research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of one-dimensional copper(II) coordination polymer incorporating succinate and tetra­methyl­ethylene­di­amine ligands

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Salahaddin University, Erbil, 44001, Iraq, bDepartment of Fundamental Sciences, Faculty of Engineering, Samsun University, Samsun, 55420, Turkey, cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55139, Turkey, dInstitute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK, and eDepartment of Chemistry, National Taras Shevchenko University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, tiskenderov@ukr.net

Edited by S. Parkin, University of Kentucky, USA (Received 1 May 2020; accepted 29 May 2020; online 9 June 2020)

The reaction of copper nitrate with succinic acid (succH) and N,N,N′,N′-tetra­methyl­ethylenedi­amine (TMEDA) in basic solution produces the complex catena-poly[[[(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2N,N′)copper(II)]-μ-succinato-κ2O1:O4] tetra­hydrate], {[Cu(C4H4O4)(C6H16N2)]·4H2O}n or {[Cu(succ)(tmeda)]·4H2O}n. Each carboxyl­ate group of the succinate ligand coordinates to a CuII atom in a monodentate fashion, giving rise to a distorted square-planar geometry. The succinate ligands bridge the CuII centres, forming one-dimensional polymeric chains. Hydrogen bonds between the ligands and water mol­ecules link these chains into sheets that lie parallel to the ac plane. Hirshfeld surface analysis, dnorm and two-dimensional fingerprint plots were examined to verify the contributions of the different inter­molecular contacts within the supra­molecular structure.

1. Chemical context

Coordination polymers are a key area of development in supra­molecular chemistry. Aliphatic saturated di­carboxyl­ates are versatile linkage ligands for construction of supra­molecular frameworks. These possess conformational freedom and coordinating ability owing to the single carbon chain. Aliphatic di­carboxyl­ate anions exhibit different coordination modes such as uni-bidentate, bis-monodentate, bis-bidentate, tridentate or tetra­dentate, linking metal atoms into 1-D coordination polymers, 2-D layers or 3-D networks. Copper(II) carboxyl­ate complexes are known to possess various biological activities including anti­fungal (Melník et al., 1982[Melník, M., Auderová, M. & Hol'ko, M. (1982). Inorg. Chim. Acta, 67, 117-120.]), anti­bacterial (Mojumdar et al., 2005[Mojumdar, S. C., Madgurambal, G. & Saleh, M. T. (2005). J. Therm. Anal. Calorim. 81, 205-210.]), anti­viral and cytotoxic activities (Ranford et al., 1993[Ranford, J. D., Sadler, P. J. & Tocher, D. A. (1993). J. Chem. Soc. Dalton Trans. pp. 3393-3399.]). Copper(II) is present at the active site some of proteins. The proteins containing copper(II) display biological functions such as electron transfer, di­oxy­gen transfer, oxygenation, reduction, oxidation and disproportionation (Mukherjee, 2003[Mukherjee, R. N. (2003). Indian J. Chem. 42A, 2175-2184.]). In this work, the synthesis, single crystal structure and Hirshfeld surface analysis of a copper(II) complex involving N,N,N′,N′-tetra­methyl­ethylenedi­amine and succinate ligands are reported.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound (1) is illustrated in Fig. 1[link]. In the complex {[Cu(succ)2(tmeda)]·4H2O}n, the central metal atom has distorted square-planar geometry with one oxygen atom each from two succ ligands and two TMEDA ligand nitro­gen atoms (Figs. 2[link] and 3[link]). There are two longer axial Cu⋯O contacts of 2.590 (2) and 2.432 (2) Å. In the square-plane, the Cu—O and Cu—N bond lengths are in the range 1.964 (2)–2.038 (2) Å (Table 1[link]). The structural parameters in the TMEDA ligand, i.e. the Cu—N bond lengths, are in agreement with those reported for the [Cu3(PyDHA-2H)(tmeda)3](ClO4)2 complex (PyDHA = pyridine-2,6-di­hydroxamic acid) by Gumienna-Kontecka et al. (2013[Gumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633-7644.]). Similar geometric parameters have also been reported for {[Cu(succ)(deed)]·4H2O}n [Cu—O: 2.123 (8)–2.142 (8) Å deed = N,N-diethylethylenediamine; Şen et al., 2017[Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517-524.]] and [Cu2(C4H4O4)2(C12H12N2)]n, [Cu—O: 1.955 (4)–1.983 (5) Å; González Garmendia et al., 2009[González Garmendia, M. J., Nacianceno, V. S., Seco, J. M. & Zúñiga, F. J. (2009). Acta Cryst. C65, m436-m439.]]. Selected bond lengths and angles are given in Table 1[link]. The succinate ligands bridge the CuII centres, forming one-dimensional polymeric chains.

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.9639 (17) O1—C7 1.275 (3)
Cu1—O3i 1.9958 (16) O2—C7 1.236 (3)
Cu1—O4i 2.4315 (17) O3—C10 1.273 (3)
Cu1—N1 2.024 (2) O4—C10 1.239 (3)
Cu1—N2 2.038 (2) N1—C1 1.459 (5)
       
O1—Cu1—O3i 89.80 (7) O1—Cu1—N2 92.40 (8)
O1—Cu1—O4i 91.00 (7) O3i—Cu1—N1 94.20 (8)
O1—Cu1—N1 167.77 (9) O3i—Cu1—N2 165.06 (8)
Symmetry code: (i) x-1, y, z.
[Figure 1]
Figure 1
Perspective view of {[Cu(succ)(tmeda)]·4H2O}n, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) −1 + x, y, z; (ii) 1 + x, y, z].
[Figure 2]
Figure 2
Ellipsoid plot (50%) of a section of the polymeric chain of {[Cu(succ)(tmeda)]·4H2O}n.
[Figure 3]
Figure 3
The two-dimensional layered structure of {[Cu(succ)(tmeda)]·4H2O}n. For clarity, the TMEDA ligands are shown only by their N atoms.

3. Supra­molecular features

In the asymmetric unit of the title complex, there are O5—H5H⋯O4, O6—H6G⋯O5, O7—H7A⋯O2, O8—H8C⋯O3 and O8—H8D⋯O7 hydrogen-bonding inter­actions, which act to stabilize the crystal packing. The crystal packing (Fig. 3[link]) also features symmetry-related inter­molecular hydrogen bonds (O7—H7B⋯O6ii, O5—H5G⋯O1iii and O6—H6H⋯O8iv; symmetry codes as in Table 2[link]), linking the one-dimensional polymeric chains into sheets that lie parallel to the ac plane.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5H⋯O4 0.79 (2) 1.98 (2) 2.763 (3) 169 (6)
O6—H6G⋯O5 0.82 (2) 1.88 (2) 2.694 (3) 175 (5)
O7—H7A⋯O2 0.82 (2) 1.96 (2) 2.774 (3) 172 (6)
O8—H8C⋯O3 0.83 (2) 2.04 (2) 2.869 (3) 173 (5)
O8—H8D⋯O7 0.83 (2) 1.93 (2) 2.733 (4) 165 (5)
O7—H7B⋯O6ii 0.81 (1) 1.97 (2) 2.763 (4) 167 (6)
O5—H5G⋯O1iii 0.80 (2) 2.00 (2) 2.799 (3) 176 (6)
O6—H6H⋯O8iv 0.84 (2) 2.01 (2) 2.803 (4) 157 (5)
Symmetry codes: (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the title complex gave four hits: aqua­(cyclo­butane-1,1-di­carboxyl­ato)(N,N,N′,N′-tetra­methyl­ethylenedi­amine)­copper(II) mono­hydrate (CBXECU; Pajunen & Pajunen, 1979a[Pajunen, A. & Pajunen, S. (1979a). Acta Cryst. B35, 2401-2403.]), bis­(μ2-glutarato)bis­[(N,N,N′,N′-tetra­ethyl­ethylenedi­amine)­cop­per(II)] (GLUECU; Pajunen & Pajunen, 1979b[Pajunen, A. & Pajunen, S. (1979b). Acta Cryst. B35, 460-461.]), [N-(2-oxybenzyl­idene)valinato](N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine)­copper(II) (UZAPES; Lakshmi et al., 2016[Lakshmi, S. S., Geetha, K., Gayathri, M. & Shanmugam, G. (2016). J. Chem. Sci. 128, 1095-1102.]) and (N,N,N′,N′′,N′′-penta­methyl­diethylenetri­amine)(L-valinato)copper(II) perchlorate (VEGRUU; Murakami & Kita, 1998[Murakami, T. & Kita, S. (1998). Inorg. Chim. Acta, 274, 247-250.]). The Cu—N bond lengths range from 1.941 to 2.415 Å. When these bond lengths are compared with the title complex, the Cu—N bond lengths [2.024 (2)–2.038 (2) Å] fall within these limits.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. https://hirshfeldsurface.net.]). Hirshfeld surface analysis enables the visualization of inter­molecular inter­actions by different colours and colour intensity, representing short or long contacts and indicating the relative strength of the inter­actions. Fig. 4[link] shows the Hirshfeld surface mapped over dnorm (–0.629 to 1.578 a.u.). The overall two-dimensional fingerprint plot for the title complex and those delineated into H⋯H, O⋯H/H⋯O and Cu⋯O/O⋯Cu contacts are illustrated in Fig. 5[link]. The percentage contributions from the different inter-atomic contacts to the Hirshfeld surface are as follows: H⋯H (63.2%), O⋯H/H⋯O (29.5%) and Cu⋯O/O⋯Cu (3.8%). The percentage contributions for other inter­molecular contacts amount to less than 3% of the Hirshfeld surface mapping.

[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm for {[Cu(succ)(tmeda)]·4H2O}n.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots for {[Cu(succ)(tmeda)]·4H2O}n showing the main inter­actions and their percentage contributions (di is the closest inter­nal distance from a given point on the Hirshfeld surface and de is the closest external contact).

6. Synthesis and crystallization

An aqueous solution of sodium succinate (10 mmol, 1.6 g) was added to an aqueous solution of Cu(NO3)2·3H2O (10 mmol, 2.4 g) under stirring. A light-blue precipitate was formed. The precipitate was filtered and washed with water. The precipitate was dispersed in water and tetra­methyl­ethylenedi­amine (10 mmol, 1.2 g) was added giving a dark-blue solution. The solution was filtered. Single crystals were obtained on slow evaporation of the solution after one week.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Carbon-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93, 0.96 and 0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. The methyl groups were modelled as disordered over two torsional orientations. Water hydrogen-atom coordinates were refined, but Uiso(H) was set to 1.5Ueq(water O).

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C4H4O4)(C6H16N2)]·4H2O
Mr 367.88
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.1195 (4), 12.3172 (6), 19.8590 (12)
β (°) 91.160 (5)
V3) 1741.12 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.29
Crystal size (mm) 0.61 × 0.33 × 0.17
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.645, 0.810
No. of measured, independent and observed [I > 2σ(I)] reflections 12278, 3427, 2864
Rint 0.033
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.04
No. of reflections 3427
No. of parameters 233
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.26
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[[(N,N,N',N'-tetramethylethylenediamine-κ2N,N')copper(II)]-µ-succinato-κ2O1:O4] tetrahydrate] top
Crystal data top
[Cu(C4H4O4)(C6H16N2)]·4H2OF(000) = 780
Mr = 367.88Dx = 1.403 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.1195 (4) ÅCell parameters from 19036 reflections
b = 12.3172 (6) Åθ = 1.7–29.9°
c = 19.8590 (12) ŵ = 1.29 mm1
β = 91.160 (5)°T = 296 K
V = 1741.12 (17) Å3Stick, blue
Z = 40.61 × 0.33 × 0.17 mm
Data collection top
Stoe IPDS 2
diffractometer
2864 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.033
rotation method scansθmax = 26.0°, θmin = 2.0°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 88
Tmin = 0.645, Tmax = 0.810k = 1415
12278 measured reflectionsl = 2424
3427 independent reflections
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.056P)2 + 0.2662P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3427 reflectionsΔρmax = 0.28 e Å3
233 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.21554 (4)0.28617 (2)0.62467 (2)0.03940 (11)
O10.3640 (2)0.41083 (14)0.59461 (8)0.0471 (4)
O20.5331 (3)0.34615 (16)0.67869 (10)0.0581 (5)
O31.0718 (2)0.38395 (14)0.68503 (8)0.0457 (4)
O40.9260 (3)0.37395 (14)0.58714 (8)0.0512 (4)
O70.6289 (4)0.3189 (3)0.81373 (13)0.1013 (10)
H7A0.604 (7)0.321 (5)0.7735 (10)0.152*
H7B0.535 (4)0.302 (4)0.834 (2)0.152*
O80.9959 (4)0.3821 (3)0.82634 (12)0.0839 (7)
H8C1.023 (7)0.387 (4)0.7861 (12)0.126*
H8D0.892 (4)0.353 (4)0.826 (3)0.126*
N10.1142 (4)0.14824 (18)0.66575 (12)0.0592 (6)
N20.3026 (3)0.19183 (18)0.54703 (11)0.0545 (5)
C10.2261 (7)0.1220 (4)0.7259 (2)0.1078 (15)
H1A0.3561880.1173380.7145120.129*0.495 (18)
H1B0.2101050.1778070.7590950.129*0.495 (18)
H1C0.1855160.0537010.7437930.129*0.495 (18)
H1D0.1450180.1152260.7637550.129*0.505 (18)
H1E0.2911010.0547570.7191710.129*0.505 (18)
H1F0.3156900.1788630.7344740.129*0.505 (18)
C20.0839 (5)0.1548 (3)0.6849 (3)0.1029 (15)
H2A0.1601880.1720270.6459810.124*0.505 (18)
H2B0.1226720.0862970.7030290.124*0.505 (18)
H2C0.0980820.2104040.7183310.124*0.505 (18)
H2D0.0937730.1404580.7322460.124*0.495 (18)
H2E0.1312890.2261880.6751990.124*0.495 (18)
H2F0.1558790.1020820.6598960.124*0.495 (18)
C30.086 (3)0.0712 (12)0.6087 (8)0.085 (4)0.495 (18)
H3A0.0180470.0937430.5797120.102*0.495 (18)
H3B0.0621060.0016670.6249640.102*0.495 (18)
C3A0.179 (2)0.0582 (10)0.6193 (8)0.077 (3)0.505 (18)
H3AA0.3020010.0332920.6339750.093*0.505 (18)
H3AB0.0925070.0026680.6220770.093*0.505 (18)
C40.276 (3)0.0761 (8)0.5704 (6)0.079 (3)0.495 (18)
H4A0.3789640.0545350.6000780.095*0.495 (18)
H4B0.2716450.0272820.5320750.095*0.495 (18)
C4A0.187 (2)0.0950 (11)0.5496 (7)0.087 (4)0.505 (18)
H4AA0.2394770.0384740.5217680.105*0.505 (18)
H4AB0.0609160.1110900.5326010.105*0.505 (18)
C50.2202 (9)0.2343 (5)0.4859 (2)0.144 (3)
H5A0.0864250.2386810.4903050.173*0.495 (18)
H5B0.2698700.3053360.4775260.173*0.495 (18)
H5C0.2493440.1871140.4490770.173*0.495 (18)
H5D0.3173340.2487390.4543000.173*0.505 (18)
H5E0.1338890.1820850.4670800.173*0.505 (18)
H5F0.1544150.3003070.4955280.173*0.505 (18)
C60.5040 (6)0.1852 (4)0.5403 (3)0.1154 (17)
H6A0.5593690.1568780.5811310.138*0.505 (18)
H6B0.5330230.1381220.5034350.138*0.505 (18)
H6C0.5535490.2563450.5318830.138*0.505 (18)
H6D0.5379250.2106850.4965010.138*0.495 (18)
H6E0.5642710.2294410.5741980.138*0.495 (18)
H6F0.5437450.1112190.5457500.138*0.495 (18)
C70.5046 (3)0.41647 (19)0.63531 (12)0.0424 (5)
C80.6324 (4)0.51218 (19)0.62714 (14)0.0484 (6)
H8A0.5666310.5770640.6411380.058*
H8B0.6596820.5201890.5797330.058*
C90.8161 (4)0.5050 (2)0.66639 (14)0.0510 (6)
H9A0.8821660.5734430.6622500.061*
H9B0.7892240.4945190.7136360.061*
C100.9432 (3)0.41491 (19)0.64394 (12)0.0409 (5)
O50.7915 (5)0.3966 (2)0.45643 (13)0.1012 (10)
H5G0.751 (8)0.454 (3)0.443 (3)0.152*
H5H0.827 (8)0.399 (5)0.4946 (13)0.152*
O60.8144 (4)0.2050 (2)0.39169 (17)0.0906 (8)
H6G0.801 (7)0.263 (3)0.411 (2)0.136*
H6H0.715 (5)0.197 (4)0.369 (2)0.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03491 (16)0.04272 (17)0.04064 (16)0.00251 (12)0.00232 (10)0.00379 (11)
O10.0359 (9)0.0524 (9)0.0529 (9)0.0013 (7)0.0021 (7)0.0085 (7)
O20.0532 (11)0.0621 (11)0.0589 (11)0.0009 (9)0.0042 (8)0.0186 (9)
O30.0373 (9)0.0555 (10)0.0443 (9)0.0048 (7)0.0012 (7)0.0012 (7)
O40.0481 (10)0.0573 (10)0.0482 (9)0.0097 (8)0.0044 (7)0.0052 (8)
O70.0633 (15)0.182 (3)0.0581 (14)0.0182 (18)0.0042 (11)0.0190 (17)
O80.0686 (15)0.124 (2)0.0586 (12)0.0156 (14)0.0081 (11)0.0052 (14)
N10.0668 (15)0.0447 (11)0.0665 (14)0.0005 (11)0.0140 (11)0.0083 (10)
N20.0558 (13)0.0586 (13)0.0494 (12)0.0057 (10)0.0066 (10)0.0055 (10)
C10.115 (3)0.107 (3)0.101 (3)0.013 (3)0.002 (2)0.059 (3)
C20.068 (2)0.078 (2)0.164 (4)0.0142 (19)0.028 (2)0.037 (3)
C30.101 (10)0.061 (6)0.095 (7)0.012 (7)0.034 (8)0.005 (5)
C3A0.076 (7)0.045 (4)0.112 (8)0.000 (5)0.020 (7)0.004 (4)
C40.116 (10)0.055 (4)0.069 (6)0.017 (5)0.026 (6)0.002 (4)
C4A0.096 (8)0.066 (6)0.100 (8)0.023 (5)0.011 (6)0.031 (6)
C50.208 (6)0.169 (5)0.055 (2)0.100 (5)0.035 (3)0.033 (3)
C60.067 (2)0.148 (4)0.132 (4)0.014 (3)0.026 (2)0.067 (3)
C70.0361 (12)0.0459 (12)0.0453 (12)0.0079 (10)0.0072 (9)0.0023 (10)
C80.0395 (13)0.0412 (12)0.0646 (15)0.0047 (10)0.0023 (11)0.0016 (11)
C90.0414 (13)0.0450 (13)0.0664 (16)0.0019 (11)0.0021 (11)0.0103 (11)
C100.0337 (12)0.0433 (11)0.0459 (12)0.0035 (9)0.0034 (9)0.0006 (10)
O50.170 (3)0.0614 (13)0.0705 (15)0.0345 (16)0.0484 (17)0.0091 (12)
O60.0686 (16)0.0971 (19)0.106 (2)0.0074 (14)0.0017 (13)0.0434 (15)
Geometric parameters (Å, º) top
Cu1—O11.9639 (17)C3—H3A0.9700
Cu1—O3i1.9958 (16)C3—H3B0.9700
Cu1—O4i2.4315 (17)C3—C41.56 (2)
Cu1—N12.024 (2)C3A—H3AA0.9700
Cu1—N22.038 (2)C3A—H3AB0.9700
Cu1—C10i2.540 (2)C3A—C4A1.46 (2)
O1—C71.275 (3)C4—H4A0.9700
O2—C71.236 (3)C4—H4B0.9700
O3—C101.273 (3)C4A—H4AA0.9700
O4—C101.239 (3)C4A—H4AB0.9700
O7—H7A0.815 (19)C5—H5A0.9600
O7—H7B0.812 (10)C5—H5B0.9600
O8—H8C0.828 (19)C5—H5C0.9600
O8—H8D0.827 (19)C5—H5D0.9600
N1—C11.459 (5)C5—H5E0.9600
N1—C21.470 (4)C5—H5F0.9600
N1—C31.489 (14)C6—H6A0.9600
N1—C3A1.520 (14)C6—H6B0.9600
N2—C41.513 (10)C6—H6C0.9600
N2—C4A1.453 (11)C6—H6D0.9600
N2—C51.436 (5)C6—H6E0.9600
N2—C61.445 (4)C6—H6F0.9600
C1—H1A0.9600C7—C81.500 (3)
C1—H1B0.9600C8—H8A0.9700
C1—H1C0.9600C8—H8B0.9700
C1—H1D0.9600C8—C91.512 (3)
C1—H1E0.9600C9—H9A0.9700
C1—H1F0.9600C9—H9B0.9700
C2—H2A0.9600C9—C101.504 (3)
C2—H2B0.9600O5—H5G0.80 (2)
C2—H2C0.9600O5—H5H0.794 (19)
C2—H2D0.9600O6—H6G0.821 (19)
C2—H2E0.9600O6—H6H0.835 (19)
C2—H2F0.9600
O1—Cu1—O3i89.80 (7)C4—C3—H3B111.0
O1—Cu1—O4i91.00 (7)N1—C3A—H3AA109.3
O1—Cu1—N1167.77 (9)N1—C3A—H3AB109.3
O1—Cu1—N292.40 (8)H3AA—C3A—H3AB108.0
O1—Cu1—C10i88.56 (7)C4A—C3A—N1111.5 (11)
O3i—Cu1—O4i58.26 (6)C4A—C3A—H3AA109.3
O3i—Cu1—N194.20 (8)C4A—C3A—H3AB109.3
O3i—Cu1—N2165.06 (8)N2—C4—C3107.6 (10)
O3i—Cu1—C10i29.61 (7)N2—C4—H4A110.2
O4i—Cu1—C10i28.77 (6)N2—C4—H4B110.2
N1—Cu1—O4i100.93 (8)C3—C4—H4A110.2
N1—Cu1—N286.72 (9)C3—C4—H4B110.2
N1—Cu1—C10i100.59 (9)H4A—C4—H4B108.5
N2—Cu1—O4i106.90 (8)N2—C4A—C3A108.8 (11)
N2—Cu1—C10i135.64 (9)N2—C4A—H4AA109.9
C7—O1—Cu1105.67 (14)N2—C4A—H4AB109.9
C10—O3—Cu1ii99.60 (14)C3A—C4A—H4AA109.9
C10—O4—Cu1ii80.46 (14)C3A—C4A—H4AB109.9
H7A—O7—H7B109 (2)H4AA—C4A—H4AB108.3
H8C—O8—H8D105 (5)N2—C5—H5A109.5
C1—N1—Cu1108.8 (2)N2—C5—H5B109.5
C1—N1—C2108.1 (3)N2—C5—H5C109.5
C1—N1—C3123.0 (8)H5A—C5—H5B109.5
C1—N1—C3A99.7 (6)H5A—C5—H5C109.5
C2—N1—Cu1114.2 (2)H5B—C5—H5C109.5
C2—N1—C396.8 (7)H5D—C5—H5E109.5
C2—N1—C3A120.0 (6)H5D—C5—H5F109.5
C3—N1—Cu1105.8 (5)H5E—C5—H5F109.5
C3A—N1—Cu1104.7 (5)N2—C6—H6A109.5
C4—N2—Cu1105.2 (4)N2—C6—H6B109.5
C4A—N2—Cu1105.0 (5)N2—C6—H6C109.5
C5—N2—Cu1107.9 (2)H6A—C6—H6B109.5
C5—N2—C4123.4 (8)H6A—C6—H6C109.5
C5—N2—C4A96.1 (8)H6B—C6—H6C109.5
C5—N2—C6109.4 (4)H6D—C6—H6E109.5
C6—N2—Cu1114.8 (2)H6D—C6—H6F109.5
C6—N2—C496.2 (7)H6E—C6—H6F109.5
C6—N2—C4A121.6 (7)O1—C7—C8116.4 (2)
N1—C1—H1A109.5O2—C7—O1121.3 (2)
N1—C1—H1B109.5O2—C7—C8122.3 (2)
N1—C1—H1C109.5C7—C8—H8A108.6
H1A—C1—H1B109.5C7—C8—H8B108.6
H1A—C1—H1C109.5C7—C8—C9114.7 (2)
H1B—C1—H1C109.5H8A—C8—H8B107.6
H1D—C1—H1E109.5C9—C8—H8A108.6
H1D—C1—H1F109.5C9—C8—H8B108.6
H1E—C1—H1F109.5C8—C9—H9A108.7
N1—C2—H2A109.5C8—C9—H9B108.7
N1—C2—H2B109.5H9A—C9—H9B107.6
N1—C2—H2C109.5C10—C9—C8114.2 (2)
H2A—C2—H2B109.5C10—C9—H9A108.7
H2A—C2—H2C109.5C10—C9—H9B108.7
H2B—C2—H2C109.5O3—C10—Cu1ii50.79 (11)
H2D—C2—H2E109.5O3—C10—C9117.4 (2)
H2D—C2—H2F109.5O4—C10—Cu1ii70.77 (13)
H2E—C2—H2F109.5O4—C10—O3121.2 (2)
N1—C3—H3A111.0O4—C10—C9121.4 (2)
N1—C3—H3B111.0C9—C10—Cu1ii166.01 (17)
N1—C3—C4104.0 (13)H5G—O5—H5H113 (5)
H3A—C3—H3B109.0H6G—O6—H6H105 (3)
C4—C3—H3A111.0
Cu1—O1—C7—O25.8 (3)N1—C3A—C4A—N254.0 (19)
Cu1—O1—C7—C8174.58 (16)C1—N1—C3—C476.7 (11)
Cu1ii—O3—C10—O47.5 (3)C1—N1—C3A—C4A145.2 (12)
Cu1ii—O3—C10—C9171.00 (18)C2—N1—C3—C4166.6 (11)
Cu1ii—O4—C10—O36.2 (2)C2—N1—C3A—C4A97.2 (12)
Cu1ii—O4—C10—C9172.3 (2)C5—N2—C4—C384.0 (12)
Cu1—N1—C3—C449.0 (13)C5—N2—C4A—C3A155.7 (13)
Cu1—N1—C3A—C4A32.7 (14)C6—N2—C4—C3157.9 (13)
Cu1—N2—C4—C340.1 (15)C6—N2—C4A—C3A87.1 (12)
Cu1—N2—C4A—C3A45.4 (15)C7—C8—C9—C1065.1 (3)
O1—C7—C8—C9168.5 (2)C8—C9—C10—Cu1ii169.4 (6)
O2—C7—C8—C911.1 (3)C8—C9—C10—O3160.5 (2)
N1—C3—C4—N260.5 (18)C8—C9—C10—O420.9 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5H···O40.79 (2)1.98 (2)2.763 (3)169 (6)
O6—H6G···O50.82 (2)1.88 (2)2.694 (3)175 (5)
O7—H7A···O20.82 (2)1.96 (2)2.774 (3)172 (6)
O8—H8C···O30.83 (2)2.04 (2)2.869 (3)173 (5)
O8—H8D···O70.83 (2)1.93 (2)2.733 (4)165 (5)
O7—H7B···O6iii0.81 (1)1.97 (2)2.763 (4)167 (6)
O5—H5G···O1iv0.80 (2)2.00 (2)2.799 (3)176 (6)
O6—H6H···O8v0.84 (2)2.01 (2)2.803 (4)157 (5)
Symmetry codes: (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1/2, y+1/2, z1/2.
 

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYO·FEN.1906.19.001.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGonzález Garmendia, M. J., Nacianceno, V. S., Seco, J. M. & Zúñiga, F. J. (2009). Acta Cryst. C65, m436–m439.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633–7644.  Web of Science CAS PubMed Google Scholar
First citationLakshmi, S. S., Geetha, K., Gayathri, M. & Shanmugam, G. (2016). J. Chem. Sci. 128, 1095–1102.  Web of Science CSD CrossRef CAS Google Scholar
First citationMelník, M., Auderová, M. & Hol'ko, M. (1982). Inorg. Chim. Acta, 67, 117–120.  Google Scholar
First citationMojumdar, S. C., Madgurambal, G. & Saleh, M. T. (2005). J. Therm. Anal. Calorim. 81, 205–210.  Web of Science CrossRef CAS Google Scholar
First citationMukherjee, R. N. (2003). Indian J. Chem. 42A, 2175–2184.  CAS Google Scholar
First citationMurakami, T. & Kita, S. (1998). Inorg. Chim. Acta, 274, 247–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationPajunen, A. & Pajunen, S. (1979a). Acta Cryst. B35, 2401–2403.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPajunen, A. & Pajunen, S. (1979b). Acta Cryst. B35, 460–461.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRanford, J. D., Sadler, P. J. & Tocher, D. A. (1993). J. Chem. Soc. Dalton Trans. pp. 3393–3399.  CSD CrossRef Web of Science Google Scholar
First citationŞen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds