C241.56 (19)
C5—N3—C6—C14179.02 (13)C18—C19—C20—C21179.78 (12)
N3—C6—C7—C8179.94 (15)C24—C20—C21—C220.14 (19)
C14—C6—C7—C80.3 (2)C19—C20—C21—C22178.84 (12)
C6—C7—C8—C90.2 (3)C20—C21—C22—C230.3 (2)
C7—C8—C9—C100.1 (3)C24—N6—C23—C220.6 (2)
C8—C9—C10—C11179.05 (16)C21—C22—C23—N60.6 (2)
C8—C9—C10—C140.5 (3)C23—N6—C24—C200.43 (18)
C9—C10—C11—C12179.09 (15)C23—N6—C24—C16178.29 (11)
C14—C10—C11—C120.5 (2)C21—C20—C24—N60.19 (18)
C10—C11—C12—C130.4 (2)C19—C20—C24—N6178.93 (11)
C14—N4—C13—C120.5 (2)C21—C20—C24—C16178.51 (11)
C11—C12—C13—N40.1 (2)C19—C20—C24—C160.23 (18)
C13—N4—C14—C100.4 (2)C17—C16—C24—N6179.34 (11)
C13—N4—C14—C6179.89 (12)N5—C16—C24—N63.01 (17)
C11—C10—C14—N40.1 (2)C17—C16—C24—C201.88 (18)
C9—C10—C14—N4178.73 (14)N5—C16—C24—C20175.77 (11)
C11—C10—C14—C6179.65 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N10.88 (2)2.256 (16)2.6791 (18)109 (1)
N3—H3N···N40.88 (2)2.218 (16)2.6657 (16)111 (1)
N5—H5N···N60.85 (2)2.233 (16)2.6759 (17)113 (1)
C7—H7···O10.942.312.9136 (19)122
C17—H17···O20.942.282.8818 (18)122
C4—H4···O1i0.942.573.4249 (18)151
C12—H12···O2ii0.942.603.3589 (19)138
C18—H18···O2iii0.942.483.3289 (19)151
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x, y+1, z.
[µ-(3-{Hydroxy[(quinolin-8-yl)imino]methyl}pyrazin-2-yl)[(quinolin-8-yl)imino]methanolato]bis[diacetonitrilecopper(II)] tris(perchlorate) acetonitrile disolvate (I) top
Crystal data top
[Cu2(C24H15N6O2)(C2H3N)4](ClO4)3·2C2H3NZ = 2
Mr = 1091.17F(000) = 1108
Triclinic, P1Dx = 1.653 Mg m3
a = 12.6281 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.4938 (11) ÅCell parameters from 8000 reflections
c = 14.7884 (14) Åθ = 1.9–25.9°
α = 74.678 (10)°µ = 1.23 mm1
β = 89.115 (10)°T = 153 K
γ = 65.170 (9)°Plate, green
V = 2192.5 (4) Å30.30 × 0.30 × 0.15 mm
Data collection top
STOE IPDS 1
diffractometer
7942 independent reflections
Radiation source: fine-focus sealed tube4757 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.077
φ rotation scansθmax = 25.9°, θmin = 1.9°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 1515
Tmin = 0.857, Tmax = 1.000k = 1616
17344 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0806P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max < 0.001
7942 reflectionsΔρmax = 0.91 e Å3
615 parametersΔρmin = 0.93 e Å3
0 restraintsExtinction correction: (SHELXL-2016/6; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.31089 (4)0.36323 (4)0.17677 (4)0.02595 (17)
Cu20.33585 (5)0.14019 (4)0.43021 (4)0.02764 (17)
N10.3033 (3)0.2198 (3)0.2544 (2)0.0240 (8)
N20.3161 (3)0.0140 (3)0.3545 (2)0.0266 (9)
N30.4715 (3)0.2794 (3)0.2351 (2)0.0260 (9)
N40.3613 (3)0.4827 (3)0.1225 (2)0.0262 (9)
N50.4906 (3)0.1517 (3)0.4603 (2)0.0234 (8)
N60.4004 (3)0.2963 (3)0.5139 (2)0.0256 (9)
O10.6081 (3)0.1110 (3)0.3337 (2)0.0307 (8)
H2O0.622 (5)0.012 (5)0.386 (4)0.059 (17)*
O20.6151 (3)0.0656 (3)0.4298 (2)0.0281 (7)
C10.4089 (4)0.1378 (3)0.3039 (3)0.0225 (10)
C20.4127 (4)0.0330 (4)0.3559 (3)0.0239 (10)
C30.2154 (4)0.0958 (4)0.3057 (3)0.0288 (11)
H30.1476510.0819170.3053200.035*
C40.2096 (4)0.2002 (4)0.2561 (3)0.0257 (10)
H40.1372940.2586140.2227020.031*
C50.5038 (4)0.1753 (4)0.2911 (3)0.0250 (10)
C60.5416 (4)0.3376 (4)0.2101 (3)0.0247 (10)
C70.6599 (4)0.3015 (4)0.2368 (3)0.0290 (11)
H70.7047300.2267890.2766870.035*
C80.7137 (4)0.3756 (4)0.2047 (3)0.0323 (12)
H80.7944500.3500050.2240370.039*
C90.6518 (4)0.4835 (4)0.1464 (3)0.0309 (11)
H90.6894830.5321600.1259000.037*
C100.5319 (4)0.5223 (4)0.1169 (3)0.0269 (11)
C110.4626 (4)0.6320 (4)0.0526 (3)0.0323 (11)
H110.4960490.6836260.0283250.039*
C120.3481 (4)0.6609 (4)0.0269 (3)0.0318 (12)
H120.3012920.7333900.0156340.038*
C130.2994 (4)0.5859 (4)0.0622 (3)0.0278 (11)
H130.2192120.6083120.0431000.033*
C140.4778 (4)0.4509 (4)0.1486 (3)0.0229 (10)
C150.5170 (4)0.0680 (4)0.4180 (3)0.0225 (10)
C160.5693 (4)0.2589 (4)0.5187 (3)0.0257 (11)
C170.6844 (4)0.2951 (4)0.5505 (3)0.0270 (10)
H170.7212860.2453620.5325940.032*
C180.7484 (4)0.4074 (4)0.6102 (3)0.0331 (12)
H180.8287750.4324570.6306370.040*
C190.6979 (4)0.4800 (4)0.6390 (3)0.0321 (12)
H190.7427030.5542280.6798230.038*
C200.5791 (4)0.4457 (4)0.6086 (3)0.0284 (11)
C210.5187 (4)0.5154 (4)0.6354 (3)0.0330 (12)
H210.5578240.5901330.6768960.040*
C220.4040 (4)0.4741 (4)0.6009 (3)0.0333 (12)
H220.3629170.5201240.6178450.040*
C230.3473 (4)0.3628 (4)0.5402 (3)0.0318 (12)
H230.2671370.3346160.5172470.038*
C240.5152 (4)0.3350 (3)0.5481 (3)0.0237 (10)
N110.1393 (3)0.4596 (3)0.1516 (3)0.0312 (10)
N120.3124 (4)0.2964 (4)0.0511 (3)0.0339 (10)
N210.1935 (4)0.0653 (3)0.5072 (3)0.0350 (10)
N220.2413 (4)0.1562 (3)0.3276 (3)0.0340 (10)
N310.0216 (5)0.3087 (5)0.7312 (4)0.0761 (19)
N410.6128 (5)0.1094 (4)0.1045 (4)0.0633 (15)
C310.0403 (4)0.5107 (4)0.1374 (3)0.0338 (12)
C320.0859 (4)0.5739 (5)0.1177 (4)0.0529 (17)
H32A0.1068390.6556480.0972080.079*
H32B0.1225540.5562630.1749400.079*
H32C0.1138020.5524640.0677350.079*
