research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of poly[[di-μ3-tetra­thio­anti­monato-tris­­[(cyclam)cobalt(II)]] aceto­nitrile disolvate dihydrate] (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: wbensch@ac.uni-kiel.de

Edited by J. T. Mague, Tulane University, USA (Received 18 January 2022; accepted 31 January 2022; online 3 February 2022)

Reaction of Co(ClO4)2·6H2O with cyclam (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) and Na3SbS4·9H2O (Schlippesches salt) in a mixture of aceto­nitrile and water leads to the formation of crystals of the title compound with the composition {[Co3(SbS4)2(C10H24N4)3]·2CH3CN·2H2O}n or {[(Co-cyclam)3(SbS4)2]·2(aceto­nitrile)·2H2O}n. The crystal structure of the title compound consists of three crystallographically independent [Co-cyclam]2+ cations, which are located on centers of inversion, one [SbS4]3− anion, one water and one aceto­nitrile mol­ecule that occupy general positions. The aceto­nitrile mol­ecule is disordered over two orientations and was refined using a split model. The CoII cations are coordinated by four N atoms of the cyclam ligand and two trans-S atoms of the tetra­thio­anti­monate anion within slightly distorted octa­hedra. The unique [SbS4]3− anion is coordinated to all three crystallographically independent CoII cations and this unit, with its symmetry-related counterparts, forms rings composed of six Co-cyclam cations and six tetra­thio­anti­monate anions that are further condensed into layers. These layers are perfectly stacked onto each other so that channels are formed in which acetontrile solvate mol­ecules that are hydrogen bonded to the anions are embedded. The water solvate mol­ecules are located between the layers and are connected to the cyclam ligands and the [SbS4]3− anions via inter­molecular N—H⋯O and O—H⋯S hydrogen bonding.

1. Chemical context

Inorganic–organic chalcogenidometallates are an important class of compounds and many such compounds have been reported in the literature (Sheldrick & Wachhold, 1988[Sheldrick, W. S. & Wachhold, M. (1988). Coord. Chem. Rev. 176, 211-322.]; Bensch et al., 1997[Bensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. pp. 1773-1774.]; Dehnen & Melullis, 2007[Dehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259-1280.]; Wang et al., 2016[Wang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41-68.]; Zhou, 2016[Zhou, J. (2016). Coord. Chem. Rev. 315, 112-134.]; Zhu & Dai, 2017[Zhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95-109.]; Nie et al., 2017[Nie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. & Zhang, Q. (2017). Inorg. Chem. Front, 4, 945-959.]). A large part of this family of compounds consists of thio­anti­monates, which exhibit a variety of coordination numbers that can lead to networks of different dimensionality (Jia et al., 2004[Jia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477-2483.]; Powell et al., 2005[Powell, A. V., Thun, J. & Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414-3419.]; Spetzler et al., 2004[Spetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142-148.]; Zhang et al., 2007[Zhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606-1612.]; Liu & Zhou, 2011[Liu, X. & Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268-1289.]; Engelke et al., 2004[Engelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B. 59, 869-876.]; Puls et al., 2006[Puls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239-1243.]). Moreover, some of them have potential for applications, for example in the field of superionic conductors (Zhou et al., 2019[Zhou, L., Assoud, A., Zhang, Q., Wu, X. & Nazar, L. F. (2019). J. Am. Chem. Soc. 141, 19002-19013.]) or as photoconductive materials (Pienack et al., 2008a[Pienack, N., Puls, A., Näther, C. & Bensch, W. (2008a). Inorg. Chem. 47, 9606-9611.]). For these reasons, we have explored such compounds over many years (Schaefer et al., 2003[Schaefer, M., Näther, C. & Bensch, W. (2003). Solid State Sci. 5, 1135-1139.]; Stähler et al., 2001[Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.]; Schur et al., 1998[Schur, M., Rijnberk, H., Näther, C. & Bensch, W. (1998). Polyhedron, 18, 101-107.], 2001[Schur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. Teil B. 56, 79-84.]; Kiebach et al., 2004[Kiebach, R., Studt, F., Näther, C. & Bensch, W. (2004). Eur. J. Inorg. Chem. pp. 2553-2556.]; Spetzler et al., 2004[Spetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142-148.]; Lühmann et al., 2008[Lühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687-1695.]; Pienack et al., 2008b[Pienack, N., Lehmann, S., Lühmann, H., El-Madani, M., Näther, C. & Bensch, W. (2008b). Z. Anorg. Allg. Chem. 634, 2323-2329.]). In the beginning, we synthesized new thio­anti­monates using elemental anti­mony, sulfur and amine mol­ecules under solvothermal conditions but later we found that many of these compounds are also available under solvothermal conditions if Schlippesches salt (Na3SbS4·9H2O) or NaSbS3 are used as reactants (Anderer et al., 2014[Anderer, C., Delwa de Alarcón, N., Näther, C. & Bensch, W. (2014). Chem. Eur. J. 20, 16953-16959.], 2016[Anderer, C., Näther, C. & Bensch, W. (2016). Cryst. Growth Des. 16, 3802-3810.]; Danker et al., 2020[Danker, F., Näther, C. & Bensch, W. (2020). Acta Cryst. E76, 32-37.]). In this case, different SbSx species are present in solution, because Schlippesches salt is unstable and forms different reactive species such as [SbS3O]3−, HS, [S2O3]2− or [SbS4]3− anions (Rammelsberg, 1841[Rammelsberg, C. F. (1841). Ann. Phys. Chem. 52, 207.]; Long & Bowen, 1970[Long, G. G. & Bowen, L. H. (1970). Inorg. Nucl. Chem. Lett. 6, 837-842.]; Mosselmanns et al., 2000[Mosselmans, J. F. W., Helz, G. R., Pattrick, R. A., Charnock, J. M. & Vaughan, D. H. (2000). Appl. Geochem. 15, 879-889.]; Planer-Friedrich & Scheinost, 2011[Planer-Friedrich, B. & Scheinost, A. C. (2011). Environ. Sci. Technol. 45, 6855-6863.]; Planer-Friedrich & Wilson, 2012[Planer-Friedrich, B. & Wilson, N. (2012). Chem. Geol. 322-323, 1-10.]; Anderer et al., 2014[Anderer, C., Delwa de Alarcón, N., Näther, C. & Bensch, W. (2014). Chem. Eur. J. 20, 16953-16959.]). In addition, a variety of complex redox and condensation reactions occur, generating polymeric thio­anti­monate(III) anions, which are found in the structures of the reaction products. To prevent the reduction of SbV to SbIII, a different synthesis strategy is required and the reaction temperature must be reduced to slow down the decomposition of Schlippesches salt. Using an aqueous solution of Na3SbS4·9H2O and adding a solution of late transition-metal cations leads to immediate precipitation of sulfides or hydroxides, even when chelating amine mol­ecules are added. To solve the problem we developed a two-solution strategy: an organic solution contains the transition-metal cations and the chelating amine mol­ecule and a second solution comprises Schlippesches salt. In the organic solution, the transition-metal complex is already generated in situ and mixing the two solutions leads to nucleation and successive growth of the product. A challenge is the integration of transition-metal cations into a thio­anti­monate(V) network, despite the [SbS4]3− anion offering four possible binding sites. In the course of this project we became inter­ested in cyclam (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne), which is a tetra­dentate ligand. This means that in an octa­hedral coordination of a transition-metal cation, two coordination sites are provided to which thio­anti­monate(V) anions can coordinate, which, depending on the nature of the anion, can lead to the formation of the desired thio­anti­monate(V) networks.

[Scheme 1]

In this context, we have reported on two new polymeric thio­anti­monates with the composition [(Cu-cyclam)3(SbS4)2]·20H2O and [(Zn-cyclam)3(SbS4)2]·8H2O (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]). In the crystal structure of the Cu compound, the copper cations are sixfold coordinated by the four N atoms of the cyclam ligand and two trans-sulfur atoms of the [SbS4]3− anions within slightly distorted octa­hedra. The copper cations are linked by the anions into rings by corner-sharing SbS4 and CuN4S2 units, which are condensed into layers. These layers are stacked in such a way that large pores are formed. Between the layers, water mol­ecules are embedded. At first glance, the arrangement of the building blocks in the crystal structure of the Zn compound looks similar, but in this case the ZnII cation is disordered above and below the N4 plane in a 1:1 ratio, which means that it is in a fivefold coordination of the four N atoms of the cyclam ligand and one S atom of the [SbS4]3− anions in a square-pyramidal geometry. The structural difference between the Cu and Zn coordinations was reproduced by DFT calculations (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]). In the course of our systematic work we tried to prepare a similar compound with cobalt using the same synthetic approach. This led to crystals of the title compound, which were characterized by single-crystal X-ray diffraction.

2. Structural commentary

The asymmetric unit of the title compound consists of three crystallographically independent CoII cations and three independent cyclam ligands that are located on centers of inversion, as well as one [SbS4]3− anion, one water and one aceto­nitrile mol­ecule that occupy general positions (Fig. 1[link]). The aceto­nitrile mol­ecule is disordered over two orientations and was refined using a split model (see Refinement). The CoII cations are six-coordinate being bound to the four N atoms of cyclam ligand that are located in the equatorial plane and two trans-S atoms of two inversion-related tetra­thio­anti­monate anions that occupy the apical positions (Fig. 2[link]). The Co—N bond lengths are very similar for the three crystallographically independent CoII cations whereas significant differences are found for the Co—S bond lengths (Table 1[link]). These changes, however, do not correlate with the Sb—S distances (Table 1[link]). The angles around the Co centers prove that the octa­hedra are slightly distorted (see supporting information). The cyclam ligands are in the trans-III(S,S,R,R) configuration, which is the most stable arrangement for the first row transition-metal cation-centered cyclam complexes (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.]).

Table 1
Selected bond lengths (Å)

Sb1—S4 2.3195 (13) S1—Co1 2.7258 (12)
Sb1—S1 2.3200 (12) S2—Co2 2.6932 (11)
Sb1—S3 2.3221 (12) S3—Co3 2.7821 (12)
Sb1—S2 2.3382 (11)    
[Figure 1]
Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms are omitted for clarity and the disordering of the aceto­nitrile ligands is shown with full and open bonds. Symmetry codes for the generation of equivalent atoms: (i) −x + 1, −y, −z + 2; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 2, −y, −z + 1.
[Figure 2]
Figure 2
Crystal structure of the title compound with a view of the coordination sphere of the three crystallographically independent Co cations.

The Sb—S bond lengths in the tetra­thio­anti­monate anion (Table 1[link]) are comparable and correspond to those observed in other compounds with this anion. From the S—Sb—S bond angles it is obvious that the tetra­hedron is only slightly distorted (see supporting information). The [SbS4]3− anion shows the rare tridentate coordination mode and is linked to each of the three crystallographically independent CoII cations and with inversion-related counterparts, forming rings composed of six [SbS4]3− anions and six [Co(cyclam]2+ cations (Fig. 3[link]). These rings are condensed into layers parallel to the bc plane (Fig. 4[link]). This layer topology is identical to that in [Cu(cyclam)3[SbS4)2]·20H2O but the two compounds are not isotypic (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]). The layers are stacked perfectly onto each other, forming channels extending along the a-axis direction (Fig. 5[link]).

[Figure 3]
Figure 3
Crystal structure of the title compound with a view of an 24-membered ring composed of six Co cations and six [SbS4]3− anions.
[Figure 4]
Figure 4
Crystal structure of the title compound with a view of the Co3(SbS4)2 network along the crystallographic a axis. The cyclam ligands are not shown for clarity.
[Figure 5]
Figure 5
Crystal structure of the title compound with a view in the a-axis direction with inter­molecular hydrogen bonding shown as dashed lines. The disorder of the aceto­nitrile mol­ecules is omitted for clarity.

3. Supra­molecular features

Within the channels are embedded aceto­nitrile solvate mol­ecules that are disordered and hydrogen bonded to the tetra­thio­anti­monate anion (Fig. 5[link]). The C—H⋯S angles are close to linear, indicating that this is a significant inter­action (Table 2[link]). Water mol­ecules are located between the layers and are connected to the [SbS4]3− anions via inter­molecular O—H⋯S hydrogen bonding, which is classed as strong because the angles are close to linearity and relatively short H⋯S distances are observed (Table 2[link]). These water mol­ecules also act as acceptors for N—H⋯O hydrogen bonding to the cyclam ligands (Table 2[link]). The layers are linked by additional C—H⋯S and N—H⋯S hydrogen bonds between the cyclam ligands and the tetra­thio­anti­monate anions. There are additional H⋯S contacts but at distances close to van der Waals contacts with angles ranging between about 110 and 125°.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 1.00 2.48 3.442 (4) 161
C1—H1B⋯S4ii 0.99 2.95 3.858 (5) 152
N2—H2⋯S4 1.00 2.49 3.448 (4) 159
N11—H11⋯O1iii 1.00 2.23 3.151 (6) 153
N12—H12⋯S3iv 1.00 2.43 3.378 (4) 157
N21—H21⋯O1 1.00 2.08 2.920 (6) 141
N22—H22⋯S1 1.00 2.35 3.290 (4) 156
O1—H1C⋯S2iii 0.84 2.49 3.276 (4) 157
O1—H1D⋯S4v 0.84 2.46 3.280 (4) 166
C32—H32B⋯S4 0.98 2.81 3.71 (4) 154
C32′—H32F⋯S4 0.98 2.88 3.85 (5) 172
Symmetry codes: (i) [-x+1, -y, -z+2]; (ii) [-x+2, -y, -z+2]; (iii) [-x+1, -y, -z+1]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+2, -y, -z+1].

4. Database survey

A search for structures of cobalt-centered cylam complexes in the Cambridge Structural Database (CSD version 5.42, last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 152 hits, in four of which the cobalt cations are in an N4S2 coordination. In one of these structures (Refcode: NIMVIQ; Zeisler et al., 2013[Zeisler, C., Näther, C. & Bensch, W. (2013). CrystEngComm, 15, 8874-8876.]), a thio­stannate acts as anion but none of them contains thio­anti­monate anions. The same results are obtained if the search is expanded to any transition-metal cation. Therefore, only the Cu and Zn compounds mentioned above have been published (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]).

However, 21 structures with CoII and tetra­thio­anti­monate anions have been published and in two of these structures, the cobalt cations are linked to a tetra­thio­anti­monate anion, viz. [Co(di­ethyl­enetri­amine)2][Co(tris­(2-amino­meth­yl)amine)SbS4]2·4H2O (Engelke et al., 2008[Engelke, L., Näther, C., Leisner, P. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 2959-2965.]) and [Co(di­ethyl­enetri­am­ine)2][Co(tris­(2-amino­meth­yl)amine)SbS4]2·0.5H2O (Lich­te, et al., 2009[Lichte, J., Lühmann, H., Näther, C. & Bensch, W. (2009). Z. Anorg. Allg. Chem. 635, 2021-2026.]).

5. Synthesis and crystallization

Synthesis of Na3SbS4·9H2O

Na3SbS4·9H2O was synthesized by adding 16.6 g (0.213 mol) of Na2xH2O (technical grade, purchased from Acros Organics) to 58 mL of demineralized water. This solution was heated to 323 K for 1 h. Afterwards, 19.6 g (0.058 mol) of Sb2S3 (98%, purchased from Alfa Aesar) and 3.69 g (0.115 mol) of sulfur (min. 99%, purchased from Alfa Aesar) were added and the reaction mixture was heated to 343 K for 6 h. The reaction mixture was filtered and the filtrate was stored overnight, leading to the formation of slightly yellow crystals, which were filtered off, washed with small amounts of water and dried under vacuum (yield about 30% based on Sb2S3).

Synthesis of the title compound

16 mg (0.044 mmol) of Co(ClO4)2·6H2O (purchased from Alfa Aesar) and 16 mg (0.08 mmol) of cyclam (purchased from Strem Chemicals) were dissolved in 2 mL of aceto­nitrile (purchased from Merck). To this solution, a solution of 50 mg (0.14 mmol) of Na3SbS4·9H2O dissolved in 1 mL of H2O was added. Within 3d a few colorless crystals of the title compound were obtained, which were always contaminated with an additional and unknown phase that is amorphous to X-rays. This additional phase is also present if the reaction conditions are varied slightly. Therefore, one of the colorless crystals was selected for structure determination.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined anisotropically. The C- and N-bound H atoms were located in the difference map but were positioned with ideal­ized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Uiso(H) = 1.2Ueq(C,N) (1.5 for methyl H atoms) using a riding model. The O-bound H atoms were located in the difference map, their bond lengths were set to ideal values and finally they were refined isotrop­ically with Uiso(H) = 1.5Ueq(O) using a riding model. The acetontrile mol­ecule is disordered over two orientations and was refined using a split model (ratio: 1:1) with restraints for the geometry and the components of the anisotropic displacement parameters.

Table 3
Experimental details

Crystal data
Chemical formula [Co3(SbS4)2(C10H24N4)3]·2C2H3N·2H2O
Mr 1395.90
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 8.7292 (3), 12.9680 (5), 13.8936 (5)
α, β, γ (°) 66.218 (3), 77.035 (3), 83.321 (3)
V3) 1401.93 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.16
Crystal size (mm) 0.15 × 0.10 × 0.07
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.649, 0.774
No. of measured, independent and observed [I > 2σ(I)] reflections 15304, 6098, 5078
Rint 0.030
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.06
No. of reflections 6098
No. of parameters 321
No. of restraints 87
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −1.56
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[di-µ3-tetrathioantimonato-tris[(cyclam)cobalt(II)]] acetonitrile disolvate dihydrate] top
Crystal data top
[Co3(SbS4)2(C10H24N4)3]·2C2H3N·2H2OZ = 1
Mr = 1395.90F(000) = 711
Triclinic, P1Dx = 1.653 Mg m3
a = 8.7292 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.9680 (5) ÅCell parameters from 15304 reflections
c = 13.8936 (5) Åθ = 1.6–27.0°
α = 66.218 (3)°µ = 2.16 mm1
β = 77.035 (3)°T = 200 K
γ = 83.321 (3)°Block, red
V = 1401.93 (9) Å30.15 × 0.10 × 0.07 mm
Data collection top
Stoe IPDS-2
diffractometer
5078 reflections with I > 2σ(I)
ω scansRint = 0.030
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
θmax = 27.0°, θmin = 1.6°
Tmin = 0.649, Tmax = 0.774h = 1111
15304 measured reflectionsk = 1616
6098 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.084P)2 + 0.1597P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max = 0.047
S = 1.06Δρmax = 0.81 e Å3
6098 reflectionsΔρmin = 1.56 e Å3
321 parametersExtinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
87 restraintsExtinction coefficient: 0.0136 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.73888 (3)0.19084 (2)0.69041 (2)0.03283 (12)
S10.64905 (15)0.01167 (10)0.80137 (9)0.0414 (3)
S20.51359 (13)0.30840 (9)0.67415 (9)0.0380 (3)
S30.86596 (14)0.19636 (10)0.52265 (9)0.0416 (3)
S40.90553 (14)0.24527 (12)0.76901 (10)0.0461 (3)
Co10.5000000.0000001.0000000.0350 (2)
N10.6290 (4)0.1388 (3)1.0629 (3)0.0392 (8)
H10.5837010.1711091.1415060.047*
C10.7871 (6)0.1025 (5)1.0528 (4)0.0461 (11)
H1A0.8476630.0858720.9791140.055*
H1B0.8439320.1629981.1035780.055*
C20.7700 (6)0.0016 (5)1.0773 (4)0.0465 (11)
H2A0.7206580.0169781.1536110.056*
H2B0.8745550.0328691.0637220.056*
N20.6701 (5)0.0849 (3)1.0071 (3)0.0391 (8)
H20.7367360.1142280.9335220.047*
C30.6268 (7)0.1831 (4)1.0369 (4)0.0465 (11)
H3A0.7236890.2185351.0331030.056*
H3B0.5677300.1573401.1118450.056*
C40.5275 (7)0.2697 (4)0.9642 (4)0.0502 (12)
H4A0.5842510.2908890.8890120.060*
H4B0.5154880.3382030.9804590.060*
C50.3653 (6)0.2311 (4)0.9738 (4)0.0462 (11)
H5A0.3099910.2057291.0495760.055*
H5B0.3040130.2957210.9307670.055*
Co20.5000000.5000000.5000000.0342 (2)
N110.3450 (4)0.4238 (3)0.4693 (3)0.0375 (8)
H110.3501020.3426740.5185950.045*
C110.1850 (5)0.4666 (4)0.5023 (4)0.0422 (10)
H11A0.1054550.4114390.5154750.051*
H11B0.1606040.5386620.4452000.051*
C120.1825 (5)0.4840 (4)0.6041 (4)0.0422 (10)
H12A0.0834550.5235770.6225560.051*
H12B0.1889640.4103370.6642610.051*
N120.3180 (4)0.5518 (3)0.5857 (3)0.0370 (8)
H120.2911460.6301100.5375330.044*
C130.3355 (6)0.5600 (4)0.6854 (4)0.0433 (10)
H13A0.3482090.4830930.7397250.052*
H13B0.2384160.5948630.7135260.052*
C140.4744 (7)0.6285 (5)0.6695 (5)0.0500 (12)
H14A0.4718290.6391110.7365640.060*
H14B0.4642960.7038730.6123830.060*
C150.6317 (6)0.5751 (4)0.6397 (4)0.0435 (10)
H15A0.7170030.6166690.6433200.052*
H15B0.6375780.4962950.6919140.052*
Co31.0000000.0000000.5000000.0441 (2)
N210.8192 (5)0.0196 (3)0.4448 (3)0.0409 (9)
H210.8513950.0819690.4188850.049*
C210.6910 (6)0.0636 (5)0.5384 (5)0.0480 (11)
H21A0.6109400.0978140.5208630.058*
H21B0.6395940.0018290.5598120.058*
C220.7616 (6)0.1511 (4)0.6284 (4)0.0484 (12)
H22A0.6805510.1785190.6948620.058*
H22B0.8050270.2160220.6096100.058*
N220.8886 (5)0.0960 (3)0.6442 (3)0.0401 (9)
H220.8337820.0427250.6773570.048*
C230.9780 (7)0.1761 (4)0.7226 (4)0.0477 (12)
H23A1.0274180.2352590.6967360.057*
H23B0.9048850.2130900.7914640.057*
C241.1039 (7)0.1201 (5)0.7413 (4)0.0549 (13)
H24A1.1484260.1751160.8026700.066*
H24B1.0551650.0568140.7612530.066*
C251.2359 (6)0.0757 (5)0.6455 (4)0.0496 (12)
H25A1.3208060.0499070.6666120.060*
H25B1.2799120.1371890.6216010.060*
O10.7600 (5)0.1823 (3)0.3619 (3)0.0554 (9)
H1C0.7040990.2059010.3335220.08 (2)*
H1D0.8508390.2027010.3390720.10 (3)*
N310.748 (3)0.4588 (19)1.0545 (11)0.116 (7)0.5
C310.815 (5)0.457 (4)0.9743 (13)0.101 (7)0.5
C320.908 (4)0.469 (4)0.8707 (12)0.090 (7)0.5
H32A0.8999610.5475500.8200090.135*0.5
H32B0.8698800.4191110.8447280.135*0.5
H32C1.0185800.4495880.8768210.135*0.5
N31'0.814 (3)0.4114 (18)1.0734 (10)0.112 (7)0.5
C31'0.833 (5)0.452 (4)0.9817 (11)0.093 (7)0.5
C32'0.854 (5)0.488 (4)0.8670 (12)0.122 (12)0.5
H32D0.9435930.5378070.8319780.183*0.5
H32E0.7585280.5291860.8432590.183*0.5
H32F0.8730300.4222510.8478360.183*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.03142 (17)0.03401 (17)0.02939 (17)0.00144 (10)0.00454 (10)0.00920 (11)
S10.0463 (6)0.0347 (5)0.0360 (6)0.0044 (4)0.0013 (5)0.0103 (5)
S20.0336 (5)0.0376 (5)0.0357 (6)0.0022 (4)0.0059 (4)0.0085 (4)
S30.0441 (6)0.0424 (6)0.0312 (5)0.0026 (5)0.0021 (4)0.0111 (5)
S40.0384 (6)0.0608 (7)0.0406 (6)0.0107 (5)0.0073 (5)0.0189 (6)
Co10.0331 (4)0.0364 (4)0.0342 (4)0.0022 (3)0.0069 (3)0.0119 (3)
N10.0383 (19)0.041 (2)0.0338 (19)0.0015 (16)0.0068 (15)0.0103 (16)
C10.036 (2)0.055 (3)0.044 (3)0.002 (2)0.0090 (19)0.016 (2)
C20.038 (2)0.061 (3)0.039 (3)0.008 (2)0.0099 (19)0.016 (2)
N20.040 (2)0.045 (2)0.0311 (18)0.0077 (16)0.0064 (15)0.0122 (16)
C30.060 (3)0.043 (3)0.041 (3)0.014 (2)0.007 (2)0.018 (2)
C40.065 (3)0.040 (2)0.040 (3)0.010 (2)0.000 (2)0.013 (2)
C50.053 (3)0.038 (2)0.038 (2)0.003 (2)0.001 (2)0.011 (2)
Co20.0295 (4)0.0378 (4)0.0331 (4)0.0022 (3)0.0049 (3)0.0118 (3)
N110.0363 (19)0.0381 (19)0.0348 (19)0.0025 (15)0.0086 (15)0.0095 (16)
C110.032 (2)0.047 (3)0.044 (3)0.0011 (18)0.0105 (19)0.013 (2)
C120.030 (2)0.042 (2)0.043 (3)0.0043 (17)0.0024 (18)0.006 (2)
N120.0352 (18)0.0370 (18)0.0337 (19)0.0011 (15)0.0061 (15)0.0093 (15)
C130.044 (2)0.048 (3)0.035 (2)0.003 (2)0.0039 (19)0.016 (2)
C140.057 (3)0.050 (3)0.046 (3)0.004 (2)0.008 (2)0.022 (2)
C150.049 (3)0.043 (2)0.043 (3)0.003 (2)0.015 (2)0.017 (2)
Co30.0412 (5)0.0448 (5)0.0438 (5)0.0033 (4)0.0067 (4)0.0149 (4)
N210.0363 (19)0.042 (2)0.046 (2)0.0010 (16)0.0086 (16)0.0195 (18)
C210.035 (2)0.055 (3)0.058 (3)0.004 (2)0.006 (2)0.027 (3)
C220.046 (3)0.044 (3)0.052 (3)0.009 (2)0.003 (2)0.020 (2)
N220.042 (2)0.0364 (19)0.037 (2)0.0024 (16)0.0023 (16)0.0117 (16)
C230.056 (3)0.039 (2)0.037 (2)0.003 (2)0.002 (2)0.009 (2)
C240.067 (3)0.060 (3)0.042 (3)0.011 (3)0.020 (3)0.022 (2)
C250.044 (3)0.058 (3)0.051 (3)0.007 (2)0.019 (2)0.023 (2)
O10.054 (2)0.060 (2)0.061 (2)0.0025 (18)0.0136 (19)0.031 (2)
N310.150 (16)0.126 (13)0.073 (4)0.026 (10)0.011 (6)0.052 (5)
C310.141 (15)0.097 (11)0.071 (4)0.041 (10)0.014 (6)0.045 (5)
C320.117 (15)0.094 (14)0.066 (4)0.033 (11)0.002 (6)0.041 (7)
N31'0.162 (19)0.106 (13)0.070 (3)0.046 (12)0.019 (5)0.026 (5)
C31'0.114 (13)0.100 (13)0.070 (3)0.052 (11)0.017 (5)0.026 (5)
C32'0.18 (3)0.12 (2)0.070 (3)0.07 (2)0.020 (6)0.026 (5)
Geometric parameters (Å, º) top
Sb1—S42.3195 (13)N12—H121.0000
Sb1—S12.3200 (12)C13—C141.510 (8)
Sb1—S32.3221 (12)C13—H13A0.9900
Sb1—S22.3382 (11)C13—H13B0.9900
S1—Co12.7258 (12)C14—C151.514 (7)
S2—Co22.6932 (11)C14—H14A0.9900
S3—Co32.7821 (12)C14—H14B0.9900
Co1—N2i1.990 (4)C15—H15A0.9900
Co1—N21.990 (4)C15—H15B0.9900
Co1—N11.993 (4)Co3—N221.976 (4)
Co1—N1i1.993 (4)Co3—N22iii1.976 (4)
N1—C11.468 (6)Co3—N211.985 (4)
N1—C5i1.470 (7)Co3—N21iii1.985 (4)
N1—H11.0000N21—C211.472 (7)
C1—C21.504 (8)N21—C25iii1.488 (6)
C1—H1A0.9900N21—H211.0000
C1—H1B0.9900C21—C221.506 (8)
C2—N21.481 (6)C21—H21A0.9900
C2—H2A0.9900C21—H21B0.9900
C2—H2B0.9900C22—N221.486 (7)
N2—C31.476 (6)C22—H22A0.9900
N2—H21.0000C22—H22B0.9900
C3—C41.511 (8)N22—C231.468 (6)
C3—H3A0.9900N22—H221.0000
C3—H3B0.9900C23—C241.506 (9)
C4—C51.517 (8)C23—H23A0.9900
C4—H4A0.9900C23—H23B0.9900
C4—H4B0.9900C24—C251.510 (8)
C5—H5A0.9900C24—H24A0.9900
C5—H5B0.9900C24—H24B0.9900
Co2—N11ii1.975 (4)C25—H25A0.9900
Co2—N111.975 (4)C25—H25B0.9900
Co2—N121.985 (4)O1—H1C0.8400
Co2—N12ii1.985 (4)O1—H1D0.8400
N11—C15ii1.475 (6)N31—C311.145 (15)
N11—C111.486 (6)C31—C321.442 (17)
N11—H111.0000C32—H32A0.9800
C11—C121.514 (7)C32—H32B0.9800
C11—H11A0.9900C32—H32C0.9800
C11—H11B0.9900N31'—C31'1.145 (15)
C12—N121.470 (6)C31'—C32'1.442 (16)
C12—H12A0.9900C32'—H32D0.9800
C12—H12B0.9900C32'—H32E0.9800
N12—C131.474 (6)C32'—H32F0.9800
S4—Sb1—S1109.86 (5)H12A—C12—H12B108.4
S4—Sb1—S3110.64 (5)C12—N12—C13111.3 (4)
S1—Sb1—S3110.81 (5)C12—N12—Co2108.0 (3)
S4—Sb1—S2110.32 (5)C13—N12—Co2119.6 (3)
S1—Sb1—S2105.36 (4)C12—N12—H12105.6
S3—Sb1—S2109.73 (4)C13—N12—H12105.6
Sb1—S1—Co1112.07 (5)Co2—N12—H12105.6
Sb1—S2—Co2122.01 (4)N12—C13—C14112.7 (4)
Sb1—S3—Co3119.94 (5)N12—C13—H13A109.0
N2i—Co1—N2180.00 (19)C14—C13—H13A109.0
N2i—Co1—N193.50 (17)N12—C13—H13B109.0
N2—Co1—N186.50 (17)C14—C13—H13B109.0
N2i—Co1—N1i86.50 (17)H13A—C13—H13B107.8
N2—Co1—N1i93.50 (17)C13—C14—C15113.7 (4)
N1—Co1—N1i180.0C13—C14—H14A108.8
N2i—Co1—S189.02 (12)C15—C14—H14A108.8
N2—Co1—S190.98 (12)C13—C14—H14B108.8
N1—Co1—S188.50 (12)C15—C14—H14B108.8
N1i—Co1—S191.50 (12)H14A—C14—H14B107.7
N2i—Co1—S1i90.98 (12)N11ii—C15—C14111.5 (4)
N2—Co1—S1i89.02 (12)N11ii—C15—H15A109.3
N1—Co1—S1i91.50 (12)C14—C15—H15A109.3
N1i—Co1—S1i88.50 (12)N11ii—C15—H15B109.3
S1—Co1—S1i180.0C14—C15—H15B109.3
C1—N1—C5i111.8 (4)H15A—C15—H15B108.0
C1—N1—Co1107.1 (3)N22—Co3—N22iii180.00 (19)
C5i—N1—Co1119.1 (3)N22—Co3—N2186.93 (17)
C1—N1—H1106.0N22iii—Co3—N2193.07 (17)
C5i—N1—H1106.0N22—Co3—N21iii93.07 (17)
Co1—N1—H1106.0N22iii—Co3—N21iii86.93 (17)
N1—C1—C2108.2 (4)N21—Co3—N21iii180.0
N1—C1—H1A110.1N22—Co3—S3iii87.74 (11)
C2—C1—H1A110.1N22iii—Co3—S3iii92.26 (11)
N1—C1—H1B110.1N21—Co3—S3iii87.89 (12)
C2—C1—H1B110.1N21iii—Co3—S3iii92.11 (12)
H1A—C1—H1B108.4N22—Co3—S392.26 (11)
N2—C2—C1107.9 (4)N22iii—Co3—S387.74 (11)
N2—C2—H2A110.1N21—Co3—S392.11 (12)
C1—C2—H2A110.1N21iii—Co3—S387.89 (12)
N2—C2—H2B110.1S3iii—Co3—S3180.00 (5)
C1—C2—H2B110.1C21—N21—C25iii111.9 (4)
H2A—C2—H2B108.4C21—N21—Co3106.4 (3)
C3—N2—C2111.7 (4)C25iii—N21—Co3119.8 (3)
C3—N2—Co1118.9 (3)C21—N21—H21105.9
C2—N2—Co1107.0 (3)C25iii—N21—H21105.9
C3—N2—H2106.2Co3—N21—H21105.9
C2—N2—H2106.2N21—C21—C22107.7 (4)
Co1—N2—H2106.2N21—C21—H21A110.2
N2—C3—C4112.0 (4)C22—C21—H21A110.2
N2—C3—H3A109.2N21—C21—H21B110.2
C4—C3—H3A109.2C22—C21—H21B110.2
N2—C3—H3B109.2H21A—C21—H21B108.5
C4—C3—H3B109.2N22—C22—C21107.0 (4)
H3A—C3—H3B107.9N22—C22—H22A110.3
C3—C4—C5114.6 (4)C21—C22—H22A110.3
C3—C4—H4A108.6N22—C22—H22B110.3
C5—C4—H4A108.6C21—C22—H22B110.3
C3—C4—H4B108.6H22A—C22—H22B108.6
C5—C4—H4B108.6C23—N22—C22112.3 (4)
H4A—C4—H4B107.6C23—N22—Co3119.9 (3)
N1i—C5—C4112.6 (4)C22—N22—Co3106.9 (3)
N1i—C5—H5A109.1C23—N22—H22105.6
C4—C5—H5A109.1C22—N22—H22105.6
N1i—C5—H5B109.1Co3—N22—H22105.6
C4—C5—H5B109.1N22—C23—C24112.5 (4)
H5A—C5—H5B107.8N22—C23—H23A109.1
N11ii—Co2—N11180.0C24—C23—H23A109.1
N11ii—Co2—N1293.73 (16)N22—C23—H23B109.1
N11—Co2—N1286.27 (16)C24—C23—H23B109.1
N11ii—Co2—N12ii86.27 (16)H23A—C23—H23B107.8
N11—Co2—N12ii93.73 (16)C23—C24—C25113.8 (5)
N12—Co2—N12ii180.0C23—C24—H24A108.8
N11ii—Co2—S2ii86.16 (11)C25—C24—H24A108.8
N11—Co2—S2ii93.84 (11)C23—C24—H24B108.8
N12—Co2—S2ii91.31 (11)C25—C24—H24B108.8
N12ii—Co2—S2ii88.69 (11)H24A—C24—H24B107.7
N11ii—Co2—S293.84 (11)N21iii—C25—C24111.6 (4)
N11—Co2—S286.16 (11)N21iii—C25—H25A109.3
N12—Co2—S288.69 (11)C24—C25—H25A109.3
N12ii—Co2—S291.31 (11)N21iii—C25—H25B109.3
S2ii—Co2—S2180.0C24—C25—H25B109.3
C15ii—N11—C11111.4 (4)H25A—C25—H25B108.0
C15ii—N11—Co2118.1 (3)H1C—O1—H1D102.1
C11—N11—Co2108.6 (3)N31—C31—C32172 (5)
C15ii—N11—H11106.0C31—C32—H32A109.4
C11—N11—H11106.0C31—C32—H32B109.5
Co2—N11—H11106.0H32A—C32—H32B109.5
N11—C11—C12107.6 (4)C31—C32—H32C109.5
N11—C11—H11A110.2H32A—C32—H32C109.5
C12—C11—H11A110.2H32B—C32—H32C109.5
N11—C11—H11B110.2N31'—C31'—C32'172 (5)
C12—C11—H11B110.2C31'—C32'—H32D109.5
H11A—C11—H11B108.5C31'—C32'—H32E109.5
N12—C12—C11108.2 (4)H32D—C32'—H32E109.5
N12—C12—H12A110.1C31'—C32'—H32F109.4
C11—C12—H12A110.1H32D—C32'—H32F109.5
N12—C12—H12B110.1H32E—C32'—H32F109.5
C11—C12—H12B110.1
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i1.002.483.442 (4)161
C1—H1B···S4iv0.992.953.858 (5)152
N2—H2···S41.002.493.448 (4)159
N11—H11···O1v1.002.233.151 (6)153
N12—H12···S3ii1.002.433.378 (4)157
N21—H21···O11.002.082.920 (6)141
N22—H22···S11.002.353.290 (4)156
O1—H1C···S2v0.842.493.276 (4)157
O1—H1D···S4iii0.842.463.280 (4)166
C32—H32B···S40.982.813.71 (4)154
C32—H32F···S40.982.883.85 (5)172
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x+2, y, z+2; (v) x+1, y, z+1.
 

Acknowledgements

Financial support by the state of Schleswig-Holstein is gratefully acknowledged.

References

First citationAnderer, C., Delwa de Alarcón, N., Näther, C. & Bensch, W. (2014). Chem. Eur. J. 20, 16953–16959.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAnderer, C., Näther, C. & Bensch, W. (2016). Cryst. Growth Des. 16, 3802–3810.  Web of Science CSD CrossRef CAS Google Scholar
First citationBensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. pp. 1773–1774.  CSD CrossRef Web of Science Google Scholar
First citationBosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDanker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107–18117.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDanker, F., Näther, C. & Bensch, W. (2020). Acta Cryst. E76, 32–37.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259–1280.  Web of Science CrossRef CAS Google Scholar
First citationEngelke, L., Näther, C., Leisner, P. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 2959–2965.  Web of Science CSD CrossRef CAS Google Scholar
First citationEngelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B. 59, 869–876.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477–2483.  Web of Science CSD CrossRef CAS Google Scholar
First citationKiebach, R., Studt, F., Näther, C. & Bensch, W. (2004). Eur. J. Inorg. Chem. pp. 2553–2556.  CSD CrossRef Google Scholar
First citationLichte, J., Lühmann, H., Näther, C. & Bensch, W. (2009). Z. Anorg. Allg. Chem. 635, 2021–2026.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X. & Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268–1289.  Google Scholar
First citationLong, G. G. & Bowen, L. H. (1970). Inorg. Nucl. Chem. Lett. 6, 837–842.  CrossRef CAS Web of Science Google Scholar
First citationLühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687–1695.  Google Scholar
First citationMosselmans, J. F. W., Helz, G. R., Pattrick, R. A., Charnock, J. M. & Vaughan, D. H. (2000). Appl. Geochem. 15, 879–889.  Web of Science CrossRef CAS Google Scholar
First citationNie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. & Zhang, Q. (2017). Inorg. Chem. Front, 4, 945–959.  Google Scholar
First citationPienack, N., Lehmann, S., Lühmann, H., El-Madani, M., Näther, C. & Bensch, W. (2008b). Z. Anorg. Allg. Chem. 634, 2323–2329.  Web of Science CSD CrossRef CAS Google Scholar
First citationPienack, N., Puls, A., Näther, C. & Bensch, W. (2008a). Inorg. Chem. 47, 9606–9611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPlaner-Friedrich, B. & Scheinost, A. C. (2011). Environ. Sci. Technol. 45, 6855–6863.  Web of Science CAS PubMed Google Scholar
First citationPlaner-Friedrich, B. & Wilson, N. (2012). Chem. Geol. 322–323, 1–10.  CAS Google Scholar
First citationPowell, A. V., Thun, J. & Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414–3419.  Web of Science CSD CrossRef CAS Google Scholar
First citationPuls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239–1243.  Web of Science CSD CrossRef CAS Google Scholar
First citationRammelsberg, C. F. (1841). Ann. Phys. Chem. 52, 207.  Google Scholar
First citationSchaefer, M., Näther, C. & Bensch, W. (2003). Solid State Sci. 5, 1135–1139.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. Teil B. 56, 79–84.  CrossRef CAS Google Scholar
First citationSchur, M., Rijnberk, H., Näther, C. & Bensch, W. (1998). Polyhedron, 18, 101–107.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, W. S. & Wachhold, M. (1988). Coord. Chem. Rev. 176, 211–322.  Web of Science CrossRef Google Scholar
First citationSpetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationStähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41–68.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeisler, C., Näther, C. & Bensch, W. (2013). CrystEngComm, 15, 8874–8876.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606–1612.  Web of Science CSD CrossRef Google Scholar
First citationZhou, J. (2016). Coord. Chem. Rev. 315, 112–134.  Web of Science CrossRef CAS Google Scholar
First citationZhou, L., Assoud, A., Zhang, Q., Wu, X. & Nazar, L. F. (2019). J. Am. Chem. Soc. 141, 19002–19013.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationZhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95–109.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds