research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

NiII mol­ecular complex with a tetra­dentate amino­guanidine-derived Schiff base ligand: structural, spectroscopic and electrochemical studies and photoelectric response

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, bSchool of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia, and cNational Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Prospect Peremohy, Kyiv 03056, Ukraine
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 13 December 2021; accepted 10 January 2022; online 14 January 2022)

The new mol­ecular nickel(II) complex, namely, {4-bromo-2-[({N′-[(2-oxidobenzylidene)amino]carbamimidoyl}imino)methyl]phenolato}nickel(II) N,N-di­methyl­formamide solvate monohydrate, [Ni(C15H11BrN4O2)]·C3H7NO·H2O, (I), crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule per asymmetric unit. The guanidine ligand is a product of Schiff base condensation between amino­guanidine, salicyl­aldehyde and 5-bromo­salicyl­aldehyde templated by Ni2+ ions. The chelating ligand mol­ecule is deprotonated at the phenol O atoms and coordinates the metal centre through the two azomethine N and two phenolate O atoms in a cis-NiN2O2 square-planar configuration [average(Ni—N/O) = 1.8489 Å, cis angles in the range 83.08 (5)–95.35 (5)°, trans angles of 177.80 (5) and 178.29 (5)°]. The complex mol­ecule adopts an almost planar conformation. In the crystal, a complicated hydrogen-bonded network is formed through N—H⋯N/O and O—H⋯O inter­molecular inter­actions. Complex (I) was also characterized by FT–IR and 1H NMR spectroscopy. It undergoes an NiII ↔ NiIII redox reaction at E1/2 = +0.295 V (vs Ag/AgCl) in methanol solution. In a thin film with a free surface, complex (I) shows a fast photoelectric response upon exposure to visible light with a maximum photovoltage of ∼178 mV.

1. Chemical context

Guanidine, the functional group on the side chain of arginine, has attracted much attention in the fields of drug development (Santos et al., 2015[Santos, M. F., Harper, P. M., Williams, D. E., Mesquita, J. T., Pinto, G., da Costa-Silva, T. A., Hajdu, E., Ferreira, A. G., Santos, R. A., Murphy, P. J., Andersen, R. J., Tempone, A. G. & Berlinck, R. G. S. (2015). J. Nat. Prod. 78, 1101-1112.]; Hirsh et al., 2008[Hirsh, A. J., Zhang, J., Zamurs, A., Fleegle, J., Thelin, W. R., Caldwell, R. A., Sabater, J. R., Abraham, W. M., Donowitz, M., Cha, B., Johnson, K. B., George, J. A. St., Johnson, M. R. & Boucher, R. C. (2008). J. Pharmacol. Exp. Ther. 325, 77-88.]) and natural product synthesis (Berlinck & Romminger, 2016[Berlinck, R. G. & Romminger, S. (2016). Nat. Prod. Rep. 33, 456-490.]; Kudo et al., 2016[Kudo, Y., Yasumoto, T., Mebs, D., Cho, Y., Konoki, K. & Yotsu-Yamashita, M. (2016). Angew. Chem. Int. Ed. 55, 8728-8731.]). Guanidine derivatives have also been explored as catalysts and superbases (Selig, 2013[Selig, P. (2013). Synthesis, 45, 703-718.]; Ishikawa, 2009[Ishikawa, T. (2009). Editor. Superbases for Organic Synthesis: Guanidines, Amidines and Phosphazenes and Related Organocatalysts, pp. 93-144. Chichester: John Wiley & Sons Ltd.]). Amino­guanidine (AG) is an anti­oxidant and nucleophilic agent with strong scavenging activities against reactive carbonyl species (RCS) – a class of byproducts originating from exogenous and endogenous oxidation. RCS react with nucleophilic targets such as nucleic acids, phospho­lipids and proteins to form damaging adducts (Colzani et al., 2016[Colzani, M., De Maddis, D., Casali, G., Carini, M., Vistoli, G. & Aldini, G. (2016). ChemMedChem, 11, 1778-1789.]; Ramis et al., 2019[Ramis, R., Casasnovas, R., Mariño, L., Frau, J., Adrover, M., Vilanova, B., Mora-Diez, N. & Ortega-Castro, J. (2019). Int. J. Quantum Chem. 119, e25911.]). Diabetic and Alzheimer's disease patients were both found to have increased RCS levels in their circulatory systems (Kalousova et al., 2002[Kalousová, M., Skrha, J. & Zima, T. (2002). Physiol. Res. 51, 597-604.]; Picklo et al., 2002[Picklo, M. J., Montine, T. J., Amarnath, V. & Neely, M. D. (2002). Toxicol. Appl. Pharmacol. 184, 187-197.]). Blocking RCS by carbonyl quenchers is an encouraging therapeutic strategy and the investigation of conjugates of AG and aryl­aldehydes as well as their metal complexes has been at the focus of research inter­est for several decades (Fukumoto et al., 2002[Fukumoto, S., Imamiya, E., Kusumoto, K., Fujiwara, S., Watanabe, T. & Shiraishi, M. (2002). J. Med. Chem. 45, 3009-3021.]; Qian et al., 2010[Qian, Y., Zhang, H. J., Lv, P. C. & Zhu, H. L. (2010). Bioorg. Med. Chem. 18, 8218-8225.]; Vojinović-Ješić et al., 2014[Vojinović-Ješić, L. S., Radanović, M. M., Rodić, M. V., Jovanović, L. S., Češljević, V. I. & Joksović, M. D. (2014). Polyhedron, 80, 90-96.]).

[Scheme 1]

In our previous study, the condensation reactions of amino­guanidine freshly liberated from AG·HCl or AG·HNO3 and aryl­aldehydes (salicyl­aldehyde, 5-bromo­salicyl­aldehyde, pyridine-2-carbaldehyde) produced the expected 1:1 Schiff base ligands isolated as protonated cations of nitrate or chloride salts as well as CuII and CoIII mononuclear complexes (Buvaylo et al., 2013[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2013). Acta Cryst. E69, m165-m166.], 2016[Buvaylo, E. A., Kasyanova, K. A., Vassilyeva, O. Y. & Skelton, B. W. (2016). Acta Cryst. E72, 907-911.], 2017[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterova, O. V. & Pombeiro, A. J. (2017). Inorg. Chem. Commun. 78, 85-90.]). The di­chlorido­copper(II) complex bearing a pyridine-2-carbaldehyde amino­guanidine Schiff base ligand revealed prominent catalytic activity towards the oxidation of cyclo­hexane with hydrogen peroxide in the presence of various promoters (Buvaylo et al., 2017[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterova, O. V. & Pombeiro, A. J. (2017). Inorg. Chem. Commun. 78, 85-90.]). In contrast, the inter­action of AG with formaldehyde yielded a completely different compound with a high nitro­gen content that had not been reported before (Buvaylo et al., 2018[Buvaylo, E. A., Kokozay, V. N., Strutynska, N. Y., Vassilyeva, O. Y. & Skelton, B. W. (2018). Acta Cryst. C74, 152-158.]). 2,20-Methyl­enedihydrazinecarboximidamide, which was isolated in its protonated form as the dinitrate salt, resulted from the condensation between two AG mol­ecules and one mol­ecule of formaldehyde.

In the present work, we attempted to synthesize an Ni complex with the Schiff base ligand derived from AG and salicyl­aldehyde. However, 5-bromo­salicyl­aldehyde was also mistakenly introduced into the flask. As a result, the new tetra­dentate ligand (2-hy­droxy­benzyl­idene)(5-bromo-2-hy­droxy­benzyl­idene)amino­guanidine, H2L, was formed from the in situ condensation of one AG mol­ecule and two different mol­ecules of the aldehydes in the presence of Ni2+ ions. Herein, the crystal structure of [NiL]·DMF·H2O (DMF = N,N-di­methyl­formamide), (I)[link], is presented along with the elemental analyses, IR, NMR and cyclic voltammetry results as well as photoelectric response characteristics.

2. Structural commentary

Compound (I)[link], [Ni(C15H11BrN4O2)]·C3H7NO·H2O, crystallizes in the triclinic space group P[\overline{1}] and is assembled from discrete NiL mol­ecules and solvent mol­ecules of crystallization. The chelating ligand L2– is deprotonated at the phenol O atoms and coordinates the NiII ion through the two azomethine N and two phenolate O atoms in a cis-NiN2O2 square-planar configuration (Fig. 1[link]). The Ni—N/O distances fall in the range 1.8383 (11)–1.8562 (10) Å, the cis angles at the metal atom vary from 83.08 (5) to 95.35 (5)° and the trans angles are equal to 177.80 (5) and 178.29 (5)° (Table 1[link]). The mol­ecule is quite planar, the atoms with the largest deviations being C15 [δ = 0.059 (2) Å] and C23 [δ = 0.057 (2) Å] although there is very slight `bowing' at the Ni atom. The dihedral angle between the two phenyl rings is 3.37 (5)°.

Table 1
Selected geometric parameters (Å, °)

Ni1—N2 1.8383 (11) Ni1—O21 1.8515 (10)
Ni1—N5 1.8494 (11) Ni1—O11 1.8562 (10)
       
N2—Ni1—N5 83.08 (5) N2—Ni1—O11 95.35 (5)
N2—Ni1—O21 177.80 (5) N5—Ni1—O11 178.29 (5)
N5—Ni1—O21 95.25 (5) O21—Ni1—O11 86.30 (4)
[Figure 1]
Figure 1
Mol­ecular structure and atom labelling of [NiL]·C3H7NO·H2O (I)[link], with displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, the NiL mol­ecules form centrosymmetrically related pairs with an inter­planar distance of approximately 3.32 Å and the Ni⋯Ni separation being 3.4191 (3) Å (Fig. 2[link]). There are no hydrogen bonds between the NiL mol­ecules and no ππ stacking is observed owing to the trans-orientation of the two paired mol­ecules. Instead, the NiL mol­ecule creates centrosymmetric hydrogen-bonded pairs through one H atom on the amine nitro­gen N4, its other hydrogen forming a hydrogen bond to a centrosymmetrically related water mol­ecule as shown by the N4⋯N3 {−x + 2, −y + 2, −z + 1} and N4⋯O1 {−x + 2, −y + 1, −z + 1} distances of 3.0116 (17) and 2.8900 (19) Å, respectively (Fig. 3[link], Table 2[link]). One hydrogen atom of the solvent water mol­ecule is involved in a bifurcated hydrogen bond to the two coordinated phenolate oxygen atoms, O11 and O21, with corresponding O⋯O distances of 3.0056 (17) and 3.0719 (18) Å, respectively. The other hydrogen atom of the water mol­ecule makes a hydrogen bond to the DMF oxygen atom O10 with the O1⋯O10 distance being equal to 2.772 (2) Å. This forms a three-dimensional hydrogen bonded network.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N3i 0.85 (2) 2.16 (2) 3.0116 (17) 176 (2)
N4—H4B⋯O1ii 0.81 (2) 2.09 (2) 2.8900 (19) 169 (2)
O1—H1A⋯O11 0.72 (3) 2.38 (3) 3.0056 (17) 146 (3)
O1—H1A⋯O21 0.72 (3) 2.48 (3) 3.0719 (18) 141 (3)
O1—H1B⋯O10 0.80 (3) 1.97 (3) 2.772 (2) 178 (3)
Symmetry codes: (i) [-x+2, -y+2, -z+1]; (ii) [-x+2, -y+1, -z+1].
[Figure 2]
Figure 2
View of a pair of centrosymmetically related trans-oriented NiL mol­ecules showing the absence of ππ stacking.
[Figure 3]
Figure 3
Fragment of the crystal packing of (I)[link], viewed along the b-axis direction, showing inter­molecular N—H⋯N/O and O—H⋯O inter­actions (CH hydrogen atoms were omitted for clarity; hydrogen bonds are shown as blue dashed lines; green lines joining Ni centres do not represent bonds). [Symmetry codes: (i) −x + 2, −y + 2, −z + 1; (ii) −x + 2, −y + 1, −z + 1.]

4. Database survey

Crystal structures of neither the ligand itself nor its metal complexes are found in the Cambridge Structure Database (CSD, Version 5.42, update of May 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). AG tends to inter­act with aldehyde groups in the familiar and important amine–aldehyde condensation reaction in a 1:1 molar ratio. The structures of 45 of this kind of AG-based Schiff bases and their metal complexes deposited in the CSD incorporate various derivatives of benzaldehyde, pyridine and pyrimidine. Most of the Schiff base metal complexes derived from AG are mononuclear with the ligands coordinating through two azomethine N atoms and phenolate O atom from the ring if such a one is present. Schiff base condensations with molar ratios different from 1:1 usually employ AG amino derivatives, such as e.g. tri­amino­guanidine. The product of the 1:3 condensation reaction of the latter and 5-bromo­salicyl­aldehyde, the tris­[(5-bromo-2-hy­droxy­benzyl­idene)amino]­guanidinium cation was found suitable for coordination of three Cd2+ centres to form chiral (although racemic), tightly closed tetra­hedral cages with a formal [M6L4] topology, where M is a (CdO)2 four-membered ring (FIKJIT, FIKJOZ, FIKJUF; Müller et al., 2005[Müller, I. M., Möller, D. & Schalley, C. A. (2005). Angew. Chem. Int. Ed. 44, 480-484.]).

To our knowledge, only one example of a Schiff base metal complex structurally similar to (I)[link] has been reported. The reaction between (salicyl­idene­amino)­nitro­guanidine and salicyl­aldehyde in the presence of Ni2+ ions used as templating agents and K+ cations produced potassium (N,N′-bis­(salicyl­idene­amino)-N′′-nitro­guanidinato-N,N′,O,O′)nickel(II) with a cis-NiN2O2 square-planar chromophore (TUFDAZ; Starikova et al., 1996[Starikova, Z. A., Yanovsky, A. I., Struchkov, Yu. T., Zubkov, S. V. & Seifullina, I. I. (1996). Russ. Chem. Bull. 45, 2157-2162.]). Obviously, the NiII-assisted condensation of AG or its NO2-substituted analogue with two aldehyde mol­ecules in the case of (I)[link] and TUFDAZ occurred due to a combination of structural and electronic factors unique to the nickel(II) cation, which is prone to adopt a tetra­dentate square-planar geometry, and the favourable stoichiometry of the condensation reaction.

5. IR and 1H NMR spectroscopy measurements

The infrared spectrum of complex (I)[link] in the 4000–400 cm−1 range is very rich and shows all characteristic functional group peaks. A broad absorption near 3500 cm−1 and multiple overlapping bands in the range 3358–3134 cm−1 are attributed to ν(OH) and ν(NH) stretching vibrations, respectively. Bands arising above 3000 cm−1 are due to aromatic =CH stretching of the ligand; alkyl CH stretching vibrations of L2– and DMF solvent are seen from 2958 to 2808 cm−1. Very intense overlapping signals in the 1668–1584 cm−1 region represent ν(C=O) stretching of the DMF mol­ecule, deformation vibrations of the amino group, a group mode of the CN3 unit of the ligand, νas(CN3), and ν(C=N) peaks of L2– that cannot be distinguished from each other. The symmetric stretching mode νs(CN3) of the CN3 unit falls in the 1600–1400 cm−1 range of the aromatic ring vibrations. Several sharp bands of medium intensity are observed in the out-of-plane CH bending region (800–700 cm−1).

The diamagnetic nature of the majority of square-planar NiII complexes is helpful in their characterization by NMR spectroscopy. The 1H NMR spectrum of (I)[link] exhibits the expected set of signals between 8.5 and 2.5 ppm (Fig. 4[link]). The presence of two –CH=N– protons that appear as two singlets in a 1:1 ratio at δ 8.37 and 8.05 ppm confirms the Schiff base condensation of AG with two aldehyde mol­ecules. The signals of seven aromatic protons in the range 7.57–6.58 ppm observed as one singlet, four doublets and two triplets evidence the presence of two chemically inequivalent rings. A broad singlet at δ 7.25 ppm is due to the NH2 group adjacent to the carbon atom of the guanidine moiety. The absence of the phenolic OH singlets detected at δ 11.55 ppm in the 1H NMR spectrum of (5-bromo­salicyl­idene)amino­guanidine·HNO3 (Buvaylo et al., 2016[Buvaylo, E. A., Kasyanova, K. A., Vassilyeva, O. Y. & Skelton, B. W. (2016). Acta Cryst. E72, 907-911.]) points out the deprotonation of H2L upon coordination to the NiII centre in (I)[link]. Three sharp singlets in a 1:3:3 ratio at 7.94, 2.88 and 2.72 ppm were attributed to the CH and two CH3 groups of DMF, respectively.

[Figure 4]
Figure 4
400 MHz 1H NMR spectrum of (I)[link] in DMSO-d6 at 293 K in the range 8.5–6.5 ppm.

6. Cyclic voltammetry

The electrochemical features of complex (I)[link] were studied in methanol in the presence of 0.1 M acetate buffer (pH 4) and NaClO4 (70:28:2) as supporting electrolyte by using a three-electrode setup (glassy carbon working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode) in the potential range +1.0 to −1.0 V at a scan rate of 100 mV s−1. The anodic scan, starting from the open circuit potential (0.24 V vs Ag/AgCl), displays an oxidation wave at Epa = +0.42 V coupled with a corresponding reduction wave at Epc = +0.17 V (Fig. 5[link]). A large separation between the cathodic and anodic peak potentials (250 mV) indicates a quasi-reversible redox process which can be assigned to Ni+2/Ni+3 couple with E1/2 = +0.295 V (vs Ag/AgCl). The non-equivalent current intensity of cathodic and anodic peaks (ic/ia = 0.551) suggests that the NiIII complex generated by oxidation of NiII is not stable.

[Figure 5]
Figure 5
Cyclic voltammogram of (I)[link], 0.1 mM in methanol mixed with 0.1 M acetate buffer (pH 4) and NaClO4 (70:28:2) as supporting electrolyte at a glassy carbon electrode and Ag/AgCl as a reference electrode (scan rate: 100 mV s−1; T = 293 K).

7. Electro-optical measurements

The ability of (I)[link] to form thin films on its own when cast from methanol solution prompted us to examine its photoelectric response under illumination with visible light. The thin film of the complex with estimated thickness of about 1.5 µm was obtained by drop casting of a methanol solution of (I)[link] on an electroconducting ITO (SnO2: In2O3) layer of a standard glass slide and subsequent drying. A Kelvin probe technique was employed to track the contact potential difference between the free surface of the film and the probe with a BM8020 USB oscilloscope according to Davidenko et al. (2016[Davidenko, N. A., Kokozay, V. N., Davidenko, I. I., Buvailo, H. I., Makhankova, V. G. & Studzinsky, S. L. (2016). J. Appl. Spectrosc. 83, 854-859.]). A 4 mm diameter aluminium plate placed ∼50 µm above the surface with a vibration frequency of 4 kHz was used as the reference probe. A white-light-emitting diode (LED) with power density I ≃ 40 W m−2 was used to illuminate the film from the ITO substrate side.

The thin-film sample of (I)[link] showed a rather fast photoelectric response upon exposure to visible light with the surface potential VPH reaching its maximum value of ∼178 mV within 6 s. Then the potential diminished slightly to stay nearly constant until the light was turned off at t = 100 s (Fig. 6[link]). The VPH relaxation in the film occurred almost as fast as its growth. The free surface of the film acquired a positive charge under illumination meaning the photogenerated electrons transfer to the ITO substrate. The fast kinetics of the surface photovoltage growth and decay indicates a high mobility of the photogenerated charge carriers in (I)[link].

[Figure 6]
Figure 6
Time dependence of VPH of a thin film sample of (I)[link] with a free film surface upon illumination with a white LED (I = 40 W m−2) from the side of a transparent ITO electrode; illumination stopped at the point shown by the vertical arrow.

8. Synthesis and crystallization

A mixture of salicyl­aldehyde (0.20 g, 2 mmol), 5-bromo­salicyl­aldehyde (0.40 g, 2 mmol), AG·HCl (0.22 g, 2 mmol) and NiCl2·6H2O (0.24 g, 1 mmol) in DMF (5 mL) in a conical flask was heated at 323 K under magnetic stirring for 1.5 h with its green colour deepening. Then the solution was filtered and allowed to stand at room temperature. It changed colour to brown upon filtration. After a week, diethyl ether (2 mL) was added to the clear solution to initiate precipitation. Red shiny plate-like crystals of the title compound formed over a month. They were filtered off, washed with diethyl ether and dried out in air (yield based on NiCl2·6H2O: 69%). Analysis calculated for C18H20BrN5NiO4 (509.01): C, 42.48; H, 3.96; N, 13.76%. Found: C, 42.55; H, 3.74; N, 13.70%. 1H NMR (400 MHz, DMSO-d6, s, singlet; br, broad; d, doublet; t, triplet): δ 8.37, 8.05 (s, 2H, 2 × CH=N); 7.94 (s, 1H, CHDMF); 7.57 (s, 1H, ring); 7.50 (d, 1H, ring, J = 9.0 Hz); 7.39 (d, 1H, ring, J = 8.0 Hz); 7.25 (br, 2H, NH2); 7.18 (t, 1H, ring, J = 7.0 Hz); 6.91 (d, 1H, ring, J = 10.0 Hz), 6.80 (d, 1H, ring, J = 8.5 Hz), 6.58 (t, 1H, ring, J = 7.4 Hz); 2.88, 2.72 [s, 6H, 2 × CH3(DMF)]. FT–IR (KBr, ν cm−1): 3502br, 3358m, 3278m, 3248m, 3134m, 3062m, 2958w, 2930w, 2884w, 2832w, 2808w, 1668vs, 1610vs, 1584s, 1536w, 1512m, 1452s, 1412m, 1384m, 1356m, 1310m, 1246w, 1206m, 1184m, 1152w, 1106w, 1066w, 990w, 948w, 908w, 826w, 754m, 690w, 668w, 656w, 616w, 582w, 550w, 532w, 462w, 448w, 410w.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms bound to carbon were included in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2UeqC for CH, C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3). Water and NH2 hydrogen atoms were refined without restraints. Anisotropic displacement parameters were employed for the non-hydrogen atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C15H11BrN4O2)]·C3H7NO·H2O
Mr 509.01
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.3057 (4), 9.2300 (4), 14.3970 (7)
α, β, γ (°) 95.338 (4), 104.493 (4), 112.592 (5)
V3) 964.23 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.12
Crystal size (mm) 0.32 × 0.26 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.484, 0.721
No. of measured, independent and observed [I > 2σ(I)] reflections 28563, 9442, 7711
Rint 0.033
(sin θ/λ)max−1) 0.837
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.04
No. of reflections 9442
No. of parameters 280
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.73, −0.39
Computer programs: CrysAlis PRO (Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2016); cell refinement: CrysAlis PRO (Rigaku OD, 2016); data reduction: CrysAlis PRO (Rigaku OD, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

{4-Bromo-2-[({N'-[(2-oxidobenzylidene)amino]carbamimidoyl}imino)methyl]phenolato}nickel(II) N,N-dimethylformamide monosolvate monohydrate top
Crystal data top
[Ni(C15H11BrN4O2)]·C3H7NO·H2OZ = 2
Mr = 509.01F(000) = 516
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3057 (4) ÅCell parameters from 11025 reflections
b = 9.2300 (4) Åθ = 3.4–37.3°
c = 14.3970 (7) ŵ = 3.12 mm1
α = 95.338 (4)°T = 100 K
β = 104.493 (4)°Plate, red
γ = 112.592 (5)°0.32 × 0.26 × 0.12 mm
V = 964.23 (9) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
9442 independent reflections
Graphite monochromator7711 reflections with I > 2σ(I)
Detector resolution: 16.0009 pixels mm-1Rint = 0.033
ω scansθmax = 36.5°, θmin = 3.4°
Absorption correction: analytical
(CrysAlis Pro; Rigaku OD, 2016)
h = 1313
Tmin = 0.484, Tmax = 0.721k = 1515
28563 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.1785P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
9442 reflectionsΔρmax = 0.73 e Å3
280 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Water molecule and NH2 hydrogen atoms were refined without restraints.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.71284 (2)0.50588 (2)0.54926 (2)0.01171 (4)
Br10.78673 (2)0.02916 (2)0.16762 (2)0.02100 (4)
C110.59223 (17)0.53634 (16)0.71522 (10)0.0144 (2)
O110.61079 (14)0.44311 (12)0.64783 (8)0.01633 (18)
C120.65390 (17)0.70528 (16)0.72467 (10)0.0145 (2)
C130.62837 (19)0.79600 (18)0.79975 (11)0.0183 (3)
H130.6707470.9087930.8054760.022*
C140.5434 (2)0.72456 (19)0.86487 (11)0.0203 (3)
H140.5285950.7871630.9155610.024*
C150.4794 (2)0.55819 (19)0.85484 (11)0.0205 (3)
H150.4180980.5072190.8983160.025*
C160.5039 (2)0.46680 (18)0.78260 (11)0.0182 (3)
H160.4603250.3541690.7780760.022*
C10.73956 (18)0.78904 (17)0.65882 (10)0.0150 (2)
H10.7769710.9018530.6689050.018*
N20.76894 (15)0.71997 (13)0.58640 (9)0.01352 (19)
N30.85703 (16)0.82274 (14)0.53203 (9)0.0156 (2)
C40.88158 (18)0.74226 (16)0.46136 (10)0.0142 (2)
N40.96020 (18)0.81776 (15)0.39828 (10)0.0179 (2)
N50.81845 (15)0.57454 (13)0.45334 (8)0.01256 (19)
C60.83447 (17)0.48570 (16)0.38291 (10)0.0134 (2)
H60.8877820.5371640.3369720.016*
C210.69562 (17)0.22941 (16)0.43607 (10)0.0135 (2)
O210.66497 (14)0.29247 (12)0.51103 (8)0.01554 (18)
C220.77713 (17)0.31744 (15)0.37102 (10)0.0129 (2)
C230.80347 (18)0.23840 (16)0.29043 (10)0.0145 (2)
H230.857870.2979190.2473950.017*
C240.75004 (18)0.07631 (17)0.27528 (11)0.0158 (2)
C250.67098 (19)0.01344 (17)0.33888 (11)0.0175 (2)
H250.6354440.1260360.3275570.021*
C260.64509 (19)0.06105 (16)0.41707 (11)0.0168 (2)
H260.5922230.0010360.4595960.02*
C1011.2835 (2)0.7674 (2)1.04820 (14)0.0279 (3)
H10A1.3206260.6882781.0211530.042*
H10B1.3030480.7711211.1185520.042*
H10C1.3569580.8734481.0383890.042*
C1021.0013 (2)0.8037 (2)1.04333 (14)0.0300 (4)
H10D1.0086330.7839881.1096510.045*
H10E0.8722720.7629241.003620.045*
H10F1.0628390.919341.04690.045*
N101.09055 (17)0.72197 (16)0.99855 (10)0.0211 (2)
C100.9998 (2)0.6113 (2)0.91592 (12)0.0240 (3)
H100.8738710.5874580.887180.029*
O101.06542 (18)0.53699 (16)0.87336 (9)0.0302 (3)
O10.8463 (2)0.27288 (17)0.72054 (11)0.0263 (2)
H4A1.011 (3)0.919 (3)0.4152 (17)0.032 (6)*
H4B1.005 (3)0.780 (3)0.3645 (18)0.036 (6)*
H1A0.773 (4)0.281 (3)0.686 (2)0.054 (9)*
H1B0.911 (4)0.349 (3)0.764 (2)0.044 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01357 (7)0.00904 (7)0.01292 (8)0.00464 (6)0.00502 (6)0.00230 (6)
Br10.02594 (7)0.01691 (7)0.02208 (8)0.00886 (6)0.01230 (6)0.00042 (5)
C110.0134 (5)0.0148 (6)0.0142 (6)0.0052 (4)0.0043 (4)0.0024 (5)
O110.0216 (4)0.0124 (4)0.0166 (5)0.0069 (4)0.0091 (4)0.0027 (4)
C120.0136 (5)0.0148 (6)0.0149 (6)0.0060 (4)0.0047 (4)0.0015 (5)
C130.0187 (6)0.0165 (6)0.0188 (6)0.0076 (5)0.0053 (5)0.0003 (5)
C140.0210 (6)0.0230 (7)0.0184 (6)0.0101 (5)0.0084 (5)0.0009 (5)
C150.0202 (6)0.0242 (7)0.0171 (6)0.0079 (5)0.0085 (5)0.0036 (5)
C160.0200 (6)0.0163 (6)0.0175 (6)0.0056 (5)0.0079 (5)0.0031 (5)
C10.0165 (5)0.0121 (5)0.0165 (6)0.0063 (4)0.0053 (4)0.0016 (4)
N20.0150 (4)0.0106 (5)0.0149 (5)0.0049 (4)0.0050 (4)0.0033 (4)
N30.0197 (5)0.0099 (5)0.0172 (5)0.0050 (4)0.0077 (4)0.0034 (4)
C40.0156 (5)0.0099 (5)0.0160 (6)0.0045 (4)0.0043 (4)0.0032 (4)
N40.0253 (6)0.0099 (5)0.0201 (6)0.0059 (4)0.0119 (5)0.0046 (4)
N50.0138 (4)0.0089 (4)0.0143 (5)0.0043 (4)0.0040 (4)0.0026 (4)
C60.0140 (5)0.0115 (5)0.0145 (5)0.0046 (4)0.0053 (4)0.0033 (4)
C210.0137 (5)0.0118 (5)0.0156 (6)0.0054 (4)0.0054 (4)0.0027 (4)
O210.0204 (4)0.0108 (4)0.0181 (5)0.0066 (3)0.0102 (4)0.0033 (3)
C220.0128 (5)0.0107 (5)0.0147 (5)0.0042 (4)0.0046 (4)0.0028 (4)
C230.0153 (5)0.0128 (5)0.0160 (6)0.0055 (4)0.0067 (4)0.0024 (5)
C240.0162 (5)0.0147 (6)0.0171 (6)0.0067 (5)0.0064 (5)0.0010 (5)
C250.0201 (6)0.0112 (5)0.0231 (7)0.0066 (5)0.0101 (5)0.0023 (5)
C260.0193 (6)0.0114 (5)0.0223 (7)0.0055 (5)0.0116 (5)0.0055 (5)
C1010.0209 (7)0.0330 (9)0.0281 (8)0.0103 (6)0.0069 (6)0.0046 (7)
C1020.0314 (8)0.0339 (9)0.0292 (9)0.0212 (7)0.0060 (7)0.0042 (7)
N100.0206 (5)0.0228 (6)0.0208 (6)0.0097 (5)0.0063 (5)0.0062 (5)
C100.0248 (7)0.0239 (7)0.0210 (7)0.0063 (6)0.0083 (6)0.0092 (6)
O100.0366 (6)0.0287 (6)0.0245 (6)0.0094 (5)0.0159 (5)0.0038 (5)
O10.0294 (6)0.0320 (7)0.0224 (6)0.0169 (6)0.0092 (5)0.0081 (5)
Geometric parameters (Å, º) top
Ni1—N21.8383 (11)C6—C221.4176 (18)
Ni1—N51.8494 (11)C6—H60.95
Ni1—O211.8515 (10)C21—O211.3048 (16)
Ni1—O111.8562 (10)C21—C261.4241 (19)
Br1—C241.9044 (14)C21—C221.4255 (19)
C11—O111.3142 (17)C22—C231.4208 (19)
C11—C161.415 (2)C23—C241.3651 (19)
C11—C121.4228 (19)C23—H230.95
C12—C131.413 (2)C24—C251.407 (2)
C12—C11.433 (2)C25—C261.370 (2)
C13—C141.379 (2)C25—H250.95
C13—H130.95C26—H260.95
C14—C151.398 (2)C101—N101.452 (2)
C14—H140.95C101—H10A0.98
C15—C161.382 (2)C101—H10B0.98
C15—H150.95C101—H10C0.98
C16—H160.95C102—N101.453 (2)
C1—N21.2947 (18)C102—H10D0.98
C1—H10.95C102—H10E0.98
N2—N31.3926 (16)C102—H10F0.98
N3—C41.3069 (18)N10—C101.327 (2)
C4—N41.3423 (18)C10—O101.233 (2)
C4—N51.4133 (17)C10—H100.95
N4—H4A0.85 (2)O1—H1A0.72 (3)
N4—H4B0.81 (2)O1—H1B0.80 (3)
N5—C61.3095 (17)
N2—Ni1—N583.08 (5)N5—C6—C22124.01 (12)
N2—Ni1—O21177.80 (5)N5—C6—H6118
N5—Ni1—O2195.25 (5)C22—C6—H6118
N2—Ni1—O1195.35 (5)O21—C21—C26118.42 (12)
N5—Ni1—O11178.29 (5)O21—C21—C22124.57 (12)
O21—Ni1—O1186.30 (4)C26—C21—C22117.02 (12)
O11—C11—C16119.03 (13)C21—O21—Ni1126.68 (9)
O11—C11—C12124.05 (12)C6—C22—C23117.06 (12)
C16—C11—C12116.91 (12)C6—C22—C21122.19 (12)
C11—O11—Ni1126.59 (9)C23—C22—C21120.75 (12)
C13—C12—C11120.07 (13)C24—C23—C22119.52 (13)
C13—C12—C1117.68 (13)C24—C23—H23120.2
C11—C12—C1122.24 (12)C22—C23—H23120.2
C14—C13—C12121.51 (14)C23—C24—C25120.99 (13)
C14—C13—H13119.2C23—C24—Br1119.43 (11)
C12—C13—H13119.2C25—C24—Br1119.57 (10)
C13—C14—C15118.70 (14)C26—C25—C24120.21 (13)
C13—C14—H14120.7C26—C25—H25119.9
C15—C14—H14120.7C24—C25—H25119.9
C16—C15—C14120.97 (14)C25—C26—C21121.51 (13)
C16—C15—H15119.5C25—C26—H26119.2
C14—C15—H15119.5C21—C26—H26119.2
C15—C16—C11121.82 (14)N10—C101—H10A109.5
C15—C16—H16119.1N10—C101—H10B109.5
C11—C16—H16119.1H10A—C101—H10B109.5
N2—C1—C12123.84 (13)N10—C101—H10C109.5
N2—C1—H1118.1H10A—C101—H10C109.5
C12—C1—H1118.1H10B—C101—H10C109.5
C1—N2—N3115.09 (12)N10—C102—H10D109.5
C1—N2—Ni1127.91 (10)N10—C102—H10E109.5
N3—N2—Ni1116.98 (9)H10D—C102—H10E109.5
C4—N3—N2110.50 (11)N10—C102—H10F109.5
N3—C4—N4120.38 (12)H10D—C102—H10F109.5
N3—C4—N5117.40 (12)H10E—C102—H10F109.5
N4—C4—N5122.21 (12)C10—N10—C101121.63 (14)
C4—N4—H4A114.7 (15)C10—N10—C102121.41 (14)
C4—N4—H4B123.3 (17)C101—N10—C102116.96 (14)
H4A—N4—H4B115 (2)O10—C10—N10125.34 (16)
C6—N5—C4120.76 (12)O10—C10—H10117.3
C6—N5—Ni1127.20 (9)N10—C10—H10117.3
C4—N5—Ni1112.02 (9)H1A—O1—H1B115 (3)
C16—C11—O11—Ni1177.39 (10)N3—C4—N5—Ni10.36 (15)
C12—C11—O11—Ni11.81 (19)N4—C4—N5—Ni1178.86 (11)
N2—Ni1—O11—C111.06 (12)N2—Ni1—N5—C6178.04 (12)
O21—Ni1—O11—C11179.59 (11)O21—Ni1—N5—C63.41 (12)
O11—C11—C12—C13179.83 (13)N2—Ni1—N5—C40.59 (9)
C16—C11—C12—C130.96 (19)O21—Ni1—N5—C4177.96 (9)
O11—C11—C12—C11.4 (2)C4—N5—C6—C22178.98 (12)
C16—C11—C12—C1177.81 (13)Ni1—N5—C6—C222.50 (19)
C11—C12—C13—C140.3 (2)C26—C21—O21—Ni1178.48 (9)
C1—C12—C13—C14178.49 (13)C22—C21—O21—Ni11.61 (19)
C12—C13—C14—C150.9 (2)N5—Ni1—O21—C212.96 (11)
C13—C14—C15—C161.4 (2)O11—Ni1—O21—C21177.76 (11)
C14—C15—C16—C110.8 (2)N5—C6—C22—C23179.74 (12)
O11—C11—C16—C15179.68 (13)N5—C6—C22—C210.0 (2)
C12—C11—C16—C150.4 (2)O21—C21—C22—C60.4 (2)
C13—C12—C1—N2179.16 (13)C26—C21—C22—C6179.48 (12)
C11—C12—C1—N20.4 (2)O21—C21—C22—C23179.27 (13)
C12—C1—N2—N3178.84 (12)C26—C21—C22—C230.82 (18)
C12—C1—N2—Ni10.2 (2)C6—C22—C23—C24179.73 (12)
N5—Ni1—N2—C1179.40 (13)C21—C22—C23—C240.02 (19)
O11—Ni1—N2—C10.08 (13)C22—C23—C24—C250.7 (2)
N5—Ni1—N2—N30.76 (9)C22—C23—C24—Br1179.66 (10)
O11—Ni1—N2—N3178.56 (9)C23—C24—C25—C260.5 (2)
C1—N2—N3—C4179.55 (12)Br1—C24—C25—C26179.49 (11)
Ni1—N2—N3—C40.73 (14)C24—C25—C26—C210.4 (2)
N2—N3—C4—N4178.31 (12)O21—C21—C26—C25179.09 (13)
N2—N3—C4—N50.22 (17)C22—C21—C26—C251.0 (2)
N3—C4—N5—C6178.37 (12)C101—N10—C10—O100.1 (3)
N4—C4—N5—C60.1 (2)C102—N10—C10—O10179.88 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N3i0.85 (2)2.16 (2)3.0116 (17)176 (2)
N4—H4B···O1ii0.81 (2)2.09 (2)2.8900 (19)169 (2)
O1—H1A···O110.72 (3)2.38 (3)3.0056 (17)146 (3)
O1—H1A···O210.72 (3)2.48 (3)3.0719 (18)141 (3)
O1—H1B···O100.80 (3)1.97 (3)2.772 (2)178 (3)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant for the perspective development of the scientific direction `Mathematical sciences and natural sciences' at the Taras Shevchenko National University of Kyiv).

References

First citationBerlinck, R. G. & Romminger, S. (2016). Nat. Prod. Rep. 33, 456–490.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBuvaylo, E. A., Kasyanova, K. A., Vassilyeva, O. Y. & Skelton, B. W. (2016). Acta Cryst. E72, 907–911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Strutynska, N. Y., Vassilyeva, O. Y. & Skelton, B. W. (2018). Acta Cryst. C74, 152–158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2013). Acta Cryst. E69, m165–m166.  CSD CrossRef IUCr Journals Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterova, O. V. & Pombeiro, A. J. (2017). Inorg. Chem. Commun. 78, 85–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationColzani, M., De Maddis, D., Casali, G., Carini, M., Vistoli, G. & Aldini, G. (2016). ChemMedChem, 11, 1778–1789.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDavidenko, N. A., Kokozay, V. N., Davidenko, I. I., Buvailo, H. I., Makhankova, V. G. & Studzinsky, S. L. (2016). J. Appl. Spectrosc. 83, 854–859.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFukumoto, S., Imamiya, E., Kusumoto, K., Fujiwara, S., Watanabe, T. & Shiraishi, M. (2002). J. Med. Chem. 45, 3009–3021.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirsh, A. J., Zhang, J., Zamurs, A., Fleegle, J., Thelin, W. R., Caldwell, R. A., Sabater, J. R., Abraham, W. M., Donowitz, M., Cha, B., Johnson, K. B., George, J. A. St., Johnson, M. R. & Boucher, R. C. (2008). J. Pharmacol. Exp. Ther. 325, 77–88.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIshikawa, T. (2009). Editor. Superbases for Organic Synthesis: Guanidines, Amidines and Phosphazenes and Related Organocatalysts, pp. 93–144. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationKalousová, M., Skrha, J. & Zima, T. (2002). Physiol. Res. 51, 597–604.  Web of Science PubMed Google Scholar
First citationKudo, Y., Yasumoto, T., Mebs, D., Cho, Y., Konoki, K. & Yotsu-Yamashita, M. (2016). Angew. Chem. Int. Ed. 55, 8728–8731.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMüller, I. M., Möller, D. & Schalley, C. A. (2005). Angew. Chem. Int. Ed. 44, 480–484.  Google Scholar
First citationPicklo, M. J., Montine, T. J., Amarnath, V. & Neely, M. D. (2002). Toxicol. Appl. Pharmacol. 184, 187–197.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQian, Y., Zhang, H. J., Lv, P. C. & Zhu, H. L. (2010). Bioorg. Med. Chem. 18, 8218–8225.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRamis, R., Casasnovas, R., Mariño, L., Frau, J., Adrover, M., Vilanova, B., Mora–Diez, N. & Ortega–Castro, J. (2019). Int. J. Quantum Chem. 119, e25911.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSantos, M. F., Harper, P. M., Williams, D. E., Mesquita, J. T., Pinto, G., da Costa-Silva, T. A., Hajdu, E., Ferreira, A. G., Santos, R. A., Murphy, P. J., Andersen, R. J., Tempone, A. G. & Berlinck, R. G. S. (2015). J. Nat. Prod. 78, 1101–1112.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSelig, P. (2013). Synthesis, 45, 703–718.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStarikova, Z. A., Yanovsky, A. I., Struchkov, Yu. T., Zubkov, S. V. & Seifullina, I. I. (1996). Russ. Chem. Bull. 45, 2157–2162.  CrossRef Web of Science Google Scholar
First citationVojinović-Ješić, L. S., Radanović, M. M., Rodić, M. V., Jovanović, L. S., Češljević, V. I. & Joksović, M. D. (2014). Polyhedron, 80, 90–96.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds