research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 5-acetyl-2-amino-4-(4-bromo­phen­yl)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, 23 Z. Khalilov str., Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay str., Moscow, 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, 119991 Moscow, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eAcad. Sci. Republ. Tajikistan, Kh. Yu. Yusufbekov Pamir Biol. Inst., 1 Kholdorova str., 736002, Khorog, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 24 January 2022; accepted 1 February 2022; online 3 February 2022)

The crystal structure of the title compound, C20H16BrN3O2, was determined using an inversion twin. Its asymmetric unit comprises two crystallographically independent mol­ecules (A and B) being the stereoisomers. Both mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming a dimer with an R22(16) ring motif. The dimers are connected by further N—H⋯O and N—H⋯N hydrogen bonds, forming chains along the c-axis direction·C—Br⋯π inter­actions between these chains contribute to the stabilization of the mol­ecular packing. Hirshfeld surface analysis showed that the most important contributions to the crystal packing are from H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br and N⋯H/H⋯N inter­actions.

1. Chemical context

Nitro­gen-based heterocycles are an important class of organic mol­ecules that are used extensively in different branches of chemistry (Yadigarov et al., 2009[Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856-1858.]; Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Magerramov et al., 2018[Magerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1731-1734.]; Yin et al., 2020[Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60-63.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]). In particular, the synthesis of heterocyclic systems comprising a bioactive pyridine core with a broad spectrum of biological activities is noteworthy (Mamedov et al., 2020[Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498-499.]; Wojcicka & Redzicka, 2021[Wojcicka, A. & Redzicka, A. (2021). Pharmaceuticals, 14, 354.]). On the other hand, the pyridine ring is an essential part of diverse natural products, such as nicotinic acid, nicotinamide, vitamin B3 and diverse alkaloids (Aida et al., 2009[Aida, W., Ohtsuki, T., Li, X. & Ishibashi, M. (2009). Tetrahedron, 65, 369-373.]). In the framework of our ongoing structural studies (Safarova et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]; Naghiyev et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235-2248.], 2021a[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195-199.],b[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512-515.]; Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Engineer. Appl. Sci. 1, 5-11.]), we report here the crystal structure and Hirshfeld surface analysis of the title compound, 5-acetyl-2-amino-4-(4-bromo­phen­yl)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic space group Pc with Z = 4, and with two mol­ecules, A and B, in the asymmetric unit (Fig. 1[link]). These mol­ecules are stereoisimers with an R,R absolute configurations at C3 and C4 in mol­ecule A, whereas the corresponding atoms in B, C23 and C24, have an S configuration. In both mol­ecules, the conformation of the central di­hydro­pyridine ring is close to screw-boat [the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) are θ = 63.9 (11)°, φ = 148.9 (12)° in A and θ = 115.1 (11)°, φ = 339.4 (12)° in B]. In mol­ecule A, the phenyl (C7–C12) and bromo­phenyl (C14–C19) rings form dihedral angles of 64.0 (4) and 86.3 (4)°, respectively, with the mean plane of the central di­hydro­pyridine ring. In mol­ecule B, the corresponding dihedral angles are 77.2 (4) and 83.9 (4)°. The acetyl groups in both mol­ecules are almost planar [largest deviations of 0.005 (8) and 0.035 (8) Å for atoms C1 (A) and C23 (B), respectively] and they make the dihedral angles of 89.5 (5) and 87.7 (5)° with the mean planes of the di­hydro­pyridine rings in these mol­ecules.

[Figure 1]
Figure 1
Asymmetric unit of the title compounds showing two crystallographically independent mol­ecules, A and B. Displacement ellipsoids are drawn at the 30% probability level. The inter­molecular N—H⋯O hydrogen bonds are drawn with dashed lines.

3. Supra­molecular features

Strong N6—H6B⋯O21 and N26—H26A⋯O1 hydrogen bonds (Fig. 1[link], Table 1[link]) link mol­ecules A and B into dimers with an [R_{2}^{2}](16) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). These dimers are additionally stabilized by C=O⋯π inter­actions [O21⋯Cg2 = 3.620 (8) Å, C21=O21⋯Cg2 = 110.8 (6)°, O1⋯Cg5 = 3.748 (8) Å, C1=O1⋯Cg5 = 125.1 (6)°, where Cg2 and Cg5 are the centroids of the C7–C12 phenyl ring in mol­ecule A and the C27–C32 phenyl ring in mol­ecule B, respectively]. The dimers are connected by N—H⋯O and N—H⋯N hydrogen bonds with an R33(14) ring motif into chains along the c-axis direction (Table 1[link]; Figs. 2[link], 3[link], 4[link] and 5[link]). C—Br⋯π inter­actions are also observed [Br1⋯Cg6v = 3.407 (4) Å, C17—Br1⋯Cg6v = 145.2 (3)°; symmetry code (v) −1 + x, 1 − y, −[{1\over 2}] + z; Cg6 is the centroid of the C34–C39 ring]. Together with the other inter­molecular contacts given in Table 2[link], these inter­actions contribute to the stabilization of the mol­ecular packing, forming a three-dimensional network (Figs. 6[link] and 7[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯O2i 0.90 1.87 2.766 (9) 175
N6—H6B⋯O21 0.90 2.31 3.115 (9) 149
C18—H18⋯N40ii 0.95 2.46 3.256 (12) 141
C23—H23⋯N40iii 1.00 2.47 3.426 (11) 161
N26—H26A⋯O1 0.90 1.99 2.784 (9) 146
N26—H26B⋯N20iv 0.90 2.43 3.139 (10) 136
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, y-1, z]; (iii) [x, -y+2, z+{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
O2⋯H30 2.63 x − 1, −y + 1, z − [{1\over 2}]
O1⋯H26A 1.99 x, y, z
H13C⋯H16 2.46 x + 1, y, z
O2⋯H6A 1.87 x, −y + 1, z − [{1\over 2}]
H18⋯N40 2.46 x, y − 1, z
N20⋯H26B 2.43 x, −y + 1, z + [{1\over 2}]
C9⋯Br2 3.377 (10) x − 1, −y + 2, z − [{1\over 2}]
H13C⋯O22 2.79 x, −y + 1, z − [{1\over 2}]
C16⋯H36 2.86 x − 1, y − 1, z
H11⋯H26A 2.47 x − 1, y, z
O21⋯H31 2.84 x − 1, y, z
H23⋯N40 2.47 x, −y + 2, z + [{1\over 2}]
H31⋯O21 2.84 x + 1, y, z
[Figure 2]
Figure 2
A general view of the N—H⋯O and N—H⋯N hydrogen bonds in the structure of the title compound.
[Figure 3]
Figure 3
The crystal packing of the title compound viewed down the a axis, showing chains running along the c-axis direction formed through N—H⋯O and N—H⋯N hydrogen bonds.
[Figure 4]
Figure 4
The crystal packing of the title compound viewed down the b axis, showing chains running along the c axis formed through N—H⋯O and N—H⋯N hydrogen bonds.
[Figure 5]
Figure 5
The crystal packing of the title compound viewed down the c axis, with inter­molecular N—H⋯O, C—H⋯N and N—H⋯N hydrogen bonds.
[Figure 6]
Figure 6
The C—Br⋯π and C=O⋯π inter­actions in the structure of the title compound viewed down the a axis.
[Figure 7]
Figure 7
A view of the C—Br⋯π and C=O⋯π inter­actions in the structure of the title compound viewed down the b axis.

4. Hirshfeld surface analysis

To visualize the inter­molecular inter­actions for both independent mol­ecules A and B, CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to generate Hirshfeld surfaces and corresponding two-dimensional fingerprint plots. The dnorm mappings were performed in the range of −0.6596 to 1.4042 arbitrary units for mol­ecule A and −0.5436 to 1.4926 arbitrary units for mol­ecule B. Bright red circles on the dnorm surfaces (Fig. 8[link]a,b,c,d) indicate regions of N—H⋯O inter­actions. The N—H⋯N and C—H⋯N inter­actions (Tables 1[link] and 2[link]) also cause red spots on the Hirshfeld surfaces.

[Figure 8]
Figure 8
Front and back views of the Hirshfeld surfaces mapped over dnorm for mol­ecule A (a, b) and mol­ecule B (c, d).

The fingerprint plots (Fig. 9[link]) reveal that while the H⋯H inter­actions make the greatest contributions (Table 3[link]), as would be expected for a mol­ecule with such a predominance of H atoms, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br and N⋯H/H⋯N contacts are also substantial. Table 3[link] gives the contributions of the other, less significant contacts. The fact that the same type of inter­actions provide different contributions to the Hirshfeld surface for mol­ecules A and B can be attributed to the different environments of these mol­ecules in the crystalline state.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surfaces of mol­ecules A and B of the title compound

Contact Contribution for A Contribution for B
H⋯H 32.8 33.8
C⋯H/H⋯C 19.6 18.9
O⋯H/H⋯O 17.2 13.5
Br⋯H/H⋯Br 10.6 11.3
N⋯H/H⋯N 9.4 14.0
Br⋯C/C⋯Br 4.8 4.6
N⋯O/O⋯N 2.1
C⋯O/O⋯C 1.4 1.3
Br⋯O/O⋯Br 0.8 0.9
C⋯C 0.7 0.7
N⋯N 0.5 0.4
Br⋯N/N⋯Br 0.1 0.6
[Figure 9]
Figure 9
The two-dimensional fingerprint plots [(a) for mol­ecule A and (b) for mol­ecule B], showing all inter­actions and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br, N⋯H/H⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surfaces.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the tetra­hydro­pyridine unit gave 1340 hits, and some of which, namely OZAKOS (Naghiyev et al., 2021c[Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021c). Acta Cryst. E77, 930-934.]), JEBREQ (Mohana et al., 2017[Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536-540.]), JEBRAM (Mohana et al., 2017[Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536-540.]), SETWUK (Suresh et al., 2007[Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141-o144.]) and SETWOE (Suresh et al., 2007[Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141-o144.]) closely resemble the title compound.

In OZAKOS (space group: Pc), the mol­ecular conformation of the title compound is stabilized by an intra­molecular O—H⋯O hydrogen bond, forming an S(6) ring motif. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N and C—H⋯N hydrogen bonds, and N—H⋯π and C—H⋯π inter­actions, forming a three-dimensional network.

In both the related salts, JEBREQ (space group: P[\overline{1}]) and JEBRAM (space group: P[\overline{1}]), the N atom in the 1-position of the pyrimidine ring is protonated. In the hydrated salt JEBREQ, the presence of the water mol­ecule prevents the formation of the familiar [R_{2}^{2}](8) ring motif. Instead, an expanded ring [i.e. R32(8)] is formed involving the sulfonate group, the pyrimidinium cation and the water mol­ecule. Both salts form a supra­molecular homosynthon [[R_{2}^{2}](8) ring motif] through N—H⋯N hydrogen bonds. The mol­ecular structures are further stabilized by ππ stacking, and C=O⋯π, C—H⋯O and C—H⋯Cl inter­actions. It appears that the protonation state of the pyrimidine ring influences the inter­molecular inter­actions within the crystal lattice to a substantial extent. In JEBRAM, the protonated N atom and the amino group of the pyrimidinium cation inter­act with the carboxyl­ate group of the anion through N—H⋯O hydrogen bonds, forming a heterosynthon with an [R_{2}^{2}](8) ring motif.

The polysubstituted pyridines, SETWUK (space group: P21/n) and SETWOE (space group: P21/c), adopt nearly planar structures. The crystal structure of SETWUK is stabilized by inter­molecular C—H⋯F and C—H⋯π inter­actions. The C—H⋯F bond generates a linear chain with a C(14) motif. The crystal structure of SETWOE is stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions. The C—H⋯O hydrogen bonds generate rings with R22(14) and R22(20) motifs. In addition, in SETWOE and SETWUK, intra­molecular O—H⋯O inter­actions are found, which generate an S(6) graph-set motif. No significant ar­yl–aryl or ππ inter­actions exist in these structures. All this bears some resemblance to the title compound.

6. Synthesis and crystallization

To a solution of 2-(4-bromo­benzyl­idene)malono­nitrile (1.19 g; 5.1 mmol) and acetoacetanilide (0.92 g; 5.2 mmol) in methanol (25 mL), piperidine (2–3 drops) was added and the mixture was stirred at room temperature for 48 h. Then 15 mL of methanol were removed by rotary evaporation from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 66%; m.p. 536–537 K).

1H NMR (300 MHz, DMSO-d6, m.h.): 2.29 (s, 3H, CH3—C=O); 4.15 (d, 1H, CH-Ar); 4.34 (d, 1H, CH—C=O); 5.98 (s, 2H, NH2); 7.12–7.35 (m, 5H, 5CHar); 7.40 (d, 2H, 2CHar); 7.61 (d, 2H, 2CHar).

13C NMR (75 MHz, DMSO-d6, m.h.): 27.86 (CH3—C=O), 37.94 (CH—Ar), 57.24 (=Cquat), 62.41 (CH—C=O), 117.21 (CN), 121.25 (Br-Car), 127.67 (CHar), 128.19 (2CHar), 129.58 (2CHar), 130.15 (2CHar), 130.74 (2CHar), 136.98 (Car), 140.37 (Car), 154.14 (=Cquat), 166.20 (N—C=O), 202.55 (C=O).

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically (N—H = 0.90 Å, C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C-meth­yl).

Table 4
Experimental details

Crystal data
Chemical formula C20H16BrN3O2
Mr 410.26
Crystal system, space group Monoclinic, Pc
Temperature (K) 100
a, b, c (Å) 9.5889 (7), 13.2144 (10), 14.4529 (10)
β (°) 103.9395 (18)
V3) 1777.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.33
Crystal size (mm) 0.05 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.818, 0.926
No. of measured, independent and observed [I > 2σ(I)] reflections 34410, 10756, 5403
Rint 0.099
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.132, 0.98
No. of reflections 10756
No. of parameters 471
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.66
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.473 (14)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

5-Acetyl-2-amino-4-(4-bromophenyl)-6-oxo-1-phenyl-1,4,5,6-tetrahydropyridine-3-carbonitrile top
Crystal data top
C20H16BrN3O2F(000) = 832
Mr = 410.26Dx = 1.533 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 9.5889 (7) ÅCell parameters from 3126 reflections
b = 13.2144 (10) Åθ = 2.7–24.0°
c = 14.4529 (10) ŵ = 2.33 mm1
β = 103.9395 (18)°T = 100 K
V = 1777.4 (2) Å3Prism, colourless
Z = 40.05 × 0.04 × 0.03 mm
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
5403 reflections with I > 2σ(I)
φ and ω scansRint = 0.099
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.5°, θmin = 2.1°
Tmin = 0.818, Tmax = 0.926h = 1313
34410 measured reflectionsk = 1818
10756 independent reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.0401P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132(Δ/σ)max < 0.001
S = 0.98Δρmax = 0.50 e Å3
10756 reflectionsΔρmin = 0.66 e Å3
471 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0039 (3)
Primary atom site location: difference Fourier mapAbsolute structure: Refined as an inversion twin
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.473 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05184 (9)0.02892 (6)0.27044 (7)0.0328 (2)
N10.3304 (7)0.5094 (5)0.4197 (5)0.0194 (15)
C10.6385 (9)0.4260 (6)0.3992 (6)0.0216 (19)
O10.6581 (7)0.5145 (5)0.4155 (5)0.0456 (19)
C20.3768 (9)0.4655 (6)0.3455 (6)0.0219 (18)
O20.3284 (7)0.4954 (4)0.2642 (4)0.0273 (14)
C30.4864 (9)0.3816 (6)0.3708 (6)0.0211 (18)
H30.47920.33890.31270.025*
C40.4547 (9)0.3140 (6)0.4498 (6)0.0221 (19)
H40.54050.26990.47360.026*
C50.4402 (9)0.3820 (6)0.5310 (6)0.0229 (19)
C60.3781 (9)0.4741 (6)0.5141 (6)0.0213 (18)
N60.3596 (7)0.5398 (5)0.5816 (5)0.0219 (15)
H6A0.35290.52570.64130.026*
H6B0.35340.60550.56460.026*
C70.2213 (9)0.5898 (6)0.3983 (6)0.0212 (18)
C80.2595 (10)0.6844 (7)0.3737 (7)0.031 (2)
H80.35380.69700.36630.037*
C90.1581 (10)0.7610 (7)0.3600 (7)0.036 (2)
H90.18140.82670.34160.044*
C100.0223 (11)0.7409 (8)0.3732 (7)0.036 (2)
H100.04630.79400.36610.044*
C110.0144 (11)0.6464 (7)0.3963 (6)0.035 (2)
H110.10890.63340.40310.042*
C120.0861 (10)0.5691 (7)0.4099 (6)0.030 (2)
H120.06200.50300.42690.036*
C130.7611 (10)0.3551 (6)0.4072 (7)0.034 (2)
H13A0.73140.28680.42070.050*
H13B0.84130.37700.45910.050*
H13C0.79150.35460.34720.050*
C140.3267 (9)0.2446 (6)0.4069 (6)0.0213 (17)
C150.1891 (10)0.2670 (6)0.4115 (7)0.029 (2)
H150.17200.32620.44450.034*
C160.0740 (10)0.2057 (6)0.3695 (6)0.029 (2)
H160.02130.22290.37170.034*
C170.1025 (10)0.1185 (6)0.3240 (6)0.026 (2)
C180.2390 (10)0.0940 (6)0.3159 (7)0.029 (2)
H180.25610.03500.28280.035*
C190.3494 (10)0.1581 (6)0.3576 (6)0.026 (2)
H190.44410.14280.35250.031*
C200.4925 (10)0.3499 (6)0.6274 (7)0.024 (2)
N200.5390 (9)0.3255 (6)0.7052 (5)0.0335 (19)
Br21.05193 (11)1.25495 (8)0.62011 (8)0.0409 (3)
N20.6616 (7)0.7734 (5)0.5811 (5)0.0220 (16)
C210.3521 (10)0.8636 (7)0.5959 (6)0.028 (2)
O210.3329 (8)0.7728 (5)0.6051 (5)0.0403 (18)
C220.6085 (10)0.8245 (6)0.6505 (6)0.027 (2)
O220.6450 (7)0.8015 (4)0.7343 (4)0.0305 (15)
C230.5025 (9)0.9077 (6)0.6148 (6)0.0238 (19)
H230.51190.95880.66700.029*
C240.5288 (9)0.9623 (6)0.5266 (6)0.0226 (19)
H240.44241.00480.49930.027*
C250.5389 (9)0.8820 (6)0.4542 (6)0.0230 (19)
C260.6117 (9)0.7941 (6)0.4838 (6)0.0210 (18)
N260.6426 (8)0.7245 (5)0.4234 (5)0.0279 (17)
H26A0.66020.66140.44660.034*
H26B0.64540.74090.36340.034*
C270.7687 (10)0.6958 (6)0.6136 (6)0.0234 (19)
C280.7276 (10)0.6009 (6)0.6383 (7)0.030 (2)
H280.62930.58580.63360.036*
C290.8324 (11)0.5287 (7)0.6698 (7)0.040 (3)
H290.80560.46320.68650.048*
C300.9761 (11)0.5507 (6)0.6776 (7)0.033 (2)
H301.04760.50070.69980.040*
C311.0139 (11)0.6444 (7)0.6530 (7)0.035 (2)
H311.11230.65900.65750.042*
C320.9120 (10)0.7187 (6)0.6216 (6)0.028 (2)
H320.93980.78420.60590.034*
C330.2270 (11)0.9361 (7)0.5651 (8)0.041 (3)
H33A0.25411.00270.59360.061*
H33B0.14400.91030.58620.061*
H33C0.20210.94220.49550.061*
C340.6606 (8)1.0327 (6)0.5511 (6)0.0188 (17)
C350.7743 (10)1.0222 (7)0.5076 (6)0.028 (2)
H350.77200.96900.46300.034*
C360.8913 (10)1.0875 (7)0.5276 (7)0.029 (2)
H360.96871.07870.49800.035*
C370.8931 (10)1.1659 (6)0.5917 (6)0.026 (2)
C380.7802 (10)1.1788 (6)0.6350 (6)0.027 (2)
H380.78201.23250.67890.033*
C390.6654 (10)1.1133 (6)0.6139 (6)0.025 (2)
H390.58741.12320.64290.030*
C400.4888 (10)0.8997 (6)0.3553 (7)0.025 (2)
N400.4482 (10)0.9142 (5)0.2749 (6)0.0307 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0341 (5)0.0228 (4)0.0388 (5)0.0033 (5)0.0036 (4)0.0037 (5)
N10.027 (4)0.020 (3)0.012 (3)0.005 (3)0.007 (3)0.002 (3)
C10.027 (5)0.016 (4)0.025 (5)0.002 (4)0.013 (4)0.003 (3)
O10.030 (4)0.026 (4)0.081 (5)0.002 (3)0.013 (4)0.012 (4)
C20.025 (5)0.017 (4)0.026 (5)0.001 (4)0.013 (4)0.005 (4)
O20.035 (4)0.025 (3)0.021 (3)0.001 (3)0.006 (3)0.004 (3)
C30.028 (5)0.018 (4)0.018 (4)0.001 (4)0.006 (4)0.005 (3)
C40.031 (5)0.019 (4)0.015 (4)0.002 (4)0.004 (4)0.001 (3)
C50.031 (5)0.021 (4)0.018 (4)0.001 (4)0.008 (4)0.001 (3)
C60.026 (5)0.020 (4)0.020 (4)0.004 (4)0.010 (4)0.006 (4)
N60.031 (4)0.021 (4)0.015 (4)0.003 (3)0.008 (3)0.001 (3)
C70.024 (5)0.020 (4)0.019 (4)0.004 (3)0.003 (4)0.000 (3)
C80.027 (5)0.023 (4)0.043 (6)0.001 (4)0.010 (5)0.002 (4)
C90.039 (6)0.031 (5)0.035 (6)0.012 (5)0.000 (5)0.003 (4)
C100.036 (6)0.042 (6)0.030 (6)0.014 (5)0.006 (5)0.005 (5)
C110.039 (6)0.033 (5)0.037 (6)0.010 (5)0.017 (5)0.000 (4)
C120.026 (5)0.030 (5)0.033 (5)0.002 (4)0.008 (4)0.005 (4)
C130.029 (5)0.028 (5)0.044 (6)0.001 (4)0.010 (5)0.002 (4)
C140.024 (5)0.019 (4)0.021 (4)0.000 (4)0.006 (4)0.002 (4)
C150.041 (6)0.015 (4)0.032 (5)0.002 (4)0.012 (5)0.000 (4)
C160.031 (5)0.018 (4)0.040 (6)0.003 (4)0.014 (5)0.006 (4)
C170.027 (5)0.025 (5)0.023 (5)0.008 (4)0.001 (4)0.002 (4)
C180.031 (5)0.020 (4)0.037 (6)0.002 (4)0.008 (5)0.003 (4)
C190.022 (5)0.030 (5)0.029 (5)0.001 (4)0.010 (4)0.007 (4)
C200.032 (5)0.015 (4)0.024 (5)0.002 (4)0.006 (4)0.001 (4)
N200.045 (5)0.031 (4)0.025 (5)0.011 (4)0.009 (4)0.001 (3)
Br20.0417 (6)0.0460 (6)0.0350 (5)0.0143 (5)0.0092 (4)0.0033 (5)
N20.020 (4)0.017 (4)0.026 (4)0.006 (3)0.000 (3)0.002 (3)
C210.035 (6)0.027 (5)0.023 (5)0.004 (4)0.008 (4)0.000 (4)
O210.051 (5)0.026 (4)0.048 (5)0.004 (3)0.021 (4)0.000 (3)
C220.038 (6)0.016 (4)0.025 (5)0.003 (4)0.005 (4)0.001 (4)
O220.044 (4)0.025 (3)0.023 (3)0.003 (3)0.008 (3)0.003 (3)
C230.027 (5)0.018 (4)0.029 (5)0.002 (4)0.012 (4)0.003 (4)
C240.029 (5)0.013 (4)0.025 (5)0.003 (4)0.007 (4)0.001 (3)
C250.031 (5)0.021 (4)0.019 (4)0.004 (4)0.010 (4)0.001 (4)
C260.028 (5)0.013 (4)0.023 (5)0.001 (3)0.007 (4)0.004 (3)
N260.034 (4)0.022 (4)0.030 (4)0.006 (3)0.011 (4)0.000 (3)
C270.031 (5)0.018 (4)0.022 (5)0.008 (4)0.007 (4)0.001 (3)
C280.026 (5)0.019 (4)0.040 (6)0.002 (4)0.003 (4)0.006 (4)
C290.041 (6)0.023 (5)0.050 (6)0.004 (5)0.001 (5)0.012 (5)
C300.039 (6)0.023 (5)0.038 (6)0.011 (4)0.009 (5)0.001 (4)
C310.033 (6)0.038 (6)0.034 (6)0.005 (4)0.005 (5)0.003 (4)
C320.035 (5)0.022 (4)0.028 (5)0.006 (4)0.009 (4)0.002 (4)
C330.039 (6)0.035 (5)0.050 (7)0.006 (5)0.015 (5)0.004 (5)
C340.017 (4)0.018 (4)0.020 (4)0.003 (3)0.003 (3)0.005 (3)
C350.037 (6)0.022 (5)0.025 (5)0.003 (4)0.009 (4)0.001 (4)
C360.028 (5)0.031 (5)0.030 (5)0.003 (4)0.010 (4)0.001 (4)
C370.031 (5)0.020 (4)0.026 (5)0.004 (4)0.003 (4)0.003 (4)
C380.039 (6)0.024 (4)0.018 (5)0.000 (4)0.005 (4)0.000 (4)
C390.031 (5)0.017 (4)0.025 (5)0.004 (4)0.004 (4)0.002 (4)
C400.036 (5)0.013 (4)0.028 (5)0.008 (4)0.012 (4)0.000 (4)
N400.039 (4)0.027 (4)0.030 (4)0.010 (4)0.014 (3)0.008 (4)
Geometric parameters (Å, º) top
Br1—C171.908 (9)Br2—C371.890 (9)
N1—C21.383 (10)N2—C261.400 (10)
N1—C61.410 (10)N2—C221.403 (11)
N1—C71.470 (10)N2—C271.447 (10)
C1—O11.199 (9)C21—O211.226 (10)
C1—C131.486 (12)C21—C331.516 (12)
C1—C31.533 (12)C21—C231.517 (12)
C2—O21.220 (10)C22—O221.215 (10)
C2—C31.511 (11)C22—C231.501 (11)
C3—C41.537 (11)C23—C241.538 (11)
C3—H31.0000C23—H231.0000
C4—C51.510 (11)C24—C251.509 (11)
C4—C141.538 (11)C24—C341.541 (11)
C4—H41.0000C24—H241.0000
C5—C61.351 (11)C25—C261.369 (11)
C5—C201.428 (12)C25—C401.414 (12)
C6—N61.349 (10)C26—N261.350 (10)
N6—H6A0.8999N26—H26A0.8993
N6—H6B0.9000N26—H26B0.9000
C7—C81.374 (11)C27—C321.384 (12)
C7—C121.374 (12)C27—C281.387 (11)
C8—C91.385 (12)C28—C291.380 (12)
C8—H80.9500C28—H280.9500
C9—C101.387 (13)C29—C301.386 (14)
C9—H90.9500C29—H290.9500
C10—C111.361 (13)C30—C311.362 (12)
C10—H100.9500C30—H300.9500
C11—C121.386 (12)C31—C321.382 (12)
C11—H110.9500C31—H310.9500
C12—H120.9500C32—H320.9500
C13—H13A0.9800C33—H33A0.9800
C13—H13B0.9800C33—H33B0.9800
C13—H13C0.9800C33—H33C0.9800
C14—C151.370 (12)C34—C351.391 (11)
C14—C191.391 (11)C34—C391.392 (11)
C15—C161.386 (12)C35—C361.389 (13)
C15—H150.9500C35—H350.9500
C16—C171.386 (12)C36—C371.386 (12)
C16—H160.9500C36—H360.9500
C17—C181.380 (12)C37—C381.385 (12)
C18—C191.376 (12)C38—C391.375 (12)
C18—H180.9500C38—H380.9500
C19—H190.9500C39—H390.9500
C20—N201.151 (11)C40—N401.149 (11)
C2—N1—C6121.4 (7)C26—N2—C22121.9 (7)
C2—N1—C7119.0 (7)C26—N2—C27120.6 (7)
C6—N1—C7119.4 (7)C22—N2—C27117.5 (7)
O1—C1—C13121.1 (8)O21—C21—C33121.4 (9)
O1—C1—C3121.3 (8)O21—C21—C23121.1 (8)
C13—C1—C3117.6 (7)C33—C21—C23117.4 (8)
O2—C2—N1119.5 (7)O22—C22—N2121.6 (8)
O2—C2—C3123.4 (7)O22—C22—C23122.3 (8)
N1—C2—C3117.1 (7)N2—C22—C23116.1 (7)
C2—C3—C1110.2 (6)C22—C23—C21108.4 (7)
C2—C3—C4110.8 (7)C22—C23—C24113.3 (7)
C1—C3—C4111.6 (7)C21—C23—C24111.6 (7)
C2—C3—H3108.0C22—C23—H23107.8
C1—C3—H3108.0C21—C23—H23107.8
C4—C3—H3108.0C24—C23—H23107.8
C5—C4—C3107.7 (6)C25—C24—C23107.2 (6)
C5—C4—C14117.0 (7)C25—C24—C34113.4 (7)
C3—C4—C14109.2 (7)C23—C24—C34112.5 (7)
C5—C4—H4107.5C25—C24—H24107.8
C3—C4—H4107.5C23—C24—H24107.8
C14—C4—H4107.5C34—C24—H24107.8
C6—C5—C20118.7 (8)C26—C25—C40118.6 (8)
C6—C5—C4120.9 (8)C26—C25—C24119.5 (7)
C20—C5—C4120.4 (7)C40—C25—C24121.5 (7)
N6—C6—C5125.3 (8)N26—C26—C25123.4 (8)
N6—C6—N1114.7 (7)N26—C26—N2116.2 (7)
C5—C6—N1119.9 (7)C25—C26—N2120.3 (7)
C6—N6—H6A127.7C26—N26—H26A116.2
C6—N6—H6B115.8C26—N26—H26B121.5
H6A—N6—H6B116.5H26A—N26—H26B122.3
C8—C7—C12122.1 (8)C32—C27—C28120.9 (8)
C8—C7—N1119.4 (8)C32—C27—N2119.0 (8)
C12—C7—N1118.4 (7)C28—C27—N2120.0 (8)
C7—C8—C9118.7 (9)C29—C28—C27118.7 (9)
C7—C8—H8120.6C29—C28—H28120.6
C9—C8—H8120.6C27—C28—H28120.6
C8—C9—C10119.4 (9)C28—C29—C30120.8 (9)
C8—C9—H9120.3C28—C29—H29119.6
C10—C9—H9120.3C30—C29—H29119.6
C11—C10—C9121.1 (9)C31—C30—C29119.4 (9)
C11—C10—H10119.5C31—C30—H30120.3
C9—C10—H10119.5C29—C30—H30120.3
C10—C11—C12120.0 (10)C30—C31—C32121.3 (9)
C10—C11—H11120.0C30—C31—H31119.3
C12—C11—H11120.0C32—C31—H31119.3
C7—C12—C11118.7 (9)C31—C32—C27118.8 (8)
C7—C12—H12120.7C31—C32—H32120.6
C11—C12—H12120.7C27—C32—H32120.6
C1—C13—H13A109.5C21—C33—H33A109.5
C1—C13—H13B109.5C21—C33—H33B109.5
H13A—C13—H13B109.5H33A—C33—H33B109.5
C1—C13—H13C109.5C21—C33—H33C109.5
H13A—C13—H13C109.5H33A—C33—H33C109.5
H13B—C13—H13C109.5H33B—C33—H33C109.5
C15—C14—C19118.3 (8)C35—C34—C39117.7 (8)
C15—C14—C4122.4 (7)C35—C34—C24121.7 (7)
C19—C14—C4119.3 (7)C39—C34—C24120.5 (7)
C14—C15—C16121.8 (8)C36—C35—C34121.7 (8)
C14—C15—H15119.1C36—C35—H35119.2
C16—C15—H15119.1C34—C35—H35119.2
C15—C16—C17117.8 (9)C37—C36—C35118.8 (9)
C15—C16—H16121.1C37—C36—H36120.6
C17—C16—H16121.1C35—C36—H36120.6
C18—C17—C16122.3 (8)C38—C37—C36120.6 (9)
C18—C17—Br1118.6 (7)C38—C37—Br2120.1 (7)
C16—C17—Br1119.1 (7)C36—C37—Br2119.3 (7)
C19—C18—C17117.6 (8)C39—C38—C37119.5 (8)
C19—C18—H18121.2C39—C38—H38120.2
C17—C18—H18121.2C37—C38—H38120.2
C18—C19—C14122.1 (8)C38—C39—C34121.7 (8)
C18—C19—H19119.0C38—C39—H39119.2
C14—C19—H19119.0C34—C39—H39119.2
N20—C20—C5177.7 (10)N40—C40—C25180.0 (14)
C6—N1—C2—O2176.9 (8)C26—N2—C22—O22175.0 (8)
C7—N1—C2—O21.3 (11)C27—N2—C22—O223.7 (12)
C6—N1—C2—C33.0 (11)C26—N2—C22—C234.0 (11)
C7—N1—C2—C3178.6 (7)C27—N2—C22—C23177.3 (7)
O2—C2—C3—C194.4 (10)O22—C22—C23—C2186.3 (10)
N1—C2—C3—C185.7 (9)N2—C22—C23—C2192.7 (9)
O2—C2—C3—C4141.5 (8)O22—C22—C23—C24149.1 (8)
N1—C2—C3—C438.4 (10)N2—C22—C23—C2431.9 (10)
O1—C1—C3—C213.1 (12)O21—C21—C23—C223.8 (12)
C13—C1—C3—C2167.8 (7)C33—C21—C23—C22176.2 (8)
O1—C1—C3—C4110.6 (10)O21—C21—C23—C24121.7 (9)
C13—C1—C3—C468.5 (10)C33—C21—C23—C2458.3 (10)
C2—C3—C4—C552.2 (9)C22—C23—C24—C2551.6 (9)
C1—C3—C4—C571.1 (9)C21—C23—C24—C2571.1 (8)
C2—C3—C4—C1475.8 (8)C22—C23—C24—C3473.7 (9)
C1—C3—C4—C14160.9 (7)C21—C23—C24—C34163.5 (7)
C3—C4—C5—C636.6 (11)C23—C24—C25—C2640.8 (10)
C14—C4—C5—C686.8 (10)C34—C24—C25—C2683.9 (9)
C3—C4—C5—C20143.3 (8)C23—C24—C25—C40146.4 (8)
C14—C4—C5—C2093.4 (10)C34—C24—C25—C4088.9 (10)
C20—C5—C6—N60.5 (14)C40—C25—C26—N262.2 (13)
C4—C5—C6—N6179.6 (8)C24—C25—C26—N26170.8 (8)
C20—C5—C6—N1177.6 (8)C40—C25—C26—N2179.3 (8)
C4—C5—C6—N12.3 (13)C24—C25—C26—N27.7 (12)
C2—N1—C6—N6161.5 (7)C22—N2—C26—N26163.9 (7)
C7—N1—C6—N622.9 (10)C27—N2—C26—N2614.7 (11)
C2—N1—C6—C516.8 (12)C22—N2—C26—C2517.5 (12)
C7—N1—C6—C5158.8 (8)C27—N2—C26—C25163.9 (8)
C2—N1—C7—C873.8 (10)C26—N2—C27—C3281.3 (10)
C6—N1—C7—C8110.5 (9)C22—N2—C27—C32100.0 (9)
C2—N1—C7—C12110.5 (9)C26—N2—C27—C28100.2 (10)
C6—N1—C7—C1265.2 (10)C22—N2—C27—C2878.4 (10)
C12—C7—C8—C90.2 (14)C32—C27—C28—C291.0 (14)
N1—C7—C8—C9175.7 (8)N2—C27—C28—C29179.4 (8)
C7—C8—C9—C101.3 (14)C27—C28—C29—C300.6 (15)
C8—C9—C10—C112.2 (15)C28—C29—C30—C310.5 (16)
C9—C10—C11—C122.0 (15)C29—C30—C31—C320.8 (15)
C8—C7—C12—C110.0 (14)C30—C31—C32—C271.2 (14)
N1—C7—C12—C11175.6 (8)C28—C27—C32—C311.3 (13)
C10—C11—C12—C70.9 (14)N2—C27—C32—C31179.7 (8)
C5—C4—C14—C1525.4 (12)C25—C24—C34—C351.3 (11)
C3—C4—C14—C1597.2 (9)C23—C24—C34—C35123.2 (8)
C5—C4—C14—C19157.7 (8)C25—C24—C34—C39177.4 (7)
C3—C4—C14—C1979.7 (9)C23—C24—C34—C3960.7 (10)
C19—C14—C15—C160.6 (13)C39—C34—C35—C361.9 (13)
C4—C14—C15—C16177.5 (8)C24—C34—C35—C36178.1 (8)
C14—C15—C16—C171.6 (13)C34—C35—C36—C370.9 (14)
C15—C16—C17—C182.9 (14)C35—C36—C37—C380.0 (13)
C15—C16—C17—Br1177.1 (7)C35—C36—C37—Br2179.7 (7)
C16—C17—C18—C191.9 (14)C36—C37—C38—C390.1 (13)
Br1—C17—C18—C19178.0 (7)Br2—C37—C38—C39179.8 (6)
C17—C18—C19—C140.4 (14)C37—C38—C39—C341.2 (13)
C15—C14—C19—C181.6 (13)C35—C34—C39—C382.0 (12)
C4—C14—C19—C18178.7 (8)C24—C34—C39—C38178.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O2i0.901.872.766 (9)175
N6—H6B···O210.902.313.115 (9)149
C18—H18···N40ii0.952.463.256 (12)141
C23—H23···N40iii1.002.473.426 (11)161
N26—H26A···O10.901.992.784 (9)146
N26—H26B···N20iv0.902.433.139 (10)136
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y1, z; (iii) x, y+2, z+1/2; (iv) x, y+1, z1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
O2···H302.63x - 1, -y + 1, z - 1/2
O1···H26A1.99x, y, z
H13C···H162.46x + 1, y, z
O2···H6A1.87x, -y + 1, z - 1/2
H18···N402.46x, y - 1, z
N20···H26B2.43x, -y + 1, z + 1/2
C9···Br23.377 (10)x - 1, -y + 2, z - 1/2
H13C···O222.79x, -y + 1, z - 1/2
C16···H362.86x - 1, y - 1, z
H11···H26A2.47x - 1, y, z
O21···H312.84x - 1, y, z
H23···N402.47x, -y + 2, z + 1/2
H31···O212.84x + 1, y, z
Percentage contributions of interatomic contacts to the Hirshfeld surfaces of molecules A and B of the title compound top
ContactContribution for AContribution for B
H···H32.833.8
C···H/H···C19.618.9
O···H/H···O17.213.5
Br···H/H···Br10.611.3
N···H/H···N9.414.0
Br···C/C···Br4.84.6
N···O/O···N2.1
C···O/O···C1.41.3
Br···O/O···Br0.80.9
C···C0.70.7
N···N0.50.4
Br···N/N···Br0.10.6
 

Acknowledgements

Authors' contributions are as follows. Conceptualization and methodology, IGM; investigation, MA and APN; writing (original draft), MA and IGM; writing (review and editing of the manuscript), MA and ARA; visualization, MA and IGM; funding acquisition, VNK and IGM; resources, AAA, VNK and KNA; supervision, IGM and MA.

Funding information

This work was supported by the Baku State University, and RUDN University Strategic Academic Leadership Program.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAida, W., Ohtsuki, T., Li, X. & Ishibashi, M. (2009). Tetrahedron, 65, 369–373.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMagerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1731–1734.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Engineer. Appl. Sci. 1, 5-11.  Google Scholar
First citationMamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499.  Web of Science CrossRef CAS Google Scholar
First citationMohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536–540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021c). Acta Cryst. E77, 930–934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141–o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWojcicka, A. & Redzicka, A. (2021). Pharmaceuticals, 14, 354.  Web of Science PubMed Google Scholar
First citationYadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.  Web of Science CrossRef CAS Google Scholar
First citationYin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds