research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Fifteen 4-(2-meth­­oxy­phen­yl)piperazin-1-ium salts containing organic anions: supra­molecular assembly in zero, one, two and three dimensions

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Chemistry, Maharani's Science College for Women, Mysuru-570 001, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, dDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya 824236, India, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 October 2020; accepted 21 October 2020; online 30 October 2020)

Fifteen 4-(2-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. In the isostructural 4-chloro­benzoate and 4-bromo­benzoate salts, C11H17N2O+·C7H4ClO2 (I) and C11H17N2O+·C7H4BrO2 (II), and the 4-iodo­benzoate salt C11H17N2O+·C7H4IO2 (III), the ions are linked by N—H⋯O hydrogen bonds, forming centrosymmetric R44(12) four-ion aggregates; a similar aggregate is formed in the 2-chloro­benzoate salt (V), isomeric with (I). In the 2-fluoro­benzoate salt C11H17N2O+·C7H4FO2 (IV), and the isomorphous pair of salts, the 2-bromo­benzoate (VI), isomeric with (II) and 2-iodo­benzoate (VII), isomeric with (III), N—H⋯O and C—H⋯π(arene) interactions link the components into three-dimensional arrays. Four-ion R44(12) aggregates are also found in the 2-methyl­benzoate, 4-amino­benzoate and 4-nitro­benzoate salts, C11H17N2O+·C8H7O2 (VIII), C11H17N2O+·C7H6NO2 (IX) and C11H17N2O+·C7H4NO4 (X), but those in (IX) are linked into complex sheets by an additional N—H⋯O hydrogen bond. In the 3,5-dinitrobenzoate salt, C11H17N2O+·C7H3N2O6·2H2O (XI), N—H⋯O and O—H⋯O hydrogen bonds link the components into a complex ribbon structure. In the picrate salt, C11H17N2O+·C6H2N3O7 (XII), the four-ion aggregates are linked into chains of rings by C—H⋯O hydrogen bonds. In the hydrogen maleate salt, C11H17N2O+·C4H3O4 (XIII), two- and three-centre hydrogen bonds link the ions into a ribbon structure while both anions contain very short but asymmetric O—H⋯O hydrogen bonds, having O⋯O distances of 2.4447 (16) and 2.4707 (17) Å. O—H⋯O Hydrogen bonds link the anions in the hydrogen fumarate salt (XIV), isomeric with (XIII), into chains that are linked into sheets via N—H⋯O hydrogen bonds. In the hydrogen (2R,3R)-tartrate salt, C11H17N2O+·C4H5O6·1.698H2O (XV), the anions are linked into sheets by O—H⋯O hydrogen bonds. Comparisons are made with the structures of some related compounds.

1. Chemical context

We have recently reported the mol­ecular and supra­molecular structures of the recreational drug N-(4-meth­oxy­phen­yl)piperazine (4-MeOPP) (Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]) and those of a range of salts formed by 4-MeOPP with organic acids (Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]; Kiran Kumar et al. 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]), as well as those of a number of N-aroyl derivatives (Kiran Kumar, Yathirajan, Sagar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253-1260.]). We have also reported the structures of some salts of N-(4-fluoro­phen­yl)piperazine (4-FPP) (Harish Chinthal, Yathirajan, Archana et al., 2020[Harish Chinthal, C., Yathirajan, H. S., Archana, S. D., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 841-847.]; Harish Chinthal, Yathirajan, Kavitha et al., 2020[Harish Chinthal, C., Yathirajan, H. S., Kavitha, C. N., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1179-1186.]). As a continuation of this study, we have now investigated a number of salts of the isomeric N-(2-meth­oxy­phen­yl)piperazine (2-MeOPP), which has been used as a building block in the synthesis of both 5-HT1A receptor ligands (Orjales et al., 1995[Orjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273-1277.]) and dopamine D2 and D3 ligands (Hackling et al., 2003[Hackling, A., Ghosh, R., Perachon, S., Mann, A., Höltje, H. D., Wermuth, C. G., Schwartz, J. C., Sippl, W., Sokoloff, P. & Stark, H. (2003). J. Med. Chem. 46, 3883-3899.]) and also as a building block for the synthesis of derivatives exhibiting anti­depressant-like activity (Waszkielewicz et al., 2015[Waszkielewicz, A. M., Pytka, K., Rapacz, A., Wełna, E., Jarzyna, M., Satała, G., Bojarski, A. J., Sapa, J., Żmudzki, P., Filipek, B. & Marona, H. (2015). Chem. Biol. Drug Des. 85, 326-335.]). Here we report the syntheses and structures of the salts (I)–(XI) (Figs. 1[link]–11[link][link][link][link][link][link][link][link][link][link]) formed between 2-MeOPP and eleven aromatic carb­oxy­lic acids, along with a redetermination of the salt (XII)[link] (Fig. 12[link]) formed with 2,4,6-tri­nitro­phenol (picric acid) where the reported structure (Verdonk et al., 1997[Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976-983.]; CSD refcode NEBGIK) shows signs of unmodelled disorder, and we report here also the structures of three acid salts (XIII)–(XV) (Figs. 13[link]–15[link][link]) formed with some aliphatic di­carb­oxy­lic acids. All of the salts (I)–(XV) were straightforwardly prepared by the acid–base reactions and subsequent crystallizations of equimolar mixtures of 2-MeOPP with the appropriate organic acid.

[Scheme 1]
[Figure 1]
Figure 1
The independent components of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The independent components of compound (II)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The independent components of compound (III)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The independent components of compound (IV)[link] showing the atom-labelling scheme and the disorder in the anion; the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The independent components of compound (V)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
The independent components of compound (VI)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 7]
Figure 7
The independent components of compound (VII)[link] showing the atom-labelling scheme and the disorder in the carboxyl­ate group; the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 8]
Figure 8
The independent components of compound (VIII)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 9]
Figure 9
The independent components of compound (IX)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 10]
Figure 10
The independent components of compound (X)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 11]
Figure 11
The independent components of compound (XI)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 12]
Figure 12
The independent components of compound (XII)[link] showing the atom-labelling scheme and the disorder in one of the nitro groups, where the dominant disorder component is drawn using full lines, and the two minor disorder components are drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 13]
Figure 13
The independent components of compound (XIII)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 14]
Figure 14
The independent components of compound (XIV)[link] showing the atom-labelling scheme and the disorder in one of the anions. The major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level. The atoms marked `a' or `b' are at the symmetry positions (2 − x, 1 − y, 2 − z) and (−x, −y, 2 − z), respectively. The H atoms bonded to atoms O32, O34 and O42 have occupancies 0.286 (9), 0.214 (9) and 0.5, respectively, as do their inversion-related equivalents.
[Figure 15]
Figure 15
The independent components of compound (XV)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

Compounds (I)[link] and (II)[link] (Figs. 1[link] and 2[link]) are isostructural in space group P[\overline{1}]. Although the 4-iodo­benzoate analogue (III)[link] (Fig. 3[link]) also crystallizes in the same space group, it is not isostructural with (I)[link] and (II)[link]. Among the 2-halobenzoate salts, in the 2-fluoro­benzoate (IV)[link] the anion is disordered over two sets of atomic sites having occupancies 0.907 (8) and 0.093 (8) (Fig. 4[link]). There is a significant peak, 1.15 e Å−3, in the final difference map for compound (V)[link]: it was originally thought that this might represent a partial-occupancy water mol­ecule, although no associated H atoms could be located, but its distance from atom O32 is only 2.35 Å, which would require an unusually short O—H⋯O hydrogen bond for this assignment to be plausible. Consistent with this, examination of the refined, solvent-free structure of (V)[link] using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) showed that the structure contains no solvent-accessible void spaces. Compounds (VI)[link] and (VII)[link] are isomorphous, but whereas the components of (VI)[link] are fully ordered (Fig. 6[link]), in (VII)[link] the carboxyl­ate group in the anion is disordered over two sets of atomic sites having occupancies 0.54 (9) and 0.46 (9) (Fig. 7[link]); hence, these isomorphous compounds cannot be regarded as strictly isostructural (cf. Acosta et al., 2009[Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92-o96.]; Yépes et al., 2012[Yépes, A. F., Palma, A., Marchal, A., Cobo, J. & Glidewell, C. (2012). Acta Cryst. C68, o199-o203.]; Shreekanth et al., 2020[Shreekanth, T. K., Yathirajan, H. S., Kalluraya, B., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1605-1610.]), because of the disorder in (VII)[link]. The structures of (VI)[link] and (VII)[link] are mutually inverse for the crystals selected for data collection, but this has no chemical significance. Compounds (VIII)–(X) (Figs. 8[link]–10[link][link]) all crystallize in solvent-free form, but the 3,5-di­nitro­benzoate salt (XI)[link] is a dihydrate (Fig. 11[link]). The structure of the picrate salt (XII)[link] was reported a number of years ago (Verdonk et al., 1997[Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976-983.]), but the deposited anisotropic displacement parameters suggest the presence of unmodelled disorder in one of the nitro groups. Accordingly, we have redetermined this structure and found, indeed, that one of the nitro groups is disordered over three sets of atomic sites having occupancies 0.850 (5), 0.080 (4) and 0.069 (4) (Fig. 12[link]).

The solvent-free 1:1 acid salt (XIII)[link] derived from maleic acid crystallizes with Z′ = 2 (Fig. 13[link]). A search for possible additional crystallographic symmetry revealed none, although the atomic coordinates of the two cations and the two anions are related by the approximate, but non-crystallographic translation (x, [{1\over 2}] + y, z). In sharp contrast to compound (XIII)[link], the 1:1 salt (XIV)[link] derived from fumaric acid, which is isomeric with maleic acid, crystallizes with two independent hydrogen fumarate anions, each lying across a centre of inversion: one of the anions is fully ordered but the other is disordered over two sets of atomic sites having occupancies 0.572 (9) and 0.428 (9) (Fig. 14[link]). The 1:1 acid salt (XV)[link] derived from (2R,3R)-tartaric acid crystallizes as a dihydrate (Fig. 15[link]).

In none of the salts reported does the cation exhibit any inter­nal symmetry: hence all are conformationally chiral but, with the exception of compounds (VI)[link] and (VII)[link], the space groups indicate that equal numbers of both conformational enanti­omers are present. For all compounds except (VII)[link], the reference cation was selected to be one for which the ring-puckering angles θ (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) is close to zero, as calculated for the atom sequence (N1,C2,C3,N4,C5,C6). For the crystal of (VII)[link] chosen for data collection, the value of this angle is 177.2 (5)°, confirming that this salt and (VI)[link] have opposite absolute structures. In all of the cations, the piperazine ring adopts a chair conformation with the N-aryl substituent in an equatorial site. In the 2-meth­oxy­phenyl units, the meth­oxy C atom is always close to coplanar with the adjacent aryl ring: the displacement of this atom from the plane of the ring ranges from 0.038 (5) Å in compound (I)[link] to 0.288 (5) Å in compound (VII)[link]. Associated with this near planarity, the two exocyclic C—C—O angles differ in each compound by ca 10°, as is usually observed in planar or near-planar alk­oxy­arenes (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]).

The two independent ions in compound (XIII)[link] both contain a very short O—H⋯O hydrogen bond (Table 1[link]): while these are both nearly linear, the two O—H distances in each are significantly different, as established both by refinement of the atomic coordinates for the H atom, and from the final difference maps.

Table 1
Hydrogen bonds and short inter-ion contacts (Å, °)

Cg1, Cg2 and Cg3 represent the centroids of the rings (C31–C36), (C21–C26) and (C41–C46), respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) N1—H11⋯O31 1.02 (2) 1.60 (2) 2.616 (3) 176 (2)
  N1—H12⋯O32i 0.92 (3) 1.88 (3) 2.792 (3) 173 (2)
  C3—H3ACg1i 0.97 2.96 3.881 (3) 160
(II) N1—H11⋯O31 0.89 (4) 1.75 (4) 2.620 (4) 168 (3)
  N1—H12⋯O32i 0.88 (4) 1.91 (4) 2.786 (4) 175 (4)
(III) N1—H11⋯O31 0.88 (2) 1.83 (2) 2.684 (3) 163 (2)
  N1—H11⋯O32 0.88 (2) 2.60 (2) 3.060 (3) 113.6 (17)
  N1—H12⋯O32i 0.91 (3) 1.84 (3) 2.746 (3) 176 (3)
  C33—H33⋯O32ii 0.93 2.57 3.327 (3) 139
  C2—H2BCg2iii 0.97 2.77 3.482 (2) 131
(IV) N1—H11⋯O31 0.99 (3) 1.72 (3) 2.694 (4) 167 (3)
  N1—H11⋯O32 0.99 (3) 2.51 (3) 3.131 (4) 120.9 (19)
  N1—H12⋯O32iii 0.88 (3) 1.83 (3) 2.679 (4) 161 (3)
  N1—H11⋯O41 0.99 (3) 1.77 (5) 2.67 (4) 151 (3)
  N1—H11⋯O42 0.99 (3) 2.52 (5) 3.20 (4) 126 (2)
  N1—H12⋯O42iii 0.88 (3) 1.83 (5) 2.63 (4) 151 (3)
  C34—H34⋯Cg2iv 0.93 2.74 3.543 (5) 145
  C44—H44⋯Cg2iv 0.93 2.99 3.73 (4) 137
  C26—H26⋯Cg3v 0.93 2.96 3.754 (17) 144
(V) N1—H11⋯O31 0.97 (4) 1.74 (3) 2.682 (4) 162 (3)
  N1—H12⋯O32i 0.92 (4) 1.79 (4) 2.700 (5) 170 (4)
  C5—H5BCg1ii 0.97 2.87 3.554 (4) 128
  C34—H34⋯Cg2vi 0.93 2.93 3.658 (7) 136
(VI) N1—H11⋯O31 0.75 (4) 1.98 (4) 2.726 (4) 170 (4)
  N1—H12⋯O32vii 0.88 (3) 1.86 (3) 2.712 (4) 163(3
  C25—H25⋯O32viii 0.93 2.56 3.488 (4) 173
  C26—H26⋯Cg1viii 0.93 2.93 3.697 (4) 141
(VII) N1—H11⋯O31 0.89 1.80 2.66 (3) 162
  N1—H11⋯O33 0.89 1.93 2.80 (3) 165
  N1—H12⋯O31ix 0.89 1.97 2.83 (3) 162
  N1—H12⋯O33ix 0.89 1.74 2.60 (3) 161
  C25—H25⋯O34x 0.93 2.50 3.43 (3) 174
  C26—H26⋯Cg1x 0.93 2.93 3.716 (5) 143
(VIII) N1—H11⋯O31 1.010 (15) 1.673 (15) 2.6696 (19) 168.6 (13)
  N1—H12⋯O32i 0.963 (16) 1.745 (16) 2.7077 (17) 178.2 (10)
(IX) N1—H11⋯O31 1.068 (15) 1.547 (15) 2.6048 (15) 169.7 (14)
  N1—H12⋯O32i 0.942 (15) 1.861 (15) 2.7797 (15) 164.4 (14)
  N34—H34⋯O32xi 0.914 (16) 2.155 (16) 3.0535 (18) 167.5 (14)
(X) N1—H11⋯O31 0.974 (16) 1.677 (16) 2.6500 (19) 176.8 (15)
  N1—H11⋯O32 0.974 (16) 2.581 (17) 3.2169 (17) 123.0 (12)
  N1—H12⋯O32i 0.948 (17) 1.837 (17) 2.7709 (18) 168.2 (16)
(XI) N1—H11⋯O31 0.929 (16) 1.771 (16) 2.6837 (16) 166.8 (15)
  N1—H12⋯O41 0.911 (16) 1.939 (16) 2.8324 (19) 165.5 (14)
  O41—H41⋯O32xii 0.84 (2) 1.99 (2) 2.8156 (19) 168 (2)
  O41—H42⋯O51 0.90 (2) 1.91 (2) 2.810 (2) 172 (2)
  O51—H51⋯O31i 0.90 (2) 1.91 (2) 2.810 (2) 172 (2)
  O51—H52⋯O22xii 0.77 (2) 2.25 (2) 2.9544 (19) 153 (2)
  C25—H25⋯O36i 0.93 2.58 3.433 (2) 153
(XII) N1—H11⋯O33 0.868 (18) 2.224 (18) 2.9120 (19) 136.1 (16)
  N1—H12⋯O31i 0.900 (18) 1.833 (18) 2.7142 (18) 165.9 (16)
  N1—H12⋯O32i 0.900 (19) 2.593 (17) 3.154 (2) 121.2 (13)
  C6—H6A⋯O34xiii 0.97 2.56 3.423 (2) 148
(XIII) O33—H33⋯O32 1.07 (2) 1.37 (2) 2.4447 (16) 177.7 (16)
  O43—H43⋯O42 1.00 (2) 1.48 (2) 2.4707 (17) 174.0 (17)
  N11—H111⋯O32 0.927 (17) 1.891 (17) 2.8122 (18) 172.3 (16)
  N11—H112⋯O41xiv 0.930 (17) 1.848 (17) 2.7725 (17) 172.9 (13)
  N21—H211⋯O42 0.975 (15) 1.821 (15) 2.7926 (16) 174.5 (14)
  N21—H212⋯O31 0.895 (15) 2.283 (15) 2.9776 (17) 134.4 (12)
  N21—H212⋯O34xv 0.895 (15) 2.428 (15) 3.1170 (18) 134.1 (12)
  C16—H16A⋯O34xv 0.97 2.55 3.341 (2) 138
  C16—H16B⋯O44xv 0.97 2.52 3.338 (2) 141
  C25—H25BCg4xvi 0.97 2.92 3.8440 (16) 159
(XIV) N1—H11⋯O31 0.89 2.01 2.894 (5) 171
  N1—H11⋯O33 0.89 1.73 2.584 (7) 160
  N1—H12⋯O41 0.89 1.97 2.8251 (15) 161
  O32—H32⋯O32xvii 0.82 1.54 2.355 (7) 176
  O34—H34⋯O34xvii 0.82 2.03 2.820 (9) 161
  O42—H42⋯O42xviii 0.82 1.62 2.4352 (12) 177
(XV) N1—H11⋯O31 0.79 (4) 2.40 (4) 3.028 (4) 137 (3)
  N1—H11⋯O36xii 0.79 (4) 2.43 (4) 2.977 (4) 128 (3)
  N1—H11⋯O35xix 0.79 (4) 2.50 (3) 2.942 (3) 117 (3)
  N1—H12⋯O41 0.89 (4) 1.91 (4) 2.792 (5) 168 (3)
  O33—H33⋯O34xx 0.77 (4) 2.14 (4) 2.800 (3) 144 (4)
  O34—H34⋯O31xx 0.82 (4) 2.11 (4) 2.836 (3) 148 (3)
  O36—H36⋯O32ii 0.81 (4) 1.68 (4) 2.478 (3) 167(3
  O41—H41⋯O33xxi 0.82 (5) 1.94 (5) 2.753 (4) 167 (3)
  O41—H42⋯O31xii 0.87 (5) 1.90 (5) 2.766 (4) 169 (3)
  O51—H51⋯O41 0.98 (4) 1.80 (5) 2.776 (5) 172 (9)
  O51—H52⋯O22xii 0.97 (7) 2.22 (7) 3.054 (7) 144 (6)
  O51—H52⋯N4xii 0.97 (7) 2.48 (6) 3.307 (6) 143 (5)
  C23—H23⋯Cg2xxii 0.93 2.91 3.722 (4) 147
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1 + x, y, z; (iii) x, 1 − y, −[{1\over 2}] + z; (iv) −[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z; (v) [{1\over 2}] + x, −[{1\over 2}] + y, z; (vi) −1 + x, y, 1 + z; (vii) [{1\over 2}] + x, [{1\over 2}] − y, 1 − z; (Viii) [{1\over 2}] − x, 1 − y, −[{1\over 2}] + z; (ix) −[{1\over 2}] + x, [{3\over 2}] − y, 1 − z; (x) [{3\over 2}] − x, 1 − y, [{1\over 2}] + z; (xi) x, [{1\over 2}] − y, −[{1\over 2}] + z; (xii) −1 + x, y, z; (xiii) x, 1 + y, z; (xiv) x, −1 + y, z; (xv) −x, 1 − y, 1 − z; (xvi) 1 − x, −y, −z; (xvii) 1 − x, 1 − y, 2 − z; (xviii) 1 − x, −y, 2 − z; (xix) 2 − x, [{1\over 2}] + y, 1 − z; (xx) 2 − x, −[{1\over 2}] + y, 1 − z; (xxi) −1 + x, 1 + y, z; (xxii) 1 − x, [{1\over 2}] + y, −z.

3. Supra­molecular features

The supra­molecular assembly in the salts (I)–(XV) is based on N—H⋯O and O—H⋯O hydrogen bonds augmented in a number of cases by C—H⋯O and C—H⋯π(arene) hydrogen bonds. In general, we have discounted hydrogen bonds having D—H⋯A angles that are significantly less than 140°, as the inter­action energies associated with such contacts are likely to be very low, so that these cannot be regarded as structurally significant (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]). We have also discounted short contacts involving the H atoms of the methyl groups, as such groups are likely to be undergoing very rapid rotation about the adjacent C—O bonds (Riddell & Rogerson, 1996[Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493-504.], 1997[Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249-256.]). Most of the C—H⋯π(arene) contacts have H⋯Cg distances in excess of 2.85 Å, and we have therefore only considered the effects of such contacts in the assembly of compounds (III)[link] and (IV)[link], where these distances are below 2.80 Å. It should perhaps be conceded here that these are somewhat arbitrary judgments, made with the primary aim of avoiding over-inter­pretation of the longer contacts and over-complication of the crystal structure descriptions.

In each of the isostructural pair of compounds (I)[link] and (II)[link], two N—H⋯O hydrogen bonds (Table 1[link]) link the ionic components into a centrosymmetric four-ion aggregate, characterized by an R44(12) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) motif (Fig. 16[link]). A similar motif occurs in the structure of compound (III)[link] (Fig. 17[link]), but the different orientations of the unit-cell outline in Figs. 16[link] and 17[link], illustrate the different arrangements of the components in compounds (I)[link] and (II)[link] on the one hand and compound (III)[link] on the other. In (III)[link], the four-ion aggregates are linked into chains by a C—H⋯π(arene) inter­action, but the C—H⋯O contact in (III)[link] has a very small D—H⋯A angle and is thus not structurally significant (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]).

[Figure 16]
Figure 16
Part of the crystal structure of compound (I)[link] showing the formation of a centrosymmetric four-ion aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 17]
Figure 17
Part of the crystal structure of compound (III)[link] showing the formation of a centrosymmetric four-ion aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

The hydrogen bonding involving the two disorder components in compound (IV)[link] are very similar (Table 1[link]) and thus only the major component needs to be considered here. The combination of two N—H⋯O hydrogen bonds and one C—H⋯π(arene) hydrogen bond, involving atom C34 as the donor, links the ions into a three-dimensional network, whose formation is readily analysed in terms of three one-dimensional sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). In addition to the N—H⋯O hydrogen bond forming the ion pair, which defines the selected asymmetric unit, we consider in turn the linking of these ion pairs by the action of the N—H⋯O hydrogen bond involving atom H12, acting alone; by that of the C—H⋯π(arene) hydrogen bond acting alone; and finally by that of the two hydrogen bonds in combination. The ion pairs are linked by a second N—H⋯O hydrogen bond to form a C22(6) chain running parallel to the [001] direction (Fig. 18[link]), and they are linked by the C—H⋯π(arene) hydrogen bond to form a chain running parallel to [101] (Fig. 19[link]). The N—H⋯O and C—H⋯π hydrogen bonds, acting alternately, generate a chain running parallel to the [112] direction (Fig. 20[link]), and the combination of chains running parallel to [001], [101] and [112] suffices to generate a three-dimensional structure. In the 2-chloro­benzoate analogue, compound (V)[link], two independent N-H⋯O hydrogen bonds again link the ions into a centrosymmetric R44(12) motif, of the type observed in compounds (I)–(III). There are two C—H⋯π(arene) contacts in (V)[link], but these are both long, and probably not structurally significant.

[Figure 18]
Figure 18
Part of the crystal structure of compound (IV)[link] showing the linking of the ion pairs by a further N—H⋯O hydrogen bond to form a C22(6) chain running parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms bonded to C atoms have been omitted.
[Figure 19]
Figure 19
Part of the crystal structure of compound (IV)[link] showing the linking of the ions pairs by a C—H⋯π(arene) hydrogen bond to form a chain parallel to [101]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms not involved in the motif shown have been omitted.
[Figure 20]
Figure 20
Part of the crystal structure of compound (IV)[link] showing the alternating action of N—H⋯O and C—H⋯π(arene) hydrogen bonds in linking the ion pairs into a chain parallel to [112]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms not involved in the motif shown have been omitted.

The ion pairs in compounds (VI)[link] and (VII)[link] are again linked into three-dimensional arrays, by a combination of N—H⋯O and C—H⋯O hydrogen bonds, as opposed to the N—H⋯O and C—H⋯π(arene) inter­actions in the structure of (IV)[link]. An N—H⋯O hydrogen bond links ion pairs which are related by the 21 screw axis along (x, 1/4, 1/2) to form a C21(4) chain along [100] (Fig. 21[link]). In addition, the ion pairs which are related by the 21 screw axis along (1/4, 1/2, z) are linked by a C—H⋯O hydrogen bond to form a C22(12) chain along [001] (Fig. 22[link]), while the alternating action of the N—H⋯O and C—H⋯O hydrogen bonds generates a chain running parallel to the [010] direction (Fig. 23[link]). The combination of chains along [100], [010] and [001] thus generates a three-dimensional array.

[Figure 21]
Figure 21
Part of the crystal structure of compound (VI)[link] showing the formation of a C21(4) chain running parallel to [100], in which ion pairs are linked by a further N—H⋯O hydrogen bond. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 22]
Figure 22
Part of the crystal structure of compound (VI)[link] showing the formation of a C22(12) chain running parallel to [001], in which ion pairs are linked by a C—H⋯O hydrogen bond. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 23]
Figure 23
Part of the crystal structure of compound (VI)[link] showing the formation of a chain running parallel to [010], in which ion pairs are linked by alternating N—H⋯O and C—H⋯O hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.

The ions in compound (VIII)[link] are linked by two N—H⋯O hydrogen bonds to form an R44(12) four-ion aggregate analogous to those observed in compounds (I)–(III) and (V)[link]. Similar four-ion aggregates are also found in compounds (IX)[link] and (X)[link], but in (IX)[link] they are linked by a further N—H⋯O hydrogen bond, involving the amino group, to form a complex sheet lying parallel to (100) (Fig. 24[link]). In the dihydrate (XI)[link], each water mol­ecule acts as a single acceptor and a double donor of hydrogen bonds (Table 1[link]), and supra­molecular aggregation takes the form of a complex ribbon running parallel to the [100] direction (Fig. 25[link]). In the picrate salt (XII)[link], a combination of two independent N—H⋯O hydrogen bonds links the components into a centrosymmetric four-ion aggregate of R44(16) type, where the two acceptor are the phenolic atom O31 and one of the nitro O atoms (Fig. 26[link]). Aggregates of this type are weakly linked into a chain of rings by a C—H⋯O hydrogen bond.

[Figure 24]
Figure 24
Part of the crystal structure of compound (IX)[link] showing the formation of a hydrogen-bonded sheet lying parallel to (100). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 25]
Figure 25
Part of the crystal structure of compound (XI)[link] showing the formation of a hydrogen-bonded ribbon running parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 26]
Figure 26
Part of the crystal structure of compound (XII)[link] showing the formation of a centrosymmetric four-ion aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted and only the major disorder component is shown. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

In compound (XIII)[link], where Z′ = 2, each of the anions contains a very short O—H⋯O hydrogen bond, although in each of these inter­actions the two O—H distances are significantly different (Table 1[link]). The supra­molecular assembly depends upon three independent two-centre N—H⋯O hydrogen bonds and one three-centre N—H⋯(O)2 hydrogen bond. These link the ions into a ribbon, or mol­ecular ladder, running parallel to the [010] direction and in which R24(14) rings centred at (0, n + 1/2, 1/2) alternate with R88(30) rings centred at (0, n, 1/2), where n represents an integer in each case (Fig. 27[link]). Analysis of the supra­molecular assembly in compound (XIV)[link] is complicated by the combination of centrosymmetric anions and the disorder exhibited by one of them. However, since the hydrogen bonds involving the two disorder components are very similar, only the major disorder components need to be considered here. The ordered anions are linked by O—H⋯O hydrogen bonds into a chain along (x, 0, 1) and the disordered anions are similarly linked into a chain along (x, 1/2, 1). The two types of chain, which alternate along the [010] direction, are linked by the cations to form a sheet of R66(26) rings lying parallel to (001) (Fig. 28[link]). In the structure of compound (XV)[link], the anions are linked by three independent O—H⋯O hydrogen bonds, in which both of the hydroxyl groups as well as the carboxyl group act as donors, to form a sheet lying parallel to (001), in which both R44(18) and R44(20) rings can be identified (Fig. 29[link]). The cations and the water mol­ecules are tethered to this sheet, markedly increasing its complexity but without changing the dimensionality of the overall assembly. The result is a thick tripartite sheet, occupying the whole domain 0 < z < 1.0 and having a hydrogen-bonded layer in the centre with the aryl groups on the outside surfaces: there are no direction-specific inter­actions between adjacent sheets.

[Figure 27]
Figure 27
Part of the crystal structure of compound (XIII)[link] showing the formation of a hydrogen-bonded ribbon of R24(14) and R88(30) rings running parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 28]
Figure 28
Part of the crystal structure of compound (XIV)[link] showing the formation of a hydrogen-bonded sheet of R66(26) rings lying parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 29]
Figure 29
Part of the crystal structure of compound (XV)[link] showing the formation of a hydrogen-bonded sheet of anions lying parallel to (001). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

In summary, therefore, the hydrogen-bonded assembly is finite, or zero-dimensional in compounds (I)–(III), (V)[link], (VIII)[link] and (X)[link]; one-dimensional in (XI)[link], (XII)[link] and (XIII)[link]; two-dimensional in (IX)[link], (XIV)[link] and (XV)[link]; and three–dimensional in (IV)[link], (VI)[link] and (VII)[link].

4. Database survey

It is of inter­est briefly to compare the structures of the compounds reported here with those of some closely related examples, in particular the salts formed by the isomeric N-(4-meth­oxy­phen­yl)piperazine (4-MeOPP) and the analogous N-(4-fluoro­phen­yl)piperazine (4-FPP). The salts formed between 4-MeOPP and the benzoic acids 4-XC6H4COOH, where X = H, F, Cl, and Br, all crystallize as stoichiometric monohydrates and they are all isomorphous in space group P[\overline{1}] (Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]), a combination of N—H⋯O, O—H⋯O, C—H⋯O and C—H⋯π(arene) hydrogen bonds links the components into complex sheets. By contrast, compounds (I)–(III) reported here all crystallize in solvent-free form and all form finite centrosymmetric four-ion aggregates (Figs. 16[link] and 17[link]). The salt formed between 4-MeOPP and 4-amino­benzoate crystallizes as a monohydrate (Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]), as compared with the solvent free analogues (IX)[link] reported here, and the components are linked by a combination of N—H⋯O, O—H⋯O and C—H⋯π(arene) hydrogen bonds to form a three-dimensional assembly, as compared with the two-dimensional assembly in (IX)[link]. The 3,5-di­nitro­benzoate salt with 4-MeOPP crystallizes in solvent-free form (Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]), as opposed to the dihydrate (XI)[link] reported here, and the component ions are linked into the simple R44(12) motif found here for compounds (I)–(III), (VIII)[link] and (X)[link]. The picrate salt of 4-MeOPP exhibits orientational disorder in one of the nitro groups (Kiran Kumar et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]), as observed in compound (XII)[link] here, but the supra­molecular aggregation is more complex than the simple aggregate found for (XII)[link], in that a combination of N—H⋯O and C—H⋯π(arene) hydrogen bonds generates a sheet structure. The anion in the hydrogen maleate salt of 4-MeOPP, which crystallizes with Z′ = 1 (Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]) unlike the Z′ = 2 for compound (XIII)[link], contains a very short, but unsymmetrical O—H⋯O hydrogen bond, and the ions are linked into a chain of rings by a combination of two-centre N—H⋯O and three-centre N—H⋯(O,O) hydrogen bonds. By contrast with compound (XIV)[link] reported here where there are two independent hydrogen fumarate anions each lying across a centre of inversion, in the hydrogen fumarate salt of 4-MeOPP, there is only one type of anion, although this exhibits some orientational disorder and Z′ = 1: a combination of N—H⋯O and O—H⋯O and C—H⋯π(arene) hydrogen bonds links the ions into a three-dimensional structure, as opposed to the two-dimensional structure of (XIV)[link]. Finally, we note some salts formed by 4-FPP with organic acids (Harish Chinthal, Yathirajan, Archana et al., 2020[Harish Chinthal, C., Yathirajan, H. S., Archana, S. D., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 841-847.]; Harish Chinthal, Yathirajan, Kavitha et al., 2020[Harish Chinthal, C., Yathirajan, H. S., Kavitha, C. N., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1179-1186.]). The 2-fluoro­benzoate crystallizes as a stoichiometric monohydrate, and the 2-bromo­benzoate as a partial hydrate, while the 2-iodo­benzoate crystallizes in solvent-free form (Harish Chinthal, Yathirajan, Kavitha et al., 2020[Harish Chinthal, C., Yathirajan, H. S., Kavitha, C. N., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1179-1186.]), in contrast to compounds (IV)–(VII), which are all solvent-free, and the 3,5-di­nitro­benzoate salt of 4-FPP is also solvent-free, as opposed to the dihydrate (XI)[link]. The 1:1 acid salt formed between (2R,3R)-tartaric acid and 4-FPP crystallizes as a monohydrate (Harish Chinthal, Yathirajan, Archana et al., 2020[Harish Chinthal, C., Yathirajan, H. S., Archana, S. D., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 841-847.]), whereas the analogous compound (XV)[link] crystallizes as a 1.70 (hydrate).

5. Synthesis and crystallization

All reagents were obtained commercially, and all were used as received. For the synthesis of compounds (I)–(XV), solutions of N-(2-meth­oxy­phen­yl)piperazine (100 mg, 0.52 mmol) in methanol (10 ml) were mixed with an equimolar qu­antity of the appropriate acid [4-chloro­benzoic acid (82 mg) for (I)[link], 4-bromo­benzoic acid (103 mg) for (II)[link], 4-iodo­benzoic acid (129 mg) for (III)[link], 2-fluoro­benzoic acid (73 mg) for (IV)[link], 2-chloro­benzoic acid (82 mg) for (V)[link], 2-bromo­benzoic acid (103 mg) for (VI)[link], 2-iodo­benzoic acid (129 mg) for (VII)[link], 2-methyl­benzoic acid (71 mg) for (VIII)[link], 4-amino­benzoic acid (72 mg) for (IX)[link], 4-nitro­benzoic acid (97 mg) for (X)[link], 3,5-di­nitro­benzoic acid (110 mg) for (XI)[link], picric acid (120 mg) for (XII)[link], maleic acid (61 mg) for (XIII)[link], fumaric acid (61 mg) for (XIV)[link] and (2R,3R)-tartaric acid (78 mg) for (XV)] also dissolved in methanol (10 ml). These mixtures were then heated briefly at 323 K with magnetic stirring and then set aside to crystallize at room temperature. The resulting products were then collected by filtration and dried in air. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in acetone/aceto­nitrile (initial composition 1:1, v/v) for (I)[link], methanol/aceto­nitrile (1:6, v/v) for (II)[link], methanol/aceto­nitrile (1:1, v/v) for (III)[link], ethyl acetate/acetone (2:1, v/v) for (IV)[link] and (V)[link], methanol/ethyl acetate (1:7, v/v) for (VI)[link] and (VII)[link], methanol for (VIII)[link], (X)[link], and (XIII)–(XV), methanol/ethyl acetate (3:2, v/v) for (IX)[link], and methanol/ethyl acetate (1:1, v/v) for (XI)[link] and (XII)[link]. M.p. (I)[link] 374–378 K, (II)[link] 390–394 K, (III)[link] 422–428 K, (IV)[link] 384–387 K, (V)[link] 396–389 K, (VI)[link] 396–399 K, (VII)[link] 402–408 K, (VIII)[link] 389–393 K, (IX)[link] 441–445 K, (X)[link] 408–412 K, (XI)[link] 437–442 K, (XII)[link] 430–435 K, (XIII)[link] 390–396 K, (XIV)[link] 435–437 K, (XV)[link] 407–411 K.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 2[link]. Two bad outlier reflections [(1,4,0) and (1,2,2)] were removed from the dataset for compound (V)[link], and one bad outlier reflection (0,[\overline{7}],13) was removed from the dataset for compound (XV)[link] before the final refinements. For compound (IV)[link], calculation of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) using 1089 quotients of the type [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) gave a value 0.2 (3) in the absence of significant resonant scattering, the correct orientation of the structure of (IV)[link] with respect to the polar axis directions remains uncertain. The correct absolute configurations for compounds (VI)[link] and (VII)[link] were established from the Flack x parameters: for (VI)[link] x = 0.004 (5) calculated using 919 coefficients, and for (VII)[link] x = 0.004 (10) calculated using 1045 coefficients. For the minor disorder component in compound (IV)[link], the bonded distances and the 1,3-non-bonded distances were restrained to be the same as the corresponding distances in the major disorder components, subject to s.u. values of 0.01 and 0.02 Å, respectively, and the anisotropic displacement parameters for corresponding pairs of atoms in the two disorder components were constrained to be the same, giving occupancies of 0.907 (8) and 0.093 (8). Similar distance restraints were applied to the disordered carboxyl­ate group in compound (VII)[link], where the displacement parameters for the disordered O atoms were subjected to similarity restraints, giving occupancies of 0.53 (9) and 0.47 (9). The disordered nitro group in compound (XII)[link] was modelled over three sets of atomic sites, with similar restraints to those imposed in (VII)[link] giving occupancies of 0.860 (5), 0.080 (4) and 0.069 (4). All H atoms, apart from those in the minor disorder component of compound (IV)[link] and in the partial-occupancy water mol­ecule in compound (V)[link], were located in difference maps. The H atoms bonded to C atoms, apart from those in the disordered anion of compound (XIV)[link] which were permitted to ride at the locations found in difference maps, were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (alkenyl and aromatic), 0.96 Å (CH3), 0.97 Å (CH2) or 0.98 Å (aliphatic C—H), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms: the H atoms in the minor disorder component of compound (IV)[link] were included on exactly the same basis. For the H atoms bonded to N atoms, these were treated as riding atoms in the disordered structures (VII)[link] and (XIV)[link] with N—H distances of 0.89 Å and UisoH = 1.2Ueq(N), but in all other compounds, the atomic coordinates of the H atoms bonded to N atoms were refined with UisoH = 1.2Ueq(N), giving the N—H distances shown in Table 1[link]. For the H atoms bonded to O atoms in compounds (XI)[link], (XIII)[link] and (XV)[link], the atomic coordinates were refined with Uiso(H) = 1.5Ueq(O), giving the O—H distances shown in Table 1[link], but the partial occupancy H atoms bonded to O atoms in compound (XIV)[link] were treated as riding atoms with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

  (I) (II) (III) (IV) (V)
Crystal data
Chemical formula C11H17N2O+·C7H4ClO2 C11H17N2O+·C7H4BrO2 C11H17N2O+·C7H4IO2 C11H17N2O+·C7H4FO2 C11H17N2O+·C7H4ClO2
Mr 348.82 393.27 440.27 332.37 348.82
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, Cc Monoclinic, P21/c
Temperature (K) 296 296 296 296 296
a, b, c (Å) 7.401 (1), 7.888 (1), 15.410 (3) 7.4313 (5), 7.9163 (5), 15.5212 (9) 7.1129 (4), 11.2722 (7), 12.5923 (8) 19.940 (1), 10.2705 (7), 9.0148 (7) 7.9974 (8), 27.611 (2), 8.5972 (9)
α, β, γ (°) 100.28 (2), 94.40 (1), 94.14 (1) 101.565 (5), 94.780 (5), 92.691 (5) 69.852 (5), 74.681 (5), 79.121 (5) 90, 109.663 (8), 90 90, 106.40 (1), 90
V3) 879.2 (2) 889.54 (10) 908.82 (10) 1738.5 (2) 1821.2 (3)
Z 2 2 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.24 2.33 1.78 0.09 0.23
Crystal size (mm) 0.44 × 0.28 × 0.16 0.42 × 0.42 × 0.12 0.48 × 0.24 × 0.14 0.48 × 0.36 × 0.22 0.48 × 0.20 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.884, 0.963 0.258, 0.756 0.534, 0.779 0.884, 0.963 0.747, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 6241, 3763, 2318 5996, 3739, 2989 6342, 3897, 3203 6204, 3343, 2786 13275, 3410, 2060
Rint 0.019 0.018 0.012 0.012 0.030
(sin θ/λ)max−1) 0.650 0.652 0.660 0.658 0.607
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.131, 1.01 0.043, 0.115, 1.05 0.026, 0.065, 1.02 0.036, 0.100, 1.03 0.067, 0.216, 1.03
No. of reflections 3763 3739 3897 3343 3410
No. of parameters 224 224 224 256 223
No. of restraints 0 0 0 25 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.27 0.84, −0.55 0.52, −0.70 0.24, −0.14 1.15, −0.30
Absolute structure Flack x determined using 1089 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.2 (3)
  (VI) (VII) (VIII) (IX) (X)
Crystal data
Chemical formula C11H17N2O+·C7H4BrO2 C11H17N2O+·C7H4IO2 C11H17N2O+·C8H7O2 C11H17N2O+·C7H6NO2 C11H17N2O+·C7H4NO4
Mr 393.28 440.27 328.40 329.39 359.38
Crystal system, space group Orthorhombic, P212121 Orthorhombic, P212121 Triclinic, P[\overline{1}] Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293 296 296 296
a, b, c (Å) 6.9824 (2), 13.2292 (4), 19.4903 (7) 7.0101 (4), 13.3796 (6), 19.5524 (6) 7.826 (1), 10.320 (2), 12.055 (3) 14.922 (1), 7.6951 (5), 15.560 (1) 7.5174 (5), 7.9761 (5), 29.860 (2)
α, β, γ (°) 90, 90, 90 90, 90, 90 78.37 (2), 78.27 (2), 73.83 (2) 90, 106.911 (8), 90 90, 97.322 (6), 90
V3) 1800.35 (10) 1833.87 (14) 904.6 (3) 1709.4 (2) 1775.8 (2)
Z 4 4 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.30 1.76 0.08 0.09 0.10
Crystal size (mm) 0.50 × 0.50 × 0.48 0.50 × 0.50 × 0.48 0.48 × 0.48 × 0.40 0.48 × 0.44 × 0.16 0.50 × 0.50 × 0.40
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.297, 0.331 0.373, 0.431 0.883, 0.968 0.830, 0.986 0.855, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 13089, 3895, 2640 7500, 3735, 3036 6091, 3838, 2600 6720, 3668, 2606 13660, 3934, 2879
Rint 0.033 0.019 0.013 0.014 0.019
(sin θ/λ)max−1) 0.654 0.655 0.653 0.651 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.077, 0.94 0.032, 0.071, 1.05 0.042, 0.119, 1.06 0.039, 0.112, 1.10 0.040, 0.111, 1.03
No. of reflections 3895 3735 3838 3668 3934
No. of parameters 224 237 226 231 242
No. of restraints 0 17 0 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.53 0.46, −0.65 0.16, −0.16 0.15, −0.25 0.17, −0.15
Absolute structure Flack x determined using 919 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1045 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.004 (5) 0.004 (10)
  (XI) (XII) (XIII) (XIV) (XV)
Crystal data
Chemical formula C11H17N2O+·C7H3N2O6·2H2O C11H17N2O+·C6H2N3O7 C11H17N2O+·C4H3O4 C11H17N2O+·C4H3O4 C11H17N2O+·C4H5O6·1.698H2O
Mr 440.41 421.33 308.33 308.33 372.97
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21
Temperature (K) 296 296 296 296 296
a, b, c (Å) 7.8448 (6), 11.4635 (9), 12.0747 (9) 9.4151 (5), 9.8721 (5), 10.9572 (5) 11.1076 (6), 11.1164 (6), 13.7649 (7) 7.8546 (4), 8.9626 (6), 11.2056 (8) 7.479 (1), 7.065 (1), 17.788 (3)
α, β, γ (°) 94.406 (7), 105.075 (8), 93.717 (7) 77.524 (4), 81.360 (5), 81.002 (5) 80.353 (5), 78.353 (5), 74.406 (5) 79.043 (5), 87.715 (5), 85.840 (5) 90, 101.58 (2), 90
V3) 1041.33 (14) 974.97 (9) 1591.76 (16) 772.15 (9) 920.8 (2)
Z 2 2 4 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.11 0.12 0.10 0.10 0.11
Crystal size (mm) 0.48 × 0.48 × 0.44 0.48 × 0.48 × 0.24 0.48 × 0.40 × 0.36 0.48 × 0.48 × 0.34 0.36 × 0.32 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.892, 0.951 0.805, 0.973 0.863, 0.966 0.867, 0.967 0.956, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 7353, 4419, 3409 12926, 4279, 3276 11727, 6817, 4221 5533, 3307, 2608 3655, 2895, 2062
Rint 0.016 0.017 0.012 0.009 0.022
(sin θ/λ)max−1) 0.654 0.656 0.657 0.655 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.06 0.040, 0.119, 1.07 0.042, 0.121, 1.03 0.036, 0.105, 1.06 0.039, 0.081, 0.97
No. of reflections 4419 4279 6817 3307 2895
No. of parameters 300 317 415 240 263
No. of restraints 0 85 0 6 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.17 0.24, −0.27 0.15, −0.17 0.20, −0.15 0.14, −0.17
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

4-(2-Methoxyphenyl)piperazin-1-ium 4-chlorobenzoate (I) top
Crystal data top
C11H17N2O+·C7H4ClO2Z = 2
Mr = 348.82F(000) = 368
Triclinic, P1Dx = 1.318 Mg m3
a = 7.401 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.888 (1) ÅCell parameters from 3770 reflections
c = 15.410 (3) Åθ = 2.6–27.8°
α = 100.28 (2)°µ = 0.24 mm1
β = 94.40 (1)°T = 296 K
γ = 94.14 (1)°Plate, orange
V = 879.2 (2) Å30.44 × 0.28 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3763 independent reflections
Radiation source: Enhance (Mo) X-ray Source2318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 98
Tmin = 0.884, Tmax = 0.963k = 106
6241 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.3034P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3763 reflectionsΔρmax = 0.19 e Å3
224 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3863 (3)0.5719 (3)0.61980 (13)0.0537 (6)
H110.349 (3)0.654 (3)0.5787 (16)0.064*
H120.494 (4)0.526 (3)0.6072 (17)0.064*
C20.2453 (4)0.4243 (3)0.61032 (16)0.0595 (7)
H2A0.23890.35670.55090.071*
H2B0.12760.46770.61940.071*
C30.2901 (4)0.3104 (3)0.67711 (14)0.0492 (6)
H3A0.19640.21540.67090.059*
H3B0.40510.26230.66650.059*
N40.3016 (3)0.4131 (2)0.76645 (11)0.0417 (5)
C50.4446 (3)0.5568 (3)0.77727 (15)0.0456 (6)
H5A0.56140.51110.76850.055*
H5B0.45110.62340.83690.055*
C60.4046 (4)0.6728 (3)0.71121 (15)0.0489 (6)
H6A0.29280.72610.72320.059*
H6B0.50230.76410.71730.059*
C210.3080 (3)0.3202 (3)0.83759 (14)0.0402 (5)
C220.2709 (3)0.4034 (3)0.92205 (14)0.0401 (5)
C230.2740 (3)0.3164 (3)0.99224 (16)0.0500 (6)
H230.25310.37401.04820.060*
C240.3080 (4)0.1439 (3)0.97981 (17)0.0565 (7)
H240.30880.08541.02720.068*
C250.3405 (4)0.0595 (3)0.89756 (18)0.0588 (7)
H250.36150.05690.88890.071*
C260.3420 (3)0.1471 (3)0.82735 (16)0.0498 (6)
H260.36630.08890.77210.060*
O220.2258 (2)0.5712 (2)0.92836 (10)0.0522 (4)
C270.2117 (4)0.6682 (3)1.01422 (15)0.0539 (6)
H27A0.17800.78161.00930.081*
H27B0.32670.67791.04880.081*
H27C0.12070.61071.04260.081*
C310.2111 (3)0.8543 (3)0.37936 (15)0.0450 (6)
C320.1780 (4)0.8004 (3)0.28892 (17)0.0597 (7)
H320.18670.68500.26430.072*
C330.1321 (4)0.9151 (4)0.23404 (17)0.0622 (7)
H330.11040.87720.17320.075*
C340.1190 (3)1.0848 (3)0.27049 (16)0.0498 (6)
Cl340.06196 (11)1.23102 (10)0.20197 (5)0.0724 (3)
C350.1471 (5)1.1410 (3)0.35980 (18)0.0712 (9)
H350.13531.25590.38430.085*
C360.1932 (5)1.0247 (3)0.41347 (17)0.0697 (9)
H360.21271.06310.47440.084*
C370.2650 (4)0.7306 (3)0.43954 (18)0.0529 (6)
O310.2833 (4)0.7908 (3)0.52081 (13)0.0955 (8)
O320.2879 (3)0.5797 (2)0.40612 (13)0.0704 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0757 (16)0.0508 (13)0.0397 (12)0.0186 (11)0.0112 (11)0.0142 (10)
C20.079 (2)0.0591 (16)0.0380 (14)0.0075 (14)0.0055 (13)0.0050 (12)
C30.0626 (16)0.0437 (13)0.0383 (13)0.0038 (12)0.0001 (11)0.0014 (10)
N40.0525 (12)0.0389 (10)0.0326 (10)0.0038 (9)0.0011 (9)0.0048 (8)
C50.0538 (15)0.0426 (13)0.0393 (13)0.0030 (11)0.0035 (11)0.0057 (10)
C60.0641 (17)0.0412 (13)0.0419 (13)0.0079 (12)0.0088 (12)0.0063 (10)
C210.0399 (13)0.0386 (12)0.0416 (13)0.0046 (10)0.0003 (10)0.0072 (10)
C220.0420 (13)0.0385 (12)0.0402 (13)0.0065 (10)0.0027 (10)0.0075 (10)
C230.0566 (16)0.0540 (15)0.0411 (14)0.0043 (12)0.0040 (11)0.0131 (11)
C240.0690 (18)0.0498 (15)0.0544 (16)0.0031 (13)0.0027 (13)0.0240 (13)
C250.0725 (19)0.0388 (13)0.0652 (18)0.0073 (12)0.0056 (14)0.0143 (13)
C260.0602 (16)0.0420 (13)0.0458 (14)0.0077 (11)0.0015 (12)0.0046 (11)
O220.0747 (12)0.0445 (9)0.0404 (9)0.0210 (8)0.0131 (8)0.0070 (7)
C270.0599 (17)0.0488 (14)0.0502 (15)0.0053 (12)0.0115 (13)0.0012 (12)
C310.0465 (14)0.0442 (13)0.0452 (14)0.0083 (11)0.0072 (11)0.0075 (11)
C320.0740 (19)0.0551 (16)0.0502 (16)0.0264 (14)0.0077 (14)0.0010 (12)
C330.0737 (19)0.0767 (19)0.0376 (14)0.0250 (15)0.0068 (13)0.0065 (13)
C340.0507 (15)0.0572 (15)0.0455 (14)0.0055 (12)0.0047 (12)0.0197 (12)
Cl340.0783 (5)0.0800 (5)0.0671 (5)0.0054 (4)0.0011 (4)0.0394 (4)
C350.119 (3)0.0433 (15)0.0511 (17)0.0156 (16)0.0029 (16)0.0085 (12)
C360.120 (3)0.0498 (15)0.0375 (14)0.0171 (16)0.0043 (15)0.0048 (12)
C370.0586 (16)0.0494 (15)0.0546 (16)0.0122 (12)0.0095 (13)0.0153 (12)
O310.175 (2)0.0646 (13)0.0529 (13)0.0405 (14)0.0007 (14)0.0189 (10)
O320.0899 (15)0.0484 (11)0.0781 (13)0.0266 (10)0.0171 (11)0.0138 (10)
Geometric parameters (Å, º) top
N1—C61.481 (3)C24—C251.370 (4)
N1—C21.485 (3)C24—H240.9300
N1—H111.02 (3)C25—C261.385 (3)
N1—H120.92 (3)C25—H250.9300
C2—C31.516 (3)C26—H260.9300
C2—H2A0.9700O22—C271.421 (3)
C2—H2B0.9700C27—H27A0.9600
C3—N41.461 (3)C27—H27B0.9600
C3—H3A0.9700C27—H27C0.9600
C3—H3B0.9700C31—C361.373 (3)
N4—C211.423 (3)C31—C321.380 (3)
N4—C51.471 (3)C31—C371.515 (3)
C5—C61.512 (3)C32—C331.386 (3)
C5—H5A0.9700C32—H320.9300
C5—H5B0.9700C33—C341.369 (4)
C6—H6A0.9700C33—H330.9300
C6—H6B0.9700C34—C351.364 (3)
C21—C261.389 (3)C34—Cl341.750 (2)
C21—C221.406 (3)C35—C361.384 (3)
C22—O221.377 (2)C35—H350.9300
C22—C231.380 (3)C36—H360.9300
C23—C241.384 (3)C37—O321.239 (3)
C23—H230.9300C37—O311.251 (3)
C6—N1—C2110.65 (19)C22—C23—H23119.8
C6—N1—H11107.0 (14)C24—C23—H23119.8
C2—N1—H11109.8 (15)C25—C24—C23119.8 (2)
C6—N1—H12109.8 (17)C25—C24—H24120.1
C2—N1—H12106.9 (16)C23—C24—H24120.1
H11—N1—H12113 (2)C24—C25—C26120.1 (2)
N1—C2—C3110.5 (2)C24—C25—H25120.0
N1—C2—H2A109.6C26—C25—H25120.0
C3—C2—H2A109.6C25—C26—C21121.5 (2)
N1—C2—H2B109.6C25—C26—H26119.3
C3—C2—H2B109.6C21—C26—H26119.3
H2A—C2—H2B108.1C22—O22—C27117.86 (17)
N4—C3—C2109.35 (19)O22—C27—H27A109.5
N4—C3—H3A109.8O22—C27—H27B109.5
C2—C3—H3A109.8H27A—C27—H27B109.5
N4—C3—H3B109.8O22—C27—H27C109.5
C2—C3—H3B109.8H27A—C27—H27C109.5
H3A—C3—H3B108.3H27B—C27—H27C109.5
C21—N4—C3116.59 (17)C36—C31—C32117.8 (2)
C21—N4—C5113.53 (18)C36—C31—C37120.7 (2)
C3—N4—C5110.53 (18)C32—C31—C37121.5 (2)
N4—C5—C6110.35 (19)C31—C32—C33121.2 (2)
N4—C5—H5A109.6C31—C32—H32119.4
C6—C5—H5A109.6C33—C32—H32119.4
N4—C5—H5B109.6C34—C33—C32119.2 (2)
C6—C5—H5B109.6C34—C33—H33120.4
H5A—C5—H5B108.1C32—C33—H33120.4
N1—C6—C5110.38 (19)C35—C34—C33120.9 (2)
N1—C6—H6A109.6C35—C34—Cl34119.4 (2)
C5—C6—H6A109.6C33—C34—Cl34119.7 (2)
N1—C6—H6B109.6C34—C35—C36119.0 (2)
C5—C6—H6B109.6C34—C35—H35120.5
H6A—C6—H6B108.1C36—C35—H35120.5
C26—C21—C22117.5 (2)C31—C36—C35121.9 (2)
C26—C21—N4123.2 (2)C31—C36—H36119.1
C22—C21—N4119.20 (19)C35—C36—H36119.1
O22—C22—C23123.4 (2)O32—C37—O31124.7 (2)
O22—C22—C21115.91 (18)O32—C37—C31119.0 (2)
C23—C22—C21120.7 (2)O31—C37—C31116.3 (2)
C22—C23—C24120.4 (2)
C6—N1—C2—C356.8 (3)C24—C25—C26—C211.1 (4)
N1—C2—C3—N458.6 (3)C22—C21—C26—C250.3 (4)
C2—C3—N4—C21168.3 (2)N4—C21—C26—C25177.6 (2)
C2—C3—N4—C560.1 (3)C23—C22—O22—C2710.9 (3)
C21—N4—C5—C6167.25 (18)C21—C22—O22—C27171.5 (2)
C3—N4—C5—C659.6 (2)C36—C31—C32—C331.3 (4)
C2—N1—C6—C555.6 (3)C37—C31—C32—C33178.7 (2)
N4—C5—C6—N156.8 (3)C31—C32—C33—C340.2 (4)
C3—N4—C21—C2613.9 (3)C32—C33—C34—C351.3 (4)
C5—N4—C21—C26116.3 (2)C32—C33—C34—Cl34179.8 (2)
C3—N4—C21—C22163.3 (2)C33—C34—C35—C361.4 (5)
C5—N4—C21—C2266.5 (3)Cl34—C34—C35—C36179.6 (2)
C26—C21—C22—O22175.8 (2)C32—C31—C36—C351.2 (5)
N4—C21—C22—O221.6 (3)C37—C31—C36—C35178.9 (3)
C26—C21—C22—C231.9 (3)C34—C35—C36—C310.2 (5)
N4—C21—C22—C23179.3 (2)C36—C31—C37—O32176.7 (3)
O22—C22—C23—C24175.4 (2)C32—C31—C37—O323.3 (4)
C21—C22—C23—C242.1 (4)C36—C31—C37—O313.2 (4)
C22—C23—C24—C250.6 (4)C32—C31—C37—O31176.7 (3)
C23—C24—C25—C261.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O311.02 (2)1.60 (2)2.616 (3)176 (2)
N1—H12···O32i0.92 (3)1.88 (3)2.792 (3)173 (2)
C3—H3A···Cg1i0.972.963.881 (3)160
Symmetry code: (i) x+1, y+1, z+1.
4-(2-Methoxyphenyl)piperazin-1-ium 4-bromobenzoate (II) top
Crystal data top
C11H17N2O+·C7H4BrO2Z = 2
Mr = 393.27F(000) = 404
Triclinic, P1Dx = 1.468 Mg m3
a = 7.4313 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9163 (5) ÅCell parameters from 3779 reflections
c = 15.5212 (9) Åθ = 2.6–27.6°
α = 101.565 (5)°µ = 2.33 mm1
β = 94.780 (5)°T = 296 K
γ = 92.691 (5)°Plate, yellow
V = 889.54 (10) Å30.42 × 0.42 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3739 independent reflections
Radiation source: Enhance (Mo) X-ray Source2989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.6°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 98
Tmin = 0.258, Tmax = 0.756k = 1010
5996 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.570P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3739 reflectionsΔρmax = 0.84 e Å3
224 parametersΔρmin = 0.55 e Å3
0 restraints
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3878 (4)0.5725 (3)0.62065 (16)0.0514 (6)
H110.361 (5)0.638 (5)0.582 (2)0.062*
H120.494 (5)0.532 (5)0.610 (2)0.062*
C20.2490 (5)0.4279 (4)0.61017 (19)0.0557 (8)
H2A0.24210.36000.55040.067*
H2B0.13180.47350.61980.067*
C30.2949 (4)0.3139 (4)0.67528 (18)0.0471 (7)
H3A0.20230.22040.66830.057*
H3B0.40960.26410.66420.057*
N40.3062 (3)0.4172 (3)0.76485 (13)0.0385 (5)
C50.4474 (4)0.5584 (3)0.77722 (17)0.0424 (6)
H5A0.56400.51080.76850.051*
H5B0.45310.62560.83710.051*
C60.4075 (4)0.6739 (4)0.71261 (18)0.0470 (7)
H6A0.29680.73030.72520.056*
H6B0.50510.76270.71930.056*
C210.3137 (3)0.3252 (3)0.83448 (17)0.0375 (5)
C220.2745 (3)0.4102 (3)0.91928 (17)0.0387 (6)
C230.2796 (4)0.3234 (4)0.98826 (19)0.0470 (6)
H230.25710.38121.04430.056*
C240.3181 (4)0.1505 (4)0.9745 (2)0.0549 (8)
H240.32100.09271.02120.066*
C250.3515 (5)0.0658 (4)0.8927 (2)0.0556 (8)
H250.37470.05060.88320.067*
C260.3511 (4)0.1526 (4)0.8233 (2)0.0473 (7)
H260.37650.09350.76800.057*
O220.2276 (3)0.5771 (2)0.92653 (12)0.0505 (5)
C270.2084 (4)0.6742 (4)1.01265 (19)0.0504 (7)
H27A0.17550.78841.00870.076*
H27B0.32090.68141.04880.076*
H27C0.11560.61821.03860.076*
C310.2104 (4)0.8486 (4)0.38246 (18)0.0423 (6)
C320.1691 (5)0.7880 (4)0.2931 (2)0.0552 (8)
H320.17150.67040.26970.066*
C330.1240 (5)0.8992 (4)0.2376 (2)0.0574 (8)
H330.09560.85710.17740.069*
C340.1217 (4)1.0726 (4)0.27254 (19)0.0457 (6)
Br340.06068 (5)1.22764 (5)0.19700 (2)0.06693 (16)
C350.1596 (6)1.1360 (4)0.3608 (2)0.0713 (11)
H350.15581.25330.38410.086*
C360.2042 (6)1.0211 (4)0.4153 (2)0.0703 (11)
H360.23051.06330.47560.084*
C370.2644 (4)0.7278 (4)0.4432 (2)0.0506 (7)
O310.2859 (5)0.7932 (3)0.52394 (16)0.0910 (10)
O320.2844 (4)0.5748 (3)0.41048 (16)0.0653 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0781 (19)0.0471 (14)0.0325 (12)0.0163 (13)0.0077 (12)0.0123 (10)
C20.080 (2)0.0522 (17)0.0310 (14)0.0068 (15)0.0080 (14)0.0033 (12)
C30.0635 (18)0.0421 (15)0.0322 (13)0.0027 (13)0.0021 (12)0.0020 (11)
N40.0514 (13)0.0347 (11)0.0269 (10)0.0017 (9)0.0025 (9)0.0031 (8)
C50.0555 (16)0.0378 (14)0.0320 (13)0.0012 (12)0.0000 (11)0.0043 (11)
C60.0682 (19)0.0364 (14)0.0366 (14)0.0074 (13)0.0075 (13)0.0059 (11)
C210.0396 (13)0.0370 (13)0.0347 (13)0.0021 (10)0.0032 (10)0.0077 (10)
C220.0404 (13)0.0393 (14)0.0361 (13)0.0049 (11)0.0001 (11)0.0080 (11)
C230.0519 (16)0.0534 (16)0.0365 (14)0.0014 (13)0.0001 (12)0.0134 (12)
C240.0651 (19)0.0513 (17)0.0516 (18)0.0022 (14)0.0066 (14)0.0251 (14)
C250.072 (2)0.0348 (14)0.059 (2)0.0056 (13)0.0080 (15)0.0128 (13)
C260.0577 (17)0.0378 (14)0.0437 (15)0.0041 (12)0.0048 (13)0.0056 (12)
O220.0738 (14)0.0445 (11)0.0337 (10)0.0191 (10)0.0067 (9)0.0052 (8)
C270.0581 (18)0.0478 (16)0.0412 (15)0.0055 (13)0.0079 (13)0.0025 (12)
C310.0473 (15)0.0421 (14)0.0384 (14)0.0069 (11)0.0050 (11)0.0090 (11)
C320.070 (2)0.0458 (16)0.0469 (17)0.0186 (14)0.0023 (15)0.0005 (13)
C330.070 (2)0.067 (2)0.0331 (15)0.0162 (16)0.0044 (14)0.0033 (14)
C340.0459 (15)0.0520 (16)0.0416 (15)0.0018 (12)0.0004 (12)0.0175 (13)
Br340.0726 (2)0.0759 (3)0.0590 (2)0.00290 (17)0.00806 (16)0.03751 (18)
C350.125 (3)0.0384 (16)0.0471 (18)0.0068 (18)0.0112 (19)0.0089 (14)
C360.129 (3)0.0435 (17)0.0343 (16)0.0120 (19)0.0120 (18)0.0038 (13)
C370.0537 (17)0.0488 (17)0.0534 (18)0.0084 (13)0.0048 (14)0.0190 (14)
O310.171 (3)0.0586 (15)0.0454 (14)0.0315 (17)0.0072 (16)0.0173 (11)
O320.0879 (17)0.0400 (12)0.0704 (15)0.0200 (11)0.0089 (13)0.0127 (10)
Geometric parameters (Å, º) top
N1—C21.479 (4)C24—C251.361 (5)
N1—C61.483 (4)C24—H240.9300
N1—H110.89 (4)C25—C261.388 (4)
N1—H120.88 (4)C25—H250.9300
C2—C31.513 (4)C26—H260.9300
C2—H2A0.9700O22—C271.424 (3)
C2—H2B0.9700C27—H27A0.9600
C3—N41.458 (3)C27—H27B0.9600
C3—H3A0.9700C27—H27C0.9600
C3—H3B0.9700C31—C361.363 (4)
N4—C211.418 (3)C31—C321.377 (4)
N4—C51.470 (4)C31—C371.515 (4)
C5—C61.508 (4)C32—C331.384 (4)
C5—H5A0.9700C32—H320.9300
C5—H5B0.9700C33—C341.372 (4)
C6—H6A0.9700C33—H330.9300
C6—H6B0.9700C34—C351.361 (4)
C21—C261.387 (4)C34—Br341.905 (3)
C21—C221.413 (4)C35—C361.394 (4)
C22—O221.367 (3)C35—H350.9300
C22—C231.382 (4)C36—H360.9300
C23—C241.390 (4)C37—O321.237 (4)
C23—H230.9300C37—O311.251 (4)
C2—N1—C6110.8 (2)C22—C23—H23119.8
C2—N1—H11110 (2)C24—C23—H23119.8
C6—N1—H11112 (2)C25—C24—C23119.9 (3)
C2—N1—H12110 (2)C25—C24—H24120.1
C6—N1—H12107 (2)C23—C24—H24120.1
H11—N1—H12106 (3)C24—C25—C26120.2 (3)
N1—C2—C3110.6 (2)C24—C25—H25119.9
N1—C2—H2A109.5C26—C25—H25119.9
C3—C2—H2A109.5C21—C26—C25121.6 (3)
N1—C2—H2B109.5C21—C26—H26119.2
C3—C2—H2B109.5C25—C26—H26119.2
H2A—C2—H2B108.1C22—O22—C27117.7 (2)
N4—C3—C2109.2 (2)O22—C27—H27A109.5
N4—C3—H3A109.8O22—C27—H27B109.5
C2—C3—H3A109.8H27A—C27—H27B109.5
N4—C3—H3B109.8O22—C27—H27C109.5
C2—C3—H3B109.8H27A—C27—H27C109.5
H3A—C3—H3B108.3H27B—C27—H27C109.5
C21—N4—C3116.6 (2)C36—C31—C32118.4 (3)
C21—N4—C5113.3 (2)C36—C31—C37120.4 (3)
C3—N4—C5110.7 (2)C32—C31—C37121.2 (3)
N4—C5—C6110.4 (2)C31—C32—C33121.0 (3)
N4—C5—H5A109.6C31—C32—H32119.5
C6—C5—H5A109.6C33—C32—H32119.5
N4—C5—H5B109.6C34—C33—C32119.1 (3)
C6—C5—H5B109.6C34—C33—H33120.4
H5A—C5—H5B108.1C32—C33—H33120.4
N1—C6—C5110.7 (2)C35—C34—C33121.2 (3)
N1—C6—H6A109.5C35—C34—Br34119.1 (2)
C5—C6—H6A109.5C33—C34—Br34119.7 (2)
N1—C6—H6B109.5C34—C35—C36118.5 (3)
C5—C6—H6B109.5C34—C35—H35120.7
H6A—C6—H6B108.1C36—C35—H35120.7
C26—C21—C22117.5 (2)C31—C36—C35121.7 (3)
C26—C21—N4123.4 (2)C31—C36—H36119.1
C22—C21—N4119.0 (2)C35—C36—H36119.1
O22—C22—C23123.8 (2)O32—C37—O31124.9 (3)
O22—C22—C21115.9 (2)O32—C37—C31118.9 (3)
C23—C22—C21120.3 (2)O31—C37—C31116.2 (3)
C22—C23—C24120.5 (3)
C6—N1—C2—C356.5 (3)C22—C21—C26—C250.5 (4)
N1—C2—C3—N458.8 (3)N4—C21—C26—C25177.9 (3)
C2—C3—N4—C21168.3 (2)C24—C25—C26—C211.2 (5)
C2—C3—N4—C560.2 (3)C23—C22—O22—C279.3 (4)
C21—N4—C5—C6167.6 (2)C21—C22—O22—C27172.6 (2)
C3—N4—C5—C659.3 (3)C36—C31—C32—C330.6 (5)
C2—N1—C6—C555.0 (3)C37—C31—C32—C33178.5 (3)
N4—C5—C6—N156.0 (3)C31—C32—C33—C340.4 (5)
C3—N4—C21—C2614.8 (4)C32—C33—C34—C351.3 (5)
C5—N4—C21—C26115.4 (3)C32—C33—C34—Br34179.8 (2)
C3—N4—C21—C22162.6 (2)C33—C34—C35—C361.1 (6)
C5—N4—C21—C2267.1 (3)Br34—C34—C35—C36179.9 (3)
C26—C21—C22—O22176.2 (2)C32—C31—C36—C350.7 (6)
N4—C21—C22—O221.4 (4)C37—C31—C36—C35178.3 (4)
C26—C21—C22—C232.0 (4)C34—C35—C36—C310.1 (7)
N4—C21—C22—C23179.6 (2)C36—C31—C37—O32173.7 (3)
O22—C22—C23—C24176.1 (3)C32—C31—C37—O325.4 (5)
C21—C22—C23—C241.9 (4)C36—C31—C37—O316.2 (5)
C22—C23—C24—C250.2 (5)C32—C31—C37—O31174.8 (3)
C23—C24—C25—C261.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.89 (4)1.75 (4)2.620 (4)168 (3)
N1—H12···O32i0.88 (4)1.91 (4)2.786 (4)175 (4)
Symmetry code: (i) x+1, y+1, z+1.
4-(2-Methoxyphenyl)piperazin-1-ium 4-iodobenzoate (III) top
Crystal data top
C11H17N2O+·C7H4IO2Z = 2
Mr = 440.27F(000) = 440
Triclinic, P1Dx = 1.609 Mg m3
a = 7.1129 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2722 (7) ÅCell parameters from 3897 reflections
c = 12.5923 (8) Åθ = 3.0–28.0°
α = 69.852 (5)°µ = 1.78 mm1
β = 74.681 (5)°T = 296 K
γ = 79.121 (5)°Needle, orange
V = 908.82 (10) Å30.48 × 0.24 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3897 independent reflections
Radiation source: Enhance (Mo) X-ray Source3203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 28.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 69
Tmin = 0.534, Tmax = 0.779k = 1414
6342 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.029P)2 + 0.4404P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
3897 reflectionsΔρmax = 0.52 e Å3
224 parametersΔρmin = 0.70 e Å3
0 restraints
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6379 (3)0.34876 (17)0.41481 (15)0.0371 (4)
H110.736 (3)0.364 (2)0.437 (2)0.045*
H120.545 (4)0.417 (2)0.405 (2)0.045*
C20.5540 (3)0.2342 (2)0.50290 (17)0.0393 (4)
H2A0.49570.25240.57520.047*
H2B0.65800.16510.51680.047*
C30.4004 (3)0.1942 (2)0.46316 (17)0.0405 (4)
H3A0.34990.11810.52080.049*
H3B0.29230.26090.45360.049*
N40.4884 (2)0.16937 (15)0.35326 (13)0.0345 (3)
C50.5578 (3)0.2859 (2)0.26462 (17)0.0414 (5)
H5A0.44900.35230.25550.050*
H5B0.61080.27000.19090.050*
C60.7146 (3)0.3286 (2)0.30021 (18)0.0430 (5)
H6A0.82710.26460.30390.052*
H6B0.75700.40710.24280.052*
C210.3825 (3)0.10145 (18)0.31654 (17)0.0354 (4)
C220.4854 (3)0.0392 (2)0.23523 (18)0.0420 (5)
C230.3903 (4)0.0354 (2)0.2031 (2)0.0544 (6)
H230.45920.07690.14990.065*
C240.1939 (4)0.0483 (2)0.2498 (2)0.0605 (7)
H240.13130.09950.22880.073*
C250.0906 (4)0.0141 (3)0.3269 (2)0.0594 (7)
H250.04240.00640.35700.071*
C260.1844 (3)0.0888 (2)0.3602 (2)0.0465 (5)
H260.11320.13090.41260.056*
O220.6793 (2)0.05587 (18)0.19524 (16)0.0594 (5)
C270.7839 (4)0.0197 (3)0.0974 (2)0.0694 (8)
H27A0.91250.04720.07360.104*
H27B0.71560.05830.03540.104*
H27C0.79490.07110.11660.104*
C310.9029 (3)0.37755 (18)0.70670 (17)0.0344 (4)
C321.1047 (3)0.3626 (2)0.69034 (18)0.0395 (4)
H321.18120.36480.61740.047*
C331.1957 (3)0.3443 (2)0.78032 (18)0.0411 (5)
H331.33170.33470.76810.049*
C341.0812 (3)0.34062 (19)0.88832 (17)0.0405 (5)
I341.21476 (3)0.30958 (2)1.02693 (2)0.07326 (9)
C350.8796 (4)0.3559 (2)0.90646 (19)0.0528 (6)
H350.80340.35330.97950.063*
C360.7913 (3)0.3751 (2)0.8158 (2)0.0469 (5)
H360.65520.38650.82790.056*
C370.8053 (3)0.39540 (18)0.60869 (18)0.0382 (4)
O310.9072 (2)0.36274 (15)0.52331 (13)0.0466 (3)
O320.6270 (2)0.43759 (15)0.62045 (15)0.0520 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0383 (9)0.0379 (9)0.0422 (9)0.0006 (7)0.0142 (7)0.0195 (7)
C20.0428 (11)0.0447 (11)0.0327 (10)0.0010 (9)0.0109 (8)0.0150 (8)
C30.0397 (11)0.0504 (12)0.0336 (10)0.0068 (9)0.0035 (8)0.0182 (9)
N40.0372 (8)0.0381 (9)0.0310 (8)0.0066 (7)0.0049 (7)0.0147 (7)
C50.0568 (13)0.0390 (11)0.0309 (10)0.0104 (9)0.0090 (9)0.0118 (8)
C60.0477 (12)0.0423 (12)0.0398 (11)0.0116 (9)0.0019 (9)0.0160 (9)
C210.0393 (10)0.0338 (10)0.0348 (9)0.0033 (8)0.0131 (8)0.0095 (8)
C220.0502 (12)0.0396 (11)0.0415 (11)0.0021 (9)0.0174 (9)0.0151 (9)
C230.0783 (17)0.0410 (12)0.0566 (14)0.0021 (11)0.0329 (13)0.0197 (10)
C240.0796 (19)0.0472 (14)0.0684 (16)0.0216 (13)0.0396 (15)0.0095 (12)
C250.0530 (14)0.0625 (16)0.0630 (15)0.0234 (12)0.0246 (12)0.0021 (12)
C260.0418 (12)0.0507 (13)0.0459 (12)0.0068 (10)0.0123 (9)0.0105 (10)
O220.0477 (9)0.0821 (12)0.0644 (11)0.0033 (8)0.0030 (8)0.0515 (10)
C270.0792 (19)0.0738 (18)0.0601 (16)0.0034 (15)0.0021 (14)0.0420 (14)
C310.0364 (10)0.0296 (9)0.0380 (10)0.0024 (8)0.0091 (8)0.0114 (8)
C320.0393 (11)0.0443 (11)0.0350 (10)0.0024 (9)0.0068 (8)0.0146 (9)
C330.0371 (11)0.0426 (11)0.0443 (11)0.0024 (9)0.0133 (9)0.0121 (9)
C340.0551 (13)0.0344 (10)0.0342 (10)0.0054 (9)0.0167 (9)0.0079 (8)
I340.09118 (16)0.08904 (16)0.04736 (11)0.00653 (11)0.03522 (9)0.01745 (9)
C350.0542 (14)0.0662 (15)0.0340 (11)0.0080 (12)0.0000 (10)0.0171 (10)
C360.0369 (11)0.0584 (14)0.0439 (12)0.0037 (10)0.0036 (9)0.0184 (10)
C370.0392 (11)0.0319 (10)0.0461 (11)0.0028 (8)0.0159 (9)0.0110 (9)
O310.0426 (8)0.0614 (10)0.0433 (8)0.0034 (7)0.0137 (7)0.0232 (7)
O320.0399 (8)0.0546 (9)0.0664 (10)0.0106 (7)0.0220 (7)0.0254 (8)
Geometric parameters (Å, º) top
N1—C61.482 (3)C24—C251.369 (4)
N1—C21.486 (3)C24—H240.9300
N1—H110.88 (2)C25—C261.391 (3)
N1—H120.91 (2)C25—H250.9300
C2—C31.510 (3)C26—H260.9300
C2—H2A0.9700O22—C271.409 (3)
C2—H2B0.9700C27—H27A0.9600
C3—N41.459 (2)C27—H27B0.9600
C3—H3A0.9700C27—H27C0.9600
C3—H3B0.9700C31—C321.381 (3)
N4—C211.419 (2)C31—C361.387 (3)
N4—C51.469 (3)C31—C371.508 (3)
C5—C61.514 (3)C32—C331.386 (3)
C5—H5A0.9700C32—H320.9300
C5—H5B0.9700C33—C341.379 (3)
C6—H6A0.9700C33—H330.9300
C6—H6B0.9700C34—C351.378 (3)
C21—C261.385 (3)C34—I342.098 (2)
C21—C221.407 (3)C35—C361.379 (3)
C22—O221.363 (3)C35—H350.9300
C22—C231.387 (3)C36—H360.9300
C23—C241.379 (4)C37—O311.256 (3)
C23—H230.9300C37—O321.256 (2)
C6—N1—C2111.24 (15)C24—C23—H23119.9
C6—N1—H11108.4 (15)C22—C23—H23119.9
C2—N1—H11108.5 (15)C25—C24—C23120.2 (2)
C6—N1—H12106.8 (15)C25—C24—H24119.9
C2—N1—H12110.9 (15)C23—C24—H24119.9
H11—N1—H12111 (2)C24—C25—C26120.1 (2)
N1—C2—C3111.04 (16)C24—C25—H25120.0
N1—C2—H2A109.4C26—C25—H25120.0
C3—C2—H2A109.4C21—C26—C25121.0 (2)
N1—C2—H2B109.4C21—C26—H26119.5
C3—C2—H2B109.4C25—C26—H26119.5
H2A—C2—H2B108.0C22—O22—C27119.10 (19)
N4—C3—C2109.09 (16)O22—C27—H27A109.5
N4—C3—H3A109.9O22—C27—H27B109.5
C2—C3—H3A109.9H27A—C27—H27B109.5
N4—C3—H3B109.9O22—C27—H27C109.5
C2—C3—H3B109.9H27A—C27—H27C109.5
H3A—C3—H3B108.3H27B—C27—H27C109.5
C21—N4—C3117.03 (15)C32—C31—C36118.49 (19)
C21—N4—C5114.74 (15)C32—C31—C37120.99 (18)
C3—N4—C5109.97 (16)C36—C31—C37120.52 (18)
N4—C5—C6109.74 (17)C31—C32—C33121.39 (19)
N4—C5—H5A109.7C31—C32—H32119.3
C6—C5—H5A109.7C33—C32—H32119.3
N4—C5—H5B109.7C34—C33—C32118.95 (19)
C6—C5—H5B109.7C34—C33—H33120.5
H5A—C5—H5B108.2C32—C33—H33120.5
N1—C6—C5110.39 (17)C35—C34—C33120.63 (19)
N1—C6—H6A109.6C35—C34—I34119.56 (15)
C5—C6—H6A109.6C33—C34—I34119.81 (16)
N1—C6—H6B109.6C34—C35—C36119.7 (2)
C5—C6—H6B109.6C34—C35—H35120.1
H6A—C6—H6B108.1C36—C35—H35120.1
C26—C21—C22118.24 (19)C35—C36—C31120.8 (2)
C26—C21—N4123.33 (18)C35—C36—H36119.6
C22—C21—N4118.37 (17)C31—C36—H36119.6
O22—C22—C23124.4 (2)O31—C37—O32125.09 (19)
O22—C22—C21115.38 (17)O31—C37—C31117.28 (17)
C23—C22—C21120.2 (2)O32—C37—C31117.58 (18)
C24—C23—C22120.3 (2)
C6—N1—C2—C354.5 (2)C22—C21—C26—C251.6 (3)
N1—C2—C3—N458.0 (2)N4—C21—C26—C25175.6 (2)
C2—C3—N4—C21164.91 (17)C24—C25—C26—C210.1 (4)
C2—C3—N4—C561.8 (2)C23—C22—O22—C2714.5 (4)
C21—N4—C5—C6163.68 (17)C21—C22—O22—C27167.1 (2)
C3—N4—C5—C661.9 (2)C36—C31—C32—C330.6 (3)
C2—N1—C6—C553.9 (2)C37—C31—C32—C33179.05 (19)
N4—C5—C6—N157.3 (2)C31—C32—C33—C340.2 (3)
C3—N4—C21—C2618.2 (3)C32—C33—C34—C350.5 (3)
C5—N4—C21—C26112.9 (2)C32—C33—C34—I34178.83 (15)
C3—N4—C21—C22159.00 (18)C33—C34—C35—C360.0 (4)
C5—N4—C21—C2269.9 (2)I34—C34—C35—C36179.37 (18)
C26—C21—C22—O22179.72 (19)C34—C35—C36—C310.9 (4)
N4—C21—C22—O222.9 (3)C32—C31—C36—C351.1 (3)
C26—C21—C22—C231.8 (3)C37—C31—C36—C35178.5 (2)
N4—C21—C22—C23175.53 (19)C32—C31—C37—O3118.7 (3)
O22—C22—C23—C24178.9 (2)C36—C31—C37—O31161.0 (2)
C21—C22—C23—C240.6 (3)C32—C31—C37—O32163.71 (19)
C22—C23—C24—C251.0 (4)C36—C31—C37—O3216.7 (3)
C23—C24—C25—C261.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.88 (2)1.83 (2)2.684 (3)163 (2)
N1—H11···O320.88 (2)2.60 (2)3.060 (3)113.6 (17)
N1—H12···O32i0.91 (3)1.84 (3)2.746 (3)176 (3)
C33—H33···O32ii0.932.573.327 (3)139
C2—H2B···Cg2iii0.972.773.482 (2)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1.
4-(2-Methoxyphenyl)piperazin-1-ium 2-fluorobenzoate (IV) top
Crystal data top
C11H17N2O+·C7H4FO2F(000) = 704
Mr = 332.37Dx = 1.270 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 19.940 (1) ÅCell parameters from 3343 reflections
b = 10.2705 (7) Åθ = 3.0–27.9°
c = 9.0148 (7) ŵ = 0.09 mm1
β = 109.663 (8)°T = 296 K
V = 1738.5 (2) Å3Block, orange
Z = 40.48 × 0.36 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3343 independent reflections
Radiation source: Enhance (Mo) X-ray Source2786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 27.9°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2525
Tmin = 0.884, Tmax = 0.963k = 1313
6204 measured reflectionsl = 1111
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0593P)2 + 0.1911P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max < 0.001
wR(F2) = 0.100Δρmax = 0.24 e Å3
S = 1.02Δρmin = 0.14 e Å3
3343 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
256 parametersExtinction coefficient: 0.0111 (16)
25 restraintsAbsolute structure: Flack x determined using 1089 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.2 (3)
Hydrogen site location: mixed
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.40896 (13)0.4278 (2)0.1329 (3)0.0536 (5)
H110.3741 (17)0.499 (3)0.119 (3)0.064*
H120.4026 (16)0.383 (3)0.046 (4)0.064*
C20.39924 (15)0.3361 (3)0.2509 (3)0.0554 (6)
H2A0.35430.29060.20600.067*
H2B0.39750.38460.34190.067*
C30.45902 (15)0.2383 (3)0.3025 (4)0.0564 (6)
H3A0.45300.18310.38440.068*
H3B0.45790.18340.21400.068*
N40.52785 (12)0.30576 (19)0.3622 (3)0.0482 (5)
C50.53817 (15)0.3831 (3)0.2368 (3)0.0553 (6)
H5A0.53570.32750.14810.066*
H5B0.58480.42370.27370.066*
C60.48133 (16)0.4861 (3)0.1862 (3)0.0569 (7)
H6A0.48610.54450.27370.068*
H6B0.48770.53670.10110.068*
C210.58610 (13)0.2258 (2)0.4497 (3)0.0476 (6)
C220.58740 (14)0.1743 (3)0.5946 (3)0.0511 (6)
C230.64515 (17)0.1007 (3)0.6840 (4)0.0635 (7)
H230.64530.06530.77910.076*
C240.70234 (17)0.0792 (3)0.6336 (4)0.0702 (8)
H240.74070.02960.69460.084*
C250.70252 (16)0.1304 (3)0.4950 (4)0.0659 (8)
H250.74140.11680.46180.079*
C260.64492 (14)0.2029 (3)0.4028 (3)0.0561 (6)
H260.64550.23690.30770.067*
O220.53102 (11)0.2053 (2)0.6414 (2)0.0672 (6)
C270.5288 (2)0.1521 (5)0.7843 (5)0.1014 (14)
H27A0.52780.05880.77750.152*
H27B0.48680.18220.80310.152*
H27C0.57020.17910.86940.152*
C310.30015 (19)0.8223 (3)0.2163 (4)0.0505 (8)0.907 (8)
C320.3262 (2)0.9222 (4)0.3203 (5)0.0663 (12)0.907 (8)
F320.39194 (19)0.9110 (3)0.4272 (4)0.1101 (11)0.907 (8)
C330.2910 (3)1.0368 (4)0.3207 (6)0.0868 (15)0.907 (8)
H330.31181.10290.39190.104*0.907 (8)
C340.2242 (3)1.0503 (5)0.2129 (6)0.0952 (19)0.907 (8)
H340.19881.12650.21080.114*0.907 (8)
C350.1943 (3)0.9527 (7)0.1077 (6)0.0984 (19)0.907 (8)
H350.14870.96330.03560.118*0.907 (8)
C360.2312 (2)0.8384 (5)0.1072 (5)0.0735 (12)0.907 (8)
H360.21050.77280.03520.088*0.907 (8)
C370.34049 (18)0.6986 (3)0.2127 (4)0.0511 (9)0.907 (8)
O310.3266 (2)0.6424 (3)0.0810 (3)0.0663 (9)0.907 (8)
O320.38350 (17)0.6562 (4)0.3377 (4)0.0779 (12)0.907 (8)
C410.2765 (15)0.794 (3)0.179 (4)0.0505 (8)0.093 (8)
C420.2927 (19)0.900 (3)0.276 (4)0.0663 (12)0.093 (8)
F420.3612 (19)0.929 (4)0.357 (6)0.1101 (11)0.093 (8)
C430.248 (2)1.005 (4)0.262 (6)0.0868 (15)0.093 (8)
H430.25991.07540.32980.104*0.093 (8)
C440.184 (3)0.997 (4)0.142 (6)0.0952 (19)0.093 (8)
H440.15181.06570.12840.114*0.093 (8)
C450.166 (2)0.894 (4)0.042 (5)0.0984 (19)0.093 (8)
H450.12190.89540.03900.118*0.093 (8)
C460.2094 (17)0.786 (4)0.054 (4)0.0735 (12)0.093 (8)
H460.19630.71510.01350.088*0.093 (8)
C470.3262 (19)0.679 (3)0.198 (4)0.0511 (9)0.093 (8)
O410.3491 (19)0.664 (4)0.084 (4)0.0663 (9)0.093 (8)
O420.359 (2)0.640 (5)0.334 (4)0.0779 (12)0.093 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0552 (13)0.0560 (13)0.0418 (11)0.0094 (11)0.0060 (9)0.0028 (9)
C20.0443 (13)0.0595 (15)0.0548 (14)0.0023 (12)0.0065 (11)0.0043 (12)
C30.0451 (13)0.0491 (14)0.0664 (15)0.0031 (11)0.0074 (11)0.0015 (13)
N40.0420 (10)0.0461 (11)0.0512 (11)0.0012 (9)0.0086 (8)0.0033 (9)
C50.0546 (15)0.0621 (15)0.0475 (13)0.0023 (13)0.0151 (11)0.0010 (12)
C60.0664 (17)0.0532 (15)0.0472 (13)0.0001 (13)0.0139 (12)0.0060 (12)
C210.0434 (13)0.0395 (12)0.0529 (13)0.0002 (11)0.0070 (10)0.0050 (11)
C220.0458 (13)0.0413 (13)0.0625 (15)0.0009 (10)0.0134 (11)0.0024 (11)
C230.0618 (17)0.0523 (15)0.0712 (17)0.0109 (13)0.0154 (13)0.0138 (14)
C240.0528 (16)0.0609 (17)0.083 (2)0.0184 (14)0.0049 (14)0.0046 (16)
C250.0456 (15)0.0724 (19)0.0751 (18)0.0090 (14)0.0142 (13)0.0172 (16)
C260.0470 (14)0.0636 (16)0.0541 (14)0.0009 (12)0.0121 (11)0.0126 (13)
O220.0646 (12)0.0695 (13)0.0737 (13)0.0176 (10)0.0314 (10)0.0251 (10)
C270.102 (3)0.109 (3)0.115 (3)0.029 (2)0.064 (2)0.052 (3)
C310.0524 (19)0.0539 (18)0.0516 (18)0.0091 (15)0.0257 (15)0.0149 (15)
C320.061 (3)0.075 (2)0.069 (3)0.014 (2)0.030 (3)0.0084 (19)
F320.098 (2)0.119 (2)0.098 (2)0.0153 (17)0.0134 (17)0.0298 (18)
C330.118 (4)0.071 (2)0.093 (3)0.019 (3)0.064 (3)0.005 (2)
C340.121 (5)0.089 (3)0.100 (4)0.052 (3)0.069 (4)0.040 (3)
C350.083 (3)0.134 (5)0.088 (4)0.058 (3)0.042 (3)0.055 (3)
C360.062 (2)0.093 (3)0.071 (3)0.028 (2)0.0298 (19)0.034 (2)
C370.0469 (19)0.0538 (18)0.0535 (16)0.0080 (15)0.0180 (13)0.0166 (14)
O310.064 (2)0.0682 (17)0.0588 (12)0.0137 (15)0.0102 (14)0.0001 (12)
O320.092 (3)0.087 (2)0.0537 (12)0.041 (2)0.0226 (16)0.0226 (12)
C410.0524 (19)0.0539 (18)0.0516 (18)0.0091 (15)0.0257 (15)0.0149 (15)
C420.061 (3)0.075 (2)0.069 (3)0.014 (2)0.030 (3)0.0084 (19)
F420.098 (2)0.119 (2)0.098 (2)0.0153 (17)0.0134 (17)0.0298 (18)
C430.118 (4)0.071 (2)0.093 (3)0.019 (3)0.064 (3)0.005 (2)
C440.121 (5)0.089 (3)0.100 (4)0.052 (3)0.069 (4)0.040 (3)
C450.083 (3)0.134 (5)0.088 (4)0.058 (3)0.042 (3)0.055 (3)
C460.062 (2)0.093 (3)0.071 (3)0.028 (2)0.0298 (19)0.034 (2)
C470.0469 (19)0.0538 (18)0.0535 (16)0.0080 (15)0.0180 (13)0.0166 (14)
O410.064 (2)0.0682 (17)0.0588 (12)0.0137 (15)0.0102 (14)0.0001 (12)
O420.092 (3)0.087 (2)0.0537 (12)0.041 (2)0.0226 (16)0.0226 (12)
Geometric parameters (Å, º) top
N1—C21.482 (4)C27—H27B0.9600
N1—C61.485 (4)C27—H27C0.9600
N1—H110.98 (3)C31—C321.369 (6)
N1—H120.88 (4)C31—C361.405 (5)
C2—C31.508 (4)C31—C371.510 (4)
C2—H2A0.9700C32—F321.345 (5)
C2—H2B0.9700C32—C331.371 (5)
C3—N41.468 (3)C33—C341.366 (7)
C3—H3A0.9700C33—H330.9300
C3—H3B0.9700C34—C351.370 (8)
N4—C211.424 (3)C34—H340.9300
N4—C51.452 (3)C35—C361.387 (7)
C5—C61.504 (4)C35—H350.9300
C5—H5A0.9700C36—H360.9300
C5—H5B0.9700C37—O321.243 (3)
C6—H6A0.9700C37—O311.264 (4)
C6—H6B0.9700C41—C421.365 (13)
C21—C261.394 (4)C41—C461.432 (13)
C21—C221.402 (4)C41—C471.518 (12)
C22—O221.365 (3)C42—F421.347 (14)
C22—C231.387 (4)C42—C431.376 (13)
C23—C241.380 (5)C43—C441.364 (15)
C23—H230.9300C43—H430.9300
C24—C251.357 (5)C44—C451.365 (15)
C24—H240.9300C44—H440.9300
C25—C261.386 (4)C45—C461.388 (14)
C25—H250.9300C45—H450.9300
C26—H260.9300C46—H460.9300
O22—C271.414 (4)C47—O421.245 (13)
C27—H27A0.9600C47—O411.263 (13)
C2—N1—C6111.80 (18)C21—C26—H26119.3
C2—N1—H11107.6 (17)C22—O22—C27118.3 (2)
C6—N1—H11108.1 (18)O22—C27—H27A109.5
C2—N1—H12107 (2)O22—C27—H27B109.5
C6—N1—H12109 (2)H27A—C27—H27B109.5
H11—N1—H12113 (3)O22—C27—H27C109.5
N1—C2—C3111.3 (2)H27A—C27—H27C109.5
N1—C2—H2A109.4H27B—C27—H27C109.5
C3—C2—H2A109.4C32—C31—C36116.6 (3)
N1—C2—H2B109.4C32—C31—C37124.3 (3)
C3—C2—H2B109.4C36—C31—C37119.1 (3)
H2A—C2—H2B108.0F32—C32—C31118.7 (3)
N4—C3—C2110.1 (2)F32—C32—C33116.6 (4)
N4—C3—H3A109.6C31—C32—C33124.7 (4)
C2—C3—H3A109.6C34—C33—C32117.5 (5)
N4—C3—H3B109.6C34—C33—H33121.2
C2—C3—H3B109.6C32—C33—H33121.2
H3A—C3—H3B108.2C33—C34—C35120.8 (4)
C21—N4—C5116.3 (2)C33—C34—H34119.6
C21—N4—C3114.73 (19)C35—C34—H34119.6
C5—N4—C3109.4 (2)C34—C35—C36120.9 (4)
N4—C5—C6109.3 (2)C34—C35—H35119.6
N4—C5—H5A109.8C36—C35—H35119.6
C6—C5—H5A109.8C35—C36—C31119.5 (5)
N4—C5—H5B109.8C35—C36—H36120.2
C6—C5—H5B109.8C31—C36—H36120.2
H5A—C5—H5B108.3O32—C37—O31123.9 (3)
N1—C6—C5111.5 (2)O32—C37—C31119.0 (3)
N1—C6—H6A109.3O31—C37—C31117.0 (3)
C5—C6—H6A109.3C42—C41—C46120.5 (14)
N1—C6—H6B109.3C42—C41—C47123.0 (16)
C5—C6—H6B109.3C46—C41—C47116.5 (15)
H6A—C6—H6B108.0F42—C42—C41120.1 (19)
C26—C21—C22117.7 (2)F42—C42—C43113 (2)
C26—C21—N4122.8 (2)C41—C42—C43123.7 (16)
C22—C21—N4119.3 (2)C44—C43—C42115.8 (17)
O22—C22—C23123.8 (3)C44—C43—H43122.1
O22—C22—C21116.2 (2)C42—C43—H43122.1
C23—C22—C21119.9 (2)C43—C44—C45122.5 (17)
C24—C23—C22120.8 (3)C43—C44—H44118.8
C24—C23—H23119.6C45—C44—H44118.8
C22—C23—H23119.6C44—C45—C46123.1 (17)
C25—C24—C23120.0 (3)C44—C45—H45118.4
C25—C24—H24120.0C46—C45—H45118.4
C23—C24—H24120.0C45—C46—C41114.4 (16)
C24—C25—C26120.1 (3)C45—C46—H46122.8
C24—C25—H25119.9C41—C46—H46122.8
C26—C25—H25119.9O42—C47—O41123 (2)
C25—C26—C21121.4 (3)O42—C47—C41118.2 (19)
C25—C26—H26119.3O41—C47—C41113.7 (19)
C6—N1—C2—C350.7 (3)C37—C31—C32—C33177.5 (3)
N1—C2—C3—N455.7 (3)F32—C32—C33—C34179.8 (4)
C2—C3—N4—C21165.0 (2)C31—C32—C33—C342.2 (6)
C2—C3—N4—C562.2 (3)C32—C33—C34—C350.6 (6)
C21—N4—C5—C6165.1 (2)C33—C34—C35—C360.5 (7)
C3—N4—C5—C662.9 (3)C34—C35—C36—C310.1 (6)
C2—N1—C6—C551.9 (3)C32—C31—C36—C351.3 (5)
N4—C5—C6—N157.9 (3)C37—C31—C36—C35178.8 (4)
C5—N4—C21—C2611.4 (3)C32—C31—C37—O3231.1 (5)
C3—N4—C21—C26118.2 (3)C36—C31—C37—O32148.9 (4)
C5—N4—C21—C22164.2 (2)C32—C31—C37—O31150.8 (4)
C3—N4—C21—C2266.3 (3)C36—C31—C37—O3129.3 (5)
C26—C21—C22—O22176.1 (2)C46—C41—C42—F42159 (5)
N4—C21—C22—O220.3 (3)C47—C41—C42—F4223 (6)
C26—C21—C22—C231.6 (3)C46—C41—C42—C430 (6)
N4—C21—C22—C23177.4 (2)C47—C41—C42—C43179 (4)
O22—C22—C23—C24176.3 (3)F42—C42—C43—C44160 (5)
C21—C22—C23—C241.3 (4)C41—C42—C43—C440 (7)
C22—C23—C24—C250.0 (5)C42—C43—C44—C450 (8)
C23—C24—C25—C260.9 (4)C43—C44—C45—C461 (9)
C24—C25—C26—C210.5 (4)C44—C45—C46—C412 (7)
C22—C21—C26—C250.8 (4)C42—C41—C46—C451 (6)
N4—C21—C26—C25176.4 (2)C47—C41—C46—C45180 (4)
C23—C22—O22—C274.5 (5)C42—C41—C47—O4240 (6)
C21—C22—O22—C27177.9 (3)C46—C41—C47—O42138 (5)
C36—C31—C32—F32179.9 (4)C42—C41—C47—O41115 (4)
C37—C31—C32—F320.0 (5)C46—C41—C47—O4166 (5)
C36—C31—C32—C332.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.99 (3)1.72 (3)2.694 (4)167 (3)
N1—H11···O320.99 (3)2.51 (3)3.131 (4)120.9 (19)
N1—H12···O32i0.88 (3)1.83 (3)2.679 (4)161 (3)
N1—H11···O410.99 (3)1.77 (5)2.67 (4)151 (3)
N1—H11···O420.99 (3)2.52 (5)3.20 (4)126 (2)
N1—H12···O42i0.88 (3)1.83 (5)2.63 (4)151 (3)
C34—H34···Cg2ii0.932.743.543 (5)145
C44—H44···Cg2ii0.932.993.73 (4)137
C26—H26···Cg3iii0.932.963.754 (17)144
Symmetry codes: (i) x, y+1, z1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z.
4-(2-Methoxyphenyl)piperazin-1-ium 2-chlorobenzoate (V) top
Crystal data top
C11H17N2O+·C7H4ClO2F(000) = 736
Mr = 348.82Dx = 1.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.9974 (8) ÅCell parameters from 4043 reflections
b = 27.611 (2) Åθ = 2.6–28.0°
c = 8.5972 (9) ŵ = 0.23 mm1
β = 106.40 (1)°T = 296 K
V = 1821.2 (3) Å3Needle, orange
Z = 40.48 × 0.20 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3410 independent reflections
Radiation source: Enhance (Mo) X-ray Source2060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.6°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.747, Tmax = 0.973k = 3333
13275 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.216 w = 1/[σ2(Fo2) + (0.1138P)2 + 0.7483P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3410 reflectionsΔρmax = 1.15 e Å3
223 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4620 (4)0.44249 (11)0.3578 (4)0.0640 (8)
H110.368 (5)0.4525 (14)0.402 (4)0.077*
H120.511 (5)0.4709 (16)0.336 (4)0.077*
C20.3954 (4)0.41253 (14)0.2112 (5)0.0684 (10)
H2A0.32460.43230.12410.082*
H2B0.32250.38690.23330.082*
C30.5449 (4)0.39067 (13)0.1593 (4)0.0614 (9)
H3A0.49930.36990.06590.074*
H3B0.61220.41630.12840.074*
N40.6572 (3)0.36247 (10)0.2916 (3)0.0545 (7)
C50.7325 (5)0.39472 (14)0.4289 (4)0.0666 (10)
H5A0.79750.42040.39570.080*
H5B0.81180.37670.51590.080*
C60.5886 (5)0.41589 (16)0.4871 (5)0.0747 (11)
H6A0.52900.39010.52650.090*
H6B0.63790.43770.57690.090*
C210.7769 (4)0.33160 (12)0.2452 (4)0.0538 (8)
C220.7097 (5)0.29139 (12)0.1470 (4)0.0607 (9)
C230.8208 (7)0.26032 (14)0.0999 (5)0.0798 (12)
H230.77650.23420.03260.096*
C241.0003 (7)0.26825 (19)0.1536 (6)0.0962 (16)
H241.07510.24700.12230.115*
C251.0676 (6)0.30630 (18)0.2506 (6)0.0869 (13)
H251.18750.31090.28680.104*
C260.9558 (5)0.33835 (14)0.2954 (4)0.0672 (10)
H261.00180.36480.36020.081*
O220.5338 (3)0.28580 (9)0.1060 (3)0.0770 (8)
C270.4570 (7)0.24698 (17)0.0025 (6)0.1036 (16)
H27A0.33300.24760.01570.155*
H27B0.48350.25020.09920.155*
H27C0.50270.21680.05220.155*
C310.1308 (4)0.43466 (12)0.7353 (4)0.0541 (8)
C320.1418 (4)0.38566 (13)0.7729 (4)0.0606 (9)
Cl320.29281 (16)0.35006 (4)0.71550 (13)0.0871 (4)
C330.0387 (6)0.36423 (19)0.8551 (5)0.0886 (13)
H330.04820.33120.87740.106*
C340.0776 (7)0.3916 (3)0.9036 (6)0.1056 (17)
H340.14800.37720.96000.127*
C350.0935 (6)0.4406 (2)0.8710 (5)0.0955 (15)
H350.17350.45910.90550.115*
C360.0107 (5)0.46182 (16)0.7865 (5)0.0760 (11)
H360.00000.49480.76370.091*
C370.2417 (5)0.45733 (12)0.6402 (5)0.0643 (9)
O310.1985 (3)0.45110 (11)0.4917 (3)0.0810 (8)
O320.3701 (5)0.48041 (13)0.7200 (4)0.1152 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0672 (19)0.0561 (18)0.075 (2)0.0144 (15)0.0306 (17)0.0193 (16)
C20.058 (2)0.067 (2)0.075 (2)0.0070 (17)0.0105 (18)0.0203 (19)
C30.063 (2)0.065 (2)0.051 (2)0.0015 (17)0.0071 (16)0.0152 (16)
N40.0560 (16)0.0569 (16)0.0480 (15)0.0057 (12)0.0104 (13)0.0120 (12)
C50.066 (2)0.073 (2)0.055 (2)0.0103 (18)0.0071 (17)0.0133 (17)
C60.084 (3)0.083 (3)0.058 (2)0.012 (2)0.022 (2)0.024 (2)
C210.060 (2)0.0538 (18)0.0486 (18)0.0018 (15)0.0169 (15)0.0073 (15)
C220.079 (2)0.0516 (19)0.057 (2)0.0033 (18)0.0281 (18)0.0030 (16)
C230.113 (4)0.056 (2)0.082 (3)0.013 (2)0.045 (3)0.0067 (19)
C240.113 (4)0.080 (3)0.114 (4)0.045 (3)0.062 (3)0.038 (3)
C250.072 (3)0.084 (3)0.108 (3)0.025 (2)0.029 (2)0.042 (3)
C260.061 (2)0.067 (2)0.067 (2)0.0059 (18)0.0090 (18)0.0218 (18)
O220.0822 (18)0.0675 (16)0.0825 (18)0.0186 (13)0.0251 (14)0.0303 (14)
C270.129 (4)0.072 (3)0.111 (4)0.036 (3)0.037 (3)0.041 (3)
C310.0585 (19)0.0577 (19)0.0435 (17)0.0075 (15)0.0100 (15)0.0004 (14)
C320.072 (2)0.062 (2)0.0431 (18)0.0134 (17)0.0088 (16)0.0058 (15)
Cl320.1206 (9)0.0538 (6)0.0861 (8)0.0079 (5)0.0279 (6)0.0040 (5)
C330.109 (4)0.092 (3)0.065 (3)0.020 (3)0.026 (3)0.020 (2)
C340.103 (4)0.151 (5)0.070 (3)0.021 (4)0.036 (3)0.033 (3)
C350.080 (3)0.148 (5)0.064 (3)0.012 (3)0.031 (2)0.007 (3)
C360.076 (2)0.086 (3)0.069 (2)0.007 (2)0.025 (2)0.004 (2)
C370.072 (2)0.0407 (17)0.085 (3)0.0034 (17)0.030 (2)0.0005 (18)
O310.0823 (18)0.101 (2)0.0683 (18)0.0104 (15)0.0350 (15)0.0168 (15)
O320.130 (3)0.094 (2)0.132 (3)0.062 (2)0.053 (2)0.024 (2)
Geometric parameters (Å, º) top
N1—C61.472 (5)C24—C251.355 (7)
N1—C21.475 (4)C24—H240.9300
N1—H110.97 (4)C25—C261.387 (6)
N1—H120.92 (4)C25—H250.9300
C2—C31.515 (5)C26—H260.9300
C2—H2A0.9700O22—C271.418 (4)
C2—H2B0.9700C27—H27A0.9600
C3—N41.460 (4)C27—H27B0.9600
C3—H3A0.9700C27—H27C0.9600
C3—H3B0.9700C31—C361.385 (5)
N4—C211.421 (4)C31—C321.388 (5)
N4—C51.465 (4)C31—C371.503 (5)
C5—C61.497 (5)C32—C331.363 (5)
C5—H5A0.9700C32—Cl321.733 (4)
C5—H5B0.9700C33—C341.354 (7)
C6—H6A0.9700C33—H330.9300
C6—H6B0.9700C34—C351.378 (7)
C21—C261.385 (5)C34—H340.9300
C21—C221.407 (5)C35—C361.381 (6)
C22—O221.359 (4)C35—H350.9300
C22—C231.375 (5)C36—H360.9300
C23—C241.395 (6)C37—O311.237 (5)
C23—H230.9300C37—O321.238 (5)
C6—N1—C2111.8 (3)C22—C23—H23120.2
C6—N1—H11107 (2)C24—C23—H23120.2
C2—N1—H11111 (2)C25—C24—C23121.2 (4)
C6—N1—H12110 (2)C25—C24—H24119.4
C2—N1—H12112 (2)C23—C24—H24119.4
H11—N1—H12105 (3)C24—C25—C26119.4 (4)
N1—C2—C3110.5 (3)C24—C25—H25120.3
N1—C2—H2A109.5C26—C25—H25120.3
C3—C2—H2A109.5C21—C26—C25121.2 (4)
N1—C2—H2B109.5C21—C26—H26119.4
C3—C2—H2B109.5C25—C26—H26119.4
H2A—C2—H2B108.1C22—O22—C27118.8 (3)
N4—C3—C2110.3 (3)O22—C27—H27A109.5
N4—C3—H3A109.6O22—C27—H27B109.5
C2—C3—H3A109.6H27A—C27—H27B109.5
N4—C3—H3B109.6O22—C27—H27C109.5
C2—C3—H3B109.6H27A—C27—H27C109.5
H3A—C3—H3B108.1H27B—C27—H27C109.5
C21—N4—C3114.6 (2)C36—C31—C32117.3 (3)
C21—N4—C5115.8 (3)C36—C31—C37121.1 (3)
C3—N4—C5109.0 (3)C32—C31—C37121.6 (3)
N4—C5—C6109.1 (3)C33—C32—C31122.4 (4)
N4—C5—H5A109.9C33—C32—Cl32118.2 (3)
C6—C5—H5A109.9C31—C32—Cl32119.4 (3)
N4—C5—H5B109.9C34—C33—C32119.1 (5)
C6—C5—H5B109.9C34—C33—H33120.5
H5A—C5—H5B108.3C32—C33—H33120.5
N1—C6—C5111.8 (3)C33—C34—C35121.1 (4)
N1—C6—H6A109.2C33—C34—H34119.4
C5—C6—H6A109.2C35—C34—H34119.4
N1—C6—H6B109.2C34—C35—C36119.3 (4)
C5—C6—H6B109.2C34—C35—H35120.4
H6A—C6—H6B107.9C36—C35—H35120.4
C26—C21—C22118.6 (3)C35—C36—C31120.8 (4)
C26—C21—N4123.4 (3)C35—C36—H36119.6
C22—C21—N4118.0 (3)C31—C36—H36119.6
O22—C22—C23124.1 (4)O31—C37—O32126.2 (4)
O22—C22—C21115.9 (3)O31—C37—C31117.9 (3)
C23—C22—C21120.0 (4)O32—C37—C31115.9 (4)
C22—C23—C24119.6 (4)
C6—N1—C2—C351.8 (4)C22—C21—C26—C250.1 (5)
N1—C2—C3—N456.7 (4)N4—C21—C26—C25178.0 (3)
C2—C3—N4—C21166.2 (3)C24—C25—C26—C211.3 (6)
C2—C3—N4—C562.2 (3)C23—C22—O22—C272.9 (5)
C21—N4—C5—C6166.8 (3)C21—C22—O22—C27177.8 (3)
C3—N4—C5—C662.2 (4)C36—C31—C32—C330.7 (5)
C2—N1—C6—C553.2 (4)C37—C31—C32—C33178.1 (4)
N4—C5—C6—N158.0 (4)C36—C31—C32—Cl32178.7 (3)
C3—N4—C21—C26112.9 (3)C37—C31—C32—Cl322.4 (4)
C5—N4—C21—C2615.3 (4)C31—C32—C33—C340.7 (6)
C3—N4—C21—C2268.9 (4)Cl32—C32—C33—C34178.7 (3)
C5—N4—C21—C22162.8 (3)C32—C33—C34—C350.2 (7)
C26—C21—C22—O22177.9 (3)C33—C34—C35—C360.3 (7)
N4—C21—C22—O220.3 (4)C34—C35—C36—C310.3 (6)
C26—C21—C22—C231.4 (5)C32—C31—C36—C350.2 (5)
N4—C21—C22—C23179.6 (3)C37—C31—C36—C35178.6 (4)
O22—C22—C23—C24177.6 (4)C36—C31—C37—O31101.0 (4)
C21—C22—C23—C241.7 (5)C32—C31—C37—O3177.8 (4)
C22—C23—C24—C250.5 (6)C36—C31—C37—O3279.5 (4)
C23—C24—C25—C260.9 (6)C32—C31—C37—O32101.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.97 (4)1.74 (3)2.682 (4)162 (3)
N1—H12···O32i0.92 (4)1.79 (4)2.700 (5)170 (4)
C5—H5B···Cg1ii0.972.873.554 (4)128
C34—H34···Cg2iii0.932.933.658 (7)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z+1.
4-(2-Methoxyphenyl)piperazin-1-ium 2-bromobenzoate (VI) top
Crystal data top
C11H17N2O+·C7H4BrO2Dx = 1.451 Mg m3
Mr = 393.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3863 reflections
a = 6.9824 (2) Åθ = 5.6–89.3°
b = 13.2292 (4) ŵ = 2.30 mm1
c = 19.4903 (7) ÅT = 293 K
V = 1800.35 (10) Å3Block, orange
Z = 40.50 × 0.50 × 0.48 mm
F(000) = 808
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3895 independent reflections
Radiation source: Enhance (Mo) X-ray Source2640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.7°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.297, Tmax = 0.331k = 1617
13089 measured reflectionsl = 2423
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0418P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 0.94Δρmax = 0.28 e Å3
3895 reflectionsΔρmin = 0.53 e Å3
224 parametersAbsolute structure: Flack x determined using 919 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.004 (5)
Primary atom site location: difference Fourier map
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2366 (5)0.3584 (2)0.50360 (15)0.0385 (7)
H110.156 (5)0.338 (3)0.5251 (19)0.046*
H120.271 (5)0.307 (2)0.4774 (17)0.046*
C20.4021 (5)0.3893 (3)0.54630 (18)0.0422 (9)
H2A0.45400.33090.56990.051*
H2B0.36110.43800.58050.051*
C30.5535 (5)0.4355 (2)0.50113 (17)0.0351 (8)
H3A0.66110.45720.52900.042*
H3B0.59930.38550.46860.042*
N40.4745 (4)0.52259 (19)0.46388 (14)0.0323 (7)
C50.3155 (5)0.4908 (2)0.42030 (18)0.0356 (9)
H5A0.36070.44210.38680.043*
H5B0.26510.54880.39570.043*
C60.1594 (5)0.4441 (3)0.4630 (2)0.0446 (10)
H6A0.10640.49460.49380.054*
H6B0.05740.42030.43340.054*
C210.6096 (5)0.5876 (2)0.43291 (17)0.0318 (8)
C220.7393 (5)0.6421 (2)0.47504 (16)0.0353 (7)
C230.8583 (5)0.7139 (3)0.4459 (2)0.0493 (10)
H230.94220.75020.47350.059*
C240.8539 (6)0.7323 (3)0.3762 (2)0.0574 (11)
H240.93460.78080.35730.069*
C250.7323 (5)0.6800 (3)0.33479 (18)0.0482 (9)
H250.72860.69310.28790.058*
C260.6140 (5)0.6070 (3)0.36316 (18)0.0392 (9)
H260.53480.56980.33430.047*
O220.7279 (4)0.62323 (15)0.54385 (11)0.0412 (6)
C270.8382 (6)0.6854 (3)0.58800 (19)0.0531 (11)
H27A0.97180.67580.57840.080*
H27B0.81260.66750.63480.080*
H27C0.80480.75490.58060.080*
C310.0331 (5)0.3548 (2)0.67134 (16)0.0357 (8)
C320.1964 (5)0.3120 (3)0.69802 (18)0.0444 (9)
Br320.23614 (7)0.16981 (3)0.68887 (3)0.0746 (2)
C330.3352 (6)0.3685 (4)0.7308 (2)0.0629 (13)
H330.44350.33770.74910.076*
C340.3097 (7)0.4713 (4)0.7360 (2)0.0712 (15)
H340.40330.51100.75660.085*
C350.1467 (8)0.5153 (4)0.7107 (2)0.0685 (14)
H350.12790.58450.71580.082*
C360.0120 (6)0.4583 (3)0.6783 (2)0.0527 (10)
H360.09640.48950.66050.063*
C370.1145 (5)0.2952 (3)0.6315 (2)0.0397 (9)
O310.0853 (3)0.29029 (17)0.56785 (12)0.0409 (6)
O320.2506 (4)0.2563 (2)0.66127 (13)0.0792 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0415 (17)0.0396 (15)0.0344 (17)0.0058 (17)0.0099 (16)0.0041 (12)
C20.048 (2)0.044 (2)0.035 (2)0.0010 (17)0.0020 (18)0.0005 (17)
C30.0376 (18)0.0328 (18)0.035 (2)0.0018 (16)0.0022 (16)0.0011 (16)
N40.0320 (15)0.0302 (15)0.0348 (18)0.0001 (13)0.0053 (13)0.0004 (13)
C50.037 (2)0.0373 (19)0.033 (2)0.0035 (15)0.0070 (15)0.0017 (15)
C60.0376 (19)0.045 (2)0.051 (2)0.0019 (17)0.0041 (18)0.0004 (19)
C210.0355 (18)0.0291 (16)0.031 (2)0.0035 (15)0.0023 (16)0.0034 (15)
C220.0340 (17)0.0379 (17)0.034 (2)0.0008 (18)0.0025 (18)0.0017 (14)
C230.041 (2)0.057 (2)0.050 (3)0.0128 (19)0.0041 (18)0.001 (2)
C240.051 (2)0.069 (3)0.052 (3)0.017 (2)0.006 (2)0.014 (2)
C250.045 (2)0.070 (2)0.0304 (19)0.005 (2)0.0032 (18)0.0057 (17)
C260.039 (2)0.045 (2)0.034 (2)0.0004 (17)0.0016 (17)0.0041 (17)
O220.0488 (14)0.0450 (12)0.0297 (13)0.0095 (13)0.0065 (13)0.0008 (10)
C270.059 (2)0.061 (3)0.039 (2)0.008 (2)0.0174 (19)0.0053 (19)
C310.0362 (19)0.046 (2)0.025 (2)0.0065 (16)0.0051 (15)0.0024 (15)
C320.0384 (19)0.065 (2)0.030 (2)0.0035 (17)0.0008 (16)0.0064 (19)
Br320.0640 (3)0.0691 (3)0.0907 (4)0.0123 (3)0.0067 (3)0.0203 (3)
C330.045 (2)0.107 (4)0.037 (2)0.014 (3)0.0080 (19)0.012 (2)
C340.070 (3)0.103 (4)0.040 (3)0.045 (3)0.006 (2)0.022 (3)
C350.087 (3)0.060 (3)0.058 (3)0.023 (3)0.016 (3)0.015 (2)
C360.058 (2)0.051 (2)0.049 (3)0.004 (2)0.002 (2)0.006 (2)
C370.0325 (19)0.048 (2)0.039 (2)0.0034 (17)0.0004 (17)0.0047 (18)
O310.0475 (14)0.0471 (14)0.0283 (14)0.0077 (12)0.0019 (12)0.0046 (12)
O320.0561 (18)0.131 (3)0.0509 (17)0.044 (2)0.0165 (16)0.0198 (16)
Geometric parameters (Å, º) top
N1—C21.481 (5)C24—C251.360 (5)
N1—C61.484 (4)C24—H240.9300
N1—H110.75 (4)C25—C261.386 (5)
N1—H120.89 (3)C25—H250.9300
C2—C31.506 (5)C26—H260.9300
C2—H2A0.9700O22—C271.417 (4)
C2—H2B0.9700C27—H27A0.9600
C3—N41.469 (4)C27—H27B0.9600
C3—H3A0.9700C27—H27C0.9600
C3—H3B0.9700C31—C321.375 (5)
N4—C211.412 (4)C31—C361.383 (4)
N4—C51.460 (4)C31—C371.512 (5)
C5—C61.505 (5)C32—C331.381 (5)
C5—H5A0.9700C32—Br321.910 (4)
C5—H5B0.9700C33—C341.375 (7)
C6—H6A0.9700C33—H330.9300
C6—H6B0.9700C34—C351.370 (7)
C21—C261.384 (5)C34—H340.9300
C21—C221.419 (4)C35—C361.361 (6)
C22—O221.366 (4)C35—H350.9300
C22—C231.385 (5)C36—H360.9300
C23—C241.380 (5)C37—O321.226 (4)
C23—H230.9300C37—O311.260 (4)
C2—N1—C6111.8 (3)C24—C23—H23119.6
C2—N1—H11112 (3)C22—C23—H23119.6
C6—N1—H11107 (3)C25—C24—C23120.5 (4)
C2—N1—H12109 (2)C25—C24—H24119.7
C6—N1—H12112 (2)C23—C24—H24119.7
H11—N1—H12104 (3)C24—C25—C26119.3 (3)
N1—C2—C3109.3 (3)C24—C25—H25120.3
N1—C2—H2A109.8C26—C25—H25120.3
C3—C2—H2A109.8C21—C26—C25122.3 (3)
N1—C2—H2B109.8C21—C26—H26118.8
C3—C2—H2B109.8C25—C26—H26118.8
H2A—C2—H2B108.3C22—O22—C27117.3 (3)
N4—C3—C2110.1 (3)O22—C27—H27A109.5
N4—C3—H3A109.6O22—C27—H27B109.5
C2—C3—H3A109.6H27A—C27—H27B109.5
N4—C3—H3B109.6O22—C27—H27C109.5
C2—C3—H3B109.6H27A—C27—H27C109.5
H3A—C3—H3B108.2H27B—C27—H27C109.5
C21—N4—C5115.8 (3)C32—C31—C36117.3 (3)
C21—N4—C3116.0 (3)C32—C31—C37123.0 (3)
C5—N4—C3110.3 (3)C36—C31—C37119.6 (3)
N4—C5—C6110.3 (3)C31—C32—C33122.3 (4)
N4—C5—H5A109.6C31—C32—Br32119.4 (3)
C6—C5—H5A109.6C33—C32—Br32118.3 (3)
N4—C5—H5B109.6C34—C33—C32118.6 (4)
C6—C5—H5B109.6C34—C33—H33120.7
H5A—C5—H5B108.1C32—C33—H33120.7
N1—C6—C5110.2 (3)C35—C34—C33120.1 (4)
N1—C6—H6A109.6C35—C34—H34119.9
C5—C6—H6A109.6C33—C34—H34119.9
N1—C6—H6B109.6C36—C35—C34120.3 (4)
C5—C6—H6B109.6C36—C35—H35119.8
H6A—C6—H6B108.1C34—C35—H35119.8
C26—C21—N4123.2 (3)C35—C36—C31121.4 (4)
C26—C21—C22117.4 (3)C35—C36—H36119.3
N4—C21—C22119.2 (3)C31—C36—H36119.3
O22—C22—C23124.3 (3)O32—C37—O31124.8 (3)
O22—C22—C21116.0 (3)O32—C37—C31120.3 (3)
C23—C22—C21119.6 (3)O31—C37—C31114.9 (3)
C24—C23—C22120.7 (3)
C6—N1—C2—C356.0 (4)N4—C21—C26—C25172.1 (3)
N1—C2—C3—N458.1 (4)C22—C21—C26—C253.2 (5)
C2—C3—N4—C21165.1 (3)C24—C25—C26—C212.4 (5)
C2—C3—N4—C560.7 (3)C23—C22—O22—C273.5 (5)
C21—N4—C5—C6166.1 (3)C21—C22—O22—C27172.2 (3)
C3—N4—C5—C659.7 (4)C36—C31—C32—C330.2 (5)
C2—N1—C6—C555.3 (4)C37—C31—C32—C33176.2 (3)
N4—C5—C6—N156.5 (4)C36—C31—C32—Br32179.1 (3)
C5—N4—C21—C2611.1 (4)C37—C31—C32—Br323.1 (4)
C3—N4—C21—C26120.6 (3)C31—C32—C33—C341.0 (6)
C5—N4—C21—C22164.2 (3)Br32—C32—C33—C34178.3 (3)
C3—N4—C21—C2264.2 (4)C32—C33—C34—C352.0 (6)
C26—C21—C22—O22178.3 (3)C33—C34—C35—C362.3 (7)
N4—C21—C22—O222.8 (4)C34—C35—C36—C311.5 (6)
C26—C21—C22—C232.4 (5)C32—C31—C36—C350.5 (6)
N4—C21—C22—C23173.2 (3)C37—C31—C36—C35176.6 (4)
O22—C22—C23—C24176.4 (4)C32—C31—C37—O3291.3 (4)
C21—C22—C23—C240.8 (5)C36—C31—C37—O3292.8 (5)
C22—C23—C24—C250.0 (6)C32—C31—C37—O3189.1 (4)
C23—C24—C25—C260.7 (6)C36—C31—C37—O3186.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.75 (4)1.98 (4)2.726 (4)170 (4)
N1—H12···O31i0.88 (3)1.86 (3)2.712 (4)163 (3)
C25—H25···O32ii0.932.563.488 (4)173
C26—H26···Cg1ii0.932.933.697 (4)141
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1, z1/2.
4-(2-Methoxyphenyl)piperazin-1-ium 2-iodobenzoate (VII) top
Crystal data top
C11H17N2O+·C7H4IO2Dx = 1.595 Mg m3
Mr = 440.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3735 reflections
a = 7.0101 (4) Åθ = 2.6–27.8°
b = 13.3796 (6) ŵ = 1.76 mm1
c = 19.5524 (6) ÅT = 293 K
V = 1833.87 (14) Å3Block, orange
Z = 40.50 × 0.50 × 0.48 mm
F(000) = 880
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3735 independent reflections
Radiation source: Enhance (Mo) X-ray Source3036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.8°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 59
Tmin = 0.373, Tmax = 0.431k = 1716
7500 measured reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.7308P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.46 e Å3
3735 reflectionsΔρmin = 0.65 e Å3
237 parametersAbsolute structure: Flack x determined using 1045 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
17 restraintsAbsolute structure parameter: 0.004 (10)
Primary atom site location: difference Fourier map
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7532 (6)0.6404 (2)0.49690 (15)0.0402 (7)
H110.84360.66500.46970.048*
H120.71540.68900.52490.048*
C20.5901 (6)0.6069 (4)0.4550 (2)0.0423 (11)
H2A0.63300.55840.42150.051*
H2B0.53610.66340.43070.051*
C30.4399 (6)0.5604 (3)0.5005 (2)0.0387 (10)
H3A0.39230.61000.53240.046*
H3B0.33380.53740.47280.046*
N40.5212 (5)0.4761 (3)0.53831 (17)0.0339 (8)
C50.6810 (6)0.5097 (3)0.5809 (2)0.0396 (10)
H5A0.73490.45300.60510.048*
H5B0.63560.55740.61450.048*
C60.8318 (7)0.5575 (4)0.5374 (3)0.0487 (12)
H6A0.93350.58230.56640.058*
H6B0.88570.50780.50680.058*
C210.3893 (5)0.4115 (3)0.5700 (2)0.0338 (9)
C220.2609 (8)0.3565 (3)0.52887 (19)0.0372 (9)
C230.1420 (7)0.2860 (4)0.5579 (3)0.0517 (12)
H230.05840.24960.53070.062*
C240.1478 (8)0.2697 (4)0.6279 (3)0.0583 (14)
H240.06780.22190.64720.070*
C250.2675 (8)0.3219 (4)0.6684 (2)0.0527 (12)
H250.27000.31020.71530.063*
C260.3866 (6)0.3931 (3)0.6399 (2)0.0418 (11)
H260.46700.42960.66830.050*
O220.2722 (6)0.3732 (2)0.45961 (14)0.0432 (7)
C270.1621 (8)0.3095 (4)0.4164 (3)0.0574 (14)
H27A0.02890.31900.42570.086*
H27B0.19590.24110.42490.086*
H27C0.18740.32550.36940.086*
C310.9641 (6)0.6382 (4)0.3324 (2)0.0387 (10)
C320.8007 (6)0.6775 (4)0.3027 (2)0.0421 (11)
I320.74794 (6)0.83201 (2)0.30799 (2)0.06407 (13)
C330.6680 (8)0.6168 (5)0.2703 (3)0.0596 (15)
H330.55910.64430.25060.072*
C340.7001 (8)0.5157 (5)0.2677 (3)0.0689 (19)
H340.61100.47410.24700.083*
C350.8613 (10)0.4758 (5)0.2953 (3)0.0660 (16)
H350.88340.40750.29220.079*
C360.9913 (7)0.5360 (4)0.3277 (3)0.0536 (13)
H361.09990.50750.34690.064*
C371.1071 (6)0.7004 (3)0.3715 (2)0.0389 (10)0.54 (9)
O311.072 (4)0.699 (3)0.4352 (5)0.033 (3)0.54 (9)
O321.233 (4)0.750 (3)0.3440 (12)0.065 (5)0.54 (9)
C381.1071 (6)0.7004 (3)0.3715 (2)0.0389 (10)0.46 (9)
O331.070 (4)0.726 (3)0.4325 (7)0.030 (4)0.46 (9)
O341.258 (3)0.716 (4)0.3417 (13)0.065 (6)0.46 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0418 (17)0.0403 (16)0.0384 (16)0.005 (3)0.013 (2)0.0056 (13)
C20.045 (3)0.047 (3)0.035 (2)0.002 (2)0.002 (2)0.002 (2)
C30.042 (2)0.036 (2)0.038 (2)0.003 (2)0.005 (2)0.001 (2)
N40.0337 (19)0.0347 (19)0.0334 (18)0.0026 (16)0.0045 (15)0.0008 (16)
C50.037 (2)0.044 (2)0.038 (2)0.0003 (19)0.0061 (19)0.004 (2)
C60.040 (2)0.053 (3)0.054 (3)0.001 (2)0.005 (2)0.006 (3)
C210.031 (2)0.034 (2)0.036 (2)0.0025 (18)0.0003 (19)0.0023 (19)
C220.037 (2)0.038 (2)0.0362 (19)0.002 (3)0.000 (3)0.0002 (15)
C230.044 (3)0.057 (3)0.054 (3)0.010 (2)0.004 (2)0.004 (3)
C240.052 (3)0.068 (4)0.055 (3)0.016 (3)0.008 (3)0.017 (3)
C250.050 (3)0.068 (3)0.041 (2)0.003 (4)0.006 (3)0.010 (2)
C260.042 (2)0.050 (3)0.033 (2)0.000 (2)0.002 (2)0.004 (2)
O220.0477 (19)0.0469 (15)0.0350 (13)0.0054 (18)0.0046 (17)0.0000 (12)
C270.063 (3)0.067 (3)0.043 (3)0.015 (3)0.014 (3)0.007 (3)
C310.035 (2)0.051 (3)0.030 (2)0.003 (2)0.0036 (18)0.004 (2)
C320.041 (3)0.055 (3)0.030 (2)0.0081 (19)0.0015 (18)0.004 (2)
I320.05832 (19)0.0631 (2)0.0708 (2)0.0097 (3)0.0032 (3)0.01731 (17)
C330.049 (3)0.090 (4)0.041 (3)0.014 (3)0.010 (2)0.003 (3)
C340.073 (5)0.087 (5)0.047 (3)0.037 (3)0.004 (3)0.017 (3)
C350.078 (4)0.058 (3)0.062 (4)0.014 (3)0.016 (3)0.020 (3)
C360.050 (3)0.054 (3)0.056 (3)0.001 (2)0.001 (2)0.009 (3)
C370.032 (2)0.046 (3)0.039 (3)0.002 (2)0.000 (2)0.003 (2)
O310.051 (5)0.015 (9)0.034 (4)0.012 (7)0.003 (4)0.005 (3)
O320.066 (8)0.072 (11)0.057 (6)0.031 (7)0.019 (7)0.022 (6)
C380.032 (2)0.046 (3)0.039 (3)0.002 (2)0.000 (2)0.003 (2)
O330.042 (5)0.010 (9)0.038 (5)0.009 (7)0.002 (4)0.004 (4)
O340.039 (6)0.105 (16)0.053 (6)0.020 (9)0.009 (6)0.037 (9)
Geometric parameters (Å, º) top
N1—C61.470 (6)C24—C251.350 (7)
N1—C21.476 (6)C24—H240.9300
N1—H110.8900C25—C261.383 (6)
N1—H120.8900C25—H250.9300
C2—C31.512 (6)C26—H260.9300
C2—H2A0.9700O22—C271.428 (6)
C2—H2B0.9700C27—H27A0.9600
C3—N41.464 (5)C27—H27B0.9600
C3—H3A0.9700C27—H27C0.9600
C3—H3B0.9700C31—C361.384 (7)
N4—C211.410 (5)C31—C321.387 (6)
N4—C51.466 (6)C31—C371.511 (6)
C5—C61.500 (7)C32—C331.388 (7)
C5—H5A0.9700C32—I322.103 (5)
C5—H5B0.9700C33—C341.372 (9)
C6—H6A0.9700C33—H330.9300
C6—H6B0.9700C34—C351.361 (8)
C21—C261.389 (6)C34—H340.9300
C21—C221.413 (6)C35—C361.370 (8)
C22—O221.375 (5)C35—H350.9300
C22—C231.382 (6)C36—H360.9300
C23—C241.385 (7)C37—O321.226 (9)
C23—H230.9300C37—O311.269 (8)
C6—N1—C2111.1 (3)C22—C23—H23120.1
C6—N1—H11109.4C24—C23—H23120.1
C2—N1—H11109.4C25—C24—C23121.1 (5)
C6—N1—H12109.4C25—C24—H24119.5
C2—N1—H12109.4C23—C24—H24119.5
H11—N1—H12108.0C24—C25—C26119.7 (4)
N1—C2—C3109.8 (3)C24—C25—H25120.2
N1—C2—H2A109.7C26—C25—H25120.2
C3—C2—H2A109.7C25—C26—C21121.8 (4)
N1—C2—H2B109.7C25—C26—H26119.1
C3—C2—H2B109.7C21—C26—H26119.1
H2A—C2—H2B108.2C22—O22—C27117.1 (4)
N4—C3—C2110.1 (4)O22—C27—H27A109.5
N4—C3—H3A109.6O22—C27—H27B109.5
C2—C3—H3A109.6H27A—C27—H27B109.5
N4—C3—H3B109.6O22—C27—H27C109.5
C2—C3—H3B109.6H27A—C27—H27C109.5
H3A—C3—H3B108.2H27B—C27—H27C109.5
C21—N4—C3116.0 (3)C36—C31—C32117.4 (4)
C21—N4—C5116.1 (3)C36—C31—C37119.1 (4)
C3—N4—C5110.4 (3)C32—C31—C37123.4 (4)
N4—C5—C6110.3 (4)C31—C32—C33121.5 (5)
N4—C5—H5A109.6C31—C32—I32119.8 (3)
C6—C5—H5A109.6C33—C32—I32118.6 (4)
N4—C5—H5B109.6C34—C33—C32118.9 (5)
C6—C5—H5B109.6C34—C33—H33120.6
H5A—C5—H5B108.1C32—C33—H33120.6
N1—C6—C5111.3 (4)C35—C34—C33120.6 (5)
N1—C6—H6A109.4C35—C34—H34119.7
C5—C6—H6A109.4C33—C34—H34119.7
N1—C6—H6B109.4C34—C35—C36120.3 (6)
C5—C6—H6B109.4C34—C35—H35119.8
H6A—C6—H6B108.0C36—C35—H35119.8
C26—C21—N4123.4 (4)C35—C36—C31121.3 (5)
C26—C21—C22117.3 (4)C35—C36—H36119.4
N4—C21—C22119.1 (4)C31—C36—H36119.4
O22—C22—C23123.4 (4)O32—C37—O31125.5 (12)
O22—C22—C21116.0 (4)O32—C37—C31123.5 (13)
C23—C22—C21120.4 (4)O31—C37—C31111.0 (13)
C22—C23—C24119.7 (5)
C6—N1—C2—C356.3 (5)C24—C25—C26—C211.1 (8)
N1—C2—C3—N458.4 (5)N4—C21—C26—C25173.6 (4)
C2—C3—N4—C21165.5 (4)C22—C21—C26—C251.8 (7)
C2—C3—N4—C559.7 (5)C23—C22—O22—C273.7 (7)
C21—N4—C5—C6167.0 (4)C21—C22—O22—C27172.1 (4)
C3—N4—C5—C658.3 (5)C36—C31—C32—C330.8 (6)
C2—N1—C6—C555.6 (5)C37—C31—C32—C33176.6 (4)
N4—C5—C6—N156.2 (5)C36—C31—C32—I32179.7 (3)
C3—N4—C21—C26121.0 (4)C37—C31—C32—I322.3 (5)
C5—N4—C21—C2611.1 (6)C31—C32—C33—C340.0 (7)
C3—N4—C21—C2263.7 (5)I32—C32—C33—C34178.9 (4)
C5—N4—C21—C22164.2 (4)C32—C33—C34—C351.4 (8)
C26—C21—C22—O22177.4 (4)C33—C34—C35—C361.8 (8)
N4—C21—C22—O221.8 (6)C34—C35—C36—C310.9 (8)
C26—C21—C22—C231.5 (6)C32—C31—C36—C350.4 (7)
N4—C21—C22—C23174.1 (4)C37—C31—C36—C35177.1 (5)
O22—C22—C23—C24176.1 (5)C36—C31—C37—O32101 (2)
C21—C22—C23—C240.5 (8)C32—C31—C37—O3282 (2)
C22—C23—C24—C250.2 (9)C36—C31—C37—O3182.8 (18)
C23—C24—C25—C260.1 (9)C32—C31—C37—O3194.6 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.891.802.66 (3)162
N1—H11···O330.891.932.80 (3)165
N1—H12···O31i0.891.972.83 (3)162
N1—H12···O33i0.891.742.60 (3)161
C25—H25···O34ii0.932.503.43 (3)174
C26—H26···Cg1ii0.932.933.716 (5)143
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+3/2, y+1, z+1/2.
4-(2-Methoxyphenyl)piperazin-1-ium 2-methylbenzoate (VIII) top
Crystal data top
C11H17N2O+·C8H7O2Z = 2
Mr = 328.40F(000) = 352
Triclinic, P1Dx = 1.206 Mg m3
a = 7.826 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.320 (2) ÅCell parameters from 3838 reflections
c = 12.055 (3) Åθ = 2.7–27.7°
α = 78.37 (2)°µ = 0.08 mm1
β = 78.27 (2)°T = 296 K
γ = 73.83 (2)°Block, colourless
V = 904.6 (3) Å30.48 × 0.48 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3838 independent reflections
Radiation source: Enhance (Mo) X-ray Source2600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 27.7°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 510
Tmin = 0.883, Tmax = 0.968k = 1113
6091 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.0332P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.16 e Å3
3838 reflectionsΔρmin = 0.16 e Å3
226 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.057 (5)
Primary atom site location: difference Fourier map
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.42898 (16)0.55387 (12)0.64034 (10)0.0429 (3)
H110.3320 (19)0.5684 (15)0.5920 (12)0.051*
H120.5095 (19)0.4646 (16)0.6376 (12)0.051*
C20.33370 (18)0.55987 (15)0.75988 (11)0.0449 (3)
H2A0.27900.48320.78590.054*
H2B0.23840.64330.76190.054*
C30.46231 (18)0.55582 (14)0.83911 (11)0.0448 (3)
H3A0.39670.56510.91570.054*
H3B0.55120.46880.84300.054*
N40.55258 (15)0.66676 (12)0.79702 (9)0.0445 (3)
C50.6584 (2)0.64945 (17)0.68405 (12)0.0534 (4)
H5A0.74480.56130.68810.064*
H5B0.72410.71980.65810.064*
C60.5332 (2)0.65903 (17)0.60108 (12)0.0542 (4)
H6A0.45100.74900.59450.065*
H6B0.60270.64660.52590.065*
C210.63967 (18)0.69298 (14)0.87963 (11)0.0434 (3)
C220.53136 (18)0.75748 (14)0.97177 (12)0.0453 (3)
C230.6112 (2)0.78557 (16)1.05340 (13)0.0562 (4)
H230.53960.82621.11490.067*
C240.7965 (2)0.75375 (18)1.04446 (14)0.0628 (4)
H240.84880.77401.09950.075*
C250.9036 (2)0.6926 (2)0.95519 (15)0.0693 (5)
H251.02830.67150.94920.083*
C260.8242 (2)0.66219 (18)0.87324 (14)0.0599 (4)
H260.89730.62020.81290.072*
O220.34998 (13)0.78566 (11)0.97381 (9)0.0602 (3)
C270.2347 (2)0.85827 (19)1.06138 (16)0.0734 (5)
H27A0.11190.87841.04920.110*
H27B0.26760.94191.05870.110*
H27C0.24720.80321.13500.110*
C310.02692 (17)0.80006 (14)0.37927 (11)0.0434 (3)
C320.0231 (2)0.93671 (15)0.33658 (14)0.0571 (4)
C330.1295 (3)1.01830 (17)0.29036 (17)0.0752 (5)
H330.13231.10890.25940.090*
C340.2735 (2)0.9696 (2)0.28923 (16)0.0774 (6)
H340.37331.02660.25880.093*
C350.2708 (2)0.8359 (2)0.33318 (14)0.0660 (5)
H350.36900.80190.33310.079*
C360.12087 (18)0.75165 (16)0.37783 (12)0.0523 (4)
H360.11950.66090.40740.063*
C370.18760 (19)0.70027 (14)0.42484 (13)0.0482 (4)
O310.15924 (14)0.62406 (13)0.51830 (10)0.0692 (3)
O320.34037 (13)0.69583 (10)0.36497 (10)0.0615 (3)
C380.1751 (3)0.99828 (18)0.3413 (2)0.0863 (6)
H38A0.13071.09540.33770.130*
H38B0.26880.97850.27750.130*
H38C0.22220.96000.41160.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0422 (6)0.0442 (7)0.0423 (7)0.0085 (5)0.0076 (5)0.0088 (5)
C20.0437 (7)0.0458 (8)0.0438 (8)0.0139 (6)0.0032 (6)0.0033 (6)
C30.0488 (8)0.0453 (8)0.0400 (7)0.0170 (6)0.0048 (6)0.0008 (6)
N40.0510 (7)0.0487 (7)0.0364 (6)0.0207 (5)0.0022 (5)0.0057 (5)
C50.0586 (9)0.0655 (10)0.0425 (8)0.0319 (8)0.0027 (7)0.0102 (7)
C60.0678 (10)0.0605 (9)0.0385 (8)0.0287 (8)0.0011 (7)0.0065 (7)
C210.0503 (8)0.0426 (7)0.0391 (7)0.0187 (6)0.0051 (6)0.0021 (6)
C220.0480 (8)0.0441 (8)0.0441 (8)0.0156 (6)0.0054 (6)0.0032 (6)
C230.0658 (10)0.0620 (10)0.0452 (9)0.0237 (8)0.0026 (7)0.0134 (7)
C240.0649 (10)0.0836 (12)0.0523 (9)0.0336 (9)0.0114 (8)0.0148 (9)
C250.0497 (9)0.0982 (13)0.0662 (11)0.0248 (9)0.0088 (8)0.0183 (10)
C260.0517 (9)0.0763 (11)0.0549 (10)0.0196 (8)0.0007 (7)0.0200 (8)
O220.0496 (6)0.0720 (7)0.0595 (7)0.0088 (5)0.0046 (5)0.0237 (6)
C270.0582 (10)0.0747 (12)0.0849 (13)0.0085 (9)0.0044 (9)0.0336 (10)
C310.0417 (7)0.0445 (8)0.0389 (7)0.0049 (6)0.0018 (6)0.0075 (6)
C320.0583 (9)0.0425 (8)0.0643 (10)0.0064 (7)0.0005 (8)0.0127 (7)
C330.0775 (12)0.0437 (9)0.0853 (13)0.0025 (8)0.0062 (10)0.0020 (9)
C340.0550 (10)0.0801 (13)0.0749 (12)0.0088 (9)0.0136 (9)0.0064 (10)
C350.0473 (9)0.0850 (13)0.0590 (10)0.0117 (8)0.0116 (7)0.0010 (9)
C360.0460 (8)0.0585 (9)0.0491 (9)0.0137 (7)0.0082 (6)0.0011 (7)
C370.0462 (8)0.0445 (8)0.0573 (9)0.0121 (6)0.0131 (7)0.0091 (7)
O310.0594 (7)0.0788 (8)0.0667 (8)0.0227 (6)0.0250 (6)0.0177 (6)
O320.0422 (6)0.0544 (7)0.0800 (8)0.0033 (5)0.0046 (5)0.0094 (6)
C380.0885 (13)0.0510 (10)0.1240 (18)0.0242 (10)0.0133 (12)0.0174 (11)
Geometric parameters (Å, º) top
N1—C61.4820 (18)C25—C261.394 (2)
N1—C21.4866 (18)C25—H250.9300
N1—H111.010 (15)C26—H260.9300
N1—H120.963 (16)O22—C271.4300 (19)
C2—C31.5094 (19)C27—H27A0.9600
C2—H2A0.9700C27—H27B0.9600
C2—H2B0.9700C27—H27C0.9600
C3—N41.4621 (17)C31—C361.3861 (19)
C3—H3A0.9700C31—C321.395 (2)
C3—H3B0.9700C31—C371.508 (2)
N4—C211.4202 (18)C32—C331.402 (2)
N4—C51.4592 (18)C32—C381.511 (2)
C5—C61.508 (2)C33—C341.359 (3)
C5—H5A0.9700C33—H330.9300
C5—H5B0.9700C34—C351.370 (3)
C6—H6A0.9700C34—H340.9300
C6—H6B0.9700C35—C361.387 (2)
C21—C261.379 (2)C35—H350.9300
C21—C221.413 (2)C36—H360.9300
C22—O221.3634 (16)C37—O311.2552 (17)
C22—C231.381 (2)C37—O321.2587 (16)
C23—C241.382 (2)C38—H38A0.9600
C23—H230.9300C38—H38B0.9600
C24—C251.368 (2)C38—H38C0.9600
C24—H240.9300
C6—N1—C2111.69 (11)C25—C24—H24119.8
C6—N1—H11111.2 (8)C23—C24—H24119.8
C2—N1—H11105.7 (8)C24—C25—C26119.46 (15)
C6—N1—H12109.4 (8)C24—C25—H25120.3
C2—N1—H12108.3 (9)C26—C25—H25120.3
H11—N1—H12110.4 (12)C21—C26—C25121.52 (15)
N1—C2—C3110.86 (11)C21—C26—H26119.2
N1—C2—H2A109.5C25—C26—H26119.2
C3—C2—H2A109.5C22—O22—C27117.89 (12)
N1—C2—H2B109.5O22—C27—H27A109.5
C3—C2—H2B109.5O22—C27—H27B109.5
H2A—C2—H2B108.1H27A—C27—H27B109.5
N4—C3—C2109.85 (11)O22—C27—H27C109.5
N4—C3—H3A109.7H27A—C27—H27C109.5
C2—C3—H3A109.7H27B—C27—H27C109.5
N4—C3—H3B109.7C36—C31—C32119.20 (14)
C2—C3—H3B109.7C36—C31—C37117.89 (13)
H3A—C3—H3B108.2C32—C31—C37122.89 (13)
C21—N4—C5117.07 (11)C31—C32—C33117.94 (15)
C21—N4—C3113.60 (10)C31—C32—C38122.05 (15)
C5—N4—C3109.82 (11)C33—C32—C38119.99 (16)
N4—C5—C6109.00 (12)C34—C33—C32122.27 (17)
N4—C5—H5A109.9C34—C33—H33118.9
C6—C5—H5A109.9C32—C33—H33118.9
N4—C5—H5B109.9C33—C34—C35119.66 (17)
C6—C5—H5B109.9C33—C34—H34120.2
H5A—C5—H5B108.3C35—C34—H34120.2
N1—C6—C5110.75 (12)C34—C35—C36119.66 (17)
N1—C6—H6A109.5C34—C35—H35120.2
C5—C6—H6A109.5C36—C35—H35120.2
N1—C6—H6B109.5C31—C36—C35121.23 (15)
C5—C6—H6B109.5C31—C36—H36119.4
H6A—C6—H6B108.1C35—C36—H36119.4
C26—C21—C22118.20 (13)O31—C37—O32124.33 (14)
C26—C21—N4123.60 (13)O31—C37—C31117.71 (13)
C22—C21—N4118.18 (12)O32—C37—C31117.92 (13)
O22—C22—C23124.39 (13)C32—C38—H38A109.5
O22—C22—C21115.73 (13)C32—C38—H38B109.5
C23—C22—C21119.88 (13)H38A—C38—H38B109.5
C22—C23—C24120.54 (15)C32—C38—H38C109.5
C22—C23—H23119.7H38A—C38—H38C109.5
C24—C23—H23119.7H38B—C38—H38C109.5
C25—C24—C23120.39 (15)
C6—N1—C2—C352.32 (16)C22—C21—C26—C250.3 (2)
N1—C2—C3—N456.11 (15)N4—C21—C26—C25178.59 (14)
C2—C3—N4—C21164.70 (11)C24—C25—C26—C210.3 (3)
C2—C3—N4—C562.04 (15)C23—C22—O22—C274.9 (2)
C21—N4—C5—C6165.56 (12)C21—C22—O22—C27176.31 (13)
C3—N4—C5—C662.98 (16)C36—C31—C32—C332.0 (2)
C2—N1—C6—C553.64 (16)C37—C31—C32—C33176.40 (15)
N4—C5—C6—N158.51 (17)C36—C31—C32—C38176.65 (15)
C5—N4—C21—C2620.7 (2)C37—C31—C32—C384.9 (2)
C3—N4—C21—C26109.01 (15)C31—C32—C33—C342.0 (3)
C5—N4—C21—C22157.56 (13)C38—C32—C33—C34176.74 (18)
C3—N4—C21—C2272.74 (15)C32—C33—C34—C350.8 (3)
C26—C21—C22—O22179.95 (13)C33—C34—C35—C360.3 (3)
N4—C21—C22—O221.60 (18)C32—C31—C36—C351.0 (2)
C26—C21—C22—C231.2 (2)C37—C31—C36—C35177.50 (14)
N4—C21—C22—C23179.54 (12)C34—C35—C36—C310.2 (2)
O22—C22—C23—C24179.86 (14)C36—C31—C37—O3147.61 (19)
C21—C22—C23—C241.4 (2)C32—C31—C37—O31133.92 (15)
C22—C23—C24—C250.7 (2)C36—C31—C37—O32130.15 (14)
C23—C24—C25—C260.2 (3)C32—C31—C37—O3248.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O311.010 (15)1.673 (15)2.6696 (19)168.6 (13)
N1—H12···O32i0.963 (16)1.745 (16)2.7077 (17)178.2 (10)
Symmetry code: (i) x+1, y+1, z+1.
4-(2-Methoxyphenyl)piperazin-1-ium 4-aminobenzoate (IX) top
Crystal data top
C11H17N2O+·C7H6NO2F(000) = 704
Mr = 329.39Dx = 1.280 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.922 (1) ÅCell parameters from 3671 reflections
b = 7.6951 (5) Åθ = 2.7–27.8°
c = 15.560 (1) ŵ = 0.09 mm1
β = 106.911 (8)°T = 296 K
V = 1709.4 (2) Å3Plate, orange
Z = 40.48 × 0.44 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3668 independent reflections
Radiation source: Enhance (Mo) X-ray Source2606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1815
Tmin = 0.830, Tmax = 0.986k = 59
6720 measured reflectionsl = 1720
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.0395P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.15 e Å3
3668 reflectionsΔρmin = 0.24 e Å3
231 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.019 (2)
Primary atom site location: difference Fourier map
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.60709 (8)0.26835 (15)0.52995 (8)0.0431 (3)
H110.5586 (10)0.2606 (17)0.4643 (10)0.052*
H120.5953 (10)0.3661 (19)0.5615 (10)0.052*
C20.70246 (9)0.28650 (18)0.51932 (9)0.0442 (3)
H2A0.70560.39150.48580.053*
H2B0.71550.18830.48570.053*
C30.77450 (9)0.29453 (16)0.60945 (8)0.0385 (3)
H3A0.83640.30500.60150.046*
H3B0.76350.39630.64170.046*
N40.77041 (7)0.13685 (13)0.66227 (7)0.0376 (3)
C50.67672 (9)0.11904 (18)0.67358 (9)0.0433 (3)
H5A0.66420.21740.70740.052*
H5B0.67410.01430.70740.052*
C60.60307 (9)0.11039 (17)0.58382 (9)0.0458 (3)
H6A0.61310.00790.55150.055*
H6B0.54160.10130.59280.055*
C210.84580 (9)0.13068 (16)0.74309 (9)0.0409 (3)
C220.93798 (9)0.11685 (17)0.73737 (10)0.0460 (3)
C231.01328 (10)0.1198 (2)0.81461 (11)0.0600 (4)
H231.07400.11420.81020.072*
C240.99867 (13)0.1311 (2)0.89743 (11)0.0714 (5)
H241.04950.13450.94890.086*
C250.90983 (13)0.1373 (3)0.90449 (11)0.0732 (5)
H250.90010.14120.96080.088*
C260.83373 (11)0.1379 (2)0.82761 (9)0.0559 (4)
H260.77340.14320.83320.067*
O220.94654 (7)0.10004 (14)0.65293 (7)0.0603 (3)
C271.03816 (12)0.1063 (3)0.64265 (13)0.0762 (5)
H27A1.03420.09730.58010.114*
H27B1.07470.01140.67490.114*
H27C1.06750.21420.66600.114*
C310.38418 (8)0.30821 (15)0.23323 (8)0.0341 (3)
C320.30092 (9)0.39385 (17)0.19135 (9)0.0410 (3)
H320.27340.46360.22550.049*
C330.25815 (9)0.37762 (17)0.10033 (9)0.0429 (3)
H330.20210.43550.07410.051*
C340.29810 (9)0.27553 (16)0.04752 (8)0.0373 (3)
C350.38187 (9)0.19061 (17)0.08919 (8)0.0395 (3)
H350.41020.12260.05510.047*
C360.42342 (9)0.20608 (16)0.18038 (9)0.0382 (3)
H360.47890.14680.20690.046*
C370.43113 (9)0.32513 (16)0.33203 (8)0.0379 (3)
O310.50355 (7)0.23691 (14)0.36411 (6)0.0627 (3)
O320.39544 (7)0.42404 (13)0.37713 (6)0.0526 (3)
N340.25457 (10)0.25415 (18)0.04368 (8)0.0501 (3)
H3410.2158 (11)0.340 (2)0.0658 (11)0.060*
H3420.2928 (11)0.211 (2)0.0750 (10)0.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0392 (6)0.0463 (7)0.0372 (6)0.0090 (5)0.0006 (5)0.0055 (5)
C20.0476 (8)0.0477 (8)0.0356 (7)0.0105 (6)0.0093 (6)0.0029 (6)
C30.0364 (7)0.0412 (7)0.0369 (7)0.0019 (5)0.0090 (5)0.0051 (5)
N40.0319 (5)0.0418 (6)0.0361 (6)0.0015 (4)0.0054 (4)0.0063 (5)
C50.0370 (7)0.0447 (7)0.0471 (8)0.0015 (5)0.0106 (6)0.0064 (6)
C60.0352 (7)0.0449 (8)0.0523 (9)0.0009 (5)0.0048 (6)0.0043 (6)
C210.0396 (7)0.0402 (7)0.0385 (7)0.0019 (5)0.0045 (6)0.0068 (6)
C220.0402 (7)0.0477 (8)0.0459 (8)0.0075 (6)0.0061 (6)0.0066 (6)
C230.0402 (8)0.0653 (10)0.0642 (11)0.0072 (7)0.0012 (7)0.0102 (8)
C240.0632 (11)0.0846 (13)0.0482 (10)0.0057 (9)0.0124 (8)0.0141 (9)
C250.0752 (12)0.0985 (14)0.0378 (9)0.0081 (10)0.0037 (8)0.0151 (9)
C260.0529 (9)0.0727 (10)0.0402 (8)0.0057 (7)0.0105 (7)0.0130 (7)
O220.0416 (6)0.0838 (8)0.0561 (7)0.0162 (5)0.0150 (5)0.0020 (6)
C270.0525 (10)0.0953 (14)0.0880 (14)0.0157 (9)0.0320 (9)0.0088 (11)
C310.0373 (6)0.0343 (6)0.0318 (7)0.0043 (5)0.0119 (5)0.0014 (5)
C320.0437 (7)0.0454 (7)0.0371 (7)0.0048 (5)0.0165 (6)0.0029 (6)
C330.0371 (7)0.0497 (8)0.0402 (8)0.0052 (6)0.0086 (6)0.0023 (6)
C340.0392 (7)0.0411 (7)0.0311 (6)0.0106 (5)0.0093 (5)0.0014 (5)
C350.0405 (7)0.0435 (7)0.0375 (7)0.0041 (5)0.0162 (6)0.0115 (6)
C360.0346 (6)0.0407 (7)0.0380 (7)0.0009 (5)0.0086 (5)0.0050 (6)
C370.0433 (7)0.0375 (6)0.0326 (7)0.0062 (5)0.0108 (6)0.0023 (5)
O310.0634 (7)0.0731 (7)0.0387 (6)0.0183 (5)0.0053 (5)0.0091 (5)
O320.0664 (7)0.0579 (6)0.0364 (5)0.0017 (5)0.0197 (5)0.0099 (4)
N340.0537 (8)0.0590 (8)0.0337 (6)0.0036 (6)0.0067 (5)0.0047 (6)
Geometric parameters (Å, º) top
N1—C21.4864 (18)C24—H240.9300
N1—C61.4875 (18)C25—C261.389 (2)
N1—H111.067 (14)C25—H250.9300
N1—H120.942 (15)C26—H260.9300
C2—C31.4997 (16)O22—C271.4228 (18)
C2—H2A0.9700C27—H27A0.9600
C2—H2B0.9700C27—H27B0.9600
C3—N41.4768 (15)C27—H27C0.9600
C3—H3A0.9700C31—C361.3844 (17)
C3—H3B0.9700C31—C321.3897 (17)
N4—C211.4235 (16)C31—C371.4982 (16)
N4—C51.4654 (16)C32—C331.3796 (18)
C5—C61.5067 (18)C32—H320.9300
C5—H5A0.9700C33—C341.3902 (18)
C5—H5B0.9700C33—H330.9300
C6—H6A0.9700C34—N341.3881 (16)
C6—H6B0.9700C34—C351.3923 (18)
C21—C261.380 (2)C35—C361.3784 (17)
C21—C221.4079 (19)C35—H350.9300
C22—O221.3627 (17)C36—H360.9300
C22—C231.3863 (19)C37—O311.2506 (16)
C23—C241.371 (2)C37—O321.2542 (15)
C23—H230.9300N34—H3410.877 (16)
C24—C251.363 (2)N34—H3420.913 (16)
C2—N1—C6109.66 (10)C22—C23—H23119.8
C2—N1—H11107.7 (8)C25—C24—C23120.16 (15)
C6—N1—H11111.5 (7)C25—C24—H24119.9
C2—N1—H12108.2 (9)C23—C24—H24119.9
C6—N1—H12108.3 (9)C24—C25—C26120.10 (16)
H11—N1—H12111.5 (11)C24—C25—H25119.9
N1—C2—C3110.42 (11)C26—C25—H25120.0
N1—C2—H2A109.6C21—C26—C25121.33 (15)
C3—C2—H2A109.6C21—C26—H26119.3
N1—C2—H2B109.6C25—C26—H26119.3
C3—C2—H2B109.6C22—O22—C27117.90 (12)
H2A—C2—H2B108.1O22—C27—H27A109.5
N4—C3—C2110.62 (10)O22—C27—H27B109.5
N4—C3—H3A109.5H27A—C27—H27B109.5
C2—C3—H3A109.5O22—C27—H27C109.5
N4—C3—H3B109.5H27A—C27—H27C109.5
C2—C3—H3B109.5H27B—C27—H27C109.5
H3A—C3—H3B108.1C36—C31—C32117.75 (11)
C21—N4—C5115.29 (10)C36—C31—C37120.43 (11)
C21—N4—C3111.66 (9)C32—C31—C37121.82 (11)
C5—N4—C3109.81 (9)C33—C32—C31121.46 (12)
N4—C5—C6110.91 (11)C33—C32—H32119.3
N4—C5—H5A109.5C31—C32—H32119.3
C6—C5—H5A109.5C32—C33—C34120.54 (12)
N4—C5—H5B109.5C32—C33—H33119.7
C6—C5—H5B109.5C34—C33—H33119.7
H5A—C5—H5B108.0N34—C34—C33121.17 (12)
N1—C6—C5110.38 (10)N34—C34—C35120.69 (12)
N1—C6—H6A109.6C33—C34—C35118.11 (11)
C5—C6—H6A109.6C36—C35—C34120.86 (11)
N1—C6—H6B109.6C36—C35—H35119.6
C5—C6—H6B109.6C34—C35—H35119.6
H6A—C6—H6B108.1C35—C36—C31121.27 (12)
C26—C21—C22117.66 (13)C35—C36—H36119.4
C26—C21—N4123.51 (12)C31—C36—H36119.4
C22—C21—N4118.83 (12)O31—C37—O32124.36 (12)
O22—C22—C23123.91 (13)O31—C37—C31117.02 (11)
O22—C22—C21115.81 (12)O32—C37—C31118.62 (11)
C23—C22—C21120.28 (14)C34—N34—H341111.8 (11)
C24—C23—C22120.38 (15)C34—N34—H342114.2 (10)
C24—C23—H23119.8H341—N34—H342120.4 (15)
C6—N1—C2—C357.43 (14)C22—C21—C26—C252.1 (2)
N1—C2—C3—N458.53 (13)N4—C21—C26—C25177.79 (13)
C2—C3—N4—C21172.34 (11)C24—C25—C26—C210.6 (3)
C2—C3—N4—C558.48 (13)C23—C22—O22—C277.6 (2)
C21—N4—C5—C6174.66 (10)C21—C22—O22—C27172.72 (13)
C3—N4—C5—C658.16 (13)C36—C31—C32—C330.31 (19)
C2—N1—C6—C556.92 (14)C37—C31—C32—C33179.98 (12)
N4—C5—C6—N157.96 (14)C31—C32—C33—C340.6 (2)
C5—N4—C21—C2610.87 (18)C32—C33—C34—N34178.21 (12)
C3—N4—C21—C26115.36 (14)C32—C33—C34—C350.14 (19)
C5—N4—C21—C22169.26 (11)N34—C34—C35—C36177.43 (12)
C3—N4—C21—C2264.51 (14)C33—C34—C35—C360.65 (19)
C26—C21—C22—O22176.36 (13)C34—C35—C36—C310.97 (19)
N4—C21—C22—O223.76 (17)C32—C31—C36—C350.48 (19)
C26—C21—C22—C233.3 (2)C37—C31—C36—C35179.20 (11)
N4—C21—C22—C23176.56 (11)C36—C31—C37—O313.44 (17)
O22—C22—C23—C24177.72 (15)C32—C31—C37—O31176.90 (13)
C21—C22—C23—C241.9 (2)C36—C31—C37—O32177.29 (12)
C22—C23—C24—C250.8 (3)C32—C31—C37—O322.37 (18)
C23—C24—C25—C262.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O311.068 (15)1.547 (15)2.6048 (15)169.7 (14)
N1—H12···O32i0.942 (15)1.861 (15)2.7797 (15)164.4 (14)
N34—H342···O32ii0.914 (16)2.155 (16)3.0535 (18)167.5 (14)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.
4-(2-Methoxyphenyl)piperazin-1-ium 4-nitrobenzoate (X) top
Crystal data top
C11H17N2O+·C7H4NO4F(000) = 760
Mr = 359.38Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.5174 (5) ÅCell parameters from 3934 reflections
b = 7.9761 (5) Åθ = 2.7–27.9°
c = 29.860 (2) ŵ = 0.10 mm1
β = 97.322 (6)°T = 296 K
V = 1775.8 (2) Å3Block, yellow
Z = 40.50 × 0.50 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3934 independent reflections
Radiation source: Enhance (Mo) X-ray Source2879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.9°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 98
Tmin = 0.855, Tmax = 0.961k = 1010
13660 measured reflectionsl = 3838
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.4848P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.17 e Å3
3934 reflectionsΔρmin = 0.15 e Å3
242 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0175 (15)
Primary atom site location: difference Fourier map
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.44452 (18)0.51582 (18)0.42036 (4)0.0456 (3)
H110.359 (2)0.579 (2)0.4356 (6)0.055*
H120.486 (2)0.426 (2)0.4397 (6)0.055*
C20.5986 (2)0.6202 (2)0.41168 (5)0.0509 (4)
H2A0.66330.65710.44020.061*
H2B0.55580.71880.39460.061*
C30.72308 (19)0.5222 (2)0.38567 (5)0.0445 (4)
H3A0.82290.59260.37990.053*
H3B0.77070.42660.40340.053*
N40.62657 (15)0.46482 (15)0.34309 (4)0.0388 (3)
C50.47731 (19)0.3566 (2)0.35153 (5)0.0431 (3)
H5A0.52340.25880.36850.052*
H5B0.41400.31870.32300.052*
C60.3495 (2)0.4492 (2)0.37760 (5)0.0468 (4)
H6A0.29500.54100.35950.056*
H6B0.25480.37400.38410.056*
C210.73290 (19)0.39011 (18)0.31211 (5)0.0405 (3)
C220.6595 (2)0.3763 (2)0.26645 (5)0.0474 (4)
C230.7580 (3)0.3012 (2)0.23580 (6)0.0602 (5)
H230.70930.29220.20570.072*
C240.9269 (3)0.2400 (3)0.24948 (7)0.0697 (5)
H240.99190.18980.22860.084*
C251.0000 (2)0.2525 (3)0.29365 (7)0.0695 (5)
H251.11430.21080.30290.083*
C260.9025 (2)0.3280 (2)0.32471 (6)0.0546 (4)
H260.95330.33680.35470.066*
O220.49191 (17)0.43933 (18)0.25585 (4)0.0657 (4)
C270.4027 (3)0.4122 (3)0.21158 (6)0.0739 (6)
H27A0.28620.46330.20880.111*
H27B0.47150.46120.19000.111*
H27C0.39020.29400.20610.111*
C310.16123 (19)0.82005 (18)0.52883 (4)0.0392 (3)
C320.0213 (2)0.79178 (19)0.52353 (5)0.0450 (4)
H320.07160.71790.50140.054*
C330.1305 (2)0.8720 (2)0.55077 (5)0.0458 (4)
H330.25350.85310.54730.055*
C340.05131 (19)0.98058 (18)0.58316 (5)0.0414 (3)
C350.1295 (2)1.01111 (19)0.58934 (5)0.0441 (4)
H350.17941.08530.61150.053*
C360.2358 (2)0.92921 (19)0.56193 (5)0.0435 (3)
H360.35900.94770.56580.052*
C370.2801 (2)0.73155 (19)0.49920 (5)0.0458 (4)
O310.20537 (17)0.67769 (17)0.46209 (4)0.0656 (4)
O320.44235 (15)0.71810 (15)0.51349 (4)0.0570 (3)
N340.1638 (2)1.06966 (19)0.61219 (5)0.0541 (4)
O410.32042 (19)1.0270 (2)0.61086 (5)0.0826 (4)
O420.09646 (19)1.18199 (18)0.63615 (4)0.0731 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0481 (7)0.0554 (8)0.0341 (6)0.0041 (6)0.0078 (5)0.0034 (6)
C20.0574 (9)0.0535 (9)0.0410 (8)0.0073 (8)0.0034 (7)0.0110 (7)
C30.0444 (8)0.0490 (9)0.0395 (7)0.0089 (7)0.0027 (6)0.0033 (7)
N40.0394 (6)0.0450 (7)0.0321 (6)0.0041 (5)0.0041 (5)0.0029 (5)
C50.0409 (8)0.0510 (9)0.0372 (7)0.0061 (7)0.0039 (6)0.0064 (6)
C60.0412 (8)0.0611 (10)0.0377 (7)0.0022 (7)0.0038 (6)0.0026 (7)
C210.0424 (8)0.0419 (8)0.0383 (7)0.0049 (6)0.0089 (6)0.0004 (6)
C220.0532 (9)0.0523 (9)0.0375 (7)0.0025 (7)0.0093 (6)0.0007 (7)
C230.0696 (11)0.0717 (12)0.0422 (9)0.0004 (9)0.0182 (8)0.0069 (8)
C240.0610 (11)0.0838 (14)0.0703 (12)0.0019 (10)0.0314 (10)0.0169 (11)
C250.0408 (9)0.0878 (14)0.0816 (13)0.0024 (9)0.0144 (9)0.0132 (11)
C260.0400 (8)0.0695 (11)0.0543 (9)0.0039 (8)0.0058 (7)0.0040 (8)
O220.0696 (7)0.0899 (10)0.0349 (6)0.0288 (7)0.0039 (5)0.0076 (6)
C270.0843 (13)0.0919 (15)0.0406 (9)0.0168 (12)0.0106 (9)0.0046 (9)
C310.0456 (8)0.0401 (8)0.0318 (7)0.0060 (6)0.0049 (6)0.0060 (6)
C320.0504 (9)0.0470 (8)0.0359 (7)0.0014 (7)0.0010 (6)0.0003 (6)
C330.0392 (8)0.0526 (9)0.0454 (8)0.0017 (7)0.0052 (6)0.0076 (7)
C340.0467 (8)0.0430 (8)0.0360 (7)0.0057 (7)0.0121 (6)0.0071 (6)
C350.0498 (9)0.0438 (8)0.0385 (7)0.0012 (7)0.0044 (6)0.0019 (6)
C360.0402 (8)0.0468 (8)0.0432 (8)0.0014 (7)0.0046 (6)0.0019 (7)
C370.0556 (9)0.0455 (8)0.0372 (7)0.0100 (7)0.0089 (7)0.0053 (7)
O310.0698 (8)0.0835 (9)0.0428 (6)0.0201 (7)0.0044 (6)0.0148 (6)
O320.0520 (7)0.0674 (8)0.0526 (7)0.0152 (6)0.0111 (5)0.0023 (6)
N340.0606 (9)0.0598 (9)0.0456 (7)0.0109 (7)0.0207 (6)0.0082 (7)
O410.0611 (8)0.1020 (11)0.0923 (10)0.0029 (8)0.0395 (7)0.0035 (9)
O420.0905 (10)0.0772 (9)0.0558 (7)0.0075 (8)0.0258 (7)0.0159 (7)
Geometric parameters (Å, º) top
N1—C21.476 (2)C24—H240.9300
N1—C61.4798 (18)C25—C261.390 (2)
N1—H110.974 (18)C25—H250.9300
N1—H120.947 (18)C26—H260.9300
C2—C31.508 (2)O22—C271.4204 (19)
C2—H2A0.9700C27—H27A0.9600
C2—H2B0.9700C27—H27B0.9600
C3—N41.4551 (17)C27—H27C0.9600
C3—H3A0.9700C31—C321.380 (2)
C3—H3B0.9700C31—C361.381 (2)
N4—C211.4275 (18)C31—C371.510 (2)
N4—C51.4626 (18)C32—C331.384 (2)
C5—C61.505 (2)C32—H320.9300
C5—H5A0.9700C33—C341.376 (2)
C5—H5B0.9700C33—H330.9300
C6—H6A0.9700C34—C351.370 (2)
C6—H6B0.9700C34—N341.4690 (19)
C21—C261.375 (2)C35—C361.379 (2)
C21—C221.409 (2)C35—H350.9300
C22—O221.3562 (19)C36—H360.9300
C22—C231.384 (2)C37—O321.2443 (18)
C23—C241.373 (3)C37—O311.2528 (19)
C23—H230.9300N34—O421.2157 (19)
C24—C251.366 (3)N34—O411.2217 (19)
C2—N1—C6110.74 (11)C22—C23—H23119.7
C2—N1—H11111.7 (10)C25—C24—C23120.23 (17)
C6—N1—H11108.4 (10)C25—C24—H24119.9
C2—N1—H12109.0 (10)C23—C24—H24119.9
C6—N1—H12109.8 (10)C24—C25—C26119.65 (17)
H11—N1—H12107.1 (14)C24—C25—H25120.2
N1—C2—C3110.53 (13)C26—C25—H25120.2
N1—C2—H2A109.5C21—C26—C25121.52 (16)
C3—C2—H2A109.5C21—C26—H26119.2
N1—C2—H2B109.5C25—C26—H26119.2
C3—C2—H2B109.5C22—O22—C27118.37 (13)
H2A—C2—H2B108.1O22—C27—H27A109.5
N4—C3—C2109.89 (12)O22—C27—H27B109.5
N4—C3—H3A109.7H27A—C27—H27B109.5
C2—C3—H3A109.7O22—C27—H27C109.5
N4—C3—H3B109.7H27A—C27—H27C109.5
C2—C3—H3B109.7H27B—C27—H27C109.5
H3A—C3—H3B108.2C32—C31—C36119.48 (13)
C21—N4—C3116.07 (11)C32—C31—C37120.70 (13)
C21—N4—C5111.75 (11)C36—C31—C37119.81 (13)
C3—N4—C5110.07 (11)C31—C32—C33120.84 (14)
N4—C5—C6110.72 (12)C31—C32—H32119.6
N4—C5—H5A109.5C33—C32—H32119.6
C6—C5—H5A109.5C34—C33—C32117.93 (14)
N4—C5—H5B109.5C34—C33—H33121.0
C6—C5—H5B109.5C32—C33—H33121.0
H5A—C5—H5B108.1C35—C34—C33122.65 (14)
N1—C6—C5110.67 (12)C35—C34—N34118.04 (14)
N1—C6—H6A109.5C33—C34—N34119.30 (14)
C5—C6—H6A109.5C34—C35—C36118.40 (14)
N1—C6—H6B109.5C34—C35—H35120.8
C5—C6—H6B109.5C36—C35—H35120.8
H6A—C6—H6B108.1C35—C36—C31120.68 (14)
C26—C21—C22118.14 (14)C35—C36—H36119.7
C26—C21—N4123.33 (13)C31—C36—H36119.7
C22—C21—N4118.52 (13)O32—C37—O31125.68 (14)
O22—C22—C23124.42 (14)O32—C37—C31117.82 (13)
O22—C22—C21115.75 (13)O31—C37—C31116.50 (14)
C23—C22—C21119.83 (15)O42—N34—O41123.48 (15)
C24—C23—C22120.63 (16)O42—N34—C34118.43 (14)
C24—C23—H23119.7O41—N34—C34118.09 (15)
C6—N1—C2—C355.83 (17)C24—C25—C26—C210.4 (3)
N1—C2—C3—N458.62 (16)C23—C22—O22—C276.8 (3)
C2—C3—N4—C21171.70 (12)C21—C22—O22—C27172.93 (16)
C2—C3—N4—C560.13 (16)C36—C31—C32—C330.3 (2)
C21—N4—C5—C6170.14 (12)C37—C31—C32—C33179.66 (13)
C3—N4—C5—C659.35 (15)C31—C32—C33—C340.1 (2)
C2—N1—C6—C554.67 (17)C32—C33—C34—C350.2 (2)
N4—C5—C6—N156.40 (16)C32—C33—C34—N34179.10 (13)
C3—N4—C21—C2619.2 (2)C33—C34—C35—C360.1 (2)
C5—N4—C21—C26108.17 (16)N34—C34—C35—C36179.38 (13)
C3—N4—C21—C22162.02 (14)C34—C35—C36—C310.5 (2)
C5—N4—C21—C2270.65 (17)C32—C31—C36—C350.6 (2)
C26—C21—C22—O22179.94 (15)C37—C31—C36—C35179.95 (13)
N4—C21—C22—O221.1 (2)C32—C31—C37—O32157.78 (15)
C26—C21—C22—C230.2 (2)C36—C31—C37—O3221.5 (2)
N4—C21—C22—C23178.64 (15)C32—C31—C37—O3122.1 (2)
O22—C22—C23—C24179.71 (18)C36—C31—C37—O31158.53 (15)
C21—C22—C23—C240.0 (3)C35—C34—N34—O429.5 (2)
C22—C23—C24—C250.0 (3)C33—C34—N34—O42169.80 (14)
C23—C24—C25—C260.1 (3)C35—C34—N34—O41170.64 (15)
C22—C21—C26—C250.4 (3)C33—C34—N34—O4110.0 (2)
N4—C21—C26—C25178.42 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.974 (16)1.677 (16)2.6500 (19)176.8 (15)
N1—H11···O320.974 (16)2.581 (17)3.2169 (17)123.0 (12)
N1—H12···O32i0.948 (17)1.837 (17)2.7709 (18)168.2 (16)
Symmetry code: (i) x+1, y+1, z+1.
4-(2-Methoxyphenyl)piperazin-1-ium 3,5-dinitrobenzoate dihydrate (XI) top
Crystal data top
C11H17N2O+·C7H3N2O6·2H2OZ = 2
Mr = 440.41F(000) = 464
Triclinic, P1Dx = 1.405 Mg m3
a = 7.8448 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4635 (9) ÅCell parameters from 4419 reflections
c = 12.0747 (9) Åθ = 2.6–27.7°
α = 94.406 (7)°µ = 0.11 mm1
β = 105.075 (8)°T = 296 K
γ = 93.717 (7)°Block, yellow
V = 1041.33 (14) Å30.48 × 0.48 × 0.44 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4419 independent reflections
Radiation source: Enhance (Mo) X-ray Source3409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.7°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 910
Tmin = 0.892, Tmax = 0.951k = 914
7353 measured reflectionsl = 1514
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.1343P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.23 e Å3
4419 reflectionsΔρmin = 0.17 e Å3
300 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.052 (4)
Primary atom site location: difference Fourier map
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.65966 (17)0.38158 (10)0.34243 (10)0.0387 (3)
H110.718 (2)0.3310 (14)0.3931 (14)0.046*
H120.541 (2)0.3638 (13)0.3304 (13)0.046*
C20.7170 (2)0.37246 (12)0.23459 (12)0.0437 (3)
H2A0.68000.29460.19470.052*
H2B0.84520.38380.25310.052*
C30.63768 (19)0.46357 (11)0.15669 (11)0.0383 (3)
H3A0.68110.45880.08840.046*
H3B0.50970.44810.13250.046*
N40.68560 (14)0.58186 (8)0.21770 (8)0.0317 (2)
C50.61652 (19)0.58963 (11)0.31932 (11)0.0374 (3)
H5A0.48880.57230.29610.045*
H5B0.64310.66860.35790.045*
C60.7004 (2)0.50306 (12)0.40043 (11)0.0422 (3)
H6A0.82780.52190.42510.051*
H6B0.65570.50850.46820.051*
C210.64076 (16)0.67242 (10)0.14284 (10)0.0311 (3)
C220.74860 (16)0.69609 (11)0.06906 (11)0.0342 (3)
C230.71254 (19)0.78402 (12)0.00441 (12)0.0421 (3)
H230.78370.79910.05330.051*
C240.5696 (2)0.84922 (12)0.00446 (13)0.0466 (4)
H240.54580.90830.05350.056*
C250.4631 (2)0.82783 (12)0.06667 (13)0.0476 (4)
H250.36770.87210.06600.057*
C260.49877 (18)0.73919 (12)0.14005 (12)0.0399 (3)
H260.42600.72450.18810.048*
O220.88764 (13)0.62807 (9)0.07539 (9)0.0471 (3)
C271.0094 (2)0.65658 (16)0.01004 (16)0.0601 (4)
H27A1.10500.60690.02660.090*
H27B1.05560.73720.03010.090*
H27C0.94950.64480.07060.090*
C311.07262 (16)0.14162 (10)0.58115 (10)0.0328 (3)
C321.23171 (17)0.09894 (11)0.57551 (11)0.0361 (3)
H321.28880.12330.52160.043*
C331.30429 (17)0.01961 (11)0.65116 (12)0.0384 (3)
C341.22367 (18)0.02069 (11)0.73110 (12)0.0406 (3)
H341.27190.07650.77920.049*
C351.06862 (18)0.02555 (11)0.73629 (11)0.0376 (3)
C360.99163 (17)0.10646 (11)0.66424 (11)0.0356 (3)
H360.88740.13690.67120.043*
C370.98662 (19)0.22652 (11)0.49671 (11)0.0402 (3)
O310.84578 (15)0.26458 (10)0.51102 (9)0.0585 (3)
O321.05696 (16)0.24991 (11)0.42026 (10)0.0655 (3)
N331.47682 (18)0.02225 (14)0.64945 (12)0.0578 (4)
O331.57628 (16)0.04182 (15)0.61300 (12)0.0825 (4)
O341.51295 (19)0.11651 (13)0.68590 (15)0.0890 (5)
N350.98229 (19)0.01443 (13)0.82304 (11)0.0558 (4)
O351.0381 (2)0.09880 (14)0.87252 (13)0.0929 (5)
O360.86187 (19)0.03867 (14)0.84155 (11)0.0794 (4)
O410.28832 (16)0.36547 (12)0.31241 (12)0.0639 (3)
H410.225 (3)0.322 (2)0.341 (2)0.096*
H420.230 (3)0.431 (2)0.306 (2)0.096*
O510.13836 (19)0.58148 (13)0.29313 (13)0.0722 (4)
H510.152 (3)0.630 (2)0.356 (2)0.087*
H520.051 (3)0.593 (2)0.250 (2)0.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0413 (6)0.0353 (6)0.0404 (6)0.0049 (5)0.0087 (5)0.0154 (5)
C20.0584 (9)0.0332 (7)0.0429 (7)0.0107 (6)0.0162 (6)0.0094 (6)
C30.0516 (8)0.0308 (6)0.0324 (6)0.0051 (5)0.0098 (6)0.0057 (5)
N40.0371 (6)0.0279 (5)0.0311 (5)0.0029 (4)0.0096 (4)0.0077 (4)
C50.0470 (8)0.0315 (6)0.0363 (7)0.0019 (5)0.0155 (6)0.0049 (5)
C60.0536 (8)0.0414 (7)0.0320 (6)0.0004 (6)0.0118 (6)0.0079 (5)
C210.0327 (6)0.0270 (6)0.0318 (6)0.0005 (5)0.0052 (5)0.0060 (5)
C220.0338 (6)0.0321 (6)0.0365 (7)0.0022 (5)0.0077 (5)0.0080 (5)
C230.0484 (8)0.0401 (7)0.0390 (7)0.0001 (6)0.0115 (6)0.0141 (6)
C240.0540 (9)0.0357 (7)0.0460 (8)0.0060 (6)0.0022 (7)0.0161 (6)
C250.0445 (8)0.0382 (7)0.0580 (9)0.0130 (6)0.0057 (7)0.0111 (6)
C260.0375 (7)0.0381 (7)0.0459 (7)0.0054 (5)0.0125 (6)0.0087 (6)
O220.0455 (6)0.0506 (6)0.0572 (6)0.0148 (4)0.0270 (5)0.0240 (5)
C270.0554 (10)0.0656 (10)0.0750 (11)0.0128 (8)0.0392 (9)0.0226 (9)
C310.0363 (7)0.0269 (6)0.0337 (6)0.0015 (5)0.0072 (5)0.0046 (5)
C320.0371 (7)0.0359 (6)0.0353 (6)0.0037 (5)0.0113 (5)0.0042 (5)
C330.0327 (7)0.0377 (7)0.0425 (7)0.0049 (5)0.0064 (5)0.0007 (6)
C340.0440 (8)0.0335 (7)0.0413 (7)0.0048 (5)0.0038 (6)0.0107 (6)
C350.0418 (7)0.0367 (7)0.0347 (7)0.0030 (5)0.0107 (5)0.0100 (5)
C360.0340 (7)0.0360 (6)0.0375 (7)0.0032 (5)0.0099 (5)0.0070 (5)
C370.0465 (8)0.0338 (7)0.0375 (7)0.0006 (6)0.0055 (6)0.0098 (5)
O310.0658 (7)0.0649 (7)0.0502 (6)0.0306 (6)0.0137 (5)0.0242 (5)
O320.0711 (8)0.0732 (8)0.0619 (7)0.0061 (6)0.0257 (6)0.0399 (6)
N330.0409 (7)0.0721 (10)0.0583 (8)0.0138 (7)0.0086 (6)0.0005 (7)
O330.0407 (7)0.1309 (13)0.0809 (9)0.0122 (7)0.0210 (6)0.0204 (9)
O340.0697 (9)0.0731 (9)0.1238 (13)0.0407 (7)0.0150 (8)0.0152 (8)
N350.0564 (8)0.0689 (9)0.0457 (7)0.0032 (7)0.0170 (6)0.0226 (6)
O350.1110 (12)0.0950 (11)0.0922 (10)0.0168 (9)0.0434 (9)0.0664 (9)
O360.0691 (8)0.1213 (12)0.0645 (8)0.0177 (8)0.0387 (7)0.0319 (8)
O410.0520 (7)0.0584 (7)0.0919 (9)0.0049 (5)0.0336 (6)0.0231 (7)
O510.0665 (8)0.0786 (9)0.0674 (8)0.0321 (7)0.0051 (7)0.0044 (7)
Geometric parameters (Å, º) top
N1—C21.4826 (18)C26—H260.9300
N1—C61.4860 (18)O22—C271.4257 (17)
N1—H110.929 (16)C27—H27A0.9600
N1—H120.908 (16)C27—H27B0.9600
C2—C31.5143 (17)C27—H27C0.9600
C2—H2A0.9700C31—C321.3856 (19)
C2—H2B0.9700C31—C361.3903 (17)
C3—N41.4694 (16)C31—C371.5237 (17)
C3—H3A0.9700C32—C331.3820 (18)
C3—H3B0.9700C32—H320.9300
N4—C211.4300 (15)C33—C341.3759 (19)
N4—C51.4638 (16)C33—N331.4696 (19)
C5—C61.5086 (18)C34—C351.372 (2)
C5—H5A0.9700C34—H340.9300
C5—H5B0.9700C35—C361.3803 (17)
C6—H6A0.9700C35—N351.4727 (17)
C6—H6B0.9700C36—H360.9300
C21—C261.3866 (18)C37—O321.2297 (17)
C21—C221.4080 (17)C37—O311.2615 (18)
C22—O221.3709 (16)N33—O341.2204 (19)
C22—C231.3881 (17)N33—O331.2231 (19)
C23—C241.387 (2)N35—O361.2150 (19)
C23—H230.9300N35—O351.2214 (18)
C24—C251.369 (2)O41—H410.84 (2)
C24—H240.9300O41—H420.91 (3)
C25—C261.3936 (19)O51—H510.88 (2)
C25—H250.9300O51—H520.77 (2)
C2—N1—C6110.76 (10)C23—C24—H24119.5
C2—N1—H11110.5 (10)C24—C25—C26119.49 (13)
C6—N1—H11108.2 (9)C24—C25—H25120.3
C2—N1—H12113.0 (10)C26—C25—H25120.3
C6—N1—H12106.6 (10)C21—C26—C25121.23 (13)
H11—N1—H12107.6 (13)C21—C26—H26119.4
N1—C2—C3110.82 (11)C25—C26—H26119.4
N1—C2—H2A109.5C22—O22—C27117.66 (11)
C3—C2—H2A109.5O22—C27—H27A109.5
N1—C2—H2B109.5O22—C27—H27B109.5
C3—C2—H2B109.5H27A—C27—H27B109.5
H2A—C2—H2B108.1O22—C27—H27C109.5
N4—C3—C2110.21 (10)H27A—C27—H27C109.5
N4—C3—H3A109.6H27B—C27—H27C109.5
C2—C3—H3A109.6C32—C31—C36119.65 (11)
N4—C3—H3B109.6C32—C31—C37120.23 (11)
C2—C3—H3B109.6C36—C31—C37120.12 (12)
H3A—C3—H3B108.1C33—C32—C31118.99 (12)
C21—N4—C5115.30 (10)C33—C32—H32120.5
C21—N4—C3112.57 (9)C31—C32—H32120.5
C5—N4—C3109.48 (10)C34—C33—C32122.75 (12)
N4—C5—C6109.39 (11)C34—C33—N33117.76 (12)
N4—C5—H5A109.8C32—C33—N33119.48 (13)
C6—C5—H5A109.8C35—C34—C33116.72 (12)
N4—C5—H5B109.8C35—C34—H34121.6
C6—C5—H5B109.8C33—C34—H34121.6
H5A—C5—H5B108.2C34—C35—C36122.99 (12)
N1—C6—C5110.28 (11)C34—C35—N35117.58 (12)
N1—C6—H6A109.6C36—C35—N35119.42 (12)
C5—C6—H6A109.6C35—C36—C31118.82 (12)
N1—C6—H6B109.6C35—C36—H36120.6
C5—C6—H6B109.6C31—C36—H36120.6
H6A—C6—H6B108.1O32—C37—O31125.98 (13)
C26—C21—C22118.27 (11)O32—C37—C31118.05 (13)
C26—C21—N4123.70 (11)O31—C37—C31115.95 (12)
C22—C21—N4118.02 (11)O34—N33—O33124.40 (15)
O22—C22—C23123.48 (12)O34—N33—C33118.57 (15)
O22—C22—C21116.04 (10)O33—N33—C33117.02 (14)
C23—C22—C21120.48 (12)O36—N35—O35124.28 (14)
C24—C23—C22119.57 (13)O36—N35—C35118.33 (13)
C24—C23—H23120.2O35—N35—C35117.39 (15)
C22—C23—H23120.2H41—O41—H42102 (2)
C25—C24—C23120.95 (12)H51—O51—H52108 (2)
C25—C24—H24119.5
C6—N1—C2—C354.19 (15)C36—C31—C32—C331.65 (18)
N1—C2—C3—N456.54 (15)C37—C31—C32—C33178.27 (11)
C2—C3—N4—C21169.85 (11)C31—C32—C33—C341.13 (19)
C2—C3—N4—C560.51 (14)C31—C32—C33—N33177.30 (12)
C21—N4—C5—C6169.80 (10)C32—C33—C34—C352.7 (2)
C3—N4—C5—C662.06 (13)N33—C33—C34—C35175.77 (12)
C2—N1—C6—C555.87 (15)C33—C34—C35—C361.5 (2)
N4—C5—C6—N159.79 (14)C33—C34—C35—N35178.66 (12)
C5—N4—C21—C2621.15 (17)C34—C35—C36—C311.1 (2)
C3—N4—C21—C26105.44 (14)N35—C35—C36—C31178.69 (12)
C5—N4—C21—C22157.91 (11)C32—C31—C36—C352.72 (18)
C3—N4—C21—C2275.51 (14)C37—C31—C36—C35177.21 (11)
C26—C21—C22—O22179.73 (11)C32—C31—C37—O324.20 (18)
N4—C21—C22—O220.62 (16)C36—C31—C37—O32175.73 (13)
C26—C21—C22—C230.10 (18)C32—C31—C37—O31177.24 (13)
N4—C21—C22—C23179.21 (11)C36—C31—C37—O312.83 (18)
O22—C22—C23—C24179.50 (13)C34—C33—N33—O3425.3 (2)
C21—C22—C23—C240.3 (2)C32—C33—N33—O34156.20 (15)
C22—C23—C24—C250.2 (2)C34—C33—N33—O33153.41 (14)
C23—C24—C25—C260.1 (2)C32—C33—N33—O3325.1 (2)
C22—C21—C26—C250.20 (19)C34—C35—N35—O36168.36 (14)
N4—C21—C26—C25178.85 (12)C36—C35—N35—O3611.8 (2)
C24—C25—C26—C210.3 (2)C34—C35—N35—O3511.0 (2)
C23—C22—O22—C275.6 (2)C36—C35—N35—O35168.77 (14)
C21—C22—O22—C27174.26 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.929 (16)1.771 (16)2.6837 (16)166.8 (15)
N1—H12···O410.911 (16)1.939 (16)2.8324 (19)165.5 (14)
O41—H41···O32i0.84 (2)1.99 (2)2.8156 (19)168 (2)
O41—H42···O510.90 (2)1.91 (2)2.810 (2)172 (2)
O51—H51···O31ii0.90 (2)1.91 (2)2.810 (2)172 (2)
O51—H52···O22i0.77 (2)2.25 (2)2.9544 (19)153 (2)
C25—H25···O36ii0.932.583.433 (2)153
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
4-(2-Methoxyphenyl)piperazin-1-ium 2,4,6-trinitrophenolate (XII) top
Crystal data top
C11H17N2O+·C6H2N3O7Z = 2
Mr = 421.33F(000) = 440
Triclinic, P1Dx = 1.435 Mg m3
a = 9.4151 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8721 (5) ÅCell parameters from 4279 reflections
c = 10.9572 (5) Åθ = 2.9–27.8°
α = 77.524 (4)°µ = 0.12 mm1
β = 81.360 (5)°T = 296 K
γ = 81.002 (5)°Plate, orange
V = 974.97 (9) Å30.48 × 0.48 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4279 independent reflections
Radiation source: Enhance (Mo) X-ray Source3276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.8°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1212
Tmin = 0.805, Tmax = 0.973k = 1212
12926 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.1566P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.24 e Å3
4279 reflectionsΔρmin = 0.27 e Å3
317 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
85 restraintsExtinction coefficient: 0.021 (3)
Primary atom site location: difference Fourier map
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.55402 (16)0.61143 (13)0.19946 (11)0.0462 (3)
H110.480 (2)0.5879 (18)0.2530 (16)0.055*
H120.6047 (19)0.6597 (18)0.2347 (16)0.055*
C20.64890 (19)0.48431 (16)0.17048 (14)0.0534 (4)
H2A0.59240.42560.14200.064*
H2B0.68800.43120.24610.064*
C30.77123 (17)0.52432 (16)0.07001 (13)0.0497 (4)
H3A0.83260.57610.10130.060*
H3B0.82960.44050.04920.060*
N40.71457 (12)0.61034 (12)0.04332 (10)0.0418 (3)
C50.62911 (16)0.73798 (15)0.01273 (13)0.0457 (3)
H5A0.59470.79670.08830.055*
H5B0.68910.78980.02010.055*
C60.50188 (16)0.70175 (17)0.08392 (14)0.0490 (4)
H6A0.44570.78680.10430.059*
H6B0.43980.65320.04990.059*
C210.82215 (14)0.63009 (17)0.14998 (13)0.0446 (3)
C220.87678 (16)0.51580 (19)0.20905 (14)0.0525 (4)
C230.97820 (18)0.5326 (2)0.31534 (16)0.0665 (5)
H231.01510.45680.35340.080*
C241.02430 (19)0.6610 (3)0.36469 (17)0.0741 (6)
H241.09120.67190.43660.089*
C250.97236 (19)0.7728 (2)0.30852 (19)0.0706 (5)
H251.00360.85940.34260.085*
C260.87250 (17)0.75717 (19)0.19997 (15)0.0556 (4)
H260.83960.83300.16100.067*
O220.82269 (13)0.39384 (13)0.15675 (12)0.0685 (4)
C270.8927 (2)0.2687 (2)0.1938 (2)0.0859 (7)
H27A0.84240.19180.14920.129*
H27B0.89210.27730.28270.129*
H27C0.99090.25210.17470.129*
C310.29075 (13)0.15664 (13)0.64803 (12)0.0362 (3)
O310.27727 (12)0.22396 (11)0.73386 (9)0.0512 (3)
C320.32774 (14)0.20872 (13)0.51527 (12)0.0361 (3)
N320.35214 (13)0.35445 (12)0.47084 (11)0.0445 (3)
O320.3202 (2)0.43611 (12)0.54139 (13)0.0911 (5)
O330.40574 (16)0.38892 (13)0.36249 (11)0.0705 (4)
C330.34703 (14)0.12760 (14)0.42520 (12)0.0381 (3)
H330.37090.16690.34090.046*
C340.33077 (14)0.01230 (14)0.46070 (13)0.0393 (3)
N340.35475 (14)0.09763 (14)0.36584 (13)0.0501 (3)
O340.38287 (16)0.04191 (13)0.25521 (11)0.0731 (4)
O350.34933 (15)0.22433 (12)0.40011 (12)0.0699 (4)
C350.29789 (14)0.07370 (14)0.58638 (13)0.0413 (3)
H350.29070.16890.61010.050*
C360.27649 (15)0.00877 (14)0.67410 (13)0.0404 (3)
N360.24422 (18)0.05867 (14)0.80615 (13)0.0590 (4)0.850 (5)
O360.3154 (3)0.1672 (2)0.84426 (18)0.0830 (8)0.850 (5)
O370.1395 (3)0.0058 (3)0.8665 (2)0.1155 (12)0.850 (5)
N370.24422 (18)0.05867 (14)0.80615 (13)0.0590 (4)0.069 (4)
O380.1277 (16)0.090 (3)0.853 (2)0.094 (5)0.069 (4)
O390.3392 (18)0.077 (3)0.8764 (17)0.081 (5)0.069 (4)
N380.24422 (18)0.05867 (14)0.80615 (13)0.0590 (4)0.080 (4)
O3100.219 (3)0.1764 (12)0.8390 (16)0.074 (4)0.080 (4)
O3110.275 (3)0.0034 (19)0.8882 (12)0.084 (5)0.080 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0592 (8)0.0466 (7)0.0358 (6)0.0182 (6)0.0091 (5)0.0164 (5)
C20.0759 (11)0.0414 (8)0.0405 (8)0.0091 (7)0.0051 (7)0.0101 (6)
C30.0557 (9)0.0483 (8)0.0401 (8)0.0020 (7)0.0023 (6)0.0066 (6)
N40.0405 (6)0.0504 (7)0.0326 (6)0.0034 (5)0.0021 (5)0.0102 (5)
C50.0490 (8)0.0473 (8)0.0384 (7)0.0022 (6)0.0017 (6)0.0083 (6)
C60.0478 (8)0.0562 (9)0.0443 (8)0.0028 (7)0.0012 (6)0.0200 (7)
C210.0335 (7)0.0627 (9)0.0359 (7)0.0058 (6)0.0026 (5)0.0075 (6)
C220.0393 (7)0.0748 (11)0.0445 (8)0.0083 (7)0.0029 (6)0.0190 (7)
C230.0459 (9)0.1026 (15)0.0524 (9)0.0098 (9)0.0095 (7)0.0289 (10)
C240.0457 (9)0.1197 (18)0.0492 (10)0.0162 (10)0.0118 (7)0.0081 (11)
C250.0446 (9)0.0875 (14)0.0697 (11)0.0201 (9)0.0023 (8)0.0086 (10)
C260.0427 (8)0.0673 (10)0.0532 (9)0.0103 (7)0.0022 (7)0.0040 (8)
O220.0631 (7)0.0668 (8)0.0754 (8)0.0114 (6)0.0235 (6)0.0334 (6)
C270.0654 (12)0.0845 (14)0.1171 (18)0.0103 (10)0.0152 (12)0.0576 (13)
C310.0339 (6)0.0377 (7)0.0377 (7)0.0051 (5)0.0007 (5)0.0108 (5)
O310.0628 (7)0.0526 (6)0.0424 (5)0.0143 (5)0.0048 (5)0.0213 (5)
C320.0350 (6)0.0334 (6)0.0394 (7)0.0052 (5)0.0022 (5)0.0074 (5)
N320.0503 (7)0.0376 (6)0.0439 (7)0.0078 (5)0.0004 (5)0.0063 (5)
O320.1554 (15)0.0395 (6)0.0721 (9)0.0210 (8)0.0280 (9)0.0198 (6)
O330.1042 (10)0.0583 (7)0.0468 (6)0.0345 (7)0.0120 (6)0.0028 (5)
C330.0364 (6)0.0435 (7)0.0342 (6)0.0030 (5)0.0035 (5)0.0092 (5)
C340.0364 (7)0.0417 (7)0.0434 (7)0.0035 (5)0.0048 (5)0.0177 (6)
N340.0508 (7)0.0505 (7)0.0550 (8)0.0020 (6)0.0089 (6)0.0249 (6)
O340.1083 (11)0.0670 (8)0.0462 (7)0.0009 (7)0.0053 (6)0.0262 (6)
O350.0909 (9)0.0500 (7)0.0782 (8)0.0137 (6)0.0071 (7)0.0319 (6)
C350.0401 (7)0.0345 (7)0.0500 (8)0.0062 (5)0.0032 (6)0.0102 (6)
C360.0411 (7)0.0395 (7)0.0382 (7)0.0061 (6)0.0004 (5)0.0050 (5)
N360.0847 (11)0.0435 (8)0.0447 (8)0.0127 (7)0.0056 (7)0.0060 (6)
O360.1144 (18)0.0577 (12)0.0612 (10)0.0080 (12)0.0148 (11)0.0118 (8)
O370.153 (2)0.0750 (15)0.0736 (12)0.0185 (14)0.0626 (14)0.0073 (10)
N370.0847 (11)0.0435 (8)0.0447 (8)0.0127 (7)0.0056 (7)0.0060 (6)
O380.116 (10)0.076 (9)0.079 (9)0.015 (9)0.010 (9)0.003 (9)
O390.095 (9)0.072 (9)0.051 (8)0.024 (8)0.021 (7)0.025 (8)
N380.0847 (11)0.0435 (8)0.0447 (8)0.0127 (7)0.0056 (7)0.0060 (6)
O3100.119 (10)0.042 (7)0.056 (7)0.011 (8)0.004 (8)0.001 (6)
O3110.148 (10)0.055 (8)0.045 (7)0.019 (8)0.014 (8)0.015 (6)
Geometric parameters (Å, º) top
N1—C61.484 (2)C25—C261.397 (2)
N1—C21.4866 (19)C25—H250.9300
N1—H110.869 (18)C26—H260.9300
N1—H120.900 (19)O22—C271.417 (2)
C2—C31.506 (2)C27—H27A0.9600
C2—H2A0.9700C27—H27B0.9600
C2—H2B0.9700C27—H27C0.9600
C3—N41.4661 (18)C31—O311.2450 (15)
C3—H3A0.9700C31—C321.4430 (18)
C3—H3B0.9700C31—C361.4492 (19)
N4—C211.4274 (17)C32—C331.3749 (18)
N4—C51.4601 (18)C32—N321.4583 (17)
C5—C61.508 (2)N32—O321.2089 (16)
C5—H5A0.9700N32—O331.2161 (16)
C5—H5B0.9700C33—C341.3777 (19)
C6—H6A0.9700C33—H330.9300
C6—H6B0.9700C34—C351.3892 (19)
C21—C261.382 (2)C34—N341.4454 (17)
C21—C221.411 (2)N34—O341.2260 (17)
C22—O221.358 (2)N34—O351.2326 (17)
C22—C231.388 (2)C35—C361.3623 (19)
C23—C241.376 (3)C35—H350.9300
C23—H230.9300C36—N361.4643 (19)
C24—C251.367 (3)N36—O361.199 (2)
C24—H240.9300N36—O371.214 (2)
C6—N1—C2111.24 (11)C25—C24—H24119.8
C6—N1—H11109.0 (11)C23—C24—H24119.8
C2—N1—H11110.2 (11)C24—C25—C26120.14 (18)
C6—N1—H12109.4 (11)C24—C25—H25119.9
C2—N1—H12108.7 (11)C26—C25—H25119.9
H11—N1—H12108.3 (15)C21—C26—C25120.64 (18)
N1—C2—C3110.41 (12)C21—C26—H26119.7
N1—C2—H2A109.6C25—C26—H26119.7
C3—C2—H2A109.6C22—O22—C27119.05 (13)
N1—C2—H2B109.6O22—C27—H27A109.5
C3—C2—H2B109.6O22—C27—H27B109.5
H2A—C2—H2B108.1H27A—C27—H27B109.5
N4—C3—C2110.51 (13)O22—C27—H27C109.5
N4—C3—H3A109.5H27A—C27—H27C109.5
C2—C3—H3A109.5H27B—C27—H27C109.5
N4—C3—H3B109.5O31—C31—C32126.64 (12)
C2—C3—H3B109.5O31—C31—C36121.75 (12)
H3A—C3—H3B108.1C32—C31—C36111.56 (11)
C21—N4—C5115.52 (11)C33—C32—C31123.98 (12)
C21—N4—C3113.44 (11)C33—C32—N32116.28 (11)
C5—N4—C3109.59 (11)C31—C32—N32119.70 (11)
N4—C5—C6109.95 (12)O32—N32—O33122.28 (13)
N4—C5—H5A109.7O32—N32—C32119.94 (12)
C6—C5—H5A109.7O33—N32—C32117.78 (12)
N4—C5—H5B109.7C32—C33—C34119.57 (12)
C6—C5—H5B109.7C32—C33—H33120.2
H5A—C5—H5B108.2C34—C33—H33120.2
N1—C6—C5109.85 (12)C33—C34—C35121.15 (12)
N1—C6—H6A109.7C33—C34—N34119.23 (12)
C5—C6—H6A109.7C35—C34—N34119.56 (12)
N1—C6—H6B109.7O34—N34—O35122.70 (13)
C5—C6—H6B109.7O34—N34—C34118.86 (13)
H6A—C6—H6B108.2O35—N34—C34118.41 (13)
C26—C21—C22118.49 (13)C36—C35—C34118.47 (12)
C26—C21—N4122.91 (14)C36—C35—H35120.8
C22—C21—N4118.58 (13)C34—C35—H35120.8
O22—C22—C23123.92 (16)C35—C36—C31125.23 (12)
O22—C22—C21116.04 (12)C35—C36—N36117.48 (12)
C23—C22—C21120.03 (16)C31—C36—N36117.20 (12)
C24—C23—C22120.29 (18)O36—N36—O37124.53 (18)
C24—C23—H23119.9O36—N36—C36118.10 (16)
C22—C23—H23119.9O37—N36—C36117.11 (16)
C25—C24—C23120.37 (16)
C6—N1—C2—C354.43 (18)O31—C31—C32—N320.5 (2)
N1—C2—C3—N456.58 (17)C36—C31—C32—N32177.72 (11)
C2—C3—N4—C21168.88 (12)C33—C32—N32—O32170.90 (15)
C2—C3—N4—C560.37 (16)C31—C32—N32—O3211.3 (2)
C21—N4—C5—C6168.83 (12)C33—C32—N32—O339.62 (19)
C3—N4—C5—C661.53 (15)C31—C32—N32—O33168.23 (13)
C2—N1—C6—C555.55 (16)C31—C32—C33—C340.0 (2)
N4—C5—C6—N159.07 (15)N32—C32—C33—C34177.78 (11)
C5—N4—C21—C2617.82 (19)C32—C33—C34—C351.2 (2)
C3—N4—C21—C26109.92 (16)C32—C33—C34—N34178.48 (12)
C5—N4—C21—C22160.45 (13)C33—C34—N34—O343.1 (2)
C3—N4—C21—C2271.82 (17)C35—C34—N34—O34179.59 (14)
C26—C21—C22—O22179.42 (14)C33—C34—N34—O35175.20 (13)
N4—C21—C22—O221.1 (2)C35—C34—N34—O352.1 (2)
C26—C21—C22—C230.3 (2)C33—C34—C35—C362.4 (2)
N4—C21—C22—C23178.00 (14)N34—C34—C35—C36179.67 (12)
O22—C22—C23—C24178.03 (17)C34—C35—C36—C312.6 (2)
C21—C22—C23—C241.0 (3)C34—C35—C36—N36179.06 (13)
C22—C23—C24—C251.0 (3)O31—C31—C36—C35176.00 (13)
C23—C24—C25—C260.4 (3)C32—C31—C36—C351.36 (19)
C22—C21—C26—C251.7 (2)O31—C31—C36—N360.5 (2)
N4—C21—C26—C25176.60 (14)C32—C31—C36—N36177.86 (12)
C24—C25—C26—C211.7 (3)C35—C36—N36—O3644.8 (3)
C23—C22—O22—C2713.9 (3)C31—C36—N36—O36132.0 (2)
C21—C22—O22—C27167.10 (17)C35—C36—N36—O37129.6 (3)
O31—C31—C32—C33177.16 (13)C31—C36—N36—O3753.7 (3)
C36—C31—C32—C330.05 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O330.868 (18)2.224 (18)2.9120 (19)136.1 (16)
N1—H12···O31i0.900 (18)1.833 (18)2.7142 (18)165.9 (16)
N1—H12···O32i0.900 (19)2.593 (17)3.154 (2)121.2 (13)
C6—H6A···O34ii0.972.563.423 (2)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
4-(2-Methoxyphenyl)piperazin-1-ium hydrogen maleate (XIII) top
Crystal data top
C11H17N2O+·C4H3O4Z = 4
Mr = 308.33F(000) = 656
Triclinic, P1Dx = 1.287 Mg m3
a = 11.1076 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1164 (6) ÅCell parameters from 6817 reflections
c = 13.7649 (7) Åθ = 2.6–27.9°
α = 80.353 (5)°µ = 0.10 mm1
β = 78.353 (5)°T = 296 K
γ = 74.406 (5)°Block, orange
V = 1591.76 (16) Å30.48 × 0.40 × 0.36 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
6817 independent reflections
Radiation source: Enhance (Mo) X-ray Source4221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1411
Tmin = 0.863, Tmax = 0.966k = 1410
11727 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0662P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6817 reflectionsΔρmax = 0.15 e Å3
415 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.34622 (12)0.18907 (13)0.37745 (11)0.0623 (4)
H1110.2917 (16)0.2421 (16)0.4214 (12)0.075*
H1120.3338 (15)0.1085 (16)0.3969 (11)0.075*
C120.47834 (15)0.19077 (16)0.38284 (12)0.0642 (4)
H12A0.49690.15640.44930.077*
H12B0.48700.27680.37020.077*
C130.57059 (14)0.11410 (15)0.30673 (11)0.0570 (4)
H13A0.65600.11950.30800.068*
H13B0.56750.02650.32310.068*
N140.53919 (10)0.16040 (11)0.20732 (8)0.0467 (3)
C150.41371 (12)0.14755 (14)0.20256 (12)0.0562 (4)
H15A0.41020.06020.22010.067*
H15B0.39540.17440.13520.067*
C160.31747 (14)0.22734 (15)0.27418 (13)0.0616 (4)
H16A0.31820.31510.25420.074*
H16B0.23350.21820.27240.074*
C1210.63719 (12)0.12322 (13)0.12699 (10)0.0455 (3)
C1220.74375 (13)0.17360 (14)0.10986 (11)0.0516 (4)
C1230.83917 (14)0.14329 (16)0.02954 (12)0.0636 (4)
H1230.90990.17640.01880.076*
C1240.83016 (15)0.06460 (16)0.03458 (12)0.0669 (5)
H1240.89460.04510.08840.080*
C1250.72766 (15)0.01536 (16)0.01957 (12)0.0654 (4)
H1250.72180.03750.06320.078*
C1260.63143 (14)0.04385 (14)0.06097 (11)0.0576 (4)
H1260.56180.00920.07090.069*
O1220.74475 (10)0.25199 (11)0.17621 (8)0.0716 (3)
C1270.84336 (17)0.31480 (17)0.15906 (15)0.0774 (5)
H17A0.83140.36600.21150.116*
H17B0.92340.25400.15800.116*
H17C0.84240.36710.09600.116*
N210.32610 (11)0.68791 (12)0.35465 (9)0.0506 (3)
H2110.2716 (14)0.7345 (14)0.4078 (11)0.061*
H2120.3068 (13)0.6135 (14)0.3614 (11)0.061*
C220.45843 (14)0.66671 (15)0.37162 (11)0.0559 (4)
H22A0.46920.61350.43430.067*
H22B0.47530.74660.37630.067*
C230.55121 (13)0.60521 (13)0.28769 (10)0.0510 (4)
H23A0.63710.59710.29790.061*
H23B0.54040.52160.28720.061*
N240.53089 (10)0.68033 (10)0.19212 (8)0.0443 (3)
C250.40353 (12)0.68965 (15)0.17454 (11)0.0548 (4)
H25A0.39140.60620.17570.066*
H25B0.39200.73570.10940.066*
C260.30813 (13)0.75658 (14)0.25435 (11)0.0549 (4)
H26A0.31790.84140.25090.066*
H26B0.22310.76220.24340.066*
C2210.63168 (12)0.64911 (13)0.11180 (10)0.0454 (3)
C2220.74589 (13)0.68107 (14)0.11058 (11)0.0505 (4)
C2230.84489 (15)0.65473 (16)0.03183 (13)0.0660 (5)
H2230.92050.67600.03110.079*
C2240.83202 (17)0.59725 (17)0.04533 (13)0.0722 (5)
H2240.89910.57970.09770.087*
C2250.72259 (17)0.56616 (17)0.04537 (12)0.0735 (5)
H2250.71430.52750.09770.088*
C2260.62268 (16)0.59194 (16)0.03260 (11)0.0641 (4)
H2260.54770.57030.03170.077*
O2220.75012 (10)0.73834 (11)0.18954 (8)0.0683 (3)
C2270.85515 (17)0.78893 (18)0.18703 (14)0.0806 (6)
H27A0.84490.82590.24730.121*
H27B0.93160.72300.18160.121*
H27C0.86010.85210.13050.121*
C310.21393 (13)0.42548 (13)0.52990 (11)0.0491 (3)
O310.31437 (10)0.44663 (10)0.48375 (9)0.0721 (3)
O320.17455 (10)0.33051 (9)0.52076 (8)0.0630 (3)
C320.13422 (14)0.51635 (13)0.59942 (11)0.0527 (4)
H320.17100.57990.60600.063*
C330.01974 (14)0.52237 (13)0.65358 (11)0.0515 (4)
H3310.00940.58900.69190.062*
C340.06961 (14)0.44152 (13)0.66358 (11)0.0493 (4)
O330.03904 (10)0.34388 (9)0.61545 (8)0.0587 (3)
H330.0541 (18)0.3376 (15)0.5724 (13)0.088*
O340.17286 (11)0.46868 (11)0.71631 (9)0.0830 (4)
C410.21753 (13)0.92641 (13)0.50681 (10)0.0472 (3)
O410.31284 (10)0.95022 (9)0.45083 (8)0.0676 (3)
O420.18296 (10)0.82652 (9)0.50841 (8)0.0661 (3)
C420.14234 (14)1.02060 (13)0.57458 (11)0.0554 (4)
H420.17241.09260.56760.067*
C430.03981 (13)1.01999 (13)0.64339 (11)0.0536 (4)
H4310.01041.09210.67560.064*
C440.03624 (14)0.92597 (13)0.67828 (11)0.0525 (4)
O430.01234 (11)0.82687 (10)0.63191 (9)0.0756 (4)
H430.066 (2)0.8219 (18)0.5806 (15)0.113*
O440.12061 (12)0.94251 (11)0.74866 (9)0.0869 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0566 (8)0.0488 (8)0.0713 (10)0.0164 (6)0.0283 (7)0.0197 (7)
C120.0610 (10)0.0759 (11)0.0497 (9)0.0144 (8)0.0086 (8)0.0156 (8)
C130.0480 (9)0.0685 (10)0.0474 (9)0.0093 (7)0.0035 (7)0.0095 (7)
N140.0351 (6)0.0597 (7)0.0451 (7)0.0136 (5)0.0027 (5)0.0138 (6)
C150.0391 (8)0.0619 (9)0.0705 (10)0.0165 (7)0.0024 (7)0.0226 (8)
C160.0389 (8)0.0622 (10)0.0817 (12)0.0128 (7)0.0077 (8)0.0233 (9)
C1210.0390 (7)0.0525 (8)0.0417 (8)0.0080 (6)0.0006 (6)0.0092 (6)
C1220.0445 (8)0.0603 (9)0.0483 (8)0.0159 (7)0.0038 (7)0.0111 (7)
C1230.0460 (9)0.0804 (11)0.0586 (10)0.0186 (8)0.0103 (7)0.0097 (9)
C1240.0546 (10)0.0855 (12)0.0474 (9)0.0003 (9)0.0066 (7)0.0172 (9)
C1250.0637 (11)0.0742 (11)0.0550 (10)0.0003 (8)0.0073 (8)0.0296 (8)
C1260.0500 (9)0.0654 (10)0.0600 (10)0.0121 (7)0.0065 (7)0.0211 (8)
O1220.0621 (7)0.0907 (8)0.0735 (8)0.0425 (6)0.0152 (6)0.0346 (7)
C1270.0680 (11)0.0796 (12)0.0960 (14)0.0367 (10)0.0123 (10)0.0126 (10)
N210.0459 (7)0.0451 (7)0.0560 (8)0.0138 (6)0.0135 (6)0.0152 (6)
C220.0519 (9)0.0666 (10)0.0432 (8)0.0120 (7)0.0029 (7)0.0064 (7)
C230.0446 (8)0.0558 (9)0.0463 (8)0.0096 (7)0.0019 (6)0.0049 (7)
N240.0362 (6)0.0554 (7)0.0402 (6)0.0131 (5)0.0009 (5)0.0085 (5)
C250.0415 (8)0.0714 (10)0.0518 (9)0.0156 (7)0.0011 (7)0.0133 (7)
C260.0394 (8)0.0578 (9)0.0632 (10)0.0095 (7)0.0004 (7)0.0103 (8)
C2210.0416 (8)0.0494 (8)0.0431 (8)0.0128 (6)0.0017 (6)0.0076 (6)
C2220.0456 (8)0.0556 (9)0.0497 (9)0.0182 (7)0.0020 (7)0.0063 (7)
C2230.0464 (9)0.0781 (11)0.0677 (11)0.0225 (8)0.0116 (8)0.0063 (9)
C2240.0671 (11)0.0813 (12)0.0551 (10)0.0155 (9)0.0207 (9)0.0132 (9)
C2250.0785 (12)0.0898 (13)0.0520 (10)0.0218 (10)0.0078 (9)0.0288 (9)
C2260.0621 (10)0.0839 (12)0.0530 (10)0.0279 (9)0.0021 (8)0.0242 (9)
O2220.0581 (7)0.0936 (8)0.0664 (7)0.0409 (6)0.0024 (5)0.0248 (6)
C2270.0703 (12)0.0969 (14)0.0911 (14)0.0433 (10)0.0245 (10)0.0056 (11)
C310.0442 (8)0.0477 (8)0.0536 (9)0.0101 (6)0.0053 (7)0.0065 (7)
O310.0473 (6)0.0693 (7)0.0955 (9)0.0180 (5)0.0097 (6)0.0181 (6)
O320.0595 (7)0.0564 (6)0.0738 (7)0.0217 (5)0.0168 (5)0.0306 (5)
C320.0555 (9)0.0422 (8)0.0653 (10)0.0176 (7)0.0070 (8)0.0143 (7)
C330.0582 (9)0.0408 (8)0.0558 (9)0.0123 (7)0.0004 (7)0.0180 (7)
C340.0545 (9)0.0416 (8)0.0479 (8)0.0125 (6)0.0058 (7)0.0107 (6)
O330.0557 (6)0.0550 (6)0.0687 (7)0.0246 (5)0.0121 (5)0.0255 (5)
O340.0722 (8)0.0720 (8)0.0981 (9)0.0285 (6)0.0364 (7)0.0352 (7)
C410.0459 (8)0.0441 (8)0.0486 (8)0.0095 (6)0.0021 (7)0.0065 (6)
O410.0577 (7)0.0555 (6)0.0801 (8)0.0158 (5)0.0177 (6)0.0139 (6)
O420.0704 (7)0.0537 (6)0.0733 (7)0.0257 (5)0.0230 (6)0.0303 (5)
C420.0574 (9)0.0424 (8)0.0688 (10)0.0190 (7)0.0029 (8)0.0180 (7)
C430.0555 (9)0.0433 (8)0.0620 (9)0.0114 (7)0.0019 (7)0.0214 (7)
C440.0541 (9)0.0486 (8)0.0521 (9)0.0119 (7)0.0051 (7)0.0161 (7)
O430.0816 (8)0.0597 (7)0.0857 (9)0.0368 (6)0.0332 (7)0.0343 (6)
O440.0886 (9)0.0869 (9)0.0816 (9)0.0369 (7)0.0373 (7)0.0372 (7)
Geometric parameters (Å, º) top
N11—C161.487 (2)N24—C2211.4199 (15)
N11—C121.490 (2)N24—C251.4566 (17)
N11—H1110.927 (17)C25—C261.5045 (18)
N11—H1120.930 (16)C25—H25A0.9700
C12—C131.5068 (19)C25—H25B0.9700
C12—H12A0.9700C26—H26A0.9700
C12—H12B0.9700C26—H26B0.9700
C13—N141.4556 (18)C221—C2261.383 (2)
C13—H13A0.9700C221—C2221.4027 (18)
C13—H13B0.9700C222—O2221.3629 (17)
N14—C1211.4155 (16)C222—C2231.3863 (19)
N14—C151.4541 (16)C223—C2241.376 (2)
C15—C161.5031 (19)C223—H2230.9300
C15—H15A0.9700C224—C2251.350 (2)
C15—H15B0.9700C224—H2240.9300
C16—H16A0.9700C225—C2261.384 (2)
C16—H16B0.9700C225—H2250.9300
C121—C1261.3896 (19)C226—H2260.9300
C121—C1221.4034 (18)O222—C2271.4172 (17)
C122—O1221.3673 (17)C227—H27A0.9600
C122—C1231.3853 (19)C227—H27B0.9600
C123—C1241.377 (2)C227—H27C0.9600
C123—H1230.9300C31—O311.2281 (15)
C124—C1251.357 (2)C31—O321.2793 (16)
C124—H1240.9300C31—C321.4904 (19)
C125—C1261.3889 (19)C32—C331.3287 (18)
C125—H1250.9300C32—H320.9300
C126—H1260.9300C33—C341.4814 (19)
O122—C1271.4123 (16)C33—H3310.9300
C127—H17A0.9600C34—O341.2185 (16)
C127—H17B0.9600C34—O331.2977 (16)
C127—H17C0.9600O33—H331.074 (19)
N21—C221.4848 (19)C41—O411.2400 (15)
N21—C261.4849 (19)C41—O421.2643 (15)
N21—H2110.974 (16)C41—C421.4855 (19)
N21—H2120.894 (14)C42—C431.3269 (18)
C22—C231.5064 (18)C42—H420.9300
C22—H22A0.9700C43—C441.4762 (19)
C22—H22B0.9700C43—H4310.9300
C23—N241.4592 (17)C44—O441.2046 (16)
C23—H23A0.9700C44—O431.3044 (16)
C23—H23B0.9700O43—H431.00 (2)
C16—N11—C12111.87 (11)C22—C23—H23A109.6
C16—N11—H111111.2 (11)N24—C23—H23B109.6
C12—N11—H111107.9 (10)C22—C23—H23B109.6
C16—N11—H112106.9 (10)H23A—C23—H23B108.1
C12—N11—H112110.6 (10)C221—N24—C25116.82 (11)
H111—N11—H112108.4 (13)C221—N24—C23114.50 (11)
N11—C12—C13110.06 (13)C25—N24—C23110.09 (10)
N11—C12—H12A109.6N24—C25—C26109.32 (12)
C13—C12—H12A109.6N24—C25—H25A109.8
N11—C12—H12B109.6C26—C25—H25A109.8
C13—C12—H12B109.6N24—C25—H25B109.8
H12A—C12—H12B108.2C26—C25—H25B109.8
N14—C13—C12110.14 (12)H25A—C25—H25B108.3
N14—C13—H13A109.6N21—C26—C25110.30 (12)
C12—C13—H13A109.6N21—C26—H26A109.6
N14—C13—H13B109.6C25—C26—H26A109.6
C12—C13—H13B109.6N21—C26—H26B109.6
H13A—C13—H13B108.1C25—C26—H26B109.6
C121—N14—C15117.32 (11)H26A—C26—H26B108.1
C121—N14—C13115.49 (11)C226—C221—C222117.72 (12)
C15—N14—C13110.45 (11)C226—C221—N24123.68 (12)
N14—C15—C16108.98 (12)C222—C221—N24118.57 (12)
N14—C15—H15A109.9O222—C222—C223124.36 (13)
C16—C15—H15A109.9O222—C222—C221115.74 (12)
N14—C15—H15B109.9C223—C222—C221119.90 (14)
C16—C15—H15B109.9C224—C223—C222120.46 (14)
H15A—C15—H15B108.3C224—C223—H223119.8
N11—C16—C15110.40 (13)C222—C223—H223119.8
N11—C16—H16A109.6C225—C224—C223120.36 (14)
C15—C16—H16A109.6C225—C224—H224119.8
N11—C16—H16B109.6C223—C224—H224119.8
C15—C16—H16B109.6C224—C225—C226119.96 (15)
H16A—C16—H16B108.1C224—C225—H225120.0
C126—C121—C122117.83 (12)C226—C225—H225120.0
C126—C121—N14123.65 (12)C221—C226—C225121.60 (14)
C122—C121—N14118.45 (12)C221—C226—H226119.2
O122—C122—C123124.19 (13)C225—C226—H226119.2
O122—C122—C121115.76 (11)C222—O222—C227119.00 (12)
C123—C122—C121120.05 (14)O222—C227—H27A109.5
C124—C123—C122120.56 (14)O222—C227—H27B109.5
C124—C123—H123119.7H27A—C227—H27B109.5
C122—C123—H123119.7O222—C227—H27C109.5
C125—C124—C123120.29 (14)H27A—C227—H27C109.5
C125—C124—H124119.9H27B—C227—H27C109.5
C123—C124—H124119.9O31—C31—O32123.42 (13)
C124—C125—C126120.03 (14)O31—C31—C32117.74 (13)
C124—C125—H125120.0O32—C31—C32118.84 (12)
C126—C125—H125120.0C31—O32—H33111.0 (7)
C125—C126—C121121.23 (14)C33—C32—C31131.17 (13)
C125—C126—H126119.4C33—C32—H32114.4
C121—C126—H126119.4C31—C32—H32114.4
C122—O122—C127119.05 (12)C32—C33—C34131.27 (13)
O122—C127—H17A109.5C32—C33—H331114.4
O122—C127—H17B109.5C34—C33—H331114.4
H17A—C127—H17B109.5O34—C34—O33120.32 (13)
O122—C127—H17C109.5O34—C34—C33119.31 (13)
H17A—C127—H17C109.5O33—C34—C33120.37 (12)
H17B—C127—H17C109.5C34—O33—H33108.8 (9)
C22—N21—C26111.73 (11)O41—C41—O42122.92 (13)
C22—N21—H211106.8 (8)O41—C41—C42117.54 (12)
C26—N21—H211111.6 (9)O42—C41—C42119.54 (12)
C22—N21—H212108.9 (10)C41—O42—H43112.1 (8)
C26—N21—H212110.2 (10)C43—C42—C41131.25 (13)
H211—N21—H212107.5 (12)C43—C42—H42114.4
N21—C22—C23110.82 (12)C41—C42—H42114.4
N21—C22—H22A109.5C42—C43—C44131.86 (13)
C23—C22—H22A109.5C42—C43—H431114.1
N21—C22—H22B109.5C44—C43—H431114.1
C23—C22—H22B109.5O44—C44—O43120.81 (13)
H22A—C22—H22B108.1O44—C44—C43119.49 (13)
N24—C23—C22110.15 (12)O43—C44—C43119.69 (12)
N24—C23—H23A109.6C44—O43—H43111.0 (11)
C16—N11—C12—C1352.90 (17)C23—N24—C25—C2662.57 (15)
N11—C12—C13—N1456.09 (17)C22—N21—C26—C2554.13 (15)
C12—C13—N14—C121161.93 (12)N24—C25—C26—N2158.61 (15)
C12—C13—N14—C1561.98 (15)C25—N24—C221—C22620.0 (2)
C121—N14—C15—C16162.19 (12)C23—N24—C221—C226110.76 (16)
C13—N14—C15—C1662.61 (16)C25—N24—C221—C222157.98 (13)
C12—N11—C16—C1554.36 (16)C23—N24—C221—C22271.22 (16)
N14—C15—C16—N1158.23 (16)C226—C221—C222—O222179.36 (13)
C15—N14—C121—C12619.4 (2)N24—C221—C222—O2221.2 (2)
C13—N14—C121—C126113.61 (16)C226—C221—C222—C2230.2 (2)
C15—N14—C121—C122157.54 (13)N24—C221—C222—C223178.34 (13)
C13—N14—C121—C12269.47 (16)O222—C222—C223—C224179.56 (15)
C126—C121—C122—O122179.46 (13)C221—C222—C223—C2240.0 (2)
N14—C121—C122—O1222.4 (2)C222—C223—C224—C2250.2 (3)
C126—C121—C122—C1230.3 (2)C223—C224—C225—C2260.1 (3)
N14—C121—C122—C123177.42 (14)C222—C221—C226—C2250.3 (2)
O122—C122—C123—C124179.23 (15)N24—C221—C226—C225178.33 (15)
C121—C122—C123—C1240.5 (2)C224—C225—C226—C2210.2 (3)
C122—C123—C124—C1250.2 (3)C223—C222—O222—C2278.1 (2)
C123—C124—C125—C1260.2 (3)C221—C222—O222—C227171.41 (14)
C124—C125—C126—C1210.5 (2)O31—C31—C32—C33175.34 (16)
C122—C121—C126—C1250.2 (2)O32—C31—C32—C334.3 (3)
N14—C121—C126—C125176.77 (14)C31—C32—C33—C340.5 (3)
C123—C122—O122—C1275.1 (2)C32—C33—C34—O34177.55 (16)
C121—C122—O122—C127174.63 (14)C32—C33—C34—O331.4 (3)
C26—N21—C22—C2352.60 (16)O41—C41—C42—C43177.97 (16)
N21—C22—C23—N2455.64 (15)O42—C41—C42—C431.8 (3)
C22—C23—N24—C221164.83 (11)C41—C42—C43—C440.5 (3)
C22—C23—N24—C2561.17 (14)C42—C43—C44—O44173.80 (18)
C221—N24—C25—C26164.61 (11)C42—C43—C44—O437.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O33—H33···O321.07 (2)1.37 (2)2.4447 (16)177.7 (16)
O43—H43···O421.00 (2)1.48 (2)2.4707 (17)174.0 (17)
N11—H111···O320.927 (17)1.891 (17)2.8122 (18)172.3 (16)
N11—H112···O41i0.930 (17)1.848 (17)2.7725 (17)172.9 (13)
N21—H211···O420.975 (15)1.821 (15)2.7926 (16)174.5 (14)
N21—H212···O310.895 (15)2.283 (15)2.9776 (17)134.4 (12)
N21—H212···O34ii0.895 (15)2.428 (15)3.1170 (18)134.1 (12)
C16—H16A···O34ii0.972.553.341 (2)138
C16—H16B···O44ii0.972.523.338 (2)141
C25—H25B···Cg4iii0.972.923.8440 (16)159
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x+1, y, z.
4-(2-Methoxyphenyl)piperazin-1-ium hydrogen fumarate (XIV) top
Crystal data top
C11H17N2O+·C4H3O4Z = 2
Mr = 308.33F(000) = 328
Triclinic, P1Dx = 1.326 Mg m3
a = 7.8546 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9626 (6) ÅCell parameters from 3307 reflections
c = 11.2056 (8) Åθ = 2.6–27.8°
α = 79.043 (5)°µ = 0.10 mm1
β = 87.715 (5)°T = 296 K
γ = 85.840 (5)°Block, colourless
V = 772.15 (9) Å30.48 × 0.48 × 0.34 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3307 independent reflections
Radiation source: Enhance (Mo) X-ray Source2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
ω scansθmax = 27.8°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 105
Tmin = 0.867, Tmax = 0.967k = 1111
5533 measured reflectionsl = 1314
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.0881P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.20 e Å3
3307 reflectionsΔρmin = 0.15 e Å3
240 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.022 (4)
Primary atom site location: difference Fourier map
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.47840 (14)0.33032 (13)0.75754 (9)0.0496 (3)
H110.55550.37150.79510.059*
H120.42360.26500.81310.059*
C20.56542 (16)0.24842 (16)0.66646 (12)0.0521 (3)
H2A0.64170.16610.70710.063*
H2B0.63300.31780.60990.063*
C30.43454 (16)0.18491 (14)0.59804 (12)0.0478 (3)
H3A0.49220.13500.53670.057*
H3B0.37400.10920.65400.057*
N40.31104 (13)0.30552 (11)0.53920 (9)0.0435 (2)
C50.22526 (17)0.38282 (15)0.63102 (12)0.0499 (3)
H5A0.16320.31050.68900.060*
H5B0.14380.46210.59230.060*
C60.35447 (19)0.45212 (16)0.69650 (13)0.0561 (3)
H6A0.41480.52620.63890.067*
H6B0.29660.50420.75650.067*
C210.19938 (15)0.25100 (13)0.46154 (11)0.0427 (3)
C220.26637 (16)0.21262 (14)0.35255 (11)0.0463 (3)
C230.16107 (18)0.15988 (17)0.27531 (13)0.0576 (3)
H230.20630.13370.20350.069*
C240.01099 (19)0.14591 (19)0.30429 (15)0.0649 (4)
H240.08060.11020.25210.078*
C250.07834 (18)0.18457 (18)0.40935 (15)0.0644 (4)
H250.19400.17630.42830.077*
C260.02619 (17)0.23620 (15)0.48775 (13)0.0532 (3)
H260.02070.26150.55940.064*
O220.43698 (12)0.23087 (12)0.32891 (8)0.0587 (3)
C270.50598 (18)0.20342 (16)0.21566 (12)0.0541 (3)
H27A0.62560.22000.21050.081*
H27B0.49040.10010.20900.081*
H27C0.44860.27150.15080.081*
C310.7592 (6)0.4912 (5)0.9702 (5)0.0396 (11)0.572 (9)
O310.7521 (6)0.4322 (5)0.8811 (5)0.0587 (10)0.572 (9)
O320.6295 (6)0.5334 (6)1.0339 (5)0.0540 (9)0.572 (9)
H320.54120.51121.00680.081*0.286
C320.9263 (5)0.5248 (3)1.0179 (3)0.0476 (11)0.572 (9)
H32A0.93200.61901.07560.057*0.572 (9)
C340.7860 (7)0.4556 (8)0.9314 (7)0.0410 (14)0.428 (9)
O330.7520 (8)0.4140 (9)0.8394 (6)0.0583 (12)0.428 (9)
O340.6784 (8)0.4985 (9)1.0107 (5)0.0557 (14)0.428 (9)
H340.58090.48860.99130.084*0.214
C330.9707 (5)0.4644 (5)0.9604 (4)0.0472 (15)0.428 (9)
H33A1.05720.45520.89860.057*0.428 (9)
C410.24159 (13)0.01915 (13)0.97848 (10)0.0383 (3)
O410.25523 (10)0.12259 (12)0.89098 (9)0.0615 (3)
O420.36567 (10)0.05149 (12)1.04016 (8)0.0574 (3)
H420.45570.01781.01120.086*0.5
C420.07112 (13)0.03520 (14)1.02179 (10)0.0393 (3)
H42A0.06570.12211.08180.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0464 (6)0.0605 (7)0.0424 (5)0.0165 (5)0.0024 (4)0.0058 (5)
C20.0406 (7)0.0675 (8)0.0470 (7)0.0047 (6)0.0008 (5)0.0071 (6)
C30.0443 (7)0.0494 (7)0.0489 (7)0.0028 (5)0.0057 (5)0.0081 (5)
N40.0452 (6)0.0427 (5)0.0427 (5)0.0007 (4)0.0064 (4)0.0076 (4)
C50.0524 (7)0.0463 (7)0.0513 (7)0.0047 (5)0.0088 (6)0.0114 (5)
C60.0666 (9)0.0500 (7)0.0535 (8)0.0074 (6)0.0068 (6)0.0121 (6)
C210.0432 (6)0.0374 (6)0.0463 (6)0.0015 (5)0.0077 (5)0.0043 (5)
C220.0416 (6)0.0481 (7)0.0496 (7)0.0042 (5)0.0059 (5)0.0088 (5)
C230.0527 (8)0.0692 (9)0.0557 (8)0.0046 (6)0.0071 (6)0.0227 (7)
C240.0501 (8)0.0785 (10)0.0735 (10)0.0069 (7)0.0142 (7)0.0292 (8)
C250.0400 (7)0.0780 (10)0.0783 (10)0.0063 (7)0.0053 (7)0.0211 (8)
C260.0451 (7)0.0573 (8)0.0582 (8)0.0007 (6)0.0026 (6)0.0142 (6)
O220.0458 (5)0.0834 (7)0.0526 (5)0.0150 (5)0.0024 (4)0.0235 (5)
C270.0530 (8)0.0604 (8)0.0467 (7)0.0043 (6)0.0009 (6)0.0050 (6)
C310.035 (2)0.0441 (19)0.040 (3)0.0097 (16)0.0107 (19)0.0044 (15)
O310.0420 (13)0.0858 (19)0.060 (3)0.0113 (11)0.0172 (19)0.038 (2)
O320.0362 (19)0.081 (2)0.0480 (18)0.0149 (14)0.0069 (14)0.0143 (13)
C320.037 (2)0.0607 (15)0.0489 (17)0.0106 (11)0.0115 (12)0.0157 (12)
C340.033 (2)0.053 (3)0.039 (4)0.0108 (19)0.008 (2)0.011 (2)
O330.0441 (15)0.086 (3)0.054 (3)0.0188 (15)0.015 (2)0.028 (2)
O340.039 (4)0.089 (4)0.044 (3)0.017 (3)0.010 (2)0.0188 (19)
C330.033 (2)0.068 (2)0.044 (2)0.0125 (15)0.0099 (15)0.0141 (18)
C410.0237 (5)0.0535 (7)0.0386 (6)0.0081 (4)0.0017 (4)0.0091 (5)
O410.0273 (4)0.0793 (7)0.0671 (6)0.0118 (4)0.0007 (4)0.0162 (5)
O420.0222 (4)0.0826 (7)0.0590 (6)0.0101 (4)0.0031 (4)0.0110 (5)
C420.0254 (5)0.0516 (6)0.0407 (6)0.0093 (4)0.0010 (4)0.0058 (5)
Geometric parameters (Å, º) top
N1—C21.4845 (17)C24—H240.9300
N1—C61.4907 (17)C25—C261.3883 (19)
N1—H110.8900C25—H250.9300
N1—H120.8900C26—H260.9300
C2—C31.5108 (18)O22—C271.4175 (16)
C2—H2A0.9700C27—H27A0.9600
C2—H2B0.9700C27—H27B0.9600
C3—N41.4738 (15)C27—H27C0.9600
C3—H3A0.9700C31—O311.221 (4)
C3—H3B0.9700C31—O321.296 (5)
N4—C211.4318 (15)C31—C321.508 (4)
N4—C51.4630 (16)O32—H320.8200
C5—C61.5093 (18)C32—H32A1.1605
C5—H5A0.9700C34—O331.207 (6)
C5—H5B0.9700C34—O341.294 (6)
C6—H6A0.9700C34—C331.510 (5)
C6—H6B0.9700O34—H340.8200
C21—C261.3906 (18)C33—H33A0.9611
C21—C221.4033 (18)C41—O411.2219 (14)
C22—O221.3710 (16)C41—O421.2752 (14)
C22—C231.3877 (18)C41—C421.4895 (14)
C23—C241.386 (2)O42—H420.8200
C23—H230.9300C42—C42i1.307 (2)
C24—C251.365 (2)C42—H42A0.9300
C2—N1—C6110.03 (10)C23—C22—C21120.06 (12)
C2—N1—H11109.7C24—C23—C22120.53 (13)
C6—N1—H11109.7C24—C23—H23119.7
C2—N1—H12109.7C22—C23—H23119.7
C6—N1—H12109.7C25—C24—C23120.04 (13)
H11—N1—H12108.2C25—C24—H24120.0
N1—C2—C3109.88 (10)C23—C24—H24120.0
N1—C2—H2A109.7C24—C25—C26119.89 (13)
C3—C2—H2A109.7C24—C25—H25120.1
N1—C2—H2B109.7C26—C25—H25120.1
C3—C2—H2B109.7C25—C26—C21121.48 (13)
H2A—C2—H2B108.2C25—C26—H26119.3
N4—C3—C2111.53 (10)C21—C26—H26119.3
N4—C3—H3A109.3C22—O22—C27117.72 (10)
C2—C3—H3A109.3O22—C27—H27A109.5
N4—C3—H3B109.3O22—C27—H27B109.5
C2—C3—H3B109.3H27A—C27—H27B109.5
H3A—C3—H3B108.0O22—C27—H27C109.5
C21—N4—C5115.02 (10)H27A—C27—H27C109.5
C21—N4—C3112.31 (9)H27B—C27—H27C109.5
C5—N4—C3109.65 (9)O31—C31—O32125.7 (4)
N4—C5—C6110.19 (11)O31—C31—C32122.3 (5)
N4—C5—H5A109.6O32—C31—C32112.0 (5)
C6—C5—H5A109.6C31—O32—H32109.5
N4—C5—H5B109.6C31—C32—H32A120.8
C6—C5—H5B109.6O33—C34—O34126.6 (6)
H5A—C5—H5B108.1O33—C34—C33119.4 (6)
N1—C6—C5109.74 (11)O34—C34—C33114.0 (5)
N1—C6—H6A109.7C34—O34—H34109.5
C5—C6—H6A109.7C34—C33—H33A119.0
N1—C6—H6B109.7O41—C41—O42125.06 (10)
C5—C6—H6B109.7O41—C41—C42120.88 (10)
H6A—C6—H6B108.2O42—C41—C42114.07 (10)
C26—C21—C22118.00 (11)C41—O42—H42109.5
C26—C21—N4123.21 (11)C42i—C42—C41122.20 (14)
C22—C21—N4118.79 (11)C42i—C42—H42A118.9
O22—C22—C23123.60 (12)C41—C42—H42A118.9
O22—C22—C21116.34 (10)
C6—N1—C2—C356.53 (14)C26—C21—C22—C230.80 (19)
N1—C2—C3—N456.82 (14)N4—C21—C22—C23179.82 (11)
C2—C3—N4—C21172.63 (10)O22—C22—C23—C24179.23 (14)
C2—C3—N4—C558.17 (13)C21—C22—C23—C240.6 (2)
C21—N4—C5—C6172.92 (10)C22—C23—C24—C250.2 (2)
C3—N4—C5—C659.39 (13)C23—C24—C25—C260.7 (2)
C2—N1—C6—C558.42 (14)C24—C25—C26—C210.5 (2)
N4—C5—C6—N160.04 (14)C22—C21—C26—C250.3 (2)
C5—N4—C21—C2615.65 (17)N4—C21—C26—C25179.22 (12)
C3—N4—C21—C26110.69 (13)C23—C22—O22—C274.19 (19)
C5—N4—C21—C22163.31 (11)C21—C22—O22—C27175.63 (11)
C3—N4—C21—C2270.35 (14)O41—C41—C42—C42i8.0 (2)
C26—C21—C22—O22179.03 (11)O42—C41—C42—C42i172.10 (15)
N4—C21—C22—O220.02 (17)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.892.012.894 (5)171
N1—H11···O330.891.732.584 (7)160
N1—H12···O410.891.972.8251 (15)161
O32—H32···O32ii0.821.542.355 (7)176
O34—H34···O34ii0.822.032.820 (9)161
O42—H42···O42iii0.821.622.4352 (12)177
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y, z+2.
4-(2-Methoxyphenyl)piperazin-1-ium hydrogen (2R,3R)-tartrate 1.698-hydrate (XV) top
Crystal data top
C11H17N2O+·C4H5O6·1.698H2OF(000) = 398
Mr = 372.97Dx = 1.345 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.479 (1) ÅCell parameters from 2896 reflections
b = 7.065 (1) Åθ = 3.1–27.9°
c = 17.788 (3) ŵ = 0.11 mm1
β = 101.58 (2)°T = 296 K
V = 920.8 (2) Å3Plate, colourless
Z = 20.36 × 0.32 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2895 independent reflections
Radiation source: Enhance (Mo) X-ray Source2062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.9°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.956, Tmax = 0.987k = 96
3655 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0402P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2895 reflectionsΔρmax = 0.14 e Å3
263 parametersΔρmin = 0.17 e Å3
4 restraintsAbsolute structure: Flack x determined using 493 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4545 (5)0.3626 (4)0.31605 (16)0.0472 (7)
H110.517 (5)0.295 (5)0.3458 (19)0.057*
H120.341 (5)0.371 (6)0.3245 (18)0.057*
C20.4519 (5)0.2806 (5)0.23968 (19)0.0514 (9)
H2A0.39100.15880.23560.062*
H2B0.57600.26110.23280.062*
C30.3538 (5)0.4111 (4)0.17851 (18)0.0454 (8)
H3A0.35390.35750.12830.055*
H3B0.22800.42580.18390.055*
N40.4437 (3)0.5952 (4)0.18516 (13)0.0393 (6)
C50.4369 (5)0.6791 (5)0.25945 (16)0.0441 (8)
H5A0.31060.69530.26390.053*
H5B0.49410.80290.26330.053*
C60.5333 (5)0.5553 (4)0.32330 (19)0.0521 (10)
H6A0.66210.54880.32170.063*
H6B0.52190.60930.37230.063*
C210.3879 (5)0.7242 (5)0.12346 (16)0.0416 (8)
C220.5099 (5)0.8649 (5)0.11148 (18)0.0515 (9)
C230.4638 (6)0.9900 (6)0.0511 (2)0.0665 (11)
H230.54531.08420.04350.080*
C240.2984 (7)0.9750 (7)0.0025 (2)0.0749 (13)
H240.26781.05900.03830.090*
C250.1785 (6)0.8393 (7)0.0131 (2)0.0695 (12)
H250.06620.83000.02050.083*
C260.2227 (5)0.7140 (6)0.07395 (18)0.0546 (9)
H260.13900.62190.08120.066*
O220.6727 (4)0.8666 (4)0.16178 (15)0.0723 (8)
C270.8158 (6)0.9858 (8)0.1471 (3)0.0936 (15)
H27A0.92120.97120.18750.140*
H27B0.84630.95110.09900.140*
H27C0.77621.11530.14490.140*
C310.8601 (4)0.0130 (4)0.38558 (16)0.0321 (7)
O310.8264 (3)0.1842 (3)0.36938 (12)0.0422 (5)
O320.7484 (3)0.1056 (3)0.39964 (13)0.0484 (6)
C321.0532 (4)0.0580 (4)0.38922 (16)0.0300 (7)
H32A1.09270.01870.34230.036*
O331.0645 (3)0.2564 (3)0.39473 (13)0.0431 (6)
H330.985 (5)0.285 (6)0.414 (2)0.065*
C331.1809 (3)0.0309 (4)0.45784 (14)0.0292 (7)
H33A1.18000.16840.45060.035*
O341.1191 (3)0.0087 (3)0.52580 (11)0.0405 (5)
H341.162 (5)0.109 (6)0.544 (2)0.061*
C341.3725 (4)0.0400 (4)0.46138 (16)0.0307 (7)
O351.4553 (3)0.1271 (3)0.51524 (11)0.0479 (6)
O361.4319 (3)0.0004 (3)0.39858 (11)0.0351 (5)
H361.537 (5)0.036 (6)0.4062 (17)0.053*
O410.0854 (4)0.4055 (4)0.31999 (16)0.0612 (8)
H410.068 (6)0.512 (7)0.336 (2)0.092*
H420.004 (6)0.335 (7)0.329 (2)0.092*
O510.1304 (7)0.4856 (9)0.1775 (2)0.104 (2)0.698 (9)
H510.051 (9)0.470 (13)0.228 (2)0.157*0.698 (9)
H520.225 (8)0.573 (10)0.185 (4)0.157*0.698 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0576 (19)0.0355 (16)0.0460 (17)0.0002 (16)0.0043 (15)0.0093 (14)
C20.063 (2)0.0322 (18)0.061 (2)0.0033 (17)0.0179 (18)0.0013 (16)
C30.057 (2)0.0362 (19)0.0443 (18)0.0014 (17)0.0143 (15)0.0036 (14)
N40.0462 (16)0.0352 (14)0.0382 (14)0.0025 (13)0.0127 (12)0.0025 (12)
C50.060 (2)0.0325 (17)0.0389 (17)0.0028 (17)0.0080 (16)0.0031 (15)
C60.065 (2)0.040 (2)0.0468 (18)0.0102 (18)0.0007 (17)0.0083 (15)
C210.053 (2)0.0404 (19)0.0355 (16)0.0091 (16)0.0186 (15)0.0017 (15)
C220.064 (2)0.047 (2)0.0475 (19)0.002 (2)0.0208 (17)0.0074 (18)
C230.093 (3)0.054 (2)0.062 (2)0.005 (2)0.037 (2)0.015 (2)
C240.104 (4)0.067 (3)0.058 (2)0.024 (3)0.026 (2)0.026 (2)
C250.074 (3)0.077 (3)0.053 (2)0.018 (3)0.003 (2)0.009 (2)
C260.056 (2)0.057 (2)0.0502 (19)0.009 (2)0.0081 (17)0.0031 (19)
O220.0621 (16)0.0759 (19)0.0786 (17)0.0177 (16)0.0137 (14)0.0213 (16)
C270.078 (3)0.091 (3)0.118 (4)0.030 (3)0.034 (3)0.010 (3)
C310.0235 (14)0.0325 (18)0.0411 (15)0.0001 (14)0.0084 (12)0.0038 (14)
O310.0316 (11)0.0350 (13)0.0616 (13)0.0062 (10)0.0129 (10)0.0057 (11)
O320.0248 (10)0.0384 (13)0.0869 (16)0.0026 (10)0.0224 (10)0.0027 (12)
C320.0268 (15)0.0240 (15)0.0419 (15)0.0009 (12)0.0130 (12)0.0027 (13)
O330.0312 (12)0.0296 (12)0.0749 (16)0.0031 (10)0.0256 (11)0.0055 (11)
C330.0243 (14)0.0284 (16)0.0364 (15)0.0027 (12)0.0098 (12)0.0044 (13)
O340.0407 (12)0.0439 (14)0.0424 (11)0.0089 (11)0.0212 (10)0.0037 (11)
C340.0244 (14)0.0311 (15)0.0368 (15)0.0018 (13)0.0063 (13)0.0025 (14)
O350.0388 (12)0.0597 (15)0.0442 (12)0.0126 (12)0.0058 (10)0.0128 (12)
O360.0200 (9)0.0436 (13)0.0435 (11)0.0026 (10)0.0104 (9)0.0042 (10)
O410.0671 (17)0.0429 (16)0.0847 (18)0.0022 (14)0.0415 (14)0.0044 (13)
O510.104 (4)0.137 (5)0.072 (3)0.042 (4)0.020 (2)0.004 (3)
Geometric parameters (Å, º) top
N1—C21.473 (4)C25—C261.386 (5)
N1—C61.479 (4)C25—H250.9300
N1—H110.79 (4)C26—H260.9300
N1—H120.90 (4)O22—C271.427 (5)
C2—C31.500 (4)C27—H27A0.9600
C2—H2A0.9700C27—H27B0.9600
C2—H2B0.9700C27—H27C0.9600
C3—N41.458 (4)C31—O321.244 (4)
C3—H3A0.9700C31—O311.257 (4)
C3—H3B0.9700C31—C321.518 (4)
N4—C211.423 (4)C32—O331.406 (3)
N4—C51.458 (4)C32—C331.526 (4)
C5—C61.499 (4)C32—H32A0.9800
C5—H5A0.9700O33—H330.78 (4)
C5—H5B0.9700C33—O341.406 (3)
C6—H6A0.9700C33—C341.508 (4)
C6—H6B0.9700C33—H33A0.9800
C21—C261.368 (4)O34—H340.82 (4)
C21—C221.394 (5)C34—O351.201 (3)
C22—O221.359 (4)C34—O361.312 (3)
C22—C231.381 (5)O36—H360.81 (3)
C23—C241.363 (6)O41—H410.83 (5)
C23—H230.9300O41—H420.88 (5)
C24—C251.352 (6)O51—H510.98 (2)
C24—H240.9300O51—H520.97 (2)
C2—N1—C6111.9 (3)C22—C23—H23120.1
C2—N1—H11106 (2)C25—C24—C23120.7 (4)
C6—N1—H11109 (3)C25—C24—H24119.7
C2—N1—H12110 (2)C23—C24—H24119.7
C6—N1—H12107 (3)C24—C25—C26120.0 (4)
H11—N1—H12112 (4)C24—C25—H25120.0
N1—C2—C3109.9 (3)C26—C25—H25120.0
N1—C2—H2A109.7C21—C26—C25120.9 (4)
C3—C2—H2A109.7C21—C26—H26119.6
N1—C2—H2B109.7C25—C26—H26119.6
C3—C2—H2B109.7C22—O22—C27119.4 (3)
H2A—C2—H2B108.2O22—C27—H27A109.5
N4—C3—C2109.8 (3)O22—C27—H27B109.5
N4—C3—H3A109.7H27A—C27—H27B109.5
C2—C3—H3A109.7O22—C27—H27C109.5
N4—C3—H3B109.7H27A—C27—H27C109.5
C2—C3—H3B109.7H27B—C27—H27C109.5
H3A—C3—H3B108.2O32—C31—O31125.6 (3)
C21—N4—C3116.7 (2)O32—C31—C32116.1 (2)
C21—N4—C5112.4 (2)O31—C31—C32118.2 (3)
C3—N4—C5109.7 (2)O33—C32—C31112.1 (2)
N4—C5—C6110.5 (3)O33—C32—C33109.6 (2)
N4—C5—H5A109.5C31—C32—C33109.6 (2)
C6—C5—H5A109.5O33—C32—H32A108.5
N4—C5—H5B109.5C31—C32—H32A108.5
C6—C5—H5B109.5C33—C32—H32A108.5
H5A—C5—H5B108.1C32—O33—H33105 (3)
N1—C6—C5110.4 (3)O34—C33—C34111.8 (2)
N1—C6—H6A109.6O34—C33—C32110.2 (2)
C5—C6—H6A109.6C34—C33—C32109.5 (2)
N1—C6—H6B109.6O34—C33—H33A108.4
C5—C6—H6B109.6C34—C33—H33A108.4
H6A—C6—H6B108.1C32—C33—H33A108.4
C26—C21—C22118.2 (3)C33—O34—H34110 (3)
C26—C21—N4123.4 (3)O35—C34—O36125.5 (3)
C22—C21—N4118.3 (3)O35—C34—C33122.5 (3)
O22—C22—C23123.9 (4)O36—C34—C33112.0 (2)
O22—C22—C21115.7 (3)C34—O36—H36106 (2)
C23—C22—C21120.5 (3)H41—O41—H42106 (4)
C24—C23—C22119.7 (4)H51—O51—H52106 (3)
C24—C23—H23120.1
C6—N1—C2—C354.9 (4)C23—C24—C25—C260.3 (6)
N1—C2—C3—N458.6 (4)C22—C21—C26—C250.6 (5)
C2—C3—N4—C21169.1 (3)N4—C21—C26—C25177.5 (3)
C2—C3—N4—C561.7 (3)C24—C25—C26—C210.7 (6)
C21—N4—C5—C6167.9 (3)C23—C22—O22—C278.7 (6)
C3—N4—C5—C660.6 (3)C21—C22—O22—C27170.4 (4)
C2—N1—C6—C553.7 (4)O32—C31—C32—O3310.6 (4)
N4—C5—C6—N156.1 (4)O31—C31—C32—O33169.8 (2)
C3—N4—C21—C2622.6 (4)O32—C31—C32—C33111.3 (3)
C5—N4—C21—C26105.3 (3)O31—C31—C32—C3368.3 (3)
C3—N4—C21—C22155.5 (3)O33—C32—C33—O3466.8 (3)
C5—N4—C21—C2276.6 (3)C31—C32—C33—O3456.6 (3)
C26—C21—C22—O22179.1 (3)O33—C32—C33—C3456.6 (3)
N4—C21—C22—O220.9 (4)C31—C32—C33—C34179.9 (2)
C26—C21—C22—C230.0 (5)O34—C33—C34—O353.2 (4)
N4—C21—C22—C23178.2 (3)C32—C33—C34—O35119.2 (3)
O22—C22—C23—C24178.6 (4)O34—C33—C34—O36178.9 (3)
C21—C22—C23—C240.4 (5)C32—C33—C34—O3658.7 (3)
C22—C23—C24—C250.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.79 (4)2.40 (4)3.028 (4)137 (3)
N1—H11···O36i0.79 (4)2.43 (4)2.977 (4)128 (3)
N1—H11···O35ii0.79 (4)2.50 (3)2.942 (3)117 (3)
N1—H12···O410.89 (4)1.91 (4)2.792 (5)168 (3)
O33—H33···O34iii0.77 (4)2.14 (4)2.800 (3)144 (4)
O34—H34···O31iii0.82 (4)2.11 (4)2.836 (3)148 (3)
O36—H36···O32iv0.81 (4)1.68 (4)2.478 (3)167 (3)
O41—H41···O33v0.82 (5)1.94 (5)2.753 (4)167 (3)
O41—H42···O31i0.87 (5)1.90 (5)2.766 (4)169 (3)
O51—H51···O410.98 (4)1.80 (5)2.776 (5)172 (9)
O51—H52···O22i0.97 (7)2.22 (7)3.054 (7)144 (6)
O51—H52···N4i0.97 (7)2.48 (6)3.307 (6)143 (5)
C23—H23···Cg2vi0.932.913.722 (4)147
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+1; (iii) x+2, y1/2, z+1; (iv) x+1, y, z; (v) x1, y+1, z; (vi) x+1, y+1/2, z.
Hydrogen bonds and short inter-ion contacts (Å, °) top
Cg1, Cg2 and Cg3 represent the centroids of the rings (C31–C36), (C21–C26) and (C41–C46), respectively.
CompoundD—H···AD—HH···AD···AD—H···A
(I)N1—H11···O311.02 (2)1.60 (2)2.616 (3)176 (2)
N1—H12···O32i0.92 (3)1.88 (3)2.792 (3)173 (2)
C3—H3A···Cg1i0.972.963.881 (3)160
(II)N1—H11···O310.89 (4)1.75 (4)2.620 (4)168 (3)
N1—H12···O32i0.88 (4)1.91 (4)2.786 (4)175 (4)
(III)N1—H11···O310.88 (2)1.83 (2)2.684 (3)163 (2)
N1—H11···O320.88 (2)2.60 (2)3.060 (3)113.6 (17)
N1—H12···O32i0.91 (3)1.84 (3)2.746 (3)176 (3)
C33—H33···O32ii0.932.573.327 (3)139
C2—H2B···Cg2iii0.972.773.482 (2)131
(IV)N1—H11···O310.99 (3)1.72 (3)2.694 (4)167 (3)
N1—H11···O320.99 (3)2.51 (3)3.131 (4)120.9 (19)
N1—H12···O32iii0.88 (3)1.83 (3)2.679 (4)161 (3)
N1—H11···O410.99 (3)1.77 (5)2.67 (4)151 (3)
N1—H11···O420.99 (3)2.52 (5)3.20 (4)126 (2)
N1—H12···O42iii0.88 (3)1.83 (5)2.63 (4)151 (3)
C34—H34···Cg2iv0.932.743.543 (5)145
C44—H44···Cg2iv0.932.993.73 (4)137
C26—H26···Cg3v0.932.963.754 (17)144
(V)N1—H11···O310.97 (4)1.74 (3)2.682 (4)162 (3)
N1—H12···O32i0.92 (4)1.79 (4)2.700 (5)170 (4)
C5—H5B···Cg1ii0.972.873.554 (4)128
C34—H34···Cg2vi0.932.933.658 (7)136
(VI)N1—H11···O310.75 (4)1.98 (4)2.726 (4)170 (4)
N1—H12···O32vii0.88 (3)1.86 (3)2.712 (4)163(3
C25—H25···O32viii0.932.563.488 (4)173
C26—H26···Cg1viii0.932.933.697 (4)141
(VII)N1—H11···O310.891.802.66 (3)162
N1—H11···O330.891.932.80 (3)165
N1—H12···O31ix0.891.972.83 (3)162
N1—H12···O33ix0.891.742.60 (3)161
C25—H25···O34x0.932.503.43 (3)174
C26—H26···Cg1x0.932.933.716 (5)143
(VIII)N1—H11···O311.010 (15)1.673 (15)2.6696 (19)168.6 (13)
N1—H12···O32i0.963 (16)1.745 (16)2.7077 (17)178.2 (10)
(IX)N1—H11···O311.068 (15)1.547 (15)2.6048 (15)169.7 (14)
N1—H12···O32i0.942 (15)1.861 (15)2.7797 (15)164.4 (14)
N34—H34···O32xi0.914 (16)2.155 (16)3.0535 (18)167.5 (14)
(X)N1—H11···O310.974 (16)1.677 (16)2.6500 (19)176.8 (15)
N1—H11···O320.974 (16)2.581 (17)3.2169 (17)123.0 (12)
N1—H12···O32i0.948 (17)1.837 (17)2.7709 (18)168.2 (16)
(XI)N1—H11···O310.929 (16)1.771 (16)2.6837 (16)166.8 (15)
N1—H12···O410.911 (16)1.939 (16)2.8324 (19)165.5 (14)
O41—H41···O32xii0.84 (2)1.99 (2)2.8156 (19)168 (2)
O41—H42···O510.90 (2)1.91 (2)2.810 (2)172 (2)
O51—H51···O31i0.90 (2)1.91 (2)2.810 (2)172 (2)
O51—H52···O22xii0.77 (2)2.25 (2)2.9544 (19)153 (2)
C25—H25···O36i0.932.583.433 (2)153
(XII)N1—H11···O330.868 (18)2.224 (18)2.9120 (19)136.1 (16)
N1—H12···O31i0.900 (18)1.833 (18)2.7142 (18)165.9 (16)
N1—H12···O32i0.900 (19)2.593 (17)3.154 (2)121.2 (13)
C6—H6A···O34xiii0.972.563.423 (2)148
(XIII)O33—H33···O321.07 (2)1.37 (2)2.4447 (16)177.7 (16)
O43—H43···O421.00 (2)1.48 (2)2.4707 (17)174.0 (17)
N11—H111···O320.927 (17)1.891 (17)2.8122 (18)172.3 (16)
N11—H112···O41xiv0.930 (17)1.848 (17)2.7725 (17)172.9 (13)
N21—H211···O420.975 (15)1.821 (15)2.7926 (16)174.5 (14)
N21—H212···O310.895 (15)2.283 (15)2.9776 (17)134.4 (12)
N21—H212···O34xv0.895 (15)2.428 (15)3.1170 (18)134.1 (12)
C16—H16A···O34xv0.972.553.341 (2)138
C16—H16B···O44xv0.972.523.338 (2)141
C25—H25B···Cg4xvi0.972.923.8440 (16)159
(XIV)N1—H11···O310.892.012.894 (5)171
N1—H11···O330.891.732.584 (7)160
N1—H12···O410.891.972.8251 (15)161
O32—H32···O32xvii0.821.542.355 (7)176
O34—H34···O34xvii0.822.032.820 (9)161
O42—H42···O42xviii0.821.622.4352 (12)177
(XV)N1—H11···O310.79 (4)2.40 (4)3.028 (4)137 (3)
N1—H11···O36xii0.79 (4)2.43 (4)2.977 (4)128 (3)
N1—H11···O35xix0.79 (4)2.50 (3)2.942 (3)117 (3)
N1—H12···O410.89 (4)1.91 (4)2.792 (5)168 (3)
O33—H33···O34xx0.77 (4)2.14 (4)2.800 (3)144 (4)
O34—H34···O31xx0.82 (4)2.11 (4)2.836 (3)148 (3)
O36—H36···O32ii0.81 (4)1.68 (4)2.478 (3)167(3
O41—H41···O33xxi0.82 (5)1.94 (5)2.753 (4)167 (3)
O41—H42···O31xii0.87 (5)1.90 (5)2.766 (4)169 (3)
O51—H51···O410.98 (4)1.80 (5)2.776 (5)172 (9)
O51—H52···O22xii0.97 (7)2.22 (7)3.054 (7)144 (6)
O51—H52···N4xii0.97 (7)2.48 (6)3.307 (6)143 (5)
C23—H23···Cg2xxii0.932.913.722 (4)147
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 + x, y, z; (iii) x, 1 - y, -1/2 + z; (iv) -1/2 + x, 3/2 - y, -1/2 + z; (v) 1/2 + x, -1/2 + y, z; (vi) -1 + x, y, 1 + z; (vii) 1/2 + x, 1/2 - y, 1 - z; (Viii) 1/2 - x, 1 - y, -1/2 + z; (ix) -1/2 + x, 3/2 - y, 1 - z; (x) 3/2 - x, 1 - y, 1/2 + z; (xi) x, 1/2 - y, -1/2 + z; (xii) -1 + x, y, z; (xiii) x, 1 + y, z; (xiv) x, -1 + y, z; (xv) -x, 1 - y, 1 - z; (xvi) 1 - x, -y, -z; (xvii) 1 - x, 1 - y, 2 - z; (xviii) 1 - x, -y, 2 - z; (xix) 2 - x, 1/2 + y, 1 - z; (xx) 2 - x, -1/2 + y, 1 - z; (xxi) -1 + x, 1 + y, z; (xxii) 1 - x, 1/2 + y, -z.
 

Acknowledgements

CHC thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

First citationAcosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92–o96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHackling, A., Ghosh, R., Perachon, S., Mann, A., Höltje, H. D., Wermuth, C. G., Schwartz, J. C., Sippl, W., Sokoloff, P. & Stark, H. (2003). J. Med. Chem. 46, 3883–3899.  CrossRef PubMed CAS Google Scholar
First citationHarish Chinthal, C., Yathirajan, H. S., Archana, S. D., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 841–847.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarish Chinthal, C., Yathirajan, H. S., Kavitha, C. N., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1179–1186.  CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOrjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273–1277.  CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.  CrossRef Web of Science Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.  CrossRef Web of Science Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShreekanth, T. K., Yathirajan, H. S., Kalluraya, B., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1605–1610.  CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVerdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976–983.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWaszkielewicz, A. M., Pytka, K., Rapacz, A., Wełna, E., Jarzyna, M., Satała, G., Bojarski, A. J., Sapa, J., Żmudzki, P., Filipek, B. & Marona, H. (2015). Chem. Biol. Drug Des. 85, 326–335.  CrossRef CAS PubMed Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar
First citationYépes, A. F., Palma, A., Marchal, A., Cobo, J. & Glidewell, C. (2012). Acta Cryst. C68, o199–o203.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds