research communications
μ-N-[(3,5-dimethyl-1H-pyrrol-2-yl)methylidene]-N-{4-[(3,5-dimethyl-1H-pyrrol-2-yl)methylideneazaniumyl]phenyl}azanium)bis[difluoridoboron(IV)]
and fluorescence study of (aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: tjyinzm@aliyun.com
The title molecule, C20H20B2F4N4, assumes a planar conformation with all atoms apart from the F atoms lying on the symmetry plane. Each boron atom is four-coordinated by two fluorine atoms, a pyrrole N atom and an imine N atom. Both imine CH=N groups adopt a trans conformation. In the crystal, the molecules self-assemble into a pillar structure through C—H⋯F hydrogen bonds and π–π interactions. The UV–vis spectrum and fluorescence spectra of the title compound are also reported.
Keywords: 2-iminopyrrole; BF2 complex; crystal structure; fluorescence.
CCDC reference: 2055687
1. Chemical context
Fluorescent materials are gradually becoming a necessity in modern chemistry and biology because of their unique advantages in the characterization of life activities in living organisms (Zhang et al., 2019). Boron-dipyrromethene (BODIPY) is a frequently reported fluorescent structure (Boens et al., 2015). Its planar structure endows BODIPY compounds with strong fluorescence emission under the action of excitation light. Such compounds also have high good light stability and excitation wavelengths in the visible to near infrared region. In addition, their structures can easily be modified and they are not easily affected by the environment (Loudet & Burgess, 2007). The success of BODIPY dyes has led to research on similar structures such as aza-BODIPY structures (Bodio & Goze, 2019), boron complexes of iminopyrrolide ligands (BOIMPY; Suresh et al., 2012, 2015; Lee et al., 2016), bis(difluoroboron)-1,2-bis{(pyrrol-2-yl)methylene}hydrazine (BOPHY; Boodts et al., 2018) structures and other novel organoboron fluorescence materials (Frath et al., 2014).
BOIMPY has a similar structure to BODIPY, in which the pyrrole ring is located in the same plane as the aromatic ring, the boron atom and the methylene bridge. More importantly, BOIMPY has the advantage of lower molecular symmetry, which can overcome the shortcoming of the short Stokes shifts of BODIPY (Lee et al., 2016). In contrast to BODIPY, studies on BOIMPY are still rare. Herein, we report the synthesis, and spectroscopic properties of a new BOIMPY compound, bis(difluoroboron)bis(pyrrol-2-yl)methylenediaminophenylene.
2. Structural commentary
The structure of the title compound is shown in Fig. 1. All atoms lie on the symmetry plane except for the F atoms, which deviate from it by 1.136 (1) Å (F1) and 1.135 (1) Å (F2) on the same side of the molecule. Each boron atom is four-coordinated by two fluorine atoms, a pyrrole N atom and an imine N atom. The N1—B1, N2—B1, N3—B2 and N4—B2 bond lengths [1.544 (4), 1.604 (4), 1.610 (4) and 1.538 (4) Å, respectively] are longer than the accepted mean value for a B—N bond (1.54–1.55Å) in BODIPY compounds reported in the literature (Madhu & Ravikanth, 2014). The two imine CH=N groups adopt a trans conformation and at 1.339 (4) and 1.321 (4) Å their bond lengths are longer than that in the free imino-pyrrole ligand (1.263 Å; Xu et al., 2010) while the C8—N2 and C11—N3 bonds [both 1.408 (4) Å] are shorter than in the free imino-pyrrole ligand (1.424 Å; Xu et al., 2010).
3. Supramolecular features
In the crystal, the molecules are linked by C6—H6B⋯F2 hydrogen bonds between methyl group and the fluorine atom (Table 1), and π–π interactions between benzene rings [Cg1⋯Cg1(−x + 1, y + , −z + 1) = 3.7521 (2) Å; Cg1 is the centroid of the C8–C13 ring] into one-dimensional pillars along the b-axis direction. Within the pillar, neighbouring molecules are oriented in opposite directions (Fig. 2). The pillars are held together by van der Waals interactions, forming a herringbone structure. A perspective view of the crystal packing within the is depicted in Fig. 3.
4. Database survey
A search in the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016) returned 21 entries for iminopyrrolyl boron complexes. Two diphenylboron analogues of the title compound were reported by Gomes and coworkers [KEDHIM (Suresh et al., 2012) and TUJFOV (Suresh et al., 2015)]. In their crystals, the respective dihedral angles between the 2-formiminopyrrolyl unit and the phenyl ring are −47.2 (3) and 46.1 (11)°.
5. UV–vis spectrum and fluorescence spectra
The UV–vis spectrum and fluorescence spectra of the title compound are shown in Figs. 4 and 5, respectively. The UV–vis spectrum is solvent independent. A THF solution of the title compound displays intense broad absorption at 474 nm, which can be assigned to the n–π* transition of the iminopyrrolyl group. The title compound has two emission peaks at 528 nm and 574 nm. It can be seen that the fluorescence intensity of title compound is greatly affected by the solvents. In the DMSO, the fluorescence intensity is much weaker than that in the apolar solvent CHCl3, which is similar to a previous report (Li et al., 2018). The title compound shows substantial bathochromic shifts in both absorption and emission when compared to the diphenylboron analogues reported by Gomes and coworkers (Suresh et al., 2012), which can be ascribed to the planar structure of the title compound.
6. Synthesis and crystallization
To a solution of bis(pyrrol-2-yl)methylenediaminophenylene (1 mmol, 0.32 g) and triethylamine (4.2 mmol, 6 mL) in dry dichloromethane (15 mL) was slowly added boron trifluoride ethyl ether (7.2 mmol, 2 mL). The resulting solution was stirred overnight, and then saturated potassium carbonate solution was added and stirred for 30 minutes. The resulting solution was extracted and evaporated under vacuum to dryness. The residue was purified by 2Cl2 and petroleum ether (v:v 1:2) to give an orange product, m.p. 435 K. 1H NMR (400 MHz, CDCl3) δ 8.101 (s, 2H, =CH–), 7.519 (s, 4H, Ar C—H), 6.007 (s, 2H, pyrrole CH), 2.412 (s, 6H, –CH3), 2.270 (s, 6H, –CH3). HRMS (ESI) m/z: calculated for C20H20B2F4N4, (M + H)+ 415.01521; found 415.01533.
eluting with CH7. Refinement
Crystal data, data collection and structure . H atoms were located in a difference-Fourier map, placed in calculated positions (C—H = 0.93 or 0.96 Å) and included in the final cycles of using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). Idealized methyl groups were refined as rotating groups.
details are summarized in Table 2Supporting information
CCDC reference: 2055687
https://doi.org/10.1107/S2056989021000463/ex2040sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021000463/ex2040Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C20H20B2F4N4 | Dx = 1.479 Mg m−3 |
Mr = 414.02 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pnma | Cell parameters from 1337 reflections |
a = 20.2495 (9) Å | θ = 3.9–73.0° |
b = 6.8046 (5) Å | µ = 0.99 mm−1 |
c = 13.4969 (5) Å | T = 110 K |
V = 1859.74 (17) Å3 | Block, brown |
Z = 4 | 0.25 × 0.14 × 0.13 mm |
F(000) = 856 |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2 diffractometer | 1815 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1375 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.046 |
Detector resolution: 5.2740 pixels mm-1 | θmax = 67.1°, θmin = 3.9° |
ω scans | h = −17→24 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −7→8 |
Tmin = 0.478, Tmax = 1.000 | l = −13→16 |
4486 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0648P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
1815 reflections | Δρmax = 0.27 e Å−3 |
179 parameters | Δρmin = −0.32 e Å−3 |
6 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
F1 | 0.47574 (6) | 0.5830 (2) | 0.79642 (10) | 0.0251 (3) | |
F2 | 0.27560 (6) | 0.58327 (19) | 0.39551 (9) | 0.0214 (3) | |
N1 | 0.57949 (12) | 0.750000 | 0.83332 (18) | 0.0181 (6) | |
N2 | 0.54122 (11) | 0.750000 | 0.66808 (19) | 0.0152 (5) | |
N3 | 0.37529 (11) | 0.750000 | 0.33323 (18) | 0.0146 (5) | |
N4 | 0.27854 (11) | 0.750000 | 0.2358 (2) | 0.0167 (6) | |
C1 | 0.63149 (14) | 0.750000 | 0.7670 (2) | 0.0175 (6) | |
C2 | 0.60426 (15) | 0.750000 | 0.9262 (2) | 0.0196 (7) | |
C3 | 0.67356 (15) | 0.750000 | 0.9190 (2) | 0.0215 (7) | |
H3 | 0.702742 | 0.750000 | 0.972227 | 0.026* | |
C4 | 0.69141 (14) | 0.750000 | 0.8194 (2) | 0.0183 (6) | |
C5 | 0.56119 (16) | 0.750000 | 1.0158 (2) | 0.0256 (7) | |
H5A | 0.550754 | 0.617060 | 1.033709 | 0.038* | 0.5 |
H5B | 0.521163 | 0.820249 | 1.001678 | 0.038* | 0.5 |
H5C | 0.583911 | 0.812692 | 1.069602 | 0.038* | 0.5 |
C6 | 0.76010 (14) | 0.750000 | 0.7777 (3) | 0.0223 (7) | |
H6A | 0.788406 | 0.827009 | 0.819538 | 0.034* | 0.5 |
H6B | 0.759521 | 0.805418 | 0.712325 | 0.034* | 0.5 |
H6C | 0.776318 | 0.617573 | 0.774672 | 0.034* | 0.5 |
C7 | 0.60731 (14) | 0.750000 | 0.6711 (2) | 0.0174 (6) | |
H7 | 0.633991 | 0.750000 | 0.615007 | 0.021* | |
C8 | 0.50243 (14) | 0.750000 | 0.5815 (2) | 0.0153 (6) | |
C9 | 0.43380 (14) | 0.750000 | 0.5922 (2) | 0.0190 (7) | |
H9 | 0.415253 | 0.750000 | 0.655206 | 0.023* | |
C10 | 0.39326 (14) | 0.750000 | 0.5099 (2) | 0.0212 (7) | |
H10 | 0.347688 | 0.750000 | 0.518466 | 0.025* | |
C11 | 0.41924 (14) | 0.750000 | 0.4141 (2) | 0.0150 (6) | |
C12 | 0.48845 (14) | 0.750000 | 0.4035 (2) | 0.0169 (6) | |
H12 | 0.507081 | 0.750000 | 0.340566 | 0.020* | |
C13 | 0.52863 (13) | 0.750000 | 0.4856 (2) | 0.0183 (7) | |
H13 | 0.574212 | 0.750000 | 0.477137 | 0.022* | |
C14 | 0.39064 (13) | 0.750000 | 0.2381 (2) | 0.0172 (6) | |
H14 | 0.433769 | 0.750000 | 0.214397 | 0.021* | |
C15 | 0.33467 (13) | 0.750000 | 0.1766 (2) | 0.0169 (6) | |
C16 | 0.31589 (16) | 0.750000 | 0.0770 (2) | 0.0199 (7) | |
C17 | 0.24674 (15) | 0.750000 | 0.0784 (2) | 0.0208 (7) | |
H17 | 0.219502 | 0.750000 | 0.022896 | 0.025* | |
C18 | 0.22542 (14) | 0.750000 | 0.1769 (2) | 0.0192 (7) | |
C19 | 0.35899 (15) | 0.750000 | −0.0125 (2) | 0.0260 (7) | |
H19A | 0.358113 | 0.622295 | −0.042734 | 0.039* | 0.5 |
H19B | 0.403441 | 0.781639 | 0.006382 | 0.039* | 0.5 |
H19C | 0.343184 | 0.846066 | −0.058910 | 0.039* | 0.5 |
C20 | 0.15647 (15) | 0.750000 | 0.2183 (3) | 0.0276 (8) | |
H20A | 0.138964 | 0.881066 | 0.216494 | 0.041* | 0.5 |
H20B | 0.157389 | 0.704099 | 0.285535 | 0.041* | 0.5 |
H20C | 0.129033 | 0.664835 | 0.179283 | 0.041* | 0.5 |
B1 | 0.51243 (16) | 0.750000 | 0.7788 (2) | 0.0164 (7) | |
B2 | 0.29629 (15) | 0.750000 | 0.3467 (3) | 0.0163 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0203 (6) | 0.0351 (8) | 0.0197 (6) | −0.0089 (6) | −0.0011 (5) | 0.0052 (6) |
F2 | 0.0177 (6) | 0.0275 (7) | 0.0190 (6) | −0.0052 (5) | 0.0007 (5) | 0.0037 (6) |
N1 | 0.0159 (12) | 0.0255 (14) | 0.0128 (12) | 0.000 | −0.0019 (10) | 0.000 |
N2 | 0.0108 (10) | 0.0211 (13) | 0.0137 (12) | 0.000 | −0.0022 (10) | 0.000 |
N3 | 0.0109 (11) | 0.0196 (12) | 0.0133 (12) | 0.000 | 0.0000 (10) | 0.000 |
N4 | 0.0114 (11) | 0.0199 (13) | 0.0187 (13) | 0.000 | −0.0012 (10) | 0.000 |
C1 | 0.0144 (13) | 0.0195 (15) | 0.0186 (15) | 0.000 | −0.0019 (12) | 0.000 |
C2 | 0.0233 (15) | 0.0194 (15) | 0.0163 (15) | 0.000 | −0.0034 (13) | 0.000 |
C3 | 0.0203 (15) | 0.0230 (16) | 0.0213 (15) | 0.000 | −0.0064 (13) | 0.000 |
C4 | 0.0147 (13) | 0.0166 (14) | 0.0235 (15) | 0.000 | −0.0078 (12) | 0.000 |
C5 | 0.0239 (14) | 0.0358 (19) | 0.0169 (15) | 0.000 | −0.0045 (13) | 0.000 |
C6 | 0.0140 (13) | 0.0262 (17) | 0.0267 (17) | 0.000 | −0.0062 (13) | 0.000 |
C7 | 0.0115 (13) | 0.0221 (15) | 0.0185 (15) | 0.000 | −0.0007 (12) | 0.000 |
C8 | 0.0136 (13) | 0.0182 (14) | 0.0142 (15) | 0.000 | −0.0024 (11) | 0.000 |
C9 | 0.0136 (13) | 0.0309 (17) | 0.0126 (14) | 0.000 | 0.0015 (12) | 0.000 |
C10 | 0.0099 (12) | 0.0345 (17) | 0.0193 (16) | 0.000 | 0.0000 (12) | 0.000 |
C11 | 0.0128 (13) | 0.0179 (14) | 0.0144 (14) | 0.000 | −0.0024 (11) | 0.000 |
C12 | 0.0123 (13) | 0.0259 (15) | 0.0124 (14) | 0.000 | 0.0029 (11) | 0.000 |
C13 | 0.0085 (12) | 0.0255 (16) | 0.0209 (16) | 0.000 | −0.0008 (12) | 0.000 |
C14 | 0.0118 (13) | 0.0200 (15) | 0.0198 (15) | 0.000 | −0.0010 (12) | 0.000 |
C15 | 0.0119 (12) | 0.0179 (14) | 0.0209 (16) | 0.000 | 0.0006 (12) | 0.000 |
C16 | 0.0213 (14) | 0.0212 (15) | 0.0173 (14) | 0.000 | −0.0064 (13) | 0.000 |
C17 | 0.0196 (14) | 0.0264 (17) | 0.0166 (15) | 0.000 | −0.0093 (13) | 0.000 |
C18 | 0.0158 (14) | 0.0235 (16) | 0.0183 (15) | 0.000 | −0.0044 (12) | 0.000 |
C19 | 0.0229 (15) | 0.0370 (18) | 0.0182 (16) | 0.000 | −0.0004 (13) | 0.000 |
C20 | 0.0148 (14) | 0.045 (2) | 0.0234 (17) | 0.000 | −0.0037 (13) | 0.000 |
B1 | 0.0160 (15) | 0.0232 (18) | 0.0100 (16) | 0.000 | −0.0018 (13) | 0.000 |
B2 | 0.0092 (14) | 0.0238 (18) | 0.0158 (15) | 0.000 | −0.0036 (13) | 0.000 |
F1—B1 | 1.378 (2) | C6—H6C | 0.9600 |
F2—B2 | 1.377 (2) | C7—H7 | 0.9300 |
N1—C1 | 1.382 (4) | C8—C9 | 1.397 (4) |
N1—C2 | 1.350 (4) | C8—C13 | 1.399 (4) |
N1—B1 | 1.544 (4) | C9—H9 | 0.9300 |
N2—C7 | 1.339 (4) | C9—C10 | 1.381 (4) |
N2—C8 | 1.408 (4) | C10—H10 | 0.9300 |
N2—B1 | 1.604 (4) | C10—C11 | 1.396 (4) |
N3—C11 | 1.408 (4) | C11—C12 | 1.409 (4) |
N3—C14 | 1.321 (4) | C12—H12 | 0.9300 |
N3—B2 | 1.610 (4) | C12—C13 | 1.374 (4) |
N4—C15 | 1.389 (4) | C13—H13 | 0.9300 |
N4—C18 | 1.338 (4) | C14—H14 | 0.9300 |
N4—B2 | 1.538 (4) | C14—C15 | 1.404 (4) |
C1—C4 | 1.404 (4) | C15—C16 | 1.398 (4) |
C1—C7 | 1.384 (4) | C16—C17 | 1.400 (4) |
C2—C3 | 1.407 (4) | C16—C19 | 1.491 (5) |
C2—C5 | 1.491 (5) | C17—H17 | 0.9300 |
C3—H3 | 0.9300 | C17—C18 | 1.398 (5) |
C3—C4 | 1.393 (5) | C18—C20 | 1.504 (4) |
C4—C6 | 1.500 (4) | C19—H19A | 0.9600 |
C5—H5A | 0.9600 | C19—H19B | 0.9600 |
C5—H5B | 0.9600 | C19—H19C | 0.9600 |
C5—H5C | 0.9600 | C20—H20A | 0.9600 |
C6—H6A | 0.9600 | C20—H20B | 0.9600 |
C6—H6B | 0.9600 | C20—H20C | 0.9600 |
C1—N1—B1 | 111.2 (2) | N3—C11—C12 | 123.4 (3) |
C2—N1—C1 | 108.6 (2) | C10—C11—N3 | 118.7 (2) |
C2—N1—B1 | 140.2 (3) | C10—C11—C12 | 117.9 (3) |
C7—N2—C8 | 125.6 (3) | C11—C12—H12 | 119.7 |
C7—N2—B1 | 109.6 (2) | C13—C12—C11 | 120.5 (3) |
C8—N2—B1 | 124.8 (2) | C13—C12—H12 | 119.7 |
C11—N3—B2 | 122.7 (2) | C8—C13—H13 | 119.3 |
C14—N3—C11 | 127.2 (2) | C12—C13—C8 | 121.4 (3) |
C14—N3—B2 | 110.1 (2) | C12—C13—H13 | 119.3 |
C15—N4—B2 | 111.6 (2) | N3—C14—H14 | 123.7 |
C18—N4—C15 | 108.4 (3) | N3—C14—C15 | 112.6 (3) |
C18—N4—B2 | 140.0 (3) | C15—C14—H14 | 123.7 |
N1—C1—C4 | 109.4 (3) | N4—C15—C14 | 108.7 (3) |
N1—C1—C7 | 109.6 (2) | N4—C15—C16 | 109.3 (2) |
C7—C1—C4 | 140.9 (3) | C16—C15—C14 | 142.0 (3) |
N1—C2—C3 | 107.9 (3) | C15—C16—C17 | 105.0 (3) |
N1—C2—C5 | 122.4 (3) | C15—C16—C19 | 128.4 (3) |
C3—C2—C5 | 129.8 (3) | C17—C16—C19 | 126.6 (3) |
C2—C3—H3 | 125.5 | C16—C17—H17 | 125.6 |
C4—C3—C2 | 109.0 (3) | C18—C17—C16 | 108.7 (3) |
C4—C3—H3 | 125.5 | C18—C17—H17 | 125.6 |
C1—C4—C6 | 127.8 (3) | N4—C18—C17 | 108.5 (3) |
C3—C4—C1 | 105.2 (3) | N4—C18—C20 | 121.7 (3) |
C3—C4—C6 | 127.1 (3) | C17—C18—C20 | 129.8 (3) |
C2—C5—H5A | 109.5 | C16—C19—H19A | 109.5 |
C2—C5—H5B | 109.5 | C16—C19—H19B | 109.5 |
C2—C5—H5C | 109.5 | C16—C19—H19C | 109.5 |
H5A—C5—H5B | 109.5 | H19A—C19—H19B | 109.5 |
H5A—C5—H5C | 109.5 | H19A—C19—H19C | 109.5 |
H5B—C5—H5C | 109.5 | H19B—C19—H19C | 109.5 |
C4—C6—H6A | 109.5 | C18—C20—H20A | 109.5 |
C4—C6—H6B | 109.5 | C18—C20—H20B | 109.5 |
C4—C6—H6C | 109.5 | C18—C20—H20C | 109.5 |
H6A—C6—H6B | 109.5 | H20A—C20—H20B | 109.5 |
H6A—C6—H6C | 109.5 | H20A—C20—H20C | 109.5 |
H6B—C6—H6C | 109.5 | H20B—C20—H20C | 109.5 |
N2—C7—C1 | 112.5 (3) | F1—B1—F1i | 111.1 (3) |
N2—C7—H7 | 123.8 | F1—B1—N1 | 113.08 (16) |
C1—C7—H7 | 123.8 | F1i—B1—N1 | 113.08 (16) |
C9—C8—N2 | 118.0 (3) | F1—B1—N2 | 110.87 (17) |
C9—C8—C13 | 118.2 (3) | F1i—B1—N2 | 110.87 (17) |
C13—C8—N2 | 123.8 (3) | N1—B1—N2 | 97.1 (2) |
C8—C9—H9 | 119.7 | F2—B2—F2i | 110.9 (2) |
C10—C9—C8 | 120.6 (3) | F2—B2—N3 | 110.86 (15) |
C10—C9—H9 | 119.7 | F2i—B2—N3 | 110.86 (15) |
C9—C10—H10 | 119.3 | F2—B2—N4 | 113.23 (15) |
C9—C10—C11 | 121.4 (3) | F2i—B2—N4 | 113.23 (15) |
C11—C10—H10 | 119.3 | N4—B2—N3 | 97.0 (2) |
N1—C1—C4—C3 | 0.000 (1) | C11—N3—C14—C15 | 180.000 (1) |
N1—C1—C4—C6 | 180.000 (1) | C11—N3—B2—F2i | 61.82 (18) |
N1—C1—C7—N2 | 0.000 (1) | C11—N3—B2—F2 | −61.81 (18) |
N1—C2—C3—C4 | 0.000 (1) | C11—N3—B2—N4 | 180.000 (1) |
N2—C8—C9—C10 | 180.000 (1) | C11—C12—C13—C8 | 0.000 (1) |
N2—C8—C13—C12 | 180.000 (1) | C13—C8—C9—C10 | 0.000 (1) |
N3—C11—C12—C13 | 180.000 (1) | C14—N3—C11—C10 | 180.000 (1) |
N3—C14—C15—N4 | 0.000 (1) | C14—N3—C11—C12 | 0.000 (1) |
N3—C14—C15—C16 | 180.000 (1) | C14—N3—B2—F2 | 118.19 (18) |
N4—C15—C16—C17 | 0.000 (1) | C14—N3—B2—F2i | −118.18 (18) |
N4—C15—C16—C19 | 180.000 (1) | C14—N3—B2—N4 | 0.000 (1) |
C1—N1—C2—C3 | 0.000 (1) | C14—C15—C16—C17 | 180.000 (1) |
C1—N1—C2—C5 | 180.000 (1) | C14—C15—C16—C19 | 0.000 (1) |
C1—N1—B1—F1i | −116.3 (2) | C15—N4—C18—C17 | 0.000 (1) |
C1—N1—B1—F1 | 116.3 (2) | C15—N4—C18—C20 | 180.000 (1) |
C1—N1—B1—N2 | 0.000 (1) | C15—N4—B2—F2i | 116.33 (18) |
C2—N1—C1—C4 | 0.000 (1) | C15—N4—B2—F2 | −116.32 (18) |
C2—N1—C1—C7 | 180.000 (1) | C15—N4—B2—N3 | 0.000 (1) |
C2—N1—B1—F1 | −63.7 (2) | C15—C16—C17—C18 | 0.000 (1) |
C2—N1—B1—F1i | 63.7 (2) | C16—C17—C18—N4 | 0.000 (1) |
C2—N1—B1—N2 | 180.000 (1) | C16—C17—C18—C20 | 180.000 (1) |
C2—C3—C4—C1 | 0.000 (1) | C18—N4—C15—C14 | 180.000 (1) |
C2—C3—C4—C6 | 180.000 (1) | C18—N4—C15—C16 | 0.000 (1) |
C4—C1—C7—N2 | 180.000 (1) | C18—N4—B2—F2i | −63.67 (18) |
C5—C2—C3—C4 | 180.000 (1) | C18—N4—B2—F2 | 63.68 (18) |
C7—N2—C8—C9 | 180.000 (1) | C18—N4—B2—N3 | 180.000 (1) |
C7—N2—C8—C13 | 0.000 (1) | C19—C16—C17—C18 | 180.0 |
C7—N2—B1—F1i | 118.07 (18) | B1—N1—C1—C4 | 180.000 (1) |
C7—N2—B1—F1 | −118.07 (18) | B1—N1—C1—C7 | 0.000 (1) |
C7—N2—B1—N1 | 0.000 (1) | B1—N1—C2—C3 | 180.000 (1) |
C7—C1—C4—C3 | 180.000 (1) | B1—N1—C2—C5 | 0.000 (1) |
C7—C1—C4—C6 | 0.000 (1) | B1—N2—C7—C1 | 0.000 (1) |
C8—N2—C7—C1 | 180.000 (1) | B1—N2—C8—C9 | 0.000 (1) |
C8—N2—B1—F1i | −61.93 (18) | B1—N2—C8—C13 | 180.000 (1) |
C8—N2—B1—F1 | 61.93 (18) | B2—N3—C11—C10 | 0.000 (1) |
C8—N2—B1—N1 | 180.000 (1) | B2—N3—C11—C12 | 180.000 (1) |
C8—C9—C10—C11 | 0.000 (1) | B2—N3—C14—C15 | 0.000 (1) |
C9—C8—C13—C12 | 0.000 (1) | B2—N4—C15—C14 | 0.000 (1) |
C9—C10—C11—N3 | 180.000 (1) | B2—N4—C15—C16 | 180.000 (1) |
C9—C10—C11—C12 | 0.000 (1) | B2—N4—C18—C17 | 180.000 (1) |
C10—C11—C12—C13 | 0.000 (1) | B2—N4—C18—C20 | 0.000 (1) |
Symmetry code: (i) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6B···F2ii | 0.96 | 2.49 | 3.336 (3) | 147 |
Symmetry code: (ii) −x+1, y+1/2, −z+1. |
Funding information
Funding for this research was provided by: National Natural Science Foundation of China (award No. 21172174).
References
Bodio, E. & Goze, C. (2019). Dyes Pigments, 160, 700–710. Web of Science CrossRef CAS Google Scholar
Boens, N., Verbelen, B. & Dehaen, W. (2015). Eur. J. Org. Chem. pp. 6577–6595. Web of Science CrossRef Google Scholar
Boodts, S., Fron, E., Hofkens, J. & Dehaen, W. (2018). Coord. Chem. Rev. 371, 1–10. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frath, D., Massue, J., Ulrich, G. & Ziessel, R. (2014). Angew. Chem. Int. Ed. 53, 2290–2310. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Lee, B., Park, B. G., Cho, W., Lee, H. Y., Olasz, A., Chen, C.-H., Park, S. B. & Lee, D. (2016). Chem. Eur. J. 22, 17321–17328. Web of Science CSD CrossRef CAS PubMed Google Scholar
Li, T., Xu, L. & Yin, Z. (2018). Chinese J. Struct. Chem, 37, 809–904. Google Scholar
Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932. Web of Science CrossRef PubMed CAS Google Scholar
Madhu, I. & Ravikanth, M. (2014). Inorg. Chem. 53, 1646–1653. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku, OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Suresh, D., Gomes, C. S. B., Gomes, P. T., Di Paolo, R. E., Macanica, A. L., Calhorda, M. J., Charas, A., Morgado, J. & Duarte, M. T. (2012). Dalton Trans. 41, 8902–8905. Web of Science CSD CrossRef Google Scholar
Suresh, D., Gomes, C. S. B., Lopes, P. S., Figueira, C. A., Ferreira, B., Gomes, P. T., Di Paolo, R. E., Maçanita, A. L., Duarte, M. T., Charas, A., Morgado, J., Vila-Viçosa, D. & Calhorda, M. J. (2015). Chem. Eur. J. 21, 9133–9149. Web of Science CSD CrossRef CAS PubMed Google Scholar
Xu, L., Liu, S. Y. & Yin, Z. (2010). Chin. J. Struct. Chem. 29, 613–617. CAS Google Scholar
Zhang, J., Chai, X., He, X.-P., Kim, H.-J., Yoon, J. & Tian, H. (2019). Chem. Soc. Rev. 48, 683–722. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.