research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of μ3-tetra­thio­anti­monato-tris­[(cyclam)zinc(II)] tetra­thio­anti­monate aceto­nitrile disolvate dihydrate showing Zn disorder over the cyclam ring planes (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth. Str. 2, 241128 Kiel, Germany
*Correspondence e-mail: wbensch@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 March 2022; accepted 5 April 2022; online 12 April 2022)

Reaction of Zn(ClO4)2·6H2O with cyclam (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) and Na3SbS4 in an aceto­nitrile/water mixture led to the formation of crystals of the title compound, [Zn3(SbS4)(C10H24N4)3](SbS4)·2CH3CN·2H2O or [(Zn-cyclam)3(SbS4)2](H2O)2(aceto­nitrile)2. The set-up of the crystal structure is similar to that of [(Zn-cyclam)3(SbS4)2].8H2O reported recently [Danker et al. (2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]). Dalton Trans. 50, 18107–18117]. The crystal structure of the title compound consists of three crystallographically independent ZnII cations (each disordered around centers of inversion), three centrosymmetric cyclam ligands, one SbS43– anion, one water and one aceto­nitrile mol­ecule occupying general positions. The aceto­nitrile mol­ecule is equally disordered over two sets of sites. Each Zn2+ cation is bound to four nitro­gen atoms of a cyclam ligand and one sulfur atom of the SbS43– anion within a distorted square-pyramidal coordination. The cation disorder of the [Zn(cyclam)]2+ complexes is discussed in detail and is also observed in other compounds, where identical ligands are located above and below the [Zn(cyclam)]2+ plane. In the title compound, the building units are arranged in layers parallel to the bc plane forming pores in which the aceto­nitrile solvate mol­ecules are located. Inter­molecular C—H⋯S hydrogen bonding links these units to the SbS43– anions. Between the layers, additional water solvate mol­ecules are present that act as acceptor and donor groups for inter­molecular N—H⋯O and O—H⋯S hydrogen bonding.

1. Chemical context

For several years, chalcogenidometallates and chalcogenides with inorganic and/or organic cations have been investigated intensively because several of them show promising physical properties (Feng et al., 2021[Feng, X., Fang, H., Liu, P., Wu, N., Self, E. C., Yin, L., Wang, P., Li, X., Jena, P., Nanda, J. & Mitlin, D. (2021). Angew. Chem. Int. Ed. 60, 26158-26166.]; Lokhande et al., 2019[Lokhande, A. C., Babar, P. T., Karade, V. C., Gang, M. G., Lokhande, V. C., Lokhande, D. C. & Kim, J. H. (2019). J. Mater. Chem. A, 7, 17118-17182.]; Thiele et al., 2017[Thiele, G., Santner, S. & Dehnen, S. (2017). Z. Kristallogr. 232, 47-54.]; Feng et al., 2016[Feng, M.-L., Sarma, D., Qi, X.-H., Du, K.-Z., Huang, X.-Y. & Kanatzidis, M. G. (2016). J. Am. Chem. Soc. 138, 12578-12585.]; Si et al., 2016[Si, Q., Yu, R. & Abrahams, E. (2016). Nat. Rev. Mater. 1, 16017.]; Bensch & Kanatzidis, 2012[Bensch, W. & Kanatzidis, M. (2012). Z. Anorg. Allg. Chem. 638, 2384-2385.]). Hence, numerous such compounds have been reported in the literature (Sheldrick & Wachhold, 1998[Sheldrick, W. S. & Wachhold, M. (1998). Coord. Chem. Rev. 176, 211-322.]; Bensch et al., 1997[Bensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. pp. 1773-1774.]; Dehnen & Melullis, 2007[Dehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259-1280.]; Wang et al., 2016[Wang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41-68.]; Zhou, 2016[Zhou, J. (2016). Coord. Chem. Rev. 315, 112-134.]; Zhu & Dai, 2017[Zhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95-109.]; Nie et al., 2017[Nie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. & Zhang, Q. (2017). Inorg. Chem. Front, 4, 945-959.]). An important class of chalcogenidometallates are represented by thio­anti­monates, which exhibit a pronounced structural variability with different coordination numbers of the SbV atom and networks of different dimensionality (Spetzler et al., 2004[Spetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142-148.]; Jia et al., 2004[Jia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477-2483.]; Powell et al., 2005[Powell, A. V., Thun, J. & Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414-3419.]; Engelke et al., 2004[Engelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. Teil B, 59, 869-876.]; Zhang et al., 2007[Zhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606-1612.]; Liu & Zhou, 2011[Liu, X. & Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268-1289.]), with some of them having potential for future applications (Zhou et al., 2019[Zhou, L., Assoud, A., Zhang, Q., Wu, X. & Nazar, L. F. (2019). J. Am. Chem. Soc. 141, 19002-19013.]).

For several years, we have been inter­ested in the syntheses and structural behaviors of thio­anti­monate(V) compounds (Stähler et al., 2001[Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.]; Schur et al., 2001[Schur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. Teil B, 56, 79-84.]; Pienack et al., 2008[Pienack, N., Lehmann, S., Lühmann, H., El-Madani, M., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 2323-2329.]). In the early stages of these studies, such compounds were prepared at elevated temperatures under solvothermal conditions but subsequently, new synthetic approaches using soluble precursors such as Na3SbS4·9H2O were developed, which allowed the synthesis of new thio­anti­monates at room temperature (Anderer et al., 2016[Anderer, C., Näther, C. & Bensch, W. (2016). Cryst. Growth Des. 16, 3802-3810.]). The major advantage of this route is that, under these conditions, thio­anti­monate compounds containing SbV atoms can be prepared selectively, which is otherwise difficult to achieve. In most cases, we used transition-metal complexes (TMCs) as counter-cations. In this context, cyclam (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) became of inter­est as a ligand. The formed complex cations are in a fourfold coordination environment and provide additional coordination sites for thio­anti­monate anions, which can lead to the formation of networks by (TMC)—S bonds to the anion. Following this synthetic approach, we reacted cyclam with Na3SbS4·9H2O and different transition-metal salts, which led to the formation of compounds with compositions: [(Cu-cyclam)3(SbS4)2]·20H2O, [(Zn-cyclam)3(SbS4)2]·8H2O (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]) and [(Co-cyclam)3(SbS4)2](H2O)2(aceto­nitrile)2 (Näther et al., 2022[Näther, C., Danker, F. & Bensch, W. (2022). Acta Cryst. E78, 270-274.]). In the crystal structure of the cobalt and copper compounds, the metal cations are octa­hedrally coordinated by the four N atoms of the cyclam ligand and by two S atoms of the tetra­thio­anti­monate(V) anions in trans-positions. Each of the SbS43– anions coordinates to three crystallographically independent [M(cyclam)]2+ cations (M = Cu and Co), linking the cations and anions into layers. Within these layers, channels are formed in which water or aceto­nitrile solvate mol­ecules are located. These layers are connected into a three-dimensional network by inter­molecular hydrogen bonding via water mol­ecules. In the case of M = Zn, a different coordination is observed, because this cation is shifted out of the N4 plane of the cyclam ligand and because of the center of inversion is disordered over both ring planes (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]). In this context, it is noted that such a disorder in Zn–cyclam complexes has already been observed in other, different compounds, but the structural consequences were not discussed in detail (see Database survey).

[Scheme 1]

To find more examples of similar compounds, additional syntheses were performed. From an aceto­nitrile/water mixture, crystals of another ZnII–cyclam tetra­thio­anti­monate(V) compound with composition [(Zn-cyclam)3(SbS4)2](H2O)2(aceto­nitrile)2 were obtained. Likewise, in this compound disorder of the Zn2+ cations is observed and the structural consequences are discussed in this contribution.

2. Structural commentary

The asymmetric unit of the title compound consists of three half cyclam ligands (completed by inversion symmetry), one SbS43– anion, one water solvent mol­ecule, one disordered aceto­nitrile solvent mol­ecule and three Zn2+ cations that are disordered around centers of inversion (Fig. 1[link]). In contrast to [(Cu-cyclam)3(SbS4)2]·20H2O (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]) and [(Co-cyclam)3(SbS4)2](H2O)2(aceto­nitrile)2 (Näther et al., 2022[Näther, C., Danker, F. & Bensch, W. (2022). Acta Cryst. E78, 270-274.]), in both of which the cations are located at the center of the cyclam ligand and have an octa­hedral coordination, in the title compound the Zn2+ cations are shifted out of the N4 plane of the ligand by 0.4318 (6) Å (Zn1), 0.3751 (6) Å (Zn2) and 0.4998 (7) Å (Zn3). This means that each Zn2+ cation is in a fivefold coordination defined by the four N atoms of the cyclam ligand in the basal plane and one S atom of the SbS43– anions in the apical position (Fig. 2[link], Table 1[link]). The Zn—S distances to the Zn2+ cation on the other side of the N4 plane are 3.2748 (8) Å (Zn1), 3.2063 (9) Å (Zn2) and 3.4234 (9) Å (Zn3), which are much too long for a significant inter­action. Because all of the Zn2+ cations are disordered around centers of inversion, the connectivity within the crystal structure is difficult to define. In principle, the SbS43– anions can coordin­ate to one, two or three [Zn(cyclam]2+ cations (Fig. 3[link]).

Table 1
Selected bond lengths (Å)

Sb1—S4 2.3049 (7) Zn1—N2i 2.039 (2)
Sb1—S2 2.3214 (7) Zn1—N2 2.196 (2)
Sb1—S3 2.3252 (6) Zn2—N12 2.048 (2)
Sb1—S1 2.3358 (6) Zn2—N11ii 2.052 (2)
S1—Zn1 2.4071 (8) Zn2—N11 2.179 (2)
S2—Zn2 2.4614 (9) Zn3—N21 2.020 (2)
S3—Zn3 2.4300 (8) Zn3—N22iii 2.043 (2)
Zn1—N1 2.028 (2) Zn3—N22 2.205 (2)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y+1, -z]; (iii) [-x, -y+1, -z+1].
[Figure 1]
Figure 1
Part of the crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms were omitted for clarity; the disorder of the aceto­nitrile solvent mol­ecule and the Zn2+ cations is shown with full and open bonds. [Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) −x + 1, −y + 1, −z; (iii) −x, −y + 1, −z + 1.]
[Figure 2]
Figure 2
View of the coordination spheres of the three crystallographically independent Zn2+ cations. The cation disorder is not shown for clarity
[Figure 3]
Figure 3
View of the three possible coordination modes of the SbS43– anion. The symmetry-equivalent Zn2+ cations generated by the center of inversion are not shown for clarity.

If the disorder were not present and the Zn2+ cations were located on centers of inversion in the planes of the cyclam ligands, layers would be formed (Fig. 4[link]A) like in [(Cu-cyclam)3(SbS4)2]·20H2O (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]) or [(Co-cyclam)3(SbS4)2](H2O)2(aceto­nitrile)2 (Näther et al., 2022[Näther, C., Danker, F. & Bensch, W. (2022). Acta Cryst. E78, 270-274.]) reported recently. In the case of [(Zn-cyclam)3(SbS4)2](H2O)2(aceto­nitrile)2, one can argue that each of the SbS43– anions acts as a tri-coordinating ligand like in the Cu and Co compounds and is connected to each of the [Zn(cyclam]2+ cations, forming [(Zn-cyclam)3(SbS4)]3+ moieties. However, in this case, an equivalent amount of non-coordinating SbS43– anions must be present for charge balance as well as for the correct ratio between Zn-cyclam cations and tetra­thio­anti­monate anions (Fig. 4[link]B). Alternatively, the anion can coordinate to two cations forming [(Zn-cyclam)2(SbS4)]+ cations. Then, an equivalent amount of [(Zn-cyclam)(SbS4)] anions must be present to have the correct ratio between Zn-cyclam and the tetra­thio­anti­monate anions (Fig. 4[link]C). The arrangement with [(Zn-cyclam)3(SbS4)]3+ cations and an SbS43– anion appears to be more likely because of the higher charge, but this is in fact difficult to prove. This possibility can also not be verified from the Sb—S bond lengths because they are very similar for the thio­anti­monate anions, which is expected because they are averaged over the whole crystal structure (Table 1[link]).

[Figure 4]
Figure 4
Crystal structure of the title compound showing the [(Zn-cyclam)3(SbS4)2] substructure with disorder of the Zn2+ cations (A), and assuming that an equivalent amount of [Zn(cyclam)3(SbS4)]3+ and [SbS4]3− (B) or [Zn(cyclam)SbS4] and [(Zn(cyclam))2(SbS4)]+ units are present (C).

It is noted that such a cation disorder is also observed in other compounds containing [Zn(cyclam)]2+ cations, which includes [(Zn-cyclam)3(SbS4)2]·8H2O (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]) and other compounds where identical anions are located above and below the N4 plane of the [Zn(cyclam]2+ cations (see Database survey). The reason for this disorder is still unclear. For [(Cu-cyclam)3(SbS4)2]·20H2O and [(Zn-cyclam)3(SbS4)2]·8H2O, DFT calculations were performed, which reasonably reproduced the octa­hedral coordination for the Cu2+ and the square-pyramidal coordination for the Zn2+ cations (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]). Moreover, these calculations also revealed that in the Cu compound, the attractive dispersion inter­actions between the cyclam ligand and the SbS43– anion contribute to the environment of the metal cation, which might be the reason for the different behavior of the Cu2+ and the Zn2+ cations. Also, for very large cations it might be possible that they are shifted out of the center of the cyclam ring, because there is not enough space available within the ring plane. To examine whether the size of Zn2+ might be a reason for the shift out of the N4 plane, we analyzed the ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) and found no significant differences for octa­hedrally coordinated Zn2+ (r = 0.74 Å), Co2+hs (r = 0.745 Å), Co2+ls (r = 0.65 Å) and Cu2+ (r = 0.73 Å). One may argue that in [(Co-cyclam)3(SbS4)2](H2O)2(aceto­nitrile)2, for which the spin state is not known, Co2+ is ordered because it adopts the low-spin state with a smaller ionic radius compared to the high-spin state. However, in [(Cu-cyclam)3(SbS4)2]·20H2O, no disorder is observed and the ionic radius of Cu2+ is similar to that of Zn2+, and larger than for CoIIls. Hence, the ionic radius is most probably not the driving force of the disorder of Zn2+. We also checked many other transition-metal cations in the form of their cyclam complexes, and there were no indications for metal disorder except in some of the Zn compounds, which suggests that such a disorder is limited to Zn2+ cations. Even for these compounds, only about 10% show disorder (see Database survey). A possible explanation for these observations might be the ligand field stabilization energy, which is zero for Zn2+ (electronic configuration 3d10), while it is reasonably large for Co2+ (3d7) and Cu2+ (3d9), resulting in a preference of the position of these cations within the N4 plane. Because not all [Zn(cyclam]2+ complexes show disorder, secondary effects (sterical demands, packing) may also be responsible for the disorder.

3. Supra­molecular features

The cations and anions are arranged into layers parallel to the bc plane in such a way that channels are formed in which the disordered aceto­nitrile solvate mol­ecules are located. The latter are hydrogen-bonded to the tetra­thio­anti­monate anions by inter­molecular C—H⋯S inter­actions (Figs. 4[link] and 5[link], Table 2[link]). One of the C—H⋯S angles is close to linearity, which indicates that this is a relatively strong inter­action. The water mol­ecules are located between the layers and are hydrogen-bonded to the tetra­thio­anti­monate anions via comparatively strong inter­molecular O—H⋯S inter­actions (Table 2[link]). The water mol­ecules also act as acceptors for strong N—H⋯O hydrogen bonding involving the NH hydrogen atoms of the cyclam ligands (Fig. 5[link], Table 2[link]). The NH groups are also hydrogen-bonded to the S atoms of the tetra­thio­anti­monate(V) groups. There are additional C—H⋯S inter­actions, but according to the the corresponding angles, it seems that these are only weak (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S3 1.00 2.39 3.380 (2) 172
N2—H2⋯S1i 1.00 2.78 3.400 (2) 121
N2—H2⋯O1iv 1.00 2.26 3.133 (3) 146
C3—H3A⋯S1 0.99 2.93 3.626 (3) 128
C5—H5B⋯S1 0.99 2.95 3.590 (3) 123
N11—H11⋯S1ii 1.00 2.49 3.433 (2) 157
N11—H11⋯S2ii 1.00 2.97 3.545 (2) 117
C11—H11A⋯S4v 0.99 2.96 3.872 (3) 154
N12—H12⋯S4 1.00 2.50 3.475 (2) 166
C13—H13A⋯S2ii 0.99 2.81 3.490 (3) 126
C15—H15B⋯S2ii 0.99 2.82 3.495 (3) 126
N21—H21⋯S2 1.00 2.29 3.287 (2) 172
N22—H22⋯S3iii 1.00 2.86 3.518 (2) 124
N22—H22⋯O1 1.00 2.18 2.940 (3) 131
C23—H23B⋯S3 0.99 3.01 3.670 (3) 125
C25—H25A⋯S3 0.99 2.86 3.547 (3) 127
O1—H1O⋯S1vi 0.84 2.52 3.286 (2) 152
O1—H2O⋯S4iii 0.84 2.47 3.305 (2) 173
C32—H32A⋯S4 0.98 2.96 3.92 (3) 170
C32′—H32D⋯S4 0.98 2.89 3.66 (3) 136
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y+1, -z]; (iii) [-x, -y+1, -z+1]; (iv) [x, y-1, z]; (v) [-x, -y+1, -z]; (vi) [-x+1, -y+1, -z+1].
[Figure 5]
Figure 5
Crystal structure of the title compound in a view along the a axis with inter­molecular hydrogen bonding shown as dashed lines. The disorder of the aceto­nitrile mol­ecules is omitted for clarity, whereas that of each Zn2+ cation is indicated.

4. Database survey

A search for structures of Zn2+–cyclam complexes in the Cambridge Structural Database (CSD version 5.42, last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) led to 34 hits but none of them contains SbS43– anions. However, as mentioned above, one compound with composition [(Zn-cyclam)3(SbS4)2]·8H2O has already been reported (Danker et al., 2021[Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107-18117.]) but so far is not included in the database.

In one of the other structures, two [Zn(cyclam]2+ cations are linked by oxalate anions into a centrosymmetric dimer, which means that both O atoms are on the same side of one cyclam ring (FIHYEB; Jo et al., 2005[Jo, H., Lough, A. J. & Kim, J. C. (2005). Inorg. Chim. Acta, 358, 1274-1278.]). In all remaining structures, the Zn2+ cations seem to be sixfold coordinated with one monocoordinating donor atom at each side of the cyclam ring; however, for five of them no atomic coordinates are given (HEGNEM10, HEGNOW, HEGNOW10, VUSDUI20 and WARJAD). For these hits, it is difficult to decide whether disorder is present or not. In some of the entries, the Zn disorder is mentioned in the database and this includes structures with the following refcodes: CUZHUA (Kato & Ito, 1985[Kato, M. & Ito, T. (1985). Inorg. Chem. 24, 509-514.]), in which the Zn2+ cations are coordinated by methyl­carbonato anions from both sites, DITZIP (Ito et al., 1984[Ito, T., Kato, M. & Ito, H. (1984). Bull. Chem. Soc. Jpn, 57, 2634-2640.]), in which the cations are linked to two thio­cyanate anions and HEGNEM, HEGNOW and VUSDUI10 (Porai-Koshits et al., 1994[Porai-Koshits, M. A., Antsyshkina, A. S., Shevchenko, Yu. N., Yashina, N. I. & Varava, F. B. (1994). Russ. J. Inorg. Chem. 39, 435-439.]), in which chloride, bromide and iodine anions are located on each side of the cyclam ligand. It should be noted that, for the first structure determination of ZnCl2(cyclam) (VUSDUI; Antsyshkina et al., 1991[Antsyshkina, A. S., Porai-Koshits, M. A., Daidov, B. I., Mal'tseva, N. M., Kedrova, N. S. & Ostrikova, V. N. (1991). Russ. J. Inorg. Chem. 36, 2291-2296.]), no disorder is mentioned. One can assume that the disorder was overlooked and the Zn2+ cation forced to be situated at the center of inversion. For the remaining structures, the two Zn—X bond lengths (X = O, Cl, Br, I) are identical in each case, which points to ordered structures. Nonetheless, in some cases the Zn2+ cations are located on special positions and because no anisotropic displacement parameters are available in the corresponding CIFs, one cannot decide whether there are hints of disorder.

5. Synthesis and crystallization

Synthesis of Na3SbS4·9H2O (Schlippe's salt)

Na3SbS4·9H2O was synthesized by adding 16.6 g (0.213 mol) of Na2xH2O (technical grade, purchased from Acros Organics) to 58 ml of demineralized water. This solution was heated to 333 K for 1h and afterwards 19.6 g (0.058 mol) of Sb2S3 (98%, purchased from Alfa Aesar) and 3.69 g (0.115 mol) of sulfur (min. 99%, purchased from Alfa Aesar) were added. The reaction mixture was then heated to 343 K for 6 h, filtered off and the filtrate was stored overnight at room temperature. Light-yellow-colored crystals formed overnight, were filtered off, washed with small amounts of water and dried in vacuo.

Synthesis of tris­(cyclam-zinc(II)-bis-tetra­thio­anti­monate)-bis water-bis-aceto­nitrile solvate

Single crystals of the title compound were serendipitously obtained by dissolving 10 mg (0.274 mmol) of Zn(ClO4)2·6H2O (purchased from Alfa Aesar) and 10 mg (0.05 mmol) of cyclam (purchased from Strem Chemicals) in 2 ml of aceto­nitrile (purchased from Merck) to which 20 mg (0.14 mmol) of Na3SbS4·9H2O dissolved in 1 ml of water were added. After storing this mixture for 3d at room temperature, a few colorless crystals of the title compound were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C—H and N—H hydrogen atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined with Uiso(H) =1.2Ueq(C,N) (1.5 for methyl H atoms) using a riding model. The water hydrogen atoms were located in a difference-Fourier map, and their bond lengths set to ideal values with Uiso(H) = 1.5Ueq(O) using a riding model. The acetontrile mol­ecule was modeled as being equally disordered over two sets of sites and was refined using a split model with restraints for the geometry and the components of the anisotropic displacement parameters. Each of the three Zn2+ cations was found to be disordered around a center of inversion and thus was refined with half occupancy.

Table 3
Experimental details

Crystal data
Chemical formula [Zn3(SbS4)(C10H24N4)3](SbS4)·2CH3CN·2H2O
Mr 1415.22
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 8.7856 (3), 13.1738 (6), 14.0096 (6)
α, β, γ (°) 67.018 (3), 77.677 (3), 84.220 (3)
V3) 1458.10 (11)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.46
Crystal size (mm) 0.16 × 0.12 × 0.09
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.562, 0.781
No. of measured, independent and observed [I > 2σ(I)] reflections 14357, 6303, 5594
Rint 0.038
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.02
No. of reflections 6303
No. of parameters 327
No. of restraints 75
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −0.80
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The crystal structure was alternatively refined in space group P1 but the disorder remained the same. There were also no hints of superstructure reflections, and in the diffraction pattern diffuse scattering was not observed.

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

µ3-Tetrathioantimonato-tris[(cyclam)zinc(II)] tetrathioantimonate acetonitrile disolvate dihydrate top
Crystal data top
[Zn3(SbS4)(C10H24N4)3](SbS4)·2CH3CN·2H2OZ = 1
Mr = 1415.22F(000) = 720
Triclinic, P1Dx = 1.612 Mg m3
a = 8.7856 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.1738 (6) ÅCell parameters from 14357 reflections
c = 14.0096 (6) Åθ = 1.6–27.0°
α = 67.018 (3)°µ = 2.46 mm1
β = 77.677 (3)°T = 200 K
γ = 84.220 (3)°Block, colorless
V = 1458.10 (11) Å30.16 × 0.12 × 0.09 mm
Data collection top
Stoe IPDS-2
diffractometer
5594 reflections with I > 2σ(I)
ω scansRint = 0.038
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe, 2008)
θmax = 27.0°, θmin = 1.6°
Tmin = 0.562, Tmax = 0.781h = 1011
14357 measured reflectionsk = 1516
6303 independent reflectionsl = 1717
Refinement top
Refinement on F275 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0533P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6303 reflectionsΔρmax = 0.81 e Å3
327 parametersΔρmin = 0.80 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.25921 (2)0.30825 (2)0.30750 (2)0.02516 (6)
S10.48271 (7)0.19527 (5)0.31911 (5)0.03152 (13)
S20.35056 (8)0.48478 (5)0.20520 (5)0.03581 (15)
S30.13698 (8)0.29796 (5)0.47540 (5)0.03425 (14)
S40.09240 (8)0.25656 (7)0.22862 (6)0.04413 (17)
Zn10.49252 (6)0.03467 (5)0.47770 (4)0.02883 (13)0.5
N10.3114 (2)0.05124 (19)0.58800 (17)0.0335 (5)
H10.2695230.1264820.5498630.040*
C10.1818 (3)0.0192 (2)0.6033 (2)0.0351 (6)
H1A0.0816050.0163930.6223250.042*
H1B0.1910060.0909670.6618240.042*
C20.1848 (3)0.0376 (2)0.5023 (2)0.0357 (6)
H2A0.1031210.0902180.5144470.043*
H2B0.1630210.0329810.4459230.043*
N20.3388 (2)0.08173 (19)0.46890 (18)0.0336 (5)
H20.3560270.1582300.5196870.040*
C30.3665 (3)0.0776 (2)0.3609 (2)0.0368 (6)
H3A0.3614400.0000380.3113350.044*
H3B0.2838080.1182240.3534000.044*
C40.5251 (4)0.1280 (2)0.3323 (2)0.0425 (6)
H4A0.5358670.2004720.3895910.051*
H4B0.5272220.1416580.2673270.051*
C50.6657 (3)0.0594 (2)0.3143 (2)0.0378 (6)
H5A0.7602840.0929990.2846890.045*
H5B0.6516080.0156810.2617890.045*
Zn20.47865 (8)0.48973 (6)0.02914 (4)0.03109 (15)0.5
N110.3674 (3)0.64170 (19)0.06257 (18)0.0355 (5)
H110.4209520.6682810.1383140.043*
C110.2113 (3)0.6021 (3)0.0510 (2)0.0435 (7)
H11A0.1515760.6605300.0986130.052*
H11B0.1544140.5838930.0224840.052*
C120.2264 (3)0.5006 (3)0.0783 (2)0.0424 (7)
H12A0.1217470.4719170.0680140.051*
H12B0.2769780.5198900.1532220.051*
N120.3206 (3)0.4154 (2)0.00964 (17)0.0364 (5)
H120.2451160.3826580.0583120.044*
C130.3676 (4)0.3214 (3)0.0419 (2)0.0435 (6)
H13A0.4260650.3488790.1155750.052*
H13B0.2731000.2850280.0399310.052*
C140.4682 (4)0.2372 (2)0.0285 (2)0.0457 (7)
H14A0.4771490.1699860.0120690.055*
H14B0.4133660.2167270.1027510.055*
C150.6316 (4)0.2725 (2)0.0200 (2)0.0426 (6)
H15A0.6920150.2074080.0586770.051*
H15B0.6838600.3006840.0551500.051*
Zn30.02379 (6)0.47066 (5)0.48481 (4)0.02840 (12)0.5
N210.1173 (3)0.59830 (18)0.35441 (18)0.0367 (5)
H210.1790850.5587250.3102980.044*
C210.2413 (3)0.6496 (3)0.3744 (3)0.0447 (7)
H21A0.1980380.7128430.3937200.054*
H21B0.3225580.6772800.3098270.054*
C220.3117 (3)0.5647 (3)0.4636 (3)0.0451 (7)
H22A0.3620210.5042050.4422430.054*
H22B0.3920540.5992730.4804800.054*
N220.1876 (3)0.5206 (2)0.5570 (2)0.0389 (5)
H220.1402070.5801730.5822200.047*
C230.2372 (4)0.4264 (3)0.6434 (3)0.0471 (7)
H23A0.3218980.4490070.6670480.056*
H23B0.2787870.3671550.6175710.056*
C240.1030 (4)0.3821 (3)0.7364 (2)0.0523 (8)
H24A0.1465910.3299130.7975750.063*
H24B0.0542970.4444610.7554610.063*
C250.0237 (4)0.3241 (2)0.7196 (2)0.0451 (7)
H25A0.0246690.2675810.6917810.054*
H25B0.0927230.2860990.7883060.054*
O10.2409 (3)0.68506 (19)0.63965 (19)0.0483 (5)
H1O0.3128010.6926410.6672540.073*
H2O0.1592310.6967910.6780140.073*
N310.179 (2)0.0940 (13)0.0720 (10)0.134 (6)0.5
C310.164 (5)0.059 (2)0.0179 (13)0.113 (7)0.5
C320.131 (5)0.013 (3)0.1293 (14)0.133 (11)0.5
H32A0.1352020.0705650.1567110.199*0.5
H32B0.2073100.0453710.1550560.199*0.5
H32C0.0260150.0178170.1535540.199*0.5
N31'0.248 (3)0.0336 (17)0.0501 (15)0.171 (9)0.5
C31'0.174 (6)0.030 (3)0.0300 (19)0.129 (9)0.5
C32'0.094 (4)0.042 (3)0.1232 (18)0.130 (11)0.5
H32D0.1565580.0863240.1425520.195*0.5
H32E0.0774080.0306600.1802490.195*0.5
H32F0.0061950.0793250.1117130.195*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.02327 (9)0.02630 (9)0.02246 (9)0.00062 (6)0.00337 (6)0.00633 (6)
S10.0276 (3)0.0294 (3)0.0303 (3)0.0036 (2)0.0045 (2)0.0051 (2)
S20.0441 (4)0.0264 (3)0.0292 (3)0.0021 (2)0.0042 (3)0.0079 (2)
S30.0395 (3)0.0293 (3)0.0262 (3)0.0066 (2)0.0003 (2)0.0074 (2)
S40.0317 (3)0.0659 (5)0.0360 (3)0.0125 (3)0.0068 (3)0.0177 (3)
Zn10.0220 (2)0.0361 (3)0.0293 (3)0.0022 (3)0.0033 (2)0.0137 (2)
N10.0293 (10)0.0340 (11)0.0308 (11)0.0014 (8)0.0038 (8)0.0063 (9)
C10.0227 (11)0.0336 (13)0.0389 (14)0.0004 (9)0.0004 (10)0.0059 (11)
C20.0226 (11)0.0369 (13)0.0439 (14)0.0024 (10)0.0098 (10)0.0091 (11)
N20.0276 (10)0.0355 (11)0.0341 (11)0.0024 (8)0.0095 (8)0.0083 (9)
C30.0419 (14)0.0341 (13)0.0390 (14)0.0048 (11)0.0140 (11)0.0146 (11)
C40.0517 (16)0.0396 (15)0.0423 (15)0.0002 (12)0.0094 (13)0.0219 (13)
C50.0395 (14)0.0383 (14)0.0327 (13)0.0030 (11)0.0001 (11)0.0148 (11)
Zn20.0277 (4)0.0299 (3)0.0374 (4)0.0002 (3)0.0105 (3)0.0125 (4)
N110.0339 (11)0.0384 (12)0.0301 (11)0.0003 (9)0.0026 (9)0.0106 (9)
C110.0305 (13)0.0547 (17)0.0378 (14)0.0074 (12)0.0101 (11)0.0097 (13)
C120.0294 (13)0.0606 (18)0.0354 (14)0.0069 (12)0.0106 (11)0.0127 (13)
N120.0360 (11)0.0434 (13)0.0283 (10)0.0075 (9)0.0054 (9)0.0108 (9)
C130.0527 (17)0.0447 (16)0.0352 (14)0.0171 (13)0.0045 (12)0.0155 (12)
C140.0658 (19)0.0319 (13)0.0358 (14)0.0117 (13)0.0005 (13)0.0110 (11)
C150.0533 (17)0.0306 (13)0.0364 (14)0.0036 (12)0.0011 (12)0.0097 (11)
Zn30.0258 (3)0.0273 (3)0.0292 (3)0.0013 (2)0.0054 (2)0.0074 (2)
N210.0390 (12)0.0287 (11)0.0401 (12)0.0007 (9)0.0036 (10)0.0128 (9)
C210.0372 (14)0.0399 (15)0.0529 (17)0.0132 (12)0.0103 (12)0.0199 (13)
C220.0271 (13)0.0532 (17)0.0628 (19)0.0058 (12)0.0031 (12)0.0319 (15)
N220.0302 (11)0.0382 (12)0.0505 (14)0.0054 (9)0.0093 (10)0.0198 (11)
C230.0439 (16)0.0516 (17)0.0567 (18)0.0151 (13)0.0262 (14)0.0276 (15)
C240.071 (2)0.0530 (18)0.0367 (15)0.0161 (16)0.0234 (15)0.0185 (14)
C250.0580 (18)0.0358 (14)0.0307 (13)0.0060 (13)0.0015 (12)0.0062 (11)
O10.0433 (11)0.0527 (13)0.0576 (13)0.0048 (9)0.0073 (10)0.0303 (11)
N310.222 (18)0.123 (11)0.059 (5)0.092 (12)0.002 (8)0.029 (7)
C310.197 (16)0.087 (12)0.067 (6)0.097 (12)0.008 (9)0.036 (6)
C320.24 (3)0.102 (16)0.060 (6)0.043 (14)0.024 (11)0.030 (7)
N31'0.25 (2)0.146 (15)0.112 (13)0.031 (14)0.020 (12)0.070 (12)
C31'0.183 (16)0.110 (19)0.112 (12)0.049 (15)0.007 (11)0.067 (12)
C32'0.18 (2)0.119 (19)0.109 (13)0.085 (17)0.025 (13)0.071 (13)
Geometric parameters (Å, º) top
Sb1—S42.3049 (7)N12—H121.0000
Sb1—S22.3214 (7)C13—C141.518 (4)
Sb1—S32.3252 (6)C13—H13A0.9900
Sb1—S12.3358 (6)C13—H13B0.9900
S1—Zn12.4071 (8)C14—C151.520 (5)
S2—Zn22.4614 (9)C14—H14A0.9900
S3—Zn32.4300 (8)C14—H14B0.9900
Zn1—N12.028 (2)C15—H15A0.9900
Zn1—N2i2.039 (2)C15—H15B0.9900
Zn1—N22.196 (2)Zn3—N212.020 (2)
Zn1—N1i2.200 (2)Zn3—N22iii2.043 (2)
N1—C11.468 (3)Zn3—N222.205 (2)
N1—C5i1.471 (4)Zn3—N21iii2.207 (2)
N1—H11.0000N21—C211.466 (4)
C1—C21.521 (4)N21—C25iii1.471 (4)
C1—H1A0.9900N21—H211.0000
C1—H1B0.9900C21—C221.515 (5)
C2—N21.474 (3)C21—H21A0.9900
C2—H2A0.9900C21—H21B0.9900
C2—H2B0.9900C22—N221.471 (4)
N2—C31.461 (4)C22—H22A0.9900
N2—H21.0000C22—H22B0.9900
C3—C41.525 (4)N22—C231.462 (4)
C3—H3A0.9900N22—H221.0000
C3—H3B0.9900C23—C241.522 (5)
C4—C51.524 (4)C23—H23A0.9900
C4—H4A0.9900C23—H23B0.9900
C4—H4B0.9900C24—C251.517 (5)
C5—H5A0.9900C24—H24A0.9900
C5—H5B0.9900C24—H24B0.9900
Zn2—N122.048 (2)C25—H25A0.9900
Zn2—N11ii2.052 (2)C25—H25B0.9900
Zn2—N12ii2.172 (2)O1—H1O0.8400
Zn2—N112.179 (2)O1—H2O0.8400
N11—C111.470 (4)N31—C311.142 (17)
N11—C15ii1.471 (4)C31—C321.41 (2)
N11—H111.0000C32—H32A0.9800
C11—C121.513 (5)C32—H32B0.9800
C11—H11A0.9900C32—H32C0.9800
C11—H11B0.9900N31'—C31'1.155 (19)
C12—N121.476 (3)C31'—C32'1.41 (2)
C12—H12A0.9900C32'—H32D0.9800
C12—H12B0.9900C32'—H32E0.9800
N12—C131.471 (4)C32'—H32F0.9800
S4—Sb1—S2111.23 (3)C13—N12—Zn2120.73 (18)
S4—Sb1—S3110.64 (3)C12—N12—Zn2109.48 (18)
S2—Sb1—S3110.24 (2)C13—N12—H12103.4
S4—Sb1—S1110.37 (3)C12—N12—H12103.4
S2—Sb1—S1104.65 (2)Zn2—N12—H12103.4
S3—Sb1—S1109.55 (2)N12—C13—C14112.6 (2)
Sb1—S1—Zn1119.36 (3)N12—C13—H13A109.1
Sb1—S2—Zn2108.53 (3)C14—C13—H13A109.1
Sb1—S3—Zn3115.03 (3)N12—C13—H13B109.1
N1—Zn1—N2i96.40 (9)C14—C13—H13B109.1
N1—Zn1—N283.55 (9)H13A—C13—H13B107.8
N2i—Zn1—N2155.88 (4)C13—C14—C15116.4 (2)
N1—Zn1—N1i155.90 (4)C13—C14—H14A108.2
N2i—Zn1—N1i83.20 (9)C15—C14—H14A108.2
N2—Zn1—N1i87.20 (9)C13—C14—H14B108.2
N1—Zn1—S1106.20 (7)C15—C14—H14B108.2
N2i—Zn1—S199.42 (7)H14A—C14—H14B107.3
N2—Zn1—S1103.76 (6)N11ii—C15—C14112.9 (2)
N1i—Zn1—S197.60 (6)N11ii—C15—H15A109.0
C1—N1—C5i113.9 (2)C14—C15—H15A109.0
C1—N1—Zn1111.15 (17)N11ii—C15—H15B109.0
C5i—N1—Zn1122.20 (17)C14—C15—H15B109.0
C1—N1—H1102.0H15A—C15—H15B107.8
C5i—N1—H1102.0N21—Zn3—N22iii95.73 (10)
Zn1—N1—H1102.0N21—Zn3—N2282.91 (10)
N1—C1—C2109.7 (2)N22iii—Zn3—N22152.15 (4)
N1—C1—H1A109.7N21—Zn3—N21iii152.13 (4)
C2—C1—H1A109.7N22iii—Zn3—N21iii82.31 (10)
N1—C1—H1B109.7N22—Zn3—N21iii86.13 (9)
C2—C1—H1B109.7N21—Zn3—S3109.80 (7)
H1A—C1—H1B108.2N22iii—Zn3—S3103.39 (7)
N2—C2—C1109.8 (2)N22—Zn3—S3103.20 (6)
N2—C2—H2A109.7N21iii—Zn3—S397.61 (6)
C1—C2—H2A109.7C21—N21—C25iii114.4 (2)
N2—C2—H2B109.7C21—N21—Zn3111.54 (18)
C1—C2—H2B109.7C25iii—N21—Zn3122.87 (19)
H2A—C2—H2B108.2C21—N21—H21101.2
C3—N2—C2113.9 (2)C25iii—N21—H21101.2
C3—N2—Zn1109.35 (17)Zn3—N21—H21101.2
C2—N2—Zn1100.71 (17)N21—C21—C22109.0 (2)
C3—N2—H2110.8N21—C21—H21A109.9
C2—N2—H2110.8C22—C21—H21A109.9
Zn1—N2—H2110.8N21—C21—H21B109.9
N2—C3—C4111.4 (2)C22—C21—H21B109.9
N2—C3—H3A109.3H21A—C21—H21B108.3
C4—C3—H3A109.3N22—C22—C21108.9 (2)
N2—C3—H3B109.3N22—C22—H22A109.9
C4—C3—H3B109.3C21—C22—H22A109.9
H3A—C3—H3B108.0N22—C22—H22B109.9
C5—C4—C3115.7 (2)C21—C22—H22B109.9
C5—C4—H4A108.3H22A—C22—H22B108.3
C3—C4—H4A108.3C23—N22—C22113.9 (2)
C5—C4—H4B108.3C23—N22—Zn3111.25 (19)
C3—C4—H4B108.3C22—N22—Zn399.07 (18)
H4A—C4—H4B107.4C23—N22—H22110.7
N1i—C5—C4112.4 (2)C22—N22—H22110.7
N1i—C5—H5A109.1Zn3—N22—H22110.7
C4—C5—H5A109.1N22—C23—C24111.6 (2)
N1i—C5—H5B109.1N22—C23—H23A109.3
C4—C5—H5B109.1C24—C23—H23A109.3
H5A—C5—H5B107.9N22—C23—H23B109.3
N12—Zn2—N11ii95.95 (10)C24—C23—H23B109.3
N12—Zn2—N12ii159.15 (4)H23A—C23—H23B108.0
N11ii—Zn2—N12ii83.98 (10)C25—C24—C23116.2 (3)
N12—Zn2—N1183.92 (9)C25—C24—H24A108.2
N11ii—Zn2—N11159.22 (4)C23—C24—H24A108.2
N12ii—Zn2—N1188.86 (9)C25—C24—H24B108.2
N12—Zn2—S2102.88 (7)C23—C24—H24B108.2
N11ii—Zn2—S2103.12 (7)H24A—C24—H24B107.4
N12ii—Zn2—S297.41 (7)N21iii—C25—C24111.9 (2)
N11—Zn2—S297.13 (7)N21iii—C25—H25A109.2
C11—N11—C15ii114.2 (2)C24—C25—H25A109.2
C11—N11—Zn2100.67 (17)N21iii—C25—H25B109.2
C15ii—N11—Zn2111.02 (17)C24—C25—H25B109.2
C11—N11—H11110.2H25A—C25—H25B107.9
C15ii—N11—H11110.2H1O—O1—H2O103.9
Zn2—N11—H11110.2N31—C31—C32174 (4)
N11—C11—C12109.5 (2)C31—C32—H32A109.5
N11—C11—H11A109.8C31—C32—H32B109.5
C12—C11—H11A109.8H32A—C32—H32B109.5
N11—C11—H11B109.8C31—C32—H32C109.5
C12—C11—H11B109.8H32A—C32—H32C109.5
H11A—C11—H11B108.2H32B—C32—H32C109.5
N12—C12—C11109.4 (2)N31'—C31'—C32'171 (3)
N12—C12—H12A109.8C31'—C32'—H32D109.5
C11—C12—H12A109.8C31'—C32'—H32E109.5
N12—C12—H12B109.8H32D—C32'—H32E109.5
C11—C12—H12B109.8C31'—C32'—H32F109.5
H12A—C12—H12B108.2H32D—C32'—H32F109.5
C13—N12—C12114.1 (2)H32E—C32'—H32F109.5
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S31.002.393.380 (2)172
N2—H2···S1i1.002.783.400 (2)121
N2—H2···O1iv1.002.263.133 (3)146
C3—H3A···S10.992.933.626 (3)128
C5—H5B···S10.992.953.590 (3)123
N11—H11···S1ii1.002.493.433 (2)157
N11—H11···S2ii1.002.973.545 (2)117
C11—H11A···S4v0.992.963.872 (3)154
N12—H12···S41.002.503.475 (2)166
C13—H13A···S2ii0.992.813.490 (3)126
C15—H15B···S2ii0.992.823.495 (3)126
N21—H21···S21.002.293.287 (2)172
N22—H22···S3iii1.002.863.518 (2)124
N22—H22···O11.002.182.940 (3)131
C23—H23B···S30.993.013.670 (3)125
C25—H25A···S30.992.863.547 (3)127
O1—H1O···S1vi0.842.523.286 (2)152
O1—H2O···S4iii0.842.473.305 (2)173
C32—H32A···S40.982.963.92 (3)170
C32—H32D···S40.982.893.66 (3)136
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z; (vi) x+1, y+1, z+1.
 

Acknowledgements

Financial support by the state of Schleswig-Holstein is gratefully acknowledged.

References

First citationAnderer, C., Näther, C. & Bensch, W. (2016). Cryst. Growth Des. 16, 3802–3810.  Web of Science CSD CrossRef CAS Google Scholar
First citationAntsyshkina, A. S., Porai-Koshits, M. A., Daidov, B. I., Mal'tseva, N. M., Kedrova, N. S. & Ostrikova, V. N. (1991). Russ. J. Inorg. Chem. 36, 2291–2296.  Google Scholar
First citationBensch, W. & Kanatzidis, M. (2012). Z. Anorg. Allg. Chem. 638, 2384–2385.  Web of Science CrossRef CAS Google Scholar
First citationBensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. pp. 1773–1774.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDanker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107–18117.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259–1280.  Web of Science CrossRef CAS Google Scholar
First citationEngelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. Teil B, 59, 869–876.  Web of Science CrossRef CAS Google Scholar
First citationFeng, M.-L., Sarma, D., Qi, X.-H., Du, K.-Z., Huang, X.-Y. & Kanatzidis, M. G. (2016). J. Am. Chem. Soc. 138, 12578–12585.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFeng, X., Fang, H., Liu, P., Wu, N., Self, E. C., Yin, L., Wang, P., Li, X., Jena, P., Nanda, J. & Mitlin, D. (2021). Angew. Chem. Int. Ed. 60, 26158–26166.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIto, T., Kato, M. & Ito, H. (1984). Bull. Chem. Soc. Jpn, 57, 2634–2640.  CSD CrossRef CAS Web of Science Google Scholar
First citationJia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477–2483.  Web of Science CSD CrossRef CAS Google Scholar
First citationJo, H., Lough, A. J. & Kim, J. C. (2005). Inorg. Chim. Acta, 358, 1274–1278.  Web of Science CSD CrossRef CAS Google Scholar
First citationKato, M. & Ito, T. (1985). Inorg. Chem. 24, 509–514.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, X. & Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268–1289.  Google Scholar
First citationLokhande, A. C., Babar, P. T., Karade, V. C., Gang, M. G., Lokhande, V. C., Lokhande, D. C. & Kim, J. H. (2019). J. Mater. Chem. A, 7, 17118–17182.  Web of Science CrossRef CAS Google Scholar
First citationNäther, C., Danker, F. & Bensch, W. (2022). Acta Cryst. E78, 270–274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. & Zhang, Q. (2017). Inorg. Chem. Front, 4, 945–959.  Google Scholar
First citationPienack, N., Lehmann, S., Lühmann, H., El-Madani, M., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 2323–2329.  Web of Science CSD CrossRef CAS Google Scholar
First citationPorai-Koshits, M. A., Antsyshkina, A. S., Shevchenko, Yu. N., Yashina, N. I. & Varava, F. B. (1994). Russ. J. Inorg. Chem. 39, 435–439.  CAS Google Scholar
First citationPowell, A. V., Thun, J. & Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414–3419.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. Teil B, 56, 79–84.  CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, W. S. & Wachhold, M. (1998). Coord. Chem. Rev. 176, 211–322.  Web of Science CrossRef CAS Google Scholar
First citationSi, Q., Yu, R. & Abrahams, E. (2016). Nat. Rev. Mater. 1, 16017.  Web of Science CrossRef Google Scholar
First citationSpetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationStähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThiele, G., Santner, S. & Dehnen, S. (2017). Z. Kristallogr. 232, 47–54.  Web of Science CrossRef CAS Google Scholar
First citationWang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41–68.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606–1612.  Web of Science CSD CrossRef Google Scholar
First citationZhou, J. (2016). Coord. Chem. Rev. 315, 112–134.  Web of Science CrossRef CAS Google Scholar
First citationZhou, L., Assoud, A., Zhang, Q., Wu, X. & Nazar, L. F. (2019). J. Am. Chem. Soc. 141, 19002–19013.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationZhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95–109.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds