research communications
N′-[2-(benzo[d]thiazol-2-yl)acetyl]benzohydrazide, an achiral compound crystallizing in P1 with Z = 1
ofaChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
In the molecule of the title compound, C16H13N3O2S, one hydrazinic nitrogen atom is essentially planar, but the other is slightly pyramidalized. The torsion angle about the hydrazinic bond is 66.44 (15)°. Both hydrazinic hydrogen atoms lie antiperiplanar to the oxygen of the adjacent carbonyl group. The molecular packing is a layer structure determined by two classical hydrogen bonds, N—H⋯O=C and N—H⋯Nthiazole. The is P1 with Z = 1, which is unusual for an achiral organic compound.
Keywords: thiazole; hydrazide; hydrogen bond; space group P1; crystal structure.
CCDC reference: 2099652
1. Chemical context
Heterocycles represent a link between organic synthesis and pharmaceutical chemistry, thereby encouraging researchers to discover new hetereocyclic drug candidates. One of the most prominent heterocycles is benzothiazole, a privileged scaffold in the field of synthetic and medicinal chemistry (Elgemeie et al., 2000a,b). Its derivatives and metal complexes possess a wide range of pharmacological properties and a high degree of structural diversity that have proved vital for the investigation for novel therapeutics (Elgemeie et al., 2020; Gill et al., 2015). The carbon atom C2 (standard numbering; the carbon atom between nitrogen and sulfur) is the most attractive site both from a synthetic and medicinal point of view (Azzam et al., 2020a,b). As structure–activity relationships have shown, changes in the substituent at C2 can induce marked changes in the biological activity (Azzam et al., 2017a,b). Numerous biologically potent molecules containing 2-substituted benzothiazole scaffolds have extensive biological applications (Keri et al., 2015), such as anti-microbial (König et al., 2011), anti-malarial (Bowyer et al., 2007) and anti-inflammatory (Wang et al., 2009). Among the 2-substituted benzothiazoles, 2-aryl benzothiazoles are versatile scaffolds that have major biological and industrial applications (Kamal et al., 2011). Part of our research has therefore concentrated on the synthetic pathways of 2-arylbenzothiazoles (Azzam et al., 2019; Elgemeie & Elghandour, 1990). Recently, we contributed to current progress in the manufacturing and biological estimation of 2-aryl, 2-pyridyl and 2-pyrimidylbenzothiazoles and other antimetabolites as potent chemotherapeutic agents (Azzam et al., 2020c; Metwally et al., 2021). Here we deal with synthetic approaches to the new compound N′-(2-(benzo[d]thiazol-2-yl)acetyl)benzohydrazide (3). Compound 3 was prepared by the reaction of 2-(benzo[d]thiazol-2-yl)acetohydrazide (2) with benzoyl chloride in the presence of pyridine at room temperature. The structure of 3 was initially determined on the basis of spectroscopic data and elemental analysis. In order to establish the structure of the product unambiguously, its was determined and is presented here.
2. Structural commentary
The 3 (Fig. 1). Bond lengths and angles may be regarded as normal (Allen et al., 1987); a selection is presented in Table 1. The geometry at the hydrazinic nitrogen atom N1 is essentially planar, but N2 is slightly pyramidalized [angle sum 355 (2)°; the nitrogen atom lies 0.15 (1) Å out of the plane of its substituents]. The general shape of the molecule is defined by the torsion angles along the atom chain S1—C2—C8—C9—N1—N2—C10—C11—C12, which are also given in Table 1; in particular, the torsion angle about the hydrazine N1—N2 bond is 66.44 (15)° [cf. H01—N1—N2—H02 101 (3)°]. Each hydrazinic hydrogen atom lies antiperiplanar to a carbonyl oxygen atom across the respective N—C bond. The interplanar angle between the benzothiazol group and the phenyl ring is 75.65 (3)°.
confirms the formation of compound
|
3. Supramolecular features
Two classical hydrogen bonds, from the hydrazinic hydrogen atoms to the carbonyl oxygen O1 and the heterocyclic nitrogen N3 (Table 2), link the molecules to form layers parallel to the ab plane (Fig. 2).
4. Database survey
A database search (CSD Version 5.41) for other structures containing the same benzothiazol-acetylhydrazide moiety gave only one hit, refcode JEBQOZ, with a p-tosylate group replacing the benzoyl group of 3; this was our previous publication (Azzam et al., 2017b). There are major conformational differences between the two structures, e.g. the C—C—C(=O)—N torsion angle of JEBQOZ is −109.79 (19)° in contrast to −152.41 (11)° in the title structure. The average database bond lengths C2—S and C2—N for the benzo[d]thiazole ring system were calculated; for 444 hits (600 different molecules) the values were 1.750 (16) and 1.300 (29) Å, respectively, virtually unchanged from the values we obtained previously (Azzam et al., 2017b); however, we regret having mistyped the latter value as 1.200.
Anecdotal evidence, combined with previous experience, would suggest that it is unusual for an achiral compound to crystallize in P1, which may be considered as a moderately rare of the over 1.1 million structures in the Cambridge database, only 9843 are in P1 (8832 with coordinates available, 6730 of these without disorder).
We therefore wished to see how many of the P1 structures in the CSD, particularly those with Z = 1, were achiral. Unfortunately, there is at present no means of identifying, labelling and searching for or chiral (`asymmetric') atoms using the standard ConQuest search routines, and it is clearly unfeasible to check all the P1 structures by hand. We therefore began by simply considering the small and possibly non-representative subset of 20 P1 structures (13 with Z > 1) that were determined by PGJ. Of these, 14 were pure enantiomers; for 12 of these, the was determined. Of the remaining six, five were not organic compounds [two metal complexes with Z = 1 (Jones et al., 1996; Filimon et al., 2014), two organotellurium compounds (Jones et al., 2015, Z = 1; du Mont et al., 2010, Z = 4), and one phosphane sulfide (Taouss & Jones, 2013, Z = 2)], and the remaining structure (Focken et al., 2001, Z = 4) displayed but contained no `asymmetric' atom. On this limited basis, we would therefore postulate that is very rare for achiral organic compounds to crystallize in P1, especially with Z = 1. An extension of this survey to all P1 structures in the CCDC is being planned.
5. Synthesis and crystallization
A mixture of 2-(benzo[d]thiazol-2-yl)acetohydrazide 2 (0.08 mol) and pyridine (10 mL) was stirred for 15 min at room temperature. Benzoyl chloride (0.16 mol) was then added gradually to the reaction mixture, which was stirred for 15 min at 273 K. The reaction mixture was left to stand at room temperature for another 3 h, then poured onto ice water and neutralized with HCl. The precipitate thus formed was filtered off and dried to produce a white solid product 3. This was washed with ethyl acetate and recrystallized from ethanol; yield 85%, m.p. 487 K.
IR (KBr, cm−1): υ 3429–3284 (NH), 2974 (CH aromatic), 1696, 1662 (2CO); 1H NMR (400 MHz, DMSO-d6): δ 4.23 (s, 2H, CH2), 7.43 (t, J = 7.2 Hz, 1H, benzothiazole H), 7.49–7.53 (m, 3H, C6H5), 7.58 (t, J = 7.2 Hz, 1H, benzothiazole H), 7.91 (d, J = 7.2 Hz, 2H, C6H5), 7.99 (d, J = 9.6 Hz, 1H, benzothiazole H), 8.09 (d, J = 9.2 Hz, 1H, benzothiazole H), 10.48 (s, 1H, NH), 10.55 (s, 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ 39.4 (CH2), 122.5, 122.8, 125.5, 126.5, 127.9, 128.9, 132.4, 132.8, 136.9, 152.7, 165.0 (Ar-C), 166.0, 167.1 (2CO). Analysis: calculated for C16H13N3O2S (311.36): C 61.72; H 4.21; N 13.50%; found: C 61.70; H 4.22; N 13.55%.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms of the NH groups were refined freely. Other hydrogens were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethylene = 0.99 Å). The U(H) values were fixed at 1.2 times the equivalent Uiso value of the parent carbon atoms.
details are summarized in Table 3The compound contains no chiral centres and crystallizes only by chance in a chiral (Sohncke) space group.
Supporting information
CCDC reference: 2099652
https://doi.org/10.1107/S2056989021007672/yk2155sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021007672/yk2155Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021007672/yk2155Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2020); cell
CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).C16H13N3O2S | Z = 1 |
Mr = 311.35 | F(000) = 162 |
Triclinic, P1 | Dx = 1.438 Mg m−3 |
a = 4.71248 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.96463 (14) Å | Cell parameters from 40070 reflections |
c = 11.5455 (3) Å | θ = 3.0–37.0° |
α = 105.6168 (18)° | µ = 0.24 mm−1 |
β = 95.7876 (16)° | T = 100 K |
γ = 95.9993 (16)° | Plate, colourless |
V = 359.64 (1) Å3 | 0.20 × 0.16 × 0.05 mm |
XtaLAB Synergy, HyPix diffractometer | 6522 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 6312 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 36.8°, θmin = 3.1° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | k = −11→11 |
Tmin = 0.844, Tmax = 1.000 | l = −18→19 |
60895 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0486P)2 + 0.0499P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.078 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.41 e Å−3 |
6522 reflections | Δρmin = −0.27 e Å−3 |
207 parameters | Absolute structure: Flack x determined using 2959 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
3 restraints | Absolute structure parameter: −0.016 (12) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 3.5462 (0.0009) x + 3.6978 (0.0019) y - 0.2128 (0.0045) z = 6.1650 (0.0025) * -0.0069 (0.0007) S1 * 0.0023 (0.0009) C2 * 0.0044 (0.0009) N3 * -0.0011 (0.0011) C4 * -0.0046 (0.0012) C5 * 0.0007 (0.0012) C6 * 0.0082 (0.0011) C7 * -0.0004 (0.0011) C3A * -0.0026 (0.0011) C7A -0.0318 (0.0015) C8 Rms deviation of fitted atoms = 0.0043 - 3.3343 (0.0019) x + 1.8849 (0.0037) y + 7.6563 (0.0052) z = 0.2749 (0.0019) Angle to previous plane (with approximate esd) = 75.652 ( 0.033 ) * 0.0041 (0.0009) C11 * 0.0008 (0.0009) C12 * -0.0051 (0.0009) C13 * 0.0044 (0.0010) C14 * 0.0006 (0.0010) C15 * -0.0049 (0.0009) C16 -0.0026 (0.0020) C10 Rms deviation of fitted atoms = 0.0038 ============================================================================= - 0.0418 (0.0830) x - 3.0734 (0.0043) y + 11.3227 (0.0146) z = 3.7743 (0.0598) * 0.0000 (0.0000) N2 * 0.0000 (0.0001) C9 * 0.0000 (0.0000) H01 0.0634 (0.0123) N1 Rms deviation of fitted atoms = 0.0000 4.0751 (0.0123) x - 3.1432 (0.0992) y - 3.6530 (0.1475) z = 1.0965 (0.0176) * 0.0000 (0.0001) N1 * 0.0000 (0.0001) C10 * 0.0000 (0.0000) H02 0.1480 (0.0122) N2 Rms deviation of fitted atoms = 0.0000 ============================================================================= Further torsion angles: 97.53 ( 0.11) O2 - C10 ··· C9 - O1 175.44 ( 2.18) H01 - N1 - C9 - O1 165.89 ( 2.18) H02 - N2 - C10 - O2 101.08 ( 2.76) H01 - N1 - N2 - H02 |
x | y | z | Uiso*/Ueq | ||
S1 | 0.88408 (5) | 0.86164 (4) | 0.76703 (3) | 0.01738 (7) | |
C2 | 0.8642 (3) | 0.87459 (17) | 0.61788 (11) | 0.01314 (18) | |
N1 | 0.9484 (2) | 0.36700 (15) | 0.44206 (10) | 0.01379 (17) | |
H01 | 1.135 (6) | 0.377 (4) | 0.440 (3) | 0.031 (6)* | |
N2 | 0.7891 (2) | 0.17967 (15) | 0.38503 (10) | 0.01379 (17) | |
H02 | 0.743 (6) | 0.111 (4) | 0.433 (2) | 0.025 (6)* | |
N3 | 0.7208 (2) | 1.01131 (16) | 0.59308 (10) | 0.01420 (17) | |
C3A | 0.6136 (3) | 1.11873 (18) | 0.69578 (11) | 0.01407 (18) | |
C4 | 0.4492 (3) | 1.2765 (2) | 0.70032 (13) | 0.0202 (2) | |
H4 | 0.401227 | 1.318921 | 0.630063 | 0.024* | |
C5 | 0.3581 (3) | 1.3691 (2) | 0.80960 (15) | 0.0232 (3) | |
H5 | 0.245566 | 1.475698 | 0.813913 | 0.028* | |
C6 | 0.4294 (3) | 1.3082 (2) | 0.91385 (13) | 0.0214 (2) | |
H6 | 0.364372 | 1.374379 | 0.987636 | 0.026* | |
C7 | 0.5928 (3) | 1.1534 (2) | 0.91122 (12) | 0.0191 (2) | |
H7 | 0.642508 | 1.113038 | 0.982118 | 0.023* | |
C7A | 0.6821 (3) | 1.05845 (18) | 0.80085 (11) | 0.01465 (19) | |
C8 | 1.0007 (3) | 0.72931 (17) | 0.52744 (11) | 0.01505 (19) | |
H8A | 1.188694 | 0.709803 | 0.566030 | 0.018* | |
H8B | 1.035889 | 0.785089 | 0.459045 | 0.018* | |
C9 | 0.8084 (3) | 0.52723 (17) | 0.47944 (11) | 0.01345 (18) | |
O1 | 0.5458 (2) | 0.51401 (15) | 0.47552 (10) | 0.01766 (17) | |
C10 | 0.6341 (3) | 0.15543 (17) | 0.27343 (11) | 0.01340 (18) | |
O2 | 0.6698 (2) | 0.27818 (15) | 0.21612 (10) | 0.01878 (17) | |
C11 | 0.4201 (3) | −0.03063 (17) | 0.22693 (11) | 0.01309 (18) | |
C12 | 0.4296 (3) | −0.19751 (18) | 0.27175 (12) | 0.01574 (19) | |
H12 | 0.576152 | −0.195084 | 0.335201 | 0.019* | |
C13 | 0.2252 (3) | −0.36724 (18) | 0.22370 (12) | 0.0172 (2) | |
H13 | 0.233253 | −0.481009 | 0.253846 | 0.021* | |
C14 | 0.0089 (3) | −0.37052 (19) | 0.13160 (12) | 0.0180 (2) | |
H14 | −0.132276 | −0.485758 | 0.099661 | 0.022* | |
C15 | −0.0006 (3) | −0.2051 (2) | 0.08620 (13) | 0.0191 (2) | |
H15 | −0.147919 | −0.208041 | 0.022925 | 0.023* | |
C16 | 0.2046 (3) | −0.03535 (19) | 0.13308 (12) | 0.0164 (2) | |
H16 | 0.198429 | 0.076976 | 0.101456 | 0.020* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01905 (14) | 0.01772 (12) | 0.01655 (12) | 0.00614 (9) | 0.00163 (9) | 0.00577 (9) |
C2 | 0.0104 (5) | 0.0131 (4) | 0.0151 (4) | 0.0011 (3) | 0.0022 (3) | 0.0026 (3) |
N1 | 0.0089 (4) | 0.0117 (4) | 0.0194 (4) | 0.0008 (3) | 0.0019 (3) | 0.0024 (3) |
N2 | 0.0133 (4) | 0.0114 (4) | 0.0158 (4) | −0.0007 (3) | 0.0011 (3) | 0.0038 (3) |
N3 | 0.0136 (4) | 0.0139 (4) | 0.0150 (4) | 0.0025 (3) | 0.0025 (3) | 0.0034 (3) |
C3A | 0.0126 (5) | 0.0129 (4) | 0.0161 (4) | 0.0021 (3) | 0.0019 (3) | 0.0030 (3) |
C4 | 0.0209 (6) | 0.0178 (5) | 0.0229 (6) | 0.0084 (4) | 0.0036 (4) | 0.0054 (4) |
C5 | 0.0203 (6) | 0.0198 (5) | 0.0274 (6) | 0.0077 (4) | 0.0049 (5) | 0.0008 (5) |
C6 | 0.0173 (6) | 0.0214 (6) | 0.0212 (6) | 0.0023 (4) | 0.0051 (4) | −0.0023 (4) |
C7 | 0.0182 (6) | 0.0214 (5) | 0.0156 (5) | 0.0017 (4) | 0.0032 (4) | 0.0015 (4) |
C7A | 0.0132 (5) | 0.0146 (4) | 0.0152 (4) | 0.0019 (3) | 0.0023 (3) | 0.0025 (3) |
C8 | 0.0104 (5) | 0.0126 (4) | 0.0200 (5) | 0.0006 (3) | 0.0042 (4) | 0.0006 (4) |
C9 | 0.0106 (5) | 0.0128 (4) | 0.0160 (4) | 0.0009 (3) | 0.0026 (3) | 0.0025 (3) |
O1 | 0.0094 (4) | 0.0163 (4) | 0.0253 (4) | 0.0008 (3) | 0.0032 (3) | 0.0026 (3) |
C10 | 0.0128 (5) | 0.0120 (4) | 0.0158 (4) | 0.0013 (3) | 0.0032 (3) | 0.0043 (3) |
O2 | 0.0217 (5) | 0.0158 (4) | 0.0194 (4) | −0.0020 (3) | 0.0015 (3) | 0.0081 (3) |
C11 | 0.0133 (5) | 0.0113 (4) | 0.0148 (4) | 0.0006 (3) | 0.0029 (3) | 0.0039 (3) |
C12 | 0.0158 (5) | 0.0130 (4) | 0.0182 (5) | 0.0005 (4) | 0.0007 (4) | 0.0051 (4) |
C13 | 0.0192 (6) | 0.0121 (4) | 0.0198 (5) | −0.0009 (4) | 0.0029 (4) | 0.0047 (4) |
C14 | 0.0170 (5) | 0.0156 (5) | 0.0190 (5) | −0.0022 (4) | 0.0028 (4) | 0.0025 (4) |
C15 | 0.0167 (6) | 0.0193 (5) | 0.0198 (5) | −0.0015 (4) | −0.0015 (4) | 0.0058 (4) |
C16 | 0.0158 (5) | 0.0156 (5) | 0.0179 (5) | 0.0003 (4) | 0.0005 (4) | 0.0065 (4) |
S1—C7A | 1.7310 (13) | C11—C16 | 1.3994 (17) |
S1—C2 | 1.7422 (12) | C12—C13 | 1.3909 (17) |
C2—N3 | 1.2993 (16) | C13—C14 | 1.390 (2) |
C2—C8 | 1.4933 (17) | C14—C15 | 1.3911 (19) |
N1—C9 | 1.3488 (16) | C15—C16 | 1.3919 (18) |
N1—N2 | 1.3901 (14) | N1—H01 | 0.88 (3) |
N2—C10 | 1.3747 (16) | N2—H02 | 0.85 (3) |
N3—C3A | 1.3939 (16) | C4—H4 | 0.9500 |
C3A—C4 | 1.4018 (18) | C5—H5 | 0.9500 |
C3A—C7A | 1.4056 (17) | C6—H6 | 0.9500 |
C4—C5 | 1.386 (2) | C7—H7 | 0.9500 |
C5—C6 | 1.401 (2) | C8—H8A | 0.9900 |
C6—C7 | 1.385 (2) | C8—H8B | 0.9900 |
C7—C7A | 1.3967 (19) | C12—H12 | 0.9500 |
C8—C9 | 1.5237 (16) | C13—H13 | 0.9500 |
C9—O1 | 1.2266 (15) | C14—H14 | 0.9500 |
C10—O2 | 1.2222 (14) | C15—H15 | 0.9500 |
C10—C11 | 1.4925 (16) | C16—H16 | 0.9500 |
C11—C12 | 1.3967 (17) | ||
C7A—S1—C2 | 89.49 (6) | C14—C15—C16 | 120.28 (12) |
N3—C2—C8 | 124.45 (11) | C15—C16—C11 | 119.80 (11) |
N3—C2—S1 | 115.83 (9) | C9—N1—H01 | 123.3 (19) |
C8—C2—S1 | 119.70 (9) | N2—N1—H01 | 116.8 (19) |
C9—N1—N2 | 119.00 (10) | C10—N2—H02 | 123.3 (18) |
C10—N2—N1 | 117.28 (10) | N1—N2—H02 | 114.4 (18) |
C2—N3—C3A | 110.61 (10) | C5—C4—H4 | 120.7 |
N3—C3A—C4 | 125.26 (11) | C3A—C4—H4 | 120.7 |
N3—C3A—C7A | 114.95 (11) | C4—C5—H5 | 119.4 |
C4—C3A—C7A | 119.79 (12) | C6—C5—H5 | 119.4 |
C5—C4—C3A | 118.52 (13) | C7—C6—H6 | 119.4 |
C4—C5—C6 | 121.11 (13) | C5—C6—H6 | 119.4 |
C7—C6—C5 | 121.18 (13) | C6—C7—H7 | 121.1 |
C6—C7—C7A | 117.77 (13) | C7A—C7—H7 | 121.1 |
C7—C7A—C3A | 121.63 (12) | C2—C8—H8A | 109.5 |
C7—C7A—S1 | 129.24 (10) | C9—C8—H8A | 109.5 |
C3A—C7A—S1 | 109.13 (9) | C2—C8—H8B | 109.5 |
C2—C8—C9 | 110.93 (10) | C9—C8—H8B | 109.5 |
O1—C9—N1 | 123.27 (11) | H8A—C8—H8B | 108.0 |
O1—C9—C8 | 121.67 (11) | C13—C12—H12 | 119.9 |
N1—C9—C8 | 115.06 (10) | C11—C12—H12 | 119.9 |
O2—C10—N2 | 122.11 (11) | C14—C13—H13 | 120.0 |
O2—C10—C11 | 122.31 (11) | C12—C13—H13 | 120.0 |
N2—C10—C11 | 115.59 (10) | C13—C14—H14 | 120.0 |
C12—C11—C16 | 119.69 (11) | C15—C14—H14 | 120.0 |
C12—C11—C10 | 122.96 (11) | C14—C15—H15 | 119.9 |
C16—C11—C10 | 117.35 (10) | C16—C15—H15 | 119.9 |
C13—C12—C11 | 120.15 (11) | C15—C16—H16 | 120.1 |
C14—C13—C12 | 120.05 (11) | C11—C16—H16 | 120.1 |
C13—C14—C15 | 120.02 (11) | ||
C7A—S1—C2—N3 | −0.19 (10) | N2—N1—C9—O1 | 6.66 (18) |
C7A—S1—C2—C8 | −178.46 (10) | N2—N1—C9—C8 | −173.21 (10) |
C9—N1—N2—C10 | 66.44 (15) | C2—C8—C9—O1 | 27.72 (16) |
C8—C2—N3—C3A | 178.23 (11) | C2—C8—C9—N1 | −152.41 (11) |
S1—C2—N3—C3A | 0.05 (14) | N1—N2—C10—O2 | 12.34 (18) |
C2—N3—C3A—C4 | −179.93 (12) | N1—N2—C10—C11 | −167.79 (10) |
C2—N3—C3A—C7A | 0.16 (15) | O2—C10—C11—C12 | 161.41 (13) |
N3—C3A—C4—C5 | −179.93 (13) | N2—C10—C11—C12 | −18.46 (17) |
C7A—C3A—C4—C5 | 0.0 (2) | O2—C10—C11—C16 | −17.71 (18) |
C3A—C4—C5—C6 | 0.4 (2) | N2—C10—C11—C16 | 162.42 (11) |
C4—C5—C6—C7 | −0.1 (2) | C16—C11—C12—C13 | −0.29 (19) |
C5—C6—C7—C7A | −0.6 (2) | C10—C11—C12—C13 | −179.40 (12) |
C6—C7—C7A—C3A | 0.96 (19) | C11—C12—C13—C14 | −0.6 (2) |
C6—C7—C7A—S1 | −179.59 (11) | C12—C13—C14—C15 | 0.9 (2) |
N3—C3A—C7A—C7 | 179.25 (12) | C13—C14—C15—C16 | −0.4 (2) |
C4—C3A—C7A—C7 | −0.65 (19) | C14—C15—C16—C11 | −0.5 (2) |
N3—C3A—C7A—S1 | −0.30 (13) | C12—C11—C16—C15 | 0.84 (19) |
C4—C3A—C7A—S1 | 179.80 (10) | C10—C11—C16—C15 | 179.99 (12) |
C2—S1—C7A—C7 | −179.25 (13) | O1—C9—N1—H01 | 175 (2) |
C2—S1—C7A—C3A | 0.26 (9) | O2—C10—N2—H02 | 166 (2) |
N3—C2—C8—C9 | −97.86 (14) | H01—N1—N2—H02 | 101 (3) |
S1—C2—C8—C9 | 80.26 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H01···O1i | 0.88 (3) | 2.02 (3) | 2.8438 (14) | 157 (3) |
N2—H02···N3ii | 0.85 (3) | 2.15 (3) | 2.9736 (15) | 162 (3) |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z. |
Acknowledgements
We are grateful to various colleagues at the CCDC for helpful advice and assistance. We acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036. Web of Science CrossRef CAS PubMed Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194. Web of Science CrossRef CAS PubMed Google Scholar
Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655. Web of Science CrossRef CAS PubMed Google Scholar
Bowyer, P. W., Gunaratne, R. S., Grainger, M., Withers-Martinez, C., Wickramsinghe, S. R., Tate, E. W., Leatherbarrow, R. J., Brown, K. A., Holder, A. A. & Smith, D. F. (2007). Biochem. J. 408, 173–180. Web of Science CrossRef PubMed CAS Google Scholar
du Mont, W., Jeske, J. & Jones, P. G. (2010). Phosphorus Sulfur Silicon, 185, 1243–1249. Web of Science CSD CrossRef CAS Google Scholar
Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302. Web of Science CrossRef Google Scholar
Elgemeie, G. H. & Elghandour, A. H. (1990). Phosphorus Sulfur Silicon, 48, 281–284. CrossRef CAS Web of Science Google Scholar
Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265–272. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–268. CrossRef CAS Google Scholar
Filimon, S.-A., Petrovic, D., Volbeda, J., Bannenberg, T., Jones, P. G., Freiherr von Richthofen, C.-G., Glaser, T. & Tamm, M. (2014). Eur. J. Inorg. Chem. 2014, 5997–6012. Web of Science CSD CrossRef CAS Google Scholar
Focken, T., Hopf, H., Snieckus, V., Dix, I. & Jones, P. G. (2001). Eur. J. Org. Chem. 2001, 2221–2228. CrossRef Google Scholar
Gill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155–178. Web of Science CrossRef CAS Google Scholar
Jones, P. G., Hrib, C. & du Mont, W.-W. (2015). Private Communication (CCDC-1051873). CCDC, Cambridge, England. https://doi.org/10.5517/cc149kdd Google Scholar
Jones, P. G., Yang, L. & Steinborn, D. (1996). Acta Cryst. C52, 2399–2402. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kamal, A., Srikanth, Y. V., Naseer Ahmed Khan, M., Ashraf, M., Kashi Reddy, M., Sultana, F., Kaur, T., Chashoo, G., Suri, N., Sehar, I., Wani, Z. A., Saxena, A., Sharma, P. R., Bhushan, S., Mondhe, D. M. & Saxena, A. K. (2011). Bioorg. Med. Chem. 19, 7136–7150. Web of Science CrossRef CAS PubMed Google Scholar
Keri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207–251. Web of Science CrossRef CAS PubMed Google Scholar
König, J., Wyllie, S., Wells, G., Stevens, M. F., Wyatt, P. G. & Fairlamb, A. H. (2011). J. Biol. Chem. 286, 8523–8533. Web of Science PubMed Google Scholar
Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 615–617. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Taouss, C. & Jones, P. G. (2013). Z. Naturforsch. Teil B, 68, 860–870. Web of Science CSD CrossRef CAS Google Scholar
Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.