C330.3372 (4)0.2123 (5)0.0361 (3)0.0352 (12)
C340.3688 (6)0.1031 (5)0.0199 (5)0.067 (2)
H34A0.3000510.0866080.0228870.101*
H34B0.4313950.0439180.0682790.101*
H34C0.3963480.1045660.0425460.101*
C350.1362 (4)0.0221 (4)0.5572 (3)0.0361 (13)
C360.0637 (5)0.0322 (5)0.6241 (4)0.0548 (16)
H36A0.0611870.0264850.6785740.082*
H36B0.0160470.0825870.5932300.082*
H36C0.0975250.0767470.6452070.082*
C370.2107 (4)0.1557 (4)0.2554 (3)0.0329 (12)
C380.1728 (6)0.1549 (5)0.1627 (4)0.0549 (17)
H38A0.1188380.0769940.1274380.082*
H38B0.1326460.2043980.1698500.082*
H38C0.2412950.1826140.1284690.082*
C390.0411 (6)0.3305 (5)0.6832 (4)0.0534 (16)
C400.1219 (6)0.3564 (6)0.6225 (5)0.0639 (18)
H40A0.2019310.3124370.6545760.096*
H40B0.1014430.4379470.6076780.096*
H40C0.1173270.3365210.5640730.096*
C410.7059 (6)0.0440 (5)0.1161 (4)0.0468 (15)
C420.8281 (8)0.0358 (9)0.1254 (7)0.134 (5)
H42A0.8469830.0554330.0660620.202*
H42B0.8425430.1048820.1763300.202*
H42C0.8775820.0010870.1400950.202*
Cl10.45230 (12)0.20687 (10)0.77805 (8)0.0413 (3)
O110.3457 (5)0.2730 (5)0.8096 (3)0.0921 (19)
O120.4683 (5)0.2688 (3)0.6886 (3)0.0808 (17)
O130.5461 (5)0.1804 (5)0.8468 (3)0.0925 (18)
O140.4542 (5)0.1041 (4)0.7714 (3)0.0713 (14)
Cl20.00354 (11)0.19052 (11)0.08660 (8)0.0419 (3)
O210.0275 (6)0.1401 (5)0.1734 (4)0.102 (2)
O220.0253 (4)0.3067 (3)0.0811 (3)0.0647 (12)
O230.0508 (5)0.1810 (5)0.0102 (4)0.103 (2)
O240.1275 (4)0.1280 (5)0.0930 (4)0.098 (2)
Cl30.01801 (11)0.70326 (11)0.59390 (8)0.0390 (3)
O310.0200 (4)0.6207 (3)0.6788 (3)0.0688 (14)
O320.1024 (3)0.7712 (4)0.5514 (3)0.0599 (12)
O330.0616 (4)0.7765 (3)0.6140 (3)0.0602 (12)
O340.0865 (4)0.6450 (4)0.5308 (3)0.0665 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0182 (3)0.0212 (3)0.0263 (3)0.0047 (2)0.0075 (2)0.0066 (2)
Cu20.0211 (3)0.0211 (3)0.0300 (3)0.0063 (2)0.0075 (2)0.0056 (2)
N10.0194 (18)0.0234 (18)0.0213 (18)0.0075 (16)0.0068 (14)0.0039 (14)
N20.0217 (19)0.0214 (19)0.0269 (19)0.0057 (16)0.0065 (15)0.0028 (15)
N30.0241 (19)0.0215 (19)0.0194 (17)0.0047 (17)0.0066 (14)0.0065 (14)
N40.0212 (19)0.0223 (19)0.0246 (18)0.0040 (16)0.0066 (15)0.0015 (15)
N50.0202 (18)0.0188 (18)0.0224 (18)0.0048 (16)0.0067 (14)0.0024 (14)
N60.0238 (19)0.0208 (18)0.0249 (18)0.0078 (17)0.0027 (15)0.0024 (15)
O10.0190 (15)0.0286 (17)0.0311 (16)0.0083 (14)0.0107 (13)0.0102 (13)
O20.0196 (16)0.0237 (16)0.0296 (16)0.0069 (14)0.0111 (13)0.0070 (13)
C10.018 (2)0.020 (2)0.020 (2)0.0019 (18)0.0079 (16)0.0026 (17)
C20.023 (2)0.021 (2)0.022 (2)0.0066 (19)0.0043 (17)0.0011 (17)
C30.016 (2)0.027 (2)0.034 (2)0.0056 (19)0.0082 (18)0.0013 (19)
C40.021 (2)0.023 (2)0.024 (2)0.0072 (19)0.0062 (17)0.0040 (18)
C50.021 (2)0.027 (2)0.022 (2)0.008 (2)0.0026 (17)0.0036 (18)
C60.022 (2)0.021 (2)0.022 (2)0.0059 (19)0.0049 (17)0.0013 (17)
C70.026 (2)0.029 (2)0.025 (2)0.010 (2)0.0063 (18)0.0007 (19)
C80.025 (2)0.031 (3)0.031 (2)0.011 (2)0.0079 (19)0.005 (2)
C90.030 (3)0.030 (2)0.032 (2)0.016 (2)0.000 (2)0.002 (2)
C100.028 (2)0.022 (2)0.022 (2)0.006 (2)0.0031 (18)0.0007 (17)
C110.038 (3)0.022 (2)0.032 (2)0.013 (2)0.003 (2)0.0006 (19)
C120.030 (3)0.020 (2)0.031 (2)0.003 (2)0.005 (2)0.0037 (19)
C130.021 (2)0.022 (2)0.029 (2)0.0048 (19)0.0066 (18)0.0034 (18)
C140.023 (2)0.022 (2)0.018 (2)0.0070 (19)0.0030 (17)0.0014 (17)
C150.019 (2)0.022 (2)0.020 (2)0.0066 (19)0.0054 (17)0.0003 (17)
C160.024 (2)0.024 (2)0.018 (2)0.0016 (19)0.0036 (17)0.0017 (17)
C170.026 (2)0.025 (2)0.022 (2)0.009 (2)0.0028 (18)0.0015 (18)
C180.028 (2)0.029 (2)0.026 (2)0.002 (2)0.0086 (19)0.0031 (19)
C190.031 (3)0.026 (2)0.024 (2)0.006 (2)0.0081 (19)0.0067 (19)
C200.031 (2)0.022 (2)0.023 (2)0.006 (2)0.0026 (18)0.0008 (18)
C210.034 (3)0.020 (2)0.032 (2)0.006 (2)0.004 (2)0.0022 (19)
C220.038 (3)0.026 (2)0.032 (2)0.015 (2)0.003 (2)0.0009 (19)
C230.025 (2)0.026 (2)0.037 (3)0.007 (2)0.003 (2)0.002 (2)
C240.024 (2)0.018 (2)0.022 (2)0.0053 (19)0.0020 (17)0.0007 (17)
N110.025 (2)0.024 (2)0.031 (2)0.0047 (18)0.0053 (16)0.0042 (16)
N120.034 (2)0.034 (2)0.028 (2)0.015 (2)0.0069 (17)0.0001 (18)
N210.027 (2)0.030 (2)0.032 (2)0.0031 (18)0.0054 (18)0.0013 (18)
N220.033 (2)0.027 (2)0.035 (2)0.0111 (18)0.0042 (18)0.0000 (17)
N310.062 (4)0.070 (4)0.063 (4)0.013 (3)0.006 (3)0.009 (3)
N410.063 (4)0.045 (3)0.070 (4)0.016 (3)0.003 (3)0.011 (3)
C310.026 (3)0.031 (3)0.029 (2)0.007 (2)0.0054 (19)0.006 (2)
C320.021 (3)0.059 (4)0.051 (3)0.002 (3)0.011 (2)0.004 (3)
C330.029 (3)0.035 (3)0.029 (2)0.009 (2)0.004 (2)0.006 (2)
C340.072 (5)0.045 (4)0.079 (5)0.016 (3)0.011 (4)0.024 (3)
C350.029 (3)0.034 (3)0.031 (3)0.009 (2)0.007 (2)0.004 (2)
C360.051 (4)0.059 (4)0.046 (3)0.015 (3)0.010 (3)0.017 (3)
C370.024 (2)0.032 (3)0.034 (3)0.007 (2)0.003 (2)0.005 (2)
C380.060 (4)0.056 (4)0.037 (3)0.013 (3)0.010 (3)0.014 (3)
C390.049 (4)0.047 (3)0.049 (4)0.012 (3)0.006 (3)0.005 (3)
C400.068 (4)0.074 (4)0.059 (4)0.036 (4)0.010 (3)0.025 (3)
C410.056 (4)0.035 (3)0.038 (3)0.013 (3)0.008 (3)0.003 (2)
C420.075 (6)0.122 (8)0.155 (9)0.027 (6)0.056 (6)0.072 (7)
Cl10.0529 (8)0.0322 (6)0.0319 (6)0.0135 (6)0.0035 (5)0.0061 (5)
O110.072 (3)0.086 (4)0.071 (3)0.012 (3)0.012 (3)0.025 (3)
O120.160 (5)0.043 (2)0.042 (2)0.051 (3)0.030 (3)0.0075 (19)
O130.084 (4)0.131 (5)0.067 (3)0.048 (4)0.012 (3)0.031 (3)
O140.130 (4)0.054 (3)0.050 (2)0.056 (3)0.023 (3)0.019 (2)
Cl20.0319 (6)0.0409 (7)0.0377 (7)0.0044 (6)0.0097 (5)0.0054 (5)
O210.130 (5)0.091 (4)0.081 (4)0.055 (4)0.039 (3)0.007 (3)
O220.062 (3)0.040 (2)0.078 (3)0.014 (2)0.007 (2)0.008 (2)
O230.087 (4)0.102 (4)0.084 (3)0.005 (3)0.053 (3)0.043 (3)
O240.033 (2)0.091 (4)0.147 (5)0.009 (3)0.023 (3)0.058 (4)
Cl30.0301 (6)0.0420 (7)0.0404 (7)0.0161 (6)0.0015 (5)0.0034 (5)
O310.083 (3)0.045 (2)0.061 (3)0.026 (2)0.017 (2)0.009 (2)
O320.0272 (19)0.068 (3)0.076 (3)0.013 (2)0.0099 (18)0.018 (2)
O330.058 (3)0.051 (2)0.071 (3)0.030 (2)0.025 (2)0.003 (2)
O340.044 (2)0.094 (4)0.063 (3)0.024 (2)0.017 (2)0.036 (3)
Geometric parameters (Å, º) top
Cu1—N12.013 (4)C18—H180.9500
Cu1—N31.936 (3)C19—C201.412 (7)
Cu1—N41.952 (4)C19—H190.9500
Cu1—N111.982 (4)C20—C241.409 (6)
Cu1—N122.266 (4)C20—C211.422 (7)
Cu2—N21.996 (4)C21—C221.364 (7)
Cu2—N51.943 (4)C21—H210.9500
Cu2—N61.961 (3)C22—C231.407 (6)
Cu2—N212.137 (4)C22—H220.9500
Cu2—N222.054 (4)C23—H230.9500
N1—C41.315 (6)N11—C311.136 (6)
N1—C11.378 (5)N12—C331.126 (6)
N2—C31.336 (5)N21—C351.126 (6)
N2—C21.349 (6)N22—C371.138 (6)
N3—C51.319 (6)N31—C391.133 (8)
N3—C61.400 (6)N41—C411.116 (7)
N4—C131.341 (5)C31—C321.447 (6)
N4—C141.378 (6)C32—H32A0.9800
N5—C151.310 (6)C32—H32B0.9800
N5—C161.409 (5)C32—H32C0.9800
N6—C231.311 (6)C33—C341.441 (9)
N6—C241.370 (6)C34—H34A0.9800
O1—C51.289 (5)C34—H34B0.9800
O1—H2O1.29 (6)C34—H34C0.9800
O2—C151.267 (5)C35—C361.464 (8)
O2—H2O1.12 (6)C36—H36A0.9800
C1—C21.401 (6)C36—H36B0.9800
C1—C51.477 (7)C36—H36C0.9800
C2—C151.518 (5)C37—C381.455 (7)
C3—C41.379 (6)C38—H38A0.9800
C3—H30.9500C38—H38B0.9800
C4—H40.9500C38—H38C0.9800
C6—C71.389 (6)C39—C401.440 (10)
C6—C141.438 (5)C40—H40A0.9800
C7—C81.412 (7)C40—H40B0.9800
C7—H70.9500C40—H40C0.9800
C8—C91.370 (6)C41—C421.447 (10)
C8—H80.9500C42—H42A0.9800
C9—C101.411 (6)C42—H42B0.9800
C9—H90.9500C42—H42C0.9800
C10—C141.384 (7)Cl1—O141.407 (4)
C10—C111.434 (6)Cl1—O111.420 (5)
C11—C121.360 (7)Cl1—O121.428 (4)
C11—H110.9500Cl1—O131.433 (5)
C12—C131.382 (7)Cl2—O231.392 (5)
C12—H120.9500Cl2—O211.417 (5)
C13—H130.9500Cl2—O241.423 (5)
C16—C171.370 (6)Cl2—O221.432 (4)
C16—C241.433 (7)Cl3—O331.408 (4)
C17—C181.420 (6)Cl3—O341.424 (4)
C17—H170.9500Cl3—O311.434 (4)
C18—C191.357 (7)Cl3—O321.450 (4)
N3—Cu1—N483.36 (15)C16—C17—C18119.7 (5)
N4—Cu1—N1163.76 (14)C16—C17—H17120.2
N3—Cu1—N11163.66 (16)C18—C17—H17120.2
N4—Cu1—N1197.64 (15)C19—C18—C17121.8 (4)
N3—Cu1—N180.64 (15)C19—C18—H18119.1
N11—Cu1—N196.94 (15)C17—C18—H18119.1
N3—Cu1—N12103.58 (15)C18—C19—C20120.3 (4)
N4—Cu1—N12100.38 (15)C18—C19—H19119.8
N11—Cu1—N1292.32 (16)C20—C19—H19119.8
N1—Cu1—N1286.12 (15)C24—C20—C19118.4 (5)
N5—Cu2—N683.48 (15)C24—C20—C21117.3 (4)
N5—Cu2—N280.04 (15)C19—C20—C21124.3 (4)
N6—Cu2—N2163.51 (16)C22—C21—C20119.5 (4)
N5—Cu2—N22140.74 (16)C22—C21—H21120.2
N6—Cu2—N2299.75 (16)C20—C21—H21120.2
N2—Cu2—N2293.02 (15)C21—C22—C23119.4 (5)
N5—Cu2—N21120.72 (16)C21—C22—H22120.3
N6—Cu2—N2197.88 (15)C23—C22—H22120.3
N2—Cu2—N2190.62 (15)N6—C23—C22122.7 (4)
N22—Cu2—N2197.77 (16)N6—C23—H23118.7
C4—N1—C1121.1 (4)C22—C23—H23118.7
C4—N1—Cu1124.8 (3)N6—C24—C20121.9 (4)
C1—N1—Cu1114.0 (3)N6—C24—C16117.3 (3)
C3—N2—C2120.4 (4)C20—C24—C16120.8 (4)
C3—N2—Cu2124.1 (3)C31—N11—Cu1177.0 (5)
C2—N2—Cu2115.5 (3)C33—N12—Cu1138.6 (4)
C5—N3—C6127.3 (4)C35—N21—Cu2165.0 (4)
C5—N3—Cu1118.1 (3)C37—N22—Cu2160.1 (4)
C6—N3—Cu1114.6 (2)N11—C31—C32178.5 (6)
C13—N4—C14118.2 (4)C31—C32—H32A109.5
C13—N4—Cu1128.6 (3)C31—C32—H32B109.5
C14—N4—Cu1113.2 (3)H32A—C32—H32B109.5
C15—N5—C16125.9 (4)C31—C32—H32C109.5
C15—N5—Cu2119.3 (3)H32A—C32—H32C109.5
C16—N5—Cu2114.2 (3)H32B—C32—H32C109.5
C23—N6—C24119.2 (4)N12—C33—C34178.3 (6)
C23—N6—Cu2128.3 (3)C33—C34—H34A109.5
C24—N6—Cu2112.5 (3)C33—C34—H34B109.5
C5—O1—H2O115 (3)H34A—C34—H34B109.5
C15—O2—H2O116 (3)C33—C34—H34C109.5
N1—C1—C2117.6 (4)H34A—C34—H34C109.5
N1—C1—C5112.8 (4)H34B—C34—H34C109.5
C2—C1—C5129.5 (4)N21—C35—C36178.7 (5)
N2—C2—C1120.1 (3)C35—C36—H36A109.5
N2—C2—C15112.8 (4)C35—C36—H36B109.5
C1—C2—C15127.1 (4)H36A—C36—H36B109.5
N2—C3—C4120.1 (4)C35—C36—H36C109.5
N2—C3—H3119.9H36A—C36—H36C109.5
C4—C3—H3119.9H36B—C36—H36C109.5
N1—C4—C3120.6 (4)N22—C37—C38179.3 (6)
N1—C4—H4119.7C37—C38—H38A109.5
C3—C4—H4119.7C37—C38—H38B109.5
O1—C5—N3123.9 (4)H38A—C38—H38B109.5
O1—C5—C1121.7 (4)C37—C38—H38C109.5
N3—C5—C1114.4 (4)H38A—C38—H38C109.5
C7—C6—N3129.3 (4)H38B—C38—H38C109.5
C7—C6—C14117.8 (4)N31—C39—C40179.1 (7)
N3—C6—C14112.8 (4)C39—C40—H40A109.5
C6—C7—C8120.2 (4)C39—C40—H40B109.5
C6—C7—H7119.9H40A—C40—H40B109.5
C8—C7—H7119.9C39—C40—H40C109.5
C9—C8—C7121.4 (4)H40A—C40—H40C109.5
C9—C8—H8119.3H40B—C40—H40C109.5
C7—C8—H8119.3N41—C41—C42176.0 (8)
C8—C9—C10119.8 (5)C41—C42—H42A109.5
C8—C9—H9120.1C41—C42—H42B109.5
C10—C9—H9120.1H42A—C42—H42B109.5
C14—C10—C9119.3 (4)C41—C42—H42C109.5
C14—C10—C11117.5 (4)H42A—C42—H42C109.5
C9—C10—C11123.1 (5)H42B—C42—H42C109.5
C12—C11—C10118.8 (5)O14—Cl1—O11110.9 (4)
C12—C11—H11120.6O14—Cl1—O12109.5 (3)
C10—C11—H11120.6O11—Cl1—O12110.8 (3)
C11—C12—C13120.6 (4)O14—Cl1—O13108.4 (3)
C11—C12—H12119.7O11—Cl1—O13107.4 (3)
C13—C12—H12119.7O12—Cl1—O13109.7 (4)
N4—C13—C12122.2 (4)O23—Cl2—O21111.5 (4)
N4—C13—H13118.9O23—Cl2—O24110.5 (3)
C12—C13—H13118.9O21—Cl2—O24104.3 (4)
N4—C14—C10122.6 (4)O23—Cl2—O22112.1 (3)
N4—C14—C6116.0 (4)O21—Cl2—O22108.4 (3)
C10—C14—C6121.4 (4)O24—Cl2—O22109.7 (3)
O2—C15—N5125.7 (4)O33—Cl3—O34110.8 (3)
O2—C15—C2122.1 (4)O33—Cl3—O31110.6 (3)
N5—C15—C2112.1 (4)O34—Cl3—O31108.7 (3)
C17—C16—N5128.6 (5)O33—Cl3—O32108.3 (3)
C17—C16—C24119.0 (4)O34—Cl3—O32109.7 (3)
N5—C16—C24112.3 (4)O31—Cl3—O32108.8 (3)
C4—N1—C1—C20.0 (6)C9—C10—C14—N4179.7 (4)
Cu1—N1—C1—C2176.7 (3)C11—C10—C14—N41.6 (7)
C4—N1—C1—C5178.6 (4)C9—C10—C14—C60.8 (7)
Cu1—N1—C1—C51.8 (4)C11—C10—C14—C6177.4 (4)
C3—N2—C2—C11.9 (6)C7—C6—C14—N4178.9 (4)
Cu2—N2—C2—C1179.0 (3)N3—C6—C14—N41.6 (6)
C3—N2—C2—C15177.7 (4)C7—C6—C14—C100.1 (6)
Cu2—N2—C2—C151.4 (5)N3—C6—C14—C10179.3 (4)
N1—C1—C2—N21.7 (6)C16—N5—C15—O27.2 (7)
C5—C1—C2—N2176.6 (4)Cu2—N5—C15—O2178.6 (3)
N1—C1—C2—C15177.8 (4)C16—N5—C15—C2176.7 (4)
C5—C1—C2—C153.9 (7)Cu2—N5—C15—C25.2 (5)
C2—N2—C3—C40.3 (7)N2—C2—C15—O2178.6 (4)
Cu2—N2—C3—C4179.4 (3)C1—C2—C15—O20.9 (7)
C1—N1—C4—C31.6 (7)N2—C2—C15—N52.3 (5)
Cu1—N1—C4—C3174.8 (3)C1—C2—C15—N5177.2 (4)
N2—C3—C4—N11.4 (7)C15—N5—C16—C176.4 (7)
C6—N3—C5—O11.5 (7)Cu2—N5—C16—C17178.2 (4)
Cu1—N3—C5—O1179.8 (3)C15—N5—C16—C24175.3 (4)
C6—N3—C5—C1179.9 (4)Cu2—N5—C16—C243.5 (5)
Cu1—N3—C5—C11.8 (5)N5—C16—C17—C18179.3 (4)
N1—C1—C5—O1178.3 (4)C24—C16—C17—C181.1 (6)
C2—C1—C5—O13.3 (7)C16—C17—C18—C191.6 (7)
N1—C1—C5—N30.1 (5)C17—C18—C19—C201.0 (7)
C2—C1—C5—N3178.3 (4)C18—C19—C20—C240.0 (7)
C5—N3—C6—C70.3 (8)C18—C19—C20—C21179.7 (5)
Cu1—N3—C6—C7178.1 (4)C24—C20—C21—C221.1 (7)
C5—N3—C6—C14179.1 (4)C19—C20—C21—C22179.2 (5)
Cu1—N3—C6—C142.5 (5)C20—C21—C22—C230.6 (7)
N3—C6—C7—C8178.6 (4)C24—N6—C23—C221.5 (7)
C14—C6—C7—C80.8 (7)Cu2—N6—C23—C22179.9 (3)
C6—C7—C8—C90.6 (7)C21—C22—C23—N60.8 (8)
C7—C8—C9—C100.3 (7)C23—N6—C24—C202.0 (7)
C8—C9—C10—C141.0 (7)Cu2—N6—C24—C20179.2 (3)
C8—C9—C10—C11177.1 (5)C23—N6—C24—C16179.1 (4)
C14—C10—C11—C120.7 (7)Cu2—N6—C24—C160.2 (5)
C9—C10—C11—C12178.8 (4)C19—C20—C24—N6178.5 (4)
C10—C11—C12—C130.0 (7)C21—C20—C24—N61.8 (7)
C14—N4—C13—C120.8 (7)C19—C20—C24—C160.4 (7)
Cu1—N4—C13—C12177.8 (3)C21—C20—C24—C16179.3 (4)
C11—C12—C13—N40.0 (7)C17—C16—C24—N6179.1 (4)
C13—N4—C14—C101.6 (6)N5—C16—C24—N62.4 (6)
Cu1—N4—C14—C10179.0 (3)C17—C16—C24—C200.2 (7)
C13—N4—C14—C6177.4 (4)N5—C16—C24—C20178.6 (4)
Cu1—N4—C14—C60.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O11.12 (6)1.29 (6)2.397 (4)169 (6)
C7—H7···O10.952.352.920 (6)118
C17—H17···O20.952.322.897 (5)119
C17—H17···O32i0.952.363.175 (7)144
C22—H22···O12ii0.952.503.108 (6)122
C23—H23···O34ii0.952.413.255 (7)148
C34—H34A···O240.982.313.130 (10)140
C34—H34C···O11iii0.982.563.272 (9)130
C36—H36A···O21iv0.982.463.429 (8)168
C38—H38B···N31iv0.982.573.454 (10)150
C40—H40C···O32v0.982.573.516 (8)162
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z; (iii) x, y, z1; (iv) x, y, z+1; (v) x, y+1, z+1.
A comparison of bond lengths and angles (Å, °) in the carboxamide units of H2L1 and I top
H2L1I
O1—C51.222 (2)1.289 (5)
N3—C51.347 (2)1.319 (6)
C1—C51.506 (2)1.477 (7)
O2—C151.219 (2)1.267 (5)
N5—C151.348 (2)1.310 (6)
C2—C151.508 (2)1.518 (5)
N3—C5—O1125.78 (13)123.9 (4)
N3—C5—C1113.91 (12)114.4 (4)
O1—C5—C1120.32 (12)121.7 (4)
N5—C15—O2125.13 (13)125.7 (4)
N5—C15—C2115.76 (12)112.1 (4)
O2—C15—C2118.87 (12)122.1 (4)
 

Acknowledgements

HSE is grateful to the University of Neuchâtel for support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationCati, D. S. (2002). PhD Thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationCati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, o210–o212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCati, D. S. & Stoeckli-Evans, H. (2019). Acta Cryst. E75, 755–761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFábry, J. (2018). Acta Cryst. E74, 1344–1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992–2993.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationMeghdadi, S., Amirnasr, M., Azarkamanzad, Z., Schenk Joss, K., Fadaee, F., Amiri, A. & Abbasi, S. (2013). J. Coord. Chem. 66, 4330–4343.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED Software. Stoe & Cie GmbH, Damstadt, Germany.  Google Scholar
First citationStoe & Cie (2004). IPDS1 Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds