research communications
and Hirshfeld surface analysis of one-dimensional copper(II) coordination polymer incorporating succinate and tetramethylethylenediamine ligands
aDepartment of Chemistry, College of Science, Salahaddin University, Erbil, 44001, Iraq, bDepartment of Fundamental Sciences, Faculty of Engineering, Samsun University, Samsun, 55420, Turkey, cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55139, Turkey, dInstitute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK, and eDepartment of Chemistry, National Taras Shevchenko University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, tiskenderov@ukr.net
The reaction of copper nitrate with succinic acid (succH) and N,N,N′,N′-tetramethylethylenediamine (TMEDA) in basic solution produces the complex catena-poly[[[(N,N,N′,N′-tetramethylethylenediamine-κ2N,N′)copper(II)]-μ-succinato-κ2O1:O4] tetrahydrate], {[Cu(C4H4O4)(C6H16N2)]·4H2O}n or {[Cu(succ)(tmeda)]·4H2O}n. Each carboxylate group of the succinate ligand coordinates to a CuII atom in a monodentate fashion, giving rise to a distorted square-planar geometry. The succinate ligands bridge the CuII centres, forming one-dimensional polymeric chains. Hydrogen bonds between the ligands and water molecules link these chains into sheets that lie parallel to the ac plane. Hirshfeld surface analysis, dnorm and two-dimensional fingerprint plots were examined to verify the contributions of the different intermolecular contacts within the supramolecular structure.
CCDC reference: 2006634
1. Chemical context
Coordination polymers are a key area of development in supramolecular chemistry. Aliphatic saturated dicarboxylates are versatile linkage ligands for construction of supramolecular frameworks. These possess conformational freedom and coordinating ability owing to the single carbon chain. Aliphatic dicarboxylate anions exhibit different coordination modes such as uni-bidentate, bis-monodentate, bis-bidentate, tridentate or tetradentate, linking metal atoms into 1-D coordination polymers, 2-D layers or 3-D networks. Copper(II) carboxylate complexes are known to possess various biological activities including antifungal (Melník et al., 1982), antibacterial (Mojumdar et al., 2005), antiviral and cytotoxic activities (Ranford et al., 1993). Copper(II) is present at the active site some of proteins. The proteins containing copper(II) display biological functions such as dioxygen transfer, oxygenation, reduction, oxidation and (Mukherjee, 2003). In this work, the synthesis, single and Hirshfeld surface analysis of a copper(II) complex involving N,N,N′,N′-tetramethylethylenediamine and succinate ligands are reported.
2. Structural commentary
The . In the complex {[Cu(succ)2(tmeda)]·4H2O}n, the central metal atom has distorted square-planar geometry with one oxygen atom each from two succ ligands and two TMEDA ligand nitrogen atoms (Figs. 2 and 3). There are two longer axial Cu⋯O contacts of 2.590 (2) and 2.432 (2) Å. In the square-plane, the Cu—O and Cu—N bond lengths are in the range 1.964 (2)–2.038 (2) Å (Table 1). The structural parameters in the TMEDA ligand, i.e. the Cu—N bond lengths, are in agreement with those reported for the [Cu3(PyDHA-2H)(tmeda)3](ClO4)2 complex (PyDHA = pyridine-2,6-dihydroxamic acid) by Gumienna-Kontecka et al. (2013). Similar geometric parameters have also been reported for {[Cu(succ)(deed)]·4H2O}n [Cu—O: 2.123 (8)–2.142 (8) Å deed = N,N-diethylethylenediamine; Şen et al., 2017] and [Cu2(C4H4O4)2(C12H12N2)]n, [Cu—O: 1.955 (4)–1.983 (5) Å; González Garmendia et al., 2009]. Selected bond lengths and angles are given in Table 1. The succinate ligands bridge the CuII centres, forming one-dimensional polymeric chains.
of the title compound (1) is illustrated in Fig. 13. Supramolecular features
In the H⋯O4, O6—H6G⋯O5, O7—H7A⋯O2, O8—H8C⋯O3 and O8—H8D⋯O7 hydrogen-bonding interactions, which act to stabilize the crystal packing. The crystal packing (Fig. 3) also features symmetry-related intermolecular hydrogen bonds (O7—H7B⋯O6ii, O5—H5G⋯O1iii and O6—H6H⋯O8iv; symmetry codes as in Table 2), linking the one-dimensional polymeric chains into sheets that lie parallel to the ac plane.
of the title complex, there are O5—H5
|
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update of February 2019; Groom et al., 2016) for the title complex gave four hits: aqua(cyclobutane-1,1-dicarboxylato)(N,N,N′,N′-tetramethylethylenediamine)copper(II) monohydrate (CBXECU; Pajunen & Pajunen, 1979a), bis(μ2-glutarato)bis[(N,N,N′,N′-tetraethylethylenediamine)copper(II)] (GLUECU; Pajunen & Pajunen, 1979b), [N-(2-oxybenzylidene)valinato](N,N,N′,N′-tetramethylethane-1,2-diamine)copper(II) (UZAPES; Lakshmi et al., 2016) and (N,N,N′,N′′,N′′-pentamethyldiethylenetriamine)(L-valinato)copper(II) perchlorate (VEGRUU; Murakami & Kita, 1998). The Cu—N bond lengths range from 1.941 to 2.415 Å. When these bond lengths are compared with the title complex, the Cu—N bond lengths [2.024 (2)–2.038 (2) Å] fall within these limits.
5. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots were performed with CrystalExplorer17 (Turner et al., 2017). Hirshfeld surface analysis enables the visualization of intermolecular interactions by different colours and colour intensity, representing short or long contacts and indicating the relative strength of the interactions. Fig. 4 shows the Hirshfeld surface mapped over dnorm (–0.629 to 1.578 a.u.). The overall two-dimensional fingerprint plot for the title complex and those delineated into H⋯H, O⋯H/H⋯O and Cu⋯O/O⋯Cu contacts are illustrated in Fig. 5. The percentage contributions from the different inter-atomic contacts to the Hirshfeld surface are as follows: H⋯H (63.2%), O⋯H/H⋯O (29.5%) and Cu⋯O/O⋯Cu (3.8%). The percentage contributions for other intermolecular contacts amount to less than 3% of the Hirshfeld surface mapping.
6. Synthesis and crystallization
An aqueous solution of sodium succinate (10 mmol, 1.6 g) was added to an aqueous solution of Cu(NO3)2·3H2O (10 mmol, 2.4 g) under stirring. A light-blue precipitate was formed. The precipitate was filtered and washed with water. The precipitate was dispersed in water and tetramethylethylenediamine (10 mmol, 1.2 g) was added giving a dark-blue solution. The solution was filtered. Single crystals were obtained on slow evaporation of the solution after one week.
7. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93, 0.96 and 0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. The methyl groups were modelled as disordered over two torsional orientations. Water hydrogen-atom coordinates were refined, but Uiso(H) was set to 1.5Ueq(water O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2006634
https://doi.org/10.1107/S2056989020007227/pk2626sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020007227/pk2626Isup3.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu(C4H4O4)(C6H16N2)]·4H2O | F(000) = 780 |
Mr = 367.88 | Dx = 1.403 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1195 (4) Å | Cell parameters from 19036 reflections |
b = 12.3172 (6) Å | θ = 1.7–29.9° |
c = 19.8590 (12) Å | µ = 1.29 mm−1 |
β = 91.160 (5)° | T = 296 K |
V = 1741.12 (17) Å3 | Stick, blue |
Z = 4 | 0.61 × 0.33 × 0.17 mm |
Stoe IPDS 2 diffractometer | 2864 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.033 |
rotation method scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −8→8 |
Tmin = 0.645, Tmax = 0.810 | k = −14→15 |
12278 measured reflections | l = −24→24 |
3427 independent reflections |
Refinement on F2 | 10 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.056P)2 + 0.2662P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3427 reflections | Δρmax = 0.28 e Å−3 |
233 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.21554 (4) | 0.28617 (2) | 0.62467 (2) | 0.03940 (11) | |
O1 | 0.3640 (2) | 0.41083 (14) | 0.59461 (8) | 0.0471 (4) | |
O2 | 0.5331 (3) | 0.34615 (16) | 0.67869 (10) | 0.0581 (5) | |
O3 | 1.0718 (2) | 0.38395 (14) | 0.68503 (8) | 0.0457 (4) | |
O4 | 0.9260 (3) | 0.37395 (14) | 0.58714 (8) | 0.0512 (4) | |
O7 | 0.6289 (4) | 0.3189 (3) | 0.81373 (13) | 0.1013 (10) | |
H7A | 0.604 (7) | 0.321 (5) | 0.7735 (10) | 0.152* | |
H7B | 0.535 (4) | 0.302 (4) | 0.834 (2) | 0.152* | |
O8 | 0.9959 (4) | 0.3821 (3) | 0.82634 (12) | 0.0839 (7) | |
H8C | 1.023 (7) | 0.387 (4) | 0.7861 (12) | 0.126* | |
H8D | 0.892 (4) | 0.353 (4) | 0.826 (3) | 0.126* | |
N1 | 0.1142 (4) | 0.14824 (18) | 0.66575 (12) | 0.0592 (6) | |
N2 | 0.3026 (3) | 0.19183 (18) | 0.54703 (11) | 0.0545 (5) | |
C1 | 0.2261 (7) | 0.1220 (4) | 0.7259 (2) | 0.1078 (15) | |
H1A | 0.356188 | 0.117338 | 0.714512 | 0.129* | 0.495 (18) |
H1B | 0.210105 | 0.177807 | 0.759095 | 0.129* | 0.495 (18) |
H1C | 0.185516 | 0.053701 | 0.743793 | 0.129* | 0.495 (18) |
H1D | 0.145018 | 0.115226 | 0.763755 | 0.129* | 0.505 (18) |
H1E | 0.291101 | 0.054757 | 0.719171 | 0.129* | 0.505 (18) |
H1F | 0.315690 | 0.178863 | 0.734474 | 0.129* | 0.505 (18) |
C2 | −0.0839 (5) | 0.1548 (3) | 0.6849 (3) | 0.1029 (15) | |
H2A | −0.160188 | 0.172027 | 0.645981 | 0.124* | 0.505 (18) |
H2B | −0.122672 | 0.086297 | 0.703029 | 0.124* | 0.505 (18) |
H2C | −0.098082 | 0.210404 | 0.718331 | 0.124* | 0.505 (18) |
H2D | −0.093773 | 0.140458 | 0.732246 | 0.124* | 0.495 (18) |
H2E | −0.131289 | 0.226188 | 0.675199 | 0.124* | 0.495 (18) |
H2F | −0.155879 | 0.102082 | 0.659896 | 0.124* | 0.495 (18) |
C3 | 0.086 (3) | 0.0712 (12) | 0.6087 (8) | 0.085 (4) | 0.495 (18) |
H3A | −0.018047 | 0.093743 | 0.579712 | 0.102* | 0.495 (18) |
H3B | 0.062106 | −0.001667 | 0.624964 | 0.102* | 0.495 (18) |
C3A | 0.179 (2) | 0.0582 (10) | 0.6193 (8) | 0.077 (3) | 0.505 (18) |
H3AA | 0.302001 | 0.033292 | 0.633975 | 0.093* | 0.505 (18) |
H3AB | 0.092507 | −0.002668 | 0.622077 | 0.093* | 0.505 (18) |
C4 | 0.276 (3) | 0.0761 (8) | 0.5704 (6) | 0.079 (3) | 0.495 (18) |
H4A | 0.378964 | 0.054535 | 0.600078 | 0.095* | 0.495 (18) |
H4B | 0.271645 | 0.027282 | 0.532075 | 0.095* | 0.495 (18) |
C4A | 0.187 (2) | 0.0950 (11) | 0.5496 (7) | 0.087 (4) | 0.505 (18) |
H4AA | 0.239477 | 0.038474 | 0.521768 | 0.105* | 0.505 (18) |
H4AB | 0.060916 | 0.111090 | 0.532601 | 0.105* | 0.505 (18) |
C5 | 0.2202 (9) | 0.2343 (5) | 0.4859 (2) | 0.144 (3) | |
H5A | 0.086425 | 0.238681 | 0.490305 | 0.173* | 0.495 (18) |
H5B | 0.269870 | 0.305336 | 0.477526 | 0.173* | 0.495 (18) |
H5C | 0.249344 | 0.187114 | 0.449077 | 0.173* | 0.495 (18) |
H5D | 0.317334 | 0.248739 | 0.454300 | 0.173* | 0.505 (18) |
H5E | 0.133889 | 0.182085 | 0.467080 | 0.173* | 0.505 (18) |
H5F | 0.154415 | 0.300307 | 0.495528 | 0.173* | 0.505 (18) |
C6 | 0.5040 (6) | 0.1852 (4) | 0.5403 (3) | 0.1154 (17) | |
H6A | 0.559369 | 0.156878 | 0.581131 | 0.138* | 0.505 (18) |
H6B | 0.533023 | 0.138122 | 0.503435 | 0.138* | 0.505 (18) |
H6C | 0.553549 | 0.256345 | 0.531883 | 0.138* | 0.505 (18) |
H6D | 0.537925 | 0.210685 | 0.496501 | 0.138* | 0.495 (18) |
H6E | 0.564271 | 0.229441 | 0.574198 | 0.138* | 0.495 (18) |
H6F | 0.543745 | 0.111219 | 0.545750 | 0.138* | 0.495 (18) |
C7 | 0.5046 (3) | 0.41647 (19) | 0.63531 (12) | 0.0424 (5) | |
C8 | 0.6324 (4) | 0.51218 (19) | 0.62714 (14) | 0.0484 (6) | |
H8A | 0.566631 | 0.577064 | 0.641138 | 0.058* | |
H8B | 0.659682 | 0.520189 | 0.579733 | 0.058* | |
C9 | 0.8161 (4) | 0.5050 (2) | 0.66639 (14) | 0.0510 (6) | |
H9A | 0.882166 | 0.573443 | 0.662250 | 0.061* | |
H9B | 0.789224 | 0.494519 | 0.713636 | 0.061* | |
C10 | 0.9432 (3) | 0.41491 (19) | 0.64394 (12) | 0.0409 (5) | |
O5 | 0.7915 (5) | 0.3966 (2) | 0.45643 (13) | 0.1012 (10) | |
H5G | 0.751 (8) | 0.454 (3) | 0.443 (3) | 0.152* | |
H5H | 0.827 (8) | 0.399 (5) | 0.4946 (13) | 0.152* | |
O6 | 0.8144 (4) | 0.2050 (2) | 0.39169 (17) | 0.0906 (8) | |
H6G | 0.801 (7) | 0.263 (3) | 0.411 (2) | 0.136* | |
H6H | 0.715 (5) | 0.197 (4) | 0.369 (2) | 0.136* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03491 (16) | 0.04272 (17) | 0.04064 (16) | 0.00251 (12) | 0.00232 (10) | 0.00379 (11) |
O1 | 0.0359 (9) | 0.0524 (9) | 0.0529 (9) | 0.0013 (7) | −0.0021 (7) | 0.0085 (7) |
O2 | 0.0532 (11) | 0.0621 (11) | 0.0589 (11) | −0.0009 (9) | −0.0042 (8) | 0.0186 (9) |
O3 | 0.0373 (9) | 0.0555 (10) | 0.0443 (9) | 0.0048 (7) | −0.0012 (7) | −0.0012 (7) |
O4 | 0.0481 (10) | 0.0573 (10) | 0.0482 (9) | 0.0097 (8) | −0.0044 (7) | −0.0052 (8) |
O7 | 0.0633 (15) | 0.182 (3) | 0.0581 (14) | −0.0182 (18) | −0.0042 (11) | 0.0190 (17) |
O8 | 0.0686 (15) | 0.124 (2) | 0.0586 (12) | −0.0156 (14) | −0.0081 (11) | 0.0052 (14) |
N1 | 0.0668 (15) | 0.0447 (11) | 0.0665 (14) | 0.0005 (11) | 0.0140 (11) | 0.0083 (10) |
N2 | 0.0558 (13) | 0.0586 (13) | 0.0494 (12) | 0.0057 (10) | 0.0066 (10) | −0.0055 (10) |
C1 | 0.115 (3) | 0.107 (3) | 0.101 (3) | 0.013 (3) | −0.002 (2) | 0.059 (3) |
C2 | 0.068 (2) | 0.078 (2) | 0.164 (4) | −0.0142 (19) | 0.028 (2) | 0.037 (3) |
C3 | 0.101 (10) | 0.061 (6) | 0.095 (7) | −0.012 (7) | 0.034 (8) | −0.005 (5) |
C3A | 0.076 (7) | 0.045 (4) | 0.112 (8) | 0.000 (5) | 0.020 (7) | 0.004 (4) |
C4 | 0.116 (10) | 0.055 (4) | 0.069 (6) | 0.017 (5) | 0.026 (6) | −0.002 (4) |
C4A | 0.096 (8) | 0.066 (6) | 0.100 (8) | −0.023 (5) | 0.011 (6) | −0.031 (6) |
C5 | 0.208 (6) | 0.169 (5) | 0.055 (2) | 0.100 (5) | −0.035 (3) | −0.033 (3) |
C6 | 0.067 (2) | 0.148 (4) | 0.132 (4) | 0.014 (3) | 0.026 (2) | −0.067 (3) |
C7 | 0.0361 (12) | 0.0459 (12) | 0.0453 (12) | 0.0079 (10) | 0.0072 (9) | 0.0023 (10) |
C8 | 0.0395 (13) | 0.0412 (12) | 0.0646 (15) | 0.0047 (10) | 0.0023 (11) | 0.0016 (11) |
C9 | 0.0414 (13) | 0.0450 (13) | 0.0664 (16) | 0.0019 (11) | −0.0021 (11) | −0.0103 (11) |
C10 | 0.0337 (12) | 0.0433 (11) | 0.0459 (12) | −0.0035 (9) | 0.0034 (9) | 0.0006 (10) |
O5 | 0.170 (3) | 0.0614 (13) | 0.0705 (15) | 0.0345 (16) | −0.0484 (17) | −0.0091 (12) |
O6 | 0.0686 (16) | 0.0971 (19) | 0.106 (2) | 0.0074 (14) | 0.0017 (13) | −0.0434 (15) |
Cu1—O1 | 1.9639 (17) | C3—H3A | 0.9700 |
Cu1—O3i | 1.9958 (16) | C3—H3B | 0.9700 |
Cu1—O4i | 2.4315 (17) | C3—C4 | 1.56 (2) |
Cu1—N1 | 2.024 (2) | C3A—H3AA | 0.9700 |
Cu1—N2 | 2.038 (2) | C3A—H3AB | 0.9700 |
Cu1—C10i | 2.540 (2) | C3A—C4A | 1.46 (2) |
O1—C7 | 1.275 (3) | C4—H4A | 0.9700 |
O2—C7 | 1.236 (3) | C4—H4B | 0.9700 |
O3—C10 | 1.273 (3) | C4A—H4AA | 0.9700 |
O4—C10 | 1.239 (3) | C4A—H4AB | 0.9700 |
O7—H7A | 0.815 (19) | C5—H5A | 0.9600 |
O7—H7B | 0.812 (10) | C5—H5B | 0.9600 |
O8—H8C | 0.828 (19) | C5—H5C | 0.9600 |
O8—H8D | 0.827 (19) | C5—H5D | 0.9600 |
N1—C1 | 1.459 (5) | C5—H5E | 0.9600 |
N1—C2 | 1.470 (4) | C5—H5F | 0.9600 |
N1—C3 | 1.489 (14) | C6—H6A | 0.9600 |
N1—C3A | 1.520 (14) | C6—H6B | 0.9600 |
N2—C4 | 1.513 (10) | C6—H6C | 0.9600 |
N2—C4A | 1.453 (11) | C6—H6D | 0.9600 |
N2—C5 | 1.436 (5) | C6—H6E | 0.9600 |
N2—C6 | 1.445 (4) | C6—H6F | 0.9600 |
C1—H1A | 0.9600 | C7—C8 | 1.500 (3) |
C1—H1B | 0.9600 | C8—H8A | 0.9700 |
C1—H1C | 0.9600 | C8—H8B | 0.9700 |
C1—H1D | 0.9600 | C8—C9 | 1.512 (3) |
C1—H1E | 0.9600 | C9—H9A | 0.9700 |
C1—H1F | 0.9600 | C9—H9B | 0.9700 |
C2—H2A | 0.9600 | C9—C10 | 1.504 (3) |
C2—H2B | 0.9600 | O5—H5G | 0.80 (2) |
C2—H2C | 0.9600 | O5—H5H | 0.794 (19) |
C2—H2D | 0.9600 | O6—H6G | 0.821 (19) |
C2—H2E | 0.9600 | O6—H6H | 0.835 (19) |
C2—H2F | 0.9600 | ||
O1—Cu1—O3i | 89.80 (7) | C4—C3—H3B | 111.0 |
O1—Cu1—O4i | 91.00 (7) | N1—C3A—H3AA | 109.3 |
O1—Cu1—N1 | 167.77 (9) | N1—C3A—H3AB | 109.3 |
O1—Cu1—N2 | 92.40 (8) | H3AA—C3A—H3AB | 108.0 |
O1—Cu1—C10i | 88.56 (7) | C4A—C3A—N1 | 111.5 (11) |
O3i—Cu1—O4i | 58.26 (6) | C4A—C3A—H3AA | 109.3 |
O3i—Cu1—N1 | 94.20 (8) | C4A—C3A—H3AB | 109.3 |
O3i—Cu1—N2 | 165.06 (8) | N2—C4—C3 | 107.6 (10) |
O3i—Cu1—C10i | 29.61 (7) | N2—C4—H4A | 110.2 |
O4i—Cu1—C10i | 28.77 (6) | N2—C4—H4B | 110.2 |
N1—Cu1—O4i | 100.93 (8) | C3—C4—H4A | 110.2 |
N1—Cu1—N2 | 86.72 (9) | C3—C4—H4B | 110.2 |
N1—Cu1—C10i | 100.59 (9) | H4A—C4—H4B | 108.5 |
N2—Cu1—O4i | 106.90 (8) | N2—C4A—C3A | 108.8 (11) |
N2—Cu1—C10i | 135.64 (9) | N2—C4A—H4AA | 109.9 |
C7—O1—Cu1 | 105.67 (14) | N2—C4A—H4AB | 109.9 |
C10—O3—Cu1ii | 99.60 (14) | C3A—C4A—H4AA | 109.9 |
C10—O4—Cu1ii | 80.46 (14) | C3A—C4A—H4AB | 109.9 |
H7A—O7—H7B | 109 (2) | H4AA—C4A—H4AB | 108.3 |
H8C—O8—H8D | 105 (5) | N2—C5—H5A | 109.5 |
C1—N1—Cu1 | 108.8 (2) | N2—C5—H5B | 109.5 |
C1—N1—C2 | 108.1 (3) | N2—C5—H5C | 109.5 |
C1—N1—C3 | 123.0 (8) | H5A—C5—H5B | 109.5 |
C1—N1—C3A | 99.7 (6) | H5A—C5—H5C | 109.5 |
C2—N1—Cu1 | 114.2 (2) | H5B—C5—H5C | 109.5 |
C2—N1—C3 | 96.8 (7) | H5D—C5—H5E | 109.5 |
C2—N1—C3A | 120.0 (6) | H5D—C5—H5F | 109.5 |
C3—N1—Cu1 | 105.8 (5) | H5E—C5—H5F | 109.5 |
C3A—N1—Cu1 | 104.7 (5) | N2—C6—H6A | 109.5 |
C4—N2—Cu1 | 105.2 (4) | N2—C6—H6B | 109.5 |
C4A—N2—Cu1 | 105.0 (5) | N2—C6—H6C | 109.5 |
C5—N2—Cu1 | 107.9 (2) | H6A—C6—H6B | 109.5 |
C5—N2—C4 | 123.4 (8) | H6A—C6—H6C | 109.5 |
C5—N2—C4A | 96.1 (8) | H6B—C6—H6C | 109.5 |
C5—N2—C6 | 109.4 (4) | H6D—C6—H6E | 109.5 |
C6—N2—Cu1 | 114.8 (2) | H6D—C6—H6F | 109.5 |
C6—N2—C4 | 96.2 (7) | H6E—C6—H6F | 109.5 |
C6—N2—C4A | 121.6 (7) | O1—C7—C8 | 116.4 (2) |
N1—C1—H1A | 109.5 | O2—C7—O1 | 121.3 (2) |
N1—C1—H1B | 109.5 | O2—C7—C8 | 122.3 (2) |
N1—C1—H1C | 109.5 | C7—C8—H8A | 108.6 |
H1A—C1—H1B | 109.5 | C7—C8—H8B | 108.6 |
H1A—C1—H1C | 109.5 | C7—C8—C9 | 114.7 (2) |
H1B—C1—H1C | 109.5 | H8A—C8—H8B | 107.6 |
H1D—C1—H1E | 109.5 | C9—C8—H8A | 108.6 |
H1D—C1—H1F | 109.5 | C9—C8—H8B | 108.6 |
H1E—C1—H1F | 109.5 | C8—C9—H9A | 108.7 |
N1—C2—H2A | 109.5 | C8—C9—H9B | 108.7 |
N1—C2—H2B | 109.5 | H9A—C9—H9B | 107.6 |
N1—C2—H2C | 109.5 | C10—C9—C8 | 114.2 (2) |
H2A—C2—H2B | 109.5 | C10—C9—H9A | 108.7 |
H2A—C2—H2C | 109.5 | C10—C9—H9B | 108.7 |
H2B—C2—H2C | 109.5 | O3—C10—Cu1ii | 50.79 (11) |
H2D—C2—H2E | 109.5 | O3—C10—C9 | 117.4 (2) |
H2D—C2—H2F | 109.5 | O4—C10—Cu1ii | 70.77 (13) |
H2E—C2—H2F | 109.5 | O4—C10—O3 | 121.2 (2) |
N1—C3—H3A | 111.0 | O4—C10—C9 | 121.4 (2) |
N1—C3—H3B | 111.0 | C9—C10—Cu1ii | 166.01 (17) |
N1—C3—C4 | 104.0 (13) | H5G—O5—H5H | 113 (5) |
H3A—C3—H3B | 109.0 | H6G—O6—H6H | 105 (3) |
C4—C3—H3A | 111.0 | ||
Cu1—O1—C7—O2 | 5.8 (3) | N1—C3A—C4A—N2 | 54.0 (19) |
Cu1—O1—C7—C8 | −174.58 (16) | C1—N1—C3—C4 | −76.7 (11) |
Cu1ii—O3—C10—O4 | 7.5 (3) | C1—N1—C3A—C4A | −145.2 (12) |
Cu1ii—O3—C10—C9 | −171.00 (18) | C2—N1—C3—C4 | 166.6 (11) |
Cu1ii—O4—C10—O3 | −6.2 (2) | C2—N1—C3A—C4A | 97.2 (12) |
Cu1ii—O4—C10—C9 | 172.3 (2) | C5—N2—C4—C3 | −84.0 (12) |
Cu1—N1—C3—C4 | 49.0 (13) | C5—N2—C4A—C3A | −155.7 (13) |
Cu1—N1—C3A—C4A | −32.7 (14) | C6—N2—C4—C3 | 157.9 (13) |
Cu1—N2—C4—C3 | 40.1 (15) | C6—N2—C4A—C3A | 87.1 (12) |
Cu1—N2—C4A—C3A | −45.4 (15) | C7—C8—C9—C10 | 65.1 (3) |
O1—C7—C8—C9 | −168.5 (2) | C8—C9—C10—Cu1ii | 169.4 (6) |
O2—C7—C8—C9 | 11.1 (3) | C8—C9—C10—O3 | −160.5 (2) |
N1—C3—C4—N2 | −60.5 (18) | C8—C9—C10—O4 | 20.9 (3) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5H···O4 | 0.79 (2) | 1.98 (2) | 2.763 (3) | 169 (6) |
O6—H6G···O5 | 0.82 (2) | 1.88 (2) | 2.694 (3) | 175 (5) |
O7—H7A···O2 | 0.82 (2) | 1.96 (2) | 2.774 (3) | 172 (6) |
O8—H8C···O3 | 0.83 (2) | 2.04 (2) | 2.869 (3) | 173 (5) |
O8—H8D···O7 | 0.83 (2) | 1.93 (2) | 2.733 (4) | 165 (5) |
O7—H7B···O6iii | 0.81 (1) | 1.97 (2) | 2.763 (4) | 167 (6) |
O5—H5G···O1iv | 0.80 (2) | 2.00 (2) | 2.799 (3) | 176 (6) |
O6—H6H···O8v | 0.84 (2) | 2.01 (2) | 2.803 (4) | 157 (5) |
Symmetry codes: (iii) x−1/2, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1; (v) x−1/2, −y+1/2, z−1/2. |
Funding information
This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
González Garmendia, M. J., Nacianceno, V. S., Seco, J. M. & Zúñiga, F. J. (2009). Acta Cryst. C65, m436–m439. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633–7644. Web of Science CAS PubMed Google Scholar
Lakshmi, S. S., Geetha, K., Gayathri, M. & Shanmugam, G. (2016). J. Chem. Sci. 128, 1095–1102. Web of Science CSD CrossRef CAS Google Scholar
Melník, M., Auderová, M. & Hol'ko, M. (1982). Inorg. Chim. Acta, 67, 117–120. Google Scholar
Mojumdar, S. C., Madgurambal, G. & Saleh, M. T. (2005). J. Therm. Anal. Calorim. 81, 205–210. Web of Science CrossRef CAS Google Scholar
Mukherjee, R. N. (2003). Indian J. Chem. 42A, 2175–2184. CAS Google Scholar
Murakami, T. & Kita, S. (1998). Inorg. Chim. Acta, 274, 247–250. Web of Science CSD CrossRef CAS Google Scholar
Pajunen, A. & Pajunen, S. (1979a). Acta Cryst. B35, 2401–2403. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Pajunen, A. & Pajunen, S. (1979b). Acta Cryst. B35, 460–461. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Ranford, J. D., Sadler, P. J. & Tocher, D. A. (1993). J. Chem. Soc. Dalton Trans. pp. 3393–3399. CSD CrossRef Web of Science Google Scholar
Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.