research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of a new bulky bis­­(alkoxide) ligand on a terphenyl platform

crossmark logo

aDepartment of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA, and bLumigen Instrument Center, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
*Correspondence e-mail: ward@wayne.edu, groysman@wayne.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 9 December 2021; accepted 18 December 2021; online 1 January 2022)

A new sterically bulky chelating bis­(alkoxide) ligand 3,3′-([1,1′:4′,1′′-terphen­yl]-2,2′′-di­yl)bis­(2,2,4,4-tetra­methyl­pentan-3-ol), (H2[OO]tBu), was prepared in a two-step process as the di­chloro­methane monosolvate, C36H50O2·CH2Cl2. The first step is a Suzuki–Miyaura coupling reaction between 2-bromo­phenyl­boronic acid and 1,4-di­iodo­benzene. The resulting 2,2′′-di­bromo-1,1′:4′,1′′-terphenyl was reacted with tBuLi and hexa­methyl­acetone to obtain the desired product. The crystal structure of H2[OO]tBu revealed an anti conformation of the [CPh2(OH)] fragments relative to the central phenyl. Furthermore, the hydroxyl groups point away from each other. Likely because of this antianti conformation, the attempts to synthesize first-row transition-metal complexes with H2[OO]tBu were not successful.

1. Chemical context

Bulky alkoxides are becoming increasingly used as ancillary ligands in group-transfer chemistry and catalysis (Brazeau & Doerrer, 2019[Brazeau, S. E. N., Norwine, E. E., Hannigan, S. F., Orth, N., Ivanović-Burmazović, I., Rukser, D., Biebl, F., Grimm-Lebsanft, B., Praedel, G., Teubner, M., Rübhausen, M., Liebhäuser, P., Rösener, T., Stanek, J., Hoffmann, A., Herres-Pawlis, S. & Doerrer, L. H. (2019). Dalton Trans. 48, 6899-6909.]; Chua & Duong, 2014[Chua, Y.-Y. & Duong, H. A. (2014). Chem. Commun. 50, 8424-8427.]; Hannigan et al., 2017[Hannigan, S. F., Arnoff, A. I., Neville, S. E., Lum, J. S., Golen, J. A., Rheingold, A. L., Orth, N., Ivanović-Burmazović, I., Liebhäuser, P., Rösener, T., Stanek, J., Hoffmann, A., Herres-Pawlis, S. & Doerrer, L. H. (2017). Chem. Eur. J. 23, 8212-8224.]; Jayasundara et al., 2018[Jayasundara, C. R. K., Sabasovs, D., Staples, R. J., Oppenheimer, J., Smith, M. R. III & Maleczka, R. E. Jr (2018). Organometallics, 37, 1567-1574.]; Wannipurage et al., 2020[Wannipurage, D., Hollingsworth, T. S., Santulli, F., Cozzolino, M., Lamberti, M., Groysman, S. & Mazzeo, M. (2020). Dalton Trans. 49, 2715-2723.]). As a result of their stereoelectronic properties, profoundly weak-field bulky alkoxides enable formation of reactive low-coordinate high-spin middle and late transition-metal centers (Bellow et al., 2016b[Bellow, J. A., Yousif, M. & Groysman, S. (2016b). Comments Inorg. Chem. 36, 92-122.]; Grass et al., 2019b[Grass, A., Wannipurage, D., Lord, R. L. & Groysman, S. (2019b). Coord. Chem. Rev. 400, 1-16.]). We have previously reported bulky monodentate alkoxides that led to reactive chromium and iron nitrene-transfer catalysts, (Bellow et al., 2015[Bellow, J. A., Yousif, M., Cabelof, A. C., Lord, R. L. & Groysman, S. (2015). Organometallics, 34, 2917-2923.]; Wannipurage et al., 2021[Wannipurage, D., Kurup, S. S. & Groysman, S. (2021). Organometallics, 40, 3637-3644.]; Yousif et al., 2015[Yousif, M., Tjapkes, D. J., Lord, R. L. & Groysman, S. (2015). Organometallics, 34, 5119-5128.], 2018[Yousif, M., Wannipurage, D., Huizenga, C. D., Washnock-Schmid, E., Peraino, N. J., Ozarowski, A., Stoian, S. A., Lord, R. L. & Groysman, S. (2018). Inorg. Chem. 57, 9425-9438.]) and a series of low-coordinate cobalt carbene complexes capable of carbene transfer to isocyanides (Bellow et al., 2016a[Bellow, J. A., Stoian, S. A., van Tol, J., Ozarowski, A., Lord, R. L. & Groysman, S. (2016a). J. Am. Chem. Soc. 138, 5531-5534.]; Grass et al., 2019a[Grass, A., Dewey, N. S., Lord, R. L. & Groysman, S. (2019a). Organometallics, 38, 962-972.], 2020[Grass, A., Bellow, J. A., Morrison, G., zur Loye, H.-C., Lord, R. L. & Groysman, S. (2020). Chem. Commun. 56, 8416-8419.]). However, the lability of monodentate alkoxides affected catalyst stability and the substrate scope. To remediate the problem of lability of monodentate alkoxides, we have designed and synthesized a new chelating bis(alkoxide) ligand [1,1′:4′,1′′-terphen­yl]-2,2′′-diylbis(di­phenyl­methanol) (H2[OO]Ph) (Fig. 1[link]) (Kurup et al. 2019[Kurup, S. S., Wannipurage, D., Lord, R. L. & Groysman, S. (2019). Chem. Commun. 55, 10780-10783.]). The H2[OO]Ph ligand employs a 1,1′:4′,1′′-terphenyl platform, which increases the bite angle between the alkoxide donors to form approximately seesaw transition-metal centers. While the isolated ligand precursor H2[OO]Ph exhibits an anti conformation of the [CPh2(OH)] fragments relative to the central phenyl in the solid state (crystals obtained at 238 K), the hydroxyl groups point towards the central phenyl, exhib­iting overall an anti–syn conformation (Fig. 1[link]) (Kurup et al., 2019[Kurup, S. S., Wannipurage, D., Lord, R. L. & Groysman, S. (2019). Chem. Commun. 55, 10780-10783.]). Furthermore, while two different isomers were observed by 1H NMR spectroscopy at low temperatures, a single species was observed at room temperature, suggesting facile equilibration of anti and syn conformers. As a result, H2[OO]Ph led to the formation of the desired bis­(alkoxide) complexes with iron and chromium (Fig. 1[link]) (Kurup et al., 2019[Kurup, S. S., Wannipurage, D., Lord, R. L. & Groysman, S. (2019). Chem. Commun. 55, 10780-10783.], 2020[Kurup, S. S., Staples, R. J., Lord, R. L. & Groysman, S. (2020). Molecules, 25, 273.]). The resulting iron complex exhibited broader range of nitrene transfer reactivity, forming a variety of symmetric azoarenes.

[Scheme 1]
[Figure 1]
Figure 1
Schematic representation of the `antisyn' structure of the previously synthesized H2[OO]Ph ligand and its reactivity with transition-metal precursors.

The success of this strategy led us to design a new, even bulkier ligand (H2[OO]tBu). The ligand was synthesized in a two-step procedure as described in Fig. 2[link]. Previously reported 2,2′′-di­bromo-1,1′:4′,1′′-terphenyl was synthesized through a Suzuki–Miyaura coupling reaction between 2-bromo­phenyl­boronic acid and 1,4-di­iodo­benzene following a literature procedure (Velian et al., 2010[Velian, A., Lin, S., Miller, A. J. M., Day, M. W. & Agapie, T. J. (2010). J. Am. Chem. Soc. 132, 6296-6297.]). Next, 2,2′′-di­bromo-1,1′:4′,1′′-terphenyl was treated with tBuLi followed by hexa­methyl­acetone. The formation of the desired product H2[OO]tBu (35% isolated yield) was accompanied by the formation of significant amounts of p-terphenyl by-product (38% isolated yield). H2[OO]tBu was characterized by 1H and 13C NMR spectroscopy, high-resolution mass spectrometry, and X-ray crystallography. 1H NMR spectroscopy demonstrates the presence of two isomers at room temperature in an approximately 2:1 ratio, as manifested by two tert-butyl resonances (1.05 and 1.03 ppm) and two OH resonances (2.09 and 2.07 ppm). This observation suggests that, in contrast to H2[OO]Ph, various isomers of H2[OO]tBu do not readily inter­convert at room temperature, possibly due to the more significant steric hindrance of the tert-butyl groups. An X-ray crystallography study (see below) suggests that in at least one of these isomers the hydroxyl groups are pointing away from each other; such an isomer is unlikely to coordinate a single metal in a chelating fashion. Accordingly, the reaction of H2[OO]tBu with several representative transition-metal amides (M = Cr, Mn, Fe) failed to produce isolable complexes.

[Figure 2]
Figure 2
Synthesis of H2[OO]tBu, its schematic structure, and the lack of well-defined reactivity with transition-metal amide precursors.

2. Structural commentary

The crystals of H2[OO]tBu were obtained from di­chloro­methane at 238 K. The structure crystallized in space group P[\overline{1}] and is presented in Fig. 3[link]. Selected bond distances and angles are given in Table 1[link]. H2[OO]tBu exhibits a crystallographic inversion center, with only half of the mol­ecule occupying the asymmetric unit. In addition to H2[OO]tBu, the structure contains one solvent mol­ecule (CH2Cl2) disordered by symmetry over two positions. Selected bond distances, angles, and torsion angles appear in Table 1[link]. The lateral phenyls of the terphenyl unit are approximately perpendicular to the central phenyl ring, as indicated by the corresponding torsion angles close to 90° (see Table 1[link]). Similar to the structure of H2[OO]Ph, H2[OO]tBu manifests an anti conformation of the two `[CtBu2(OH)]' donors relative to the central phenyl ring. In contrast to the structure of H2[OO]Ph, the hydroxyls point away from each other in the structure of H2[OO]tBu, leading to an overall antianti conformation. This disposition results in the placement of the tert-butyl groups above and below the central phenyl ring. The presence of bulky groups on both sides of the central phenyl is likely responsible for the distortion of the terphenyl fragment, which is indicated by the C10—C15—C16 angle of 130.70 (15)° and the C14—C15—C16 angle of 110.28 (15)°. Same distortion is likely responsible for the slight variation in (lateral) phenyl bond distances (Table 1[link]).

Table 1
Selected bond distances (Å), angles, and torsion angles (°) in the structure of H2[OO]tBu

Selected bond distances      
O1—C1 1.451 (2) C11—C12 1.387 (3)
C1—C2 1.591 (3) C12—C13 1.371 (3)
C1—C6 1.591 (3) C13—C14 1.380 (3)
C1—C10 1.586 (2) C14—C15 1.393 (2)
C15—C16 1.511 (2) C15—C10 1.426 (2)
C10—C11 1.408 (2)    
       
Selected bond angles      
O1—C1—C10 104.99 (13) C1—C10—C11 113.90 (15)
O1—C1—C2 104.30 (13) C1—C10—C15 130.84 (15)
O1—C1—C6 104.28 (13) C14—C15—C10 119.01 (16)
C10—C1—C2 108.49 (14) C16—C15—C14 110.28 (15)
       
Selected torsion angles      
C14—C15—C16—C17 −84.3 (2) C14—C15—C16—C18 86.4 (2)
C10—C15—C16—C17 96.7 (2) C10—C15—C16—C18 −92.7 (2)
[Figure 3]
Figure 3
The structure of H2[OO]tBu (50% probability ellipsoids) is shown with the co-crystallized di­chloro­methane solvent mol­ecule. The di­chloro­methane carbon atom was found to be disordered about an inversion center; only one orientation is shown, which is not the one belonging to the asymmetric unit. Hydroxyl H atoms are disordered over two positions, both positions are shown above.

3. Supra­molecular features

H2[OO]tBu forms one-dimensional polymer chains held together by hydrogen bonding between two neighboring mol­ecules (Table 2[link]). One polymer chain is shown in Fig. 4[link]. This chain-like structure results from the antianti conformation of H2[OO]tBu in which both hydroxyl groups are pointing outward and thus can hydrogen bond with neighboring mol­ecules. The hydrogen-bond distance (indicated by the light-blue dashed lines in Fig. 4[link]) is 2.13 (3) Å. It is also noted that, due to the inversion center present within the mol­ecule, the hydroxyl hydrogen atoms are disordered over two positions. As the diffraction data was of adequate quality, we were able to locate both hydrogen positions in the difference map. The corresponding O—H bonds are very similar, 0.93 (2) and 0.94 (2) Å. Only one of these hydrogen atoms participates in the hydrogen-bonding network (alternating conformations for consecutive mol­ecules). The solvent mol­ecules are positioned above and below the chains.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O1i 0.93 (4) 2.13 (3) 3.0066 (19) 157 (4)
Symmetry code: (i) [-x+1, -y+1, -z].
[Figure 4]
Figure 4
Chain of H2[OO]tBu mol­ecules, bridged by hydrogen bonds (indicated in light blue).

4. Database survey

H2[OO]tBu is a new compound that has not been previously synthesized and structurally characterized. As described above, the synthesis, structure, and coordination chemistry of the related compound H2[OO]Ph has been previously reported by us (Kurup et al., 2019[Kurup, S. S., Wannipurage, D., Lord, R. L. & Groysman, S. (2019). Chem. Commun. 55, 10780-10783.]) and reported in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). We note that Agapie and coworkers have previously investigated structurally related 2,2′′-diphosphine-1,1′:4′,1′′-terphenyl ligands (Bailey & Agapie, 2021[Bailey, G. A. & Agapie, T. (2021). Organometallics, 40, 16, 2881-2887.]; Buss et al., 2017[Buss, J. A., Oyala, P. H. & Agapie, T. (2017). Angew. Chem. Int. Ed. 56, 14502-14506.]) and Fortier and coworkers have investigated structurally related 2,2′′-di­amide-1,1′:4′,1′′-terphenyl ligands (Fortier et al., 2017[Fortier, S., Aguilar-Calderón, J. R., Vlaisavljevich, B., Metta-Magaña, A. J., Goos, A. G. & Botez, C. E. (2017). Organometallics, 36, 4591-4599.]; Yadav et al., 2020[Yadav, M., Metta-Magaña, A. & Fortier, S. (2020). Chem. Sci. 11, 2381-2387.]). In contrast to H2[OO]tBu, both the diphosphine and the di­amide terphenyl ligands serve as chelates for transition metals, adopting a syn geometry for the phosphine/amide donors relative to the central phenyl ring.

5. Synthesis and crystallization

2,2′′-Di­bromo-1,1′:4′,1′′-terphenyl (Velian et al., 2010[Velian, A., Lin, S., Miller, A. J. M., Day, M. W. & Agapie, T. J. (2010). J. Am. Chem. Soc. 132, 6296-6297.]) (1.00 g, 2.5 mmol) was dissolved in 30 mL THF and cooled under 238 K. To the cold solution tBuLi (1.7 M in pentane, 6.4 mL, 10.8 mmol) was added dropwise and the resulting solution was stirred for 4 h. This reaction mixture was then transferred to a round-bottom flask containing hexa­methyl­acetone (8.7 ml, 5 mmol) in 20 mL of hexane and stirred for 24 h. The organic contents were extracted using a di­chloro­methane–water solvent system. The organic phase was dried over MgSO4 and filtered. The filtrate was concentrated using a rotatory evaporator. The desired product H2[OO]tBu was separated in 35% yield (0.464 g, 0.9 mmol) by column chromatography on silica gel using 3% ethyl acetate in hexane. para-Terphenyl (1,1′:4′,1′′-terphen­yl) was found to be a major byproduct (38% yield, 0.504 g, 2.2 mmol). Purified H2[OO]tBu was recrystallized from di­chloro­methane at 238 K to obtain colorless crystals suitable for X-ray crystallography. 1H NMR (298 K, 400 MHz, CD2Cl2) δ 1.05 (s, 25H, CH3) , 1.03 (s, 11H, CH3), 2.07 (s, 1H, OH), 2.09 (s, 1H, OH), 6.89 (d, J = 6.9 Hz, 1H, ortho-H), 6.96 (d, J = 7.5 Hz, 1H, ortho-H), 7.19 (t, J = 8.7 Hz, 2H, para-H), 7.33 (m, 6H), 8.28 (d, J = 8.2 Hz, 2H, ortho-H). 13C NMR (298 K, 125 MHz, CD2Cl2) δ 29.99, 30.28, 65.61, 87.36, 125.15, 126.08, 129.47, 130.19, 130.92, 131.37, 134.40, 134.84, 140.76, 144.07, 146.32. HRMS (m/z): Calculated [M - H]+ 515.39, found 515.36.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Data were acquired at 100 K with an Oxford 800 Cryostream low-temperature apparatus. Hydrogen atoms were placed in calculated positions using a standard riding model and refined isotropically (with the exception of hydroxyl hydrogens); all other atoms were refined anisotropically. The hydroxyl hydrogens were found to be disordered (due to the inversion center located at the hydrogen bond to the adjacent H2[OO]tBu) over two positions. Two alternating positions were identified from the difference-Fourier maps and refined to 50% occupancy. The CH2Cl2 solvent was also disordered by symmetry over two positions and refined with 50% occupancy.

Table 3
Experimental details

Crystal data
Chemical formula C36H50O2·CH2Cl2
Mr 599.68
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.2449 (4), 9.1248 (4), 12.1825 (6)
α, β, γ (°) 101.530 (2), 102.729 (3), 109.200 (2)
V3) 806.53 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.15 × 0.1 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.722, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27197, 3559, 2769
Rint 0.037
(sin θ/λ)max−1) 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.136, 1.05
No. of reflections 3559
No. of parameters 211
No. of restraints 27
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.43
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3,3'-([1,1':4',1''-Terphenyl]-2,2''-diyl)bis(2,2,4,4-tetramethylpentan-3-ol) dichloromethane monosolvate top
Crystal data top
C36H50O2·CH2Cl2Z = 1
Mr = 599.68F(000) = 324
Triclinic, P1Dx = 1.235 Mg m3
a = 8.2449 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1248 (4) ÅCell parameters from 9980 reflections
c = 12.1825 (6) Åθ = 2.5–27.2°
α = 101.530 (2)°µ = 0.23 mm1
β = 102.729 (3)°T = 100 K
γ = 109.200 (2)°Prism, colourless
V = 806.53 (7) Å30.15 × 0.1 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
3559 independent reflections
Radiation source: sealed tube2769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8 pixels mm-1θmax = 27.2°, θmin = 1.8°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.722, Tmax = 0.746l = 1515
27197 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.6108P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3559 reflectionsΔρmax = 0.57 e Å3
211 parametersΔρmin = 0.43 e Å3
27 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Used Part -1 on the dichloromethane (DCM) and hydroxyl hydrogens because they were disordered by inverison symmetry (sof=0.5). In addition, RIGU/DFIX/SIMU were employed to model the disorder of the DCM solvent.

The structure of H2[OO]tBu was collected on a Bruker X8 APEX-II diffractometer with MoKα radiation and a graphite monochromator. The diffraction intensities were measured using a Bruker APEX-II CCD detector. Data were acquired at 100?K with an Oxford 800 Cryostream low-temperature apparatus. The data were processed using APEX3 software supplied by Bruker AXS. The structures were solved by Intrinsic Phasing using SHELXT (Sheldrick, 2015a) and refined with SHELXL-2018 (Sheldrick 2015b) using Olex2 (Dolomanov, 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.55932 (17)0.63933 (16)0.10947 (11)0.0224 (3)
H1A0.556 (6)0.555 (4)0.050 (3)0.027*0.5
H1B0.594 (6)0.737 (3)0.088 (4)0.027*0.5
C170.8826 (2)0.5620 (2)0.53594 (15)0.0176 (4)
H170.8017800.6033300.5624880.021*
C10.6733 (2)0.6559 (2)0.22428 (15)0.0174 (4)
C150.6438 (2)0.4210 (2)0.33668 (15)0.0166 (4)
C140.5253 (2)0.2805 (2)0.34915 (16)0.0200 (4)
H140.5711420.2351010.4063370.024*
C160.8316 (2)0.4698 (2)0.41871 (15)0.0168 (4)
C181.0488 (2)0.5946 (2)0.61443 (15)0.0179 (4)
H181.0818400.6622820.6925980.021*
C100.5770 (2)0.4932 (2)0.25311 (15)0.0164 (4)
C120.2780 (2)0.2706 (2)0.20251 (16)0.0218 (4)
H120.1544050.2212800.1562610.026*
C80.8541 (3)0.5146 (2)0.13697 (16)0.0228 (4)
H8A0.8236000.4363320.1813050.034*
H8B0.9711150.5267870.1251340.034*
H8C0.7609070.4752620.0602920.034*
C130.3453 (3)0.2034 (2)0.28338 (16)0.0233 (4)
H130.2700410.1064750.2938470.028*
C20.6571 (2)0.8019 (2)0.31128 (16)0.0196 (4)
C110.3922 (2)0.4115 (2)0.18886 (16)0.0201 (4)
H110.3424270.4557950.1323310.024*
C91.0251 (2)0.7558 (2)0.32004 (16)0.0230 (4)
H9A1.0466630.8702580.3526930.034*
H9B1.1330280.7481830.3026480.034*
H9C0.9978860.6975880.3774070.034*
C60.8648 (2)0.6799 (2)0.20637 (16)0.0205 (4)
C70.9138 (3)0.7914 (2)0.12807 (17)0.0242 (4)
H7A0.8180870.7481310.0522350.036*
H7B1.0281360.7956580.1148860.036*
H7C0.9263830.9010680.1674990.036*
C50.7299 (3)0.8151 (2)0.44128 (16)0.0230 (4)
H5A0.6603120.7154360.4564060.035*
H5B0.7186330.9081890.4903470.035*
H5C0.8572190.8301490.4603790.035*
C30.7517 (3)0.9677 (2)0.29460 (18)0.0263 (4)
H3A0.8823510.9960070.3171260.039*
H3B0.7260251.0505190.3442130.039*
H3C0.7072060.9624740.2118070.039*
C40.4579 (3)0.7765 (2)0.29020 (18)0.0264 (4)
H4A0.4034140.7687370.2080730.040*
H4B0.4497060.8686370.3426070.040*
H4C0.3935270.6760840.3064650.040*
Cl10.3212 (4)0.0907 (3)0.0033 (2)0.0621 (10)0.5
Cl20.6911 (5)0.0667 (4)0.0006 (3)0.0715 (11)0.5
C190.5047 (6)0.0957 (5)0.0345 (3)0.0311 (10)0.5
H19A0.5399530.1502320.1199180.037*0.5
H19B0.4685320.1668610.0085720.037*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0208 (7)0.0255 (7)0.0181 (7)0.0073 (6)0.0002 (5)0.0097 (6)
C170.0209 (9)0.0168 (9)0.0187 (9)0.0109 (7)0.0066 (7)0.0063 (7)
C10.0182 (9)0.0162 (9)0.0145 (8)0.0053 (7)0.0007 (7)0.0045 (7)
C150.0183 (9)0.0159 (8)0.0151 (8)0.0078 (7)0.0039 (7)0.0028 (7)
C140.0243 (9)0.0202 (9)0.0181 (9)0.0105 (8)0.0067 (7)0.0079 (7)
C160.0186 (9)0.0149 (8)0.0175 (8)0.0065 (7)0.0042 (7)0.0077 (7)
C180.0224 (9)0.0155 (8)0.0150 (8)0.0081 (7)0.0036 (7)0.0044 (7)
C100.0169 (8)0.0143 (8)0.0166 (8)0.0058 (7)0.0040 (7)0.0036 (7)
C120.0172 (9)0.0220 (9)0.0183 (9)0.0030 (7)0.0014 (7)0.0018 (7)
C80.0234 (9)0.0247 (10)0.0207 (9)0.0093 (8)0.0073 (8)0.0070 (8)
C130.0248 (10)0.0181 (9)0.0237 (10)0.0028 (8)0.0093 (8)0.0069 (8)
C20.0205 (9)0.0171 (9)0.0202 (9)0.0082 (7)0.0027 (7)0.0058 (7)
C110.0198 (9)0.0216 (9)0.0176 (9)0.0077 (7)0.0030 (7)0.0065 (7)
C90.0181 (9)0.0232 (10)0.0225 (9)0.0041 (8)0.0035 (7)0.0060 (8)
C60.0178 (9)0.0224 (9)0.0200 (9)0.0057 (7)0.0050 (7)0.0077 (7)
C70.0212 (9)0.0246 (10)0.0217 (9)0.0022 (8)0.0051 (7)0.0092 (8)
C50.0271 (10)0.0201 (9)0.0198 (9)0.0099 (8)0.0042 (8)0.0037 (7)
C30.0308 (11)0.0181 (9)0.0281 (10)0.0092 (8)0.0059 (8)0.0071 (8)
C40.0260 (10)0.0268 (10)0.0287 (10)0.0153 (8)0.0065 (8)0.0066 (8)
Cl10.103 (2)0.0143 (6)0.0325 (10)0.0108 (9)0.0021 (11)0.0079 (6)
Cl20.120 (2)0.104 (2)0.0643 (16)0.093 (2)0.0660 (15)0.0541 (14)
C190.057 (3)0.029 (2)0.0190 (19)0.030 (2)0.0121 (19)0.0086 (17)
Geometric parameters (Å, º) top
O1—H1A0.933 (19)C2—C51.530 (2)
O1—H1B0.944 (19)C2—C31.535 (3)
O1—C11.451 (2)C2—C41.535 (3)
C17—H170.9500C11—H110.9500
C17—C161.395 (2)C9—H9A0.9800
C17—C181.386 (2)C9—H9B0.9800
C1—C101.586 (2)C9—H9C0.9800
C1—C21.591 (3)C9—C61.533 (2)
C1—C61.591 (3)C6—C71.548 (2)
C15—C141.393 (2)C7—H7A0.9800
C15—C161.511 (2)C7—H7B0.9800
C15—C101.426 (2)C7—H7C0.9800
C14—H140.9500C5—H5A0.9800
C14—C131.380 (3)C5—H5B0.9800
C16—C18i1.393 (3)C5—H5C0.9800
C18—H180.9500C3—H3A0.9800
C10—C111.408 (2)C3—H3B0.9800
C12—H120.9500C3—H3C0.9800
C12—C131.371 (3)C4—H4A0.9800
C12—C111.387 (3)C4—H4B0.9800
C8—H8A0.9800C4—H4C0.9800
C8—H8B0.9800Cl1—C191.755 (4)
C8—H8C0.9800Cl2—C191.768 (4)
C8—C61.539 (3)C19—H19A0.9900
C13—H130.9500C19—H19B0.9900
H1A—O1—H1B109 (4)C10—C11—H11117.8
C1—O1—H1A113 (3)C12—C11—C10124.45 (17)
C1—O1—H1B112 (3)C12—C11—H11117.8
C16—C17—H17119.3H9A—C9—H9B109.5
C18—C17—H17119.3H9A—C9—H9C109.5
C18—C17—C16121.35 (16)H9B—C9—H9C109.5
O1—C1—C10104.99 (13)C6—C9—H9A109.5
O1—C1—C2104.30 (13)C6—C9—H9B109.5
O1—C1—C6104.28 (13)C6—C9—H9C109.5
C10—C1—C2108.49 (14)C8—C6—C1108.22 (14)
C10—C1—C6115.07 (14)C8—C6—C7104.41 (15)
C6—C1—C2118.18 (14)C9—C6—C1115.03 (15)
C14—C15—C16110.28 (15)C9—C6—C8111.07 (15)
C14—C15—C10119.01 (16)C9—C6—C7104.92 (15)
C10—C15—C16130.70 (15)C7—C6—C1112.70 (15)
C15—C14—H14118.1C6—C7—H7A109.5
C13—C14—C15123.88 (17)C6—C7—H7B109.5
C13—C14—H14118.1C6—C7—H7C109.5
C17—C16—C15121.05 (15)H7A—C7—H7B109.5
C18i—C16—C17117.09 (16)H7A—C7—H7C109.5
C18i—C16—C15121.23 (15)H7B—C7—H7C109.5
C17—C18—C16i121.49 (16)C2—C5—H5A109.5
C17—C18—H18119.3C2—C5—H5B109.5
C16i—C18—H18119.3C2—C5—H5C109.5
C15—C10—C1130.84 (15)H5A—C5—H5B109.5
C11—C10—C1113.90 (15)H5A—C5—H5C109.5
C11—C10—C15115.18 (15)H5B—C5—H5C109.5
C13—C12—H12120.3C2—C3—H3A109.5
C13—C12—C11119.34 (17)C2—C3—H3B109.5
C11—C12—H12120.3C2—C3—H3C109.5
H8A—C8—H8B109.5H3A—C3—H3B109.5
H8A—C8—H8C109.5H3A—C3—H3C109.5
H8B—C8—H8C109.5H3B—C3—H3C109.5
C6—C8—H8A109.5C2—C4—H4A109.5
C6—C8—H8B109.5C2—C4—H4B109.5
C6—C8—H8C109.5C2—C4—H4C109.5
C14—C13—H13120.9H4A—C4—H4B109.5
C12—C13—C14118.13 (17)H4A—C4—H4C109.5
C12—C13—H13120.9H4B—C4—H4C109.5
C5—C2—C1113.25 (14)Cl1—C19—Cl2110.9 (2)
C5—C2—C3107.88 (15)Cl1—C19—H19A109.5
C5—C2—C4105.36 (15)Cl1—C19—H19B109.5
C3—C2—C1113.32 (15)Cl2—C19—H19A109.5
C3—C2—C4106.35 (15)Cl2—C19—H19B109.5
C4—C2—C1110.16 (15)H19A—C19—H19B108.1
O1—C1—C10—C15162.41 (17)C10—C1—C2—C554.70 (19)
O1—C1—C10—C1121.10 (19)C10—C1—C2—C3178.00 (14)
O1—C1—C2—C5166.21 (14)C10—C1—C2—C463.00 (18)
O1—C1—C2—C370.49 (18)C10—C1—C6—C839.81 (19)
O1—C1—C2—C448.51 (18)C10—C1—C6—C985.03 (19)
O1—C1—C6—C874.63 (16)C10—C1—C6—C7154.74 (15)
O1—C1—C6—C9160.53 (15)C10—C15—C14—C131.3 (3)
O1—C1—C6—C740.31 (19)C10—C15—C16—C1796.7 (2)
C1—C10—C11—C12177.15 (17)C10—C15—C16—C18i92.7 (2)
C15—C14—C13—C121.3 (3)C13—C12—C11—C100.1 (3)
C15—C10—C11—C120.1 (3)C2—C1—C10—C1586.5 (2)
C14—C15—C16—C1784.3 (2)C2—C1—C10—C1189.94 (17)
C14—C15—C16—C18i86.4 (2)C2—C1—C6—C8170.19 (14)
C14—C15—C10—C1175.90 (17)C2—C1—C6—C945.3 (2)
C14—C15—C10—C110.6 (2)C2—C1—C6—C774.88 (19)
C16—C17—C18—C16i3.1 (3)C11—C12—C13—C140.6 (3)
C16—C15—C14—C13177.91 (17)C6—C1—C10—C1548.4 (2)
C16—C15—C10—C15.1 (3)C6—C1—C10—C11135.13 (16)
C16—C15—C10—C11178.46 (17)C6—C1—C2—C578.62 (19)
C18—C17—C16—C15174.02 (16)C6—C1—C2—C344.7 (2)
C18—C17—C16—C18i3.0 (3)C6—C1—C2—C4163.68 (15)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1ii0.93 (4)2.13 (3)3.0066 (19)157 (4)
Symmetry code: (ii) x+1, y+1, z.
Selected bond distances (Å), angles, and torsion angles (°) in the structure of H2[OO]tBu top
Selected bond distances
O1—C11.451 (2)C11—C121.387 (3)
C1—C21.591 (3)C12—C131.371 (3)
C1—C61.591 (3)C13—C141.380 (3)
C1—C101.586 (2)C14—C151.393 (2)
C15—C161.511 (2)C15—C101.426 (2)
C10—C111.408 (2)
Selected bond angles
O1—C1—C10104.99 (13)C1—C10—C11113.90 (15)
O1—C1—C2104.30 (13)C1—C10—C15130.84 (15)
O1—C1—C6104.28 (13)C14—C15—C10119.01 (16)
C10—C1—C2108.49 (14)C16—C15—C14110.28 (15)
Selected torsion angles
C14—C15—C16—C17-84.3 (2)C14—C15—C16—C1886.4 (2)
C10—C15—C16—C1796.7 (2)C10—C15—C16—C18-92.7 (2)
 

Acknowledgements

The authors have no conflict of inter­est to declare.

Funding information

Funding for this research was provided by The National Science Foundation for current support under grant No. CHE-1855681.

References

First citationBailey, G. A. & Agapie, T. (2021). Organometallics, 40, 16, 2881–2887.  Google Scholar
First citationBellow, J. A., Stoian, S. A., van Tol, J., Ozarowski, A., Lord, R. L. & Groysman, S. (2016a). J. Am. Chem. Soc. 138, 5531–5534.  CrossRef CAS PubMed Google Scholar
First citationBellow, J. A., Yousif, M., Cabelof, A. C., Lord, R. L. & Groysman, S. (2015). Organometallics, 34, 2917–2923.  CrossRef CAS Google Scholar
First citationBellow, J. A., Yousif, M. & Groysman, S. (2016b). Comments Inorg. Chem. 36, 92–122.  CrossRef CAS Google Scholar
First citationBrazeau, S. E. N., Norwine, E. E., Hannigan, S. F., Orth, N., Ivanović-Burmazović, I., Rukser, D., Biebl, F., Grimm-Lebsanft, B., Praedel, G., Teubner, M., Rübhausen, M., Liebhäuser, P., Rösener, T., Stanek, J., Hoffmann, A., Herres-Pawlis, S. & Doerrer, L. H. (2019). Dalton Trans. 48, 6899–6909.  CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuss, J. A., Oyala, P. H. & Agapie, T. (2017). Angew. Chem. Int. Ed. 56, 14502–14506.  CrossRef CAS Google Scholar
First citationChua, Y.-Y. & Duong, H. A. (2014). Chem. Commun. 50, 8424–8427.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFortier, S., Aguilar-Calderón, J. R., Vlaisavljevich, B., Metta-Magaña, A. J., Goos, A. G. & Botez, C. E. (2017). Organometallics, 36, 4591–4599.  CrossRef CAS Google Scholar
First citationGrass, A., Bellow, J. A., Morrison, G., zur Loye, H.-C., Lord, R. L. & Groysman, S. (2020). Chem. Commun. 56, 8416–8419.  CrossRef CAS Google Scholar
First citationGrass, A., Dewey, N. S., Lord, R. L. & Groysman, S. (2019a). Organometallics, 38, 962–972.  CrossRef CAS Google Scholar
First citationGrass, A., Wannipurage, D., Lord, R. L. & Groysman, S. (2019b). Coord. Chem. Rev. 400, 1–16.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHannigan, S. F., Arnoff, A. I., Neville, S. E., Lum, J. S., Golen, J. A., Rheingold, A. L., Orth, N., Ivanović–Burmazović, I., Liebhäuser, P., Rösener, T., Stanek, J., Hoffmann, A., Herres–Pawlis, S. & Doerrer, L. H. (2017). Chem. Eur. J. 23, 8212–8224.  CrossRef CAS PubMed Google Scholar
First citationJayasundara, C. R. K., Sabasovs, D., Staples, R. J., Oppenheimer, J., Smith, M. R. III & Maleczka, R. E. Jr (2018). Organometallics, 37, 1567–1574.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKurup, S. S., Staples, R. J., Lord, R. L. & Groysman, S. (2020). Molecules, 25, 273.  CrossRef Google Scholar
First citationKurup, S. S., Wannipurage, D., Lord, R. L. & Groysman, S. (2019). Chem. Commun. 55, 10780–10783.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVelian, A., Lin, S., Miller, A. J. M., Day, M. W. & Agapie, T. J. (2010). J. Am. Chem. Soc. 132, 6296–6297.  CrossRef CAS PubMed Google Scholar
First citationWannipurage, D., Hollingsworth, T. S., Santulli, F., Cozzolino, M., Lamberti, M., Groysman, S. & Mazzeo, M. (2020). Dalton Trans. 49, 2715–2723.  CrossRef CAS PubMed Google Scholar
First citationWannipurage, D., Kurup, S. S. & Groysman, S. (2021). Organometallics, 40, 3637–3644.  CrossRef CAS Google Scholar
First citationYadav, M., Metta-Magaña, A. & Fortier, S. (2020). Chem. Sci. 11, 2381–2387.  CrossRef CAS PubMed Google Scholar
First citationYousif, M., Tjapkes, D. J., Lord, R. L. & Groysman, S. (2015). Organometallics, 34, 5119–5128.  CrossRef CAS Google Scholar
First citationYousif, M., Wannipurage, D., Huizenga, C. D., Washnock-Schmid, E., Peraino, N. J., Ozarowski, A., Stoian, S. A., Lord, R. L. & Groysman, S. (2018). Inorg. Chem. 57, 9425–9438.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds