research communications
Synthesis, μ2-iodido-bis[(2,2′-biquinoline-κ2N,N′)copper(I)]
and Hirshfeld surface analysis of di-aDepartment of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar 196, Ethiopia, bPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya, St, 117198, Moscow, Russian Federation, cFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospekt bldg 4, 119071 Moscow, Russian Federation, and dUniversity of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, 100000, Hanoi, Vietnam
*Correspondence e-mail: wodajo.ayalew@uog.edu.et
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The molecular and crystal structures of the title compound, [Cu2I2(C18H12N2)2], were examined by single-crystal X-ray diffraction and Hirshfeld surface analysis. The Cu atom is coordinated in a distorted tetrahedral geometry by two N atoms from the 2,2′-biquinoline ligands and the two μ2-bridging iodide ligands. The molecules are in contact via π–π-stacking interactions. Hirshfeld surface analysis showed that the most important contributions to the intermolecular interactions are H⋯H (39.7%), H⋯I/I⋯H (17.8%), C⋯H/H⋯C (17.5%), C⋯C (16.5%), N⋯C/C⋯N (3.9%) and N⋯H/H⋯N (3.5%).
Keywords: crystal structure; Hirshfeld surface analysis; π–π stacking; biquinoline; copper complex.
CCDC reference: 2237760
1. Chemical context
Metal complexes with N-heterocyclic ligands find wide applications in various fields such as catalysis and medicine, among others (Delgado-Rebollo et al., 2019; Novikov et al., 2021; Fong, 2016; Artemjev et al., 2022). Copper(I) bypiridine complexes are of interest because of their structural peculiarities, cuprophilic interactions, and important photochemical properties. Therefore, bypyridine-type systems are often the ligands of choice to explore new metal complexes with potentially useful properties (Ferraro et al., 2022; Starosta et al., 2012; Vatsadze et al., 2010). 2,2′-Biquinoline is an important and widely employed diimine ligand. The geometry of the resulting metal derivatives depends on the ligand and counter-ion, the metal:ligand ratio and the solvent and synthetic conditions. Here we report the preparation and structural characterization of a copper iodide complex with 2,2′-biquinoline. We used Hirshfeld surface analysis to estimate the contribution of non-covalent interactions to the crystal structure.
2. Structural commentary
The title compound crystallizes in the centrosymmetric P with one crystallographically independent molecule in the The molecular structure is illustrated in Fig. 1. The Cu atom is coordinated in a distorted tetrahedral geometry (Table 1) by two nitrogen atoms from the 2,2′-biquinoline ligands and the two μ2-bridged iodide ligands. The Cu1—I1 and Cu1i—I1 distances [symmetry code: (i) −x + 1, −y, −z + 1] are 2.5734 (2) and 2.6487 (2) Å, which are close to the distances in similar compounds (Sun et al., 2013; Starosta et al., 2012) with a substituted quinoline ligand. The Cu—N distances of 2.0930 (13) and 2.0900 (14) Å are almost equal within standard uncertainty.
The quinoline fragments in the biquinoline ligand adopt, as expected, a planar geometry. The maximum and minimum deviations of the atoms from these planes are between −0.018 (2) and 0.026 (2) Å. The angle between the quinolines described by rings 1/2 (as defined in Fig. 1) is 5.08 (9)° and between 3/4 is 0.59 (8)°. Then, the quinoline formed by rings 1 and 2 (ring 5) makes an angle of 7.56 (5)° with the quinoline described by rings 3/4 (ring 6).
3. Supramolecular features
The crystal packing is shown in Fig. 2, viewed down the c axis. Molecules both within the layers and between them are connected by π–π-stacking interactions between six-membered rings of the quinoline rings. The π–π-stacking interaction parameters are presented in Table 2. Ring 4, defined by N2/C18/C10–C13 in Fig. 1, participates in the shortest interactions. The contact with another ring 4, related by the −x, −y + 1, −z + 1, is perhaps the most efficient, based on the distance, the angle between the planes, and the shift between ring centroids.
|
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.43, update of 2022; Groom et al., 2016) showed only a few hits for bis[(μ2-halogen)-2,2′-biquinoline-di-copper(I)]. We only found data for compounds with substituted quinoline rings in position-4 with carboxylate fragments. All compounds crystallize in the triclinic P. In IRIVIP (Vatsadze et al., 2010), n-hexyl carboxylate groups are attached to the quinoline rings at position 4. In YIJFAA, YIJFEE, and YIJFII (Sun et al., 2013), ethyl carboxylate fragments are attached, and in PAYKIL (Starosta et al., 2012), there are methyl carboxylate fragments. In IRIVIP and YIJFAA, instead of the iodine atom, as in the title structure, there are chlorine atoms; in YIJFEE, there are bromine atoms. In other structures, the copper atoms are bonded through iodine atoms.
5. Hirshfeld surface analysis
Crystal Explorer21 was used to calculate the Hirshfeld surfaces and two-dimensional fingerprint plots (Spackman et al., 2021). The donor–acceptor groups are visualized using a standard (high) surface resolution and dnorm surfaces are mapped over a fixed colour scale from −0.0579 (red) to 1.3919 (blue) a.u., as illustrated in Fig. 3(a). Red spots on the surface correspond to C⋯C and I⋯H interactions. The presence of π-stacking interactions is confirmed by the characteristic red and blue triangles on the shape-index surface [Fig. 3(b)]. Fingerprint plots of the most important non-covalent interactions for the title compound are shown in Fig. 4. The largest contribution to the crystal packing is made by contacts of the H⋯H type (39.7%). Then contacts of the H⋯I/I⋯H and C⋯H/H⋯C types make approximately equal contributions (17.8 and 17.5%, respectively). C⋯C interactions responsible for π-stacking contribute 16.5%. Contacts that contribute less than 1% are not shown in Fig. 4.
6. Synthesis and crystallization
The title compound was prepared by refluxing CuI with one equivalent of 2,2′-biquinoline in ethanol for 24 h. The compound precipitates as a purple solid in 87% yield. Found (%): C, 48.39; H, 2.71; N, 6.27. forC36H24Cu2I2N4. Calculated (%): C, 48.61; H, 2.64; N, 6.19.
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed at calculated positions (C—H = 0.95 Å) and refined using a riding model with [Uiso(H) = 1.2Ueq(C)].
details are summarized in Table 3
|
Supporting information
CCDC reference: 2237760
https://doi.org/10.1107/S2056989023000634/dj2055sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023000634/dj2055Isup2.hkl
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2I2(C18H12N2)2] | Z = 1 |
Mr = 893.49 | F(000) = 432 |
Triclinic, P1 | Dx = 1.979 Mg m−3 |
a = 8.2032 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.4084 (3) Å | Cell parameters from 9951 reflections |
c = 10.8312 (3) Å | θ = 2.3–32.6° |
α = 70.9328 (8)° | µ = 3.51 mm−1 |
β = 76.1237 (9)° | T = 100 K |
γ = 74.2486 (9)° | Plate, red |
V = 749.84 (4) Å3 | 0.12 × 0.10 × 0.06 mm |
Bruker D8 QUEST PHOTON-III CCD diffractometer | 4875 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.030 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 32.6°, θmin = 2.3° |
Tmin = 0.656, Tmax = 0.798 | h = −12→12 |
22231 measured reflections | k = −14→14 |
5464 independent reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.050 | w = 1/[σ2(Fo2) + (0.0241P)2 + 0.2045P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
5464 reflections | Δρmax = 0.93 e Å−3 |
200 parameters | Δρmin = −1.00 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.00061 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.72676 (2) | 0.05497 (2) | 0.36228 (2) | 0.01463 (4) | |
Cu1 | 0.47151 (3) | 0.14895 (2) | 0.52815 (2) | 0.01482 (5) | |
N1 | 0.50362 (17) | 0.22489 (16) | 0.68043 (14) | 0.0137 (2) | |
N2 | 0.32363 (17) | 0.37275 (15) | 0.48351 (13) | 0.0126 (2) | |
C1 | 0.5986 (2) | 0.14322 (19) | 0.77875 (16) | 0.0149 (3) | |
C2 | 0.7206 (2) | 0.0086 (2) | 0.76410 (18) | 0.0188 (3) | |
H2 | 0.7335 | −0.0253 | 0.6881 | 0.023* | |
C3 | 0.8205 (2) | −0.0730 (2) | 0.86007 (19) | 0.0225 (3) | |
H3 | 0.9050 | −0.1616 | 0.8486 | 0.027* | |
C4 | 0.7991 (3) | −0.0268 (2) | 0.97589 (19) | 0.0235 (4) | |
H4 | 0.8658 | −0.0869 | 1.0430 | 0.028* | |
C5 | 0.6831 (2) | 0.1034 (2) | 0.99178 (18) | 0.0221 (3) | |
H5 | 0.6688 | 0.1333 | 1.0701 | 0.027* | |
C6 | 0.5837 (2) | 0.1942 (2) | 0.89164 (16) | 0.0168 (3) | |
C7 | 0.4734 (2) | 0.3365 (2) | 0.89624 (17) | 0.0204 (3) | |
H7 | 0.4603 | 0.3741 | 0.9702 | 0.024* | |
C8 | 0.3849 (2) | 0.4209 (2) | 0.79434 (17) | 0.0186 (3) | |
H8 | 0.3134 | 0.5187 | 0.7954 | 0.022* | |
C9 | 0.4017 (2) | 0.35984 (18) | 0.68682 (16) | 0.0134 (3) | |
C10 | 0.30656 (19) | 0.44564 (18) | 0.57445 (16) | 0.0130 (3) | |
C11 | 0.2064 (2) | 0.59515 (18) | 0.56565 (17) | 0.0151 (3) | |
H11 | 0.1989 | 0.6436 | 0.6318 | 0.018* | |
C12 | 0.1199 (2) | 0.67017 (18) | 0.46130 (17) | 0.0161 (3) | |
H12 | 0.0505 | 0.7703 | 0.4552 | 0.019* | |
C13 | 0.1348 (2) | 0.59756 (18) | 0.36296 (16) | 0.0135 (3) | |
C14 | 0.0488 (2) | 0.6683 (2) | 0.25249 (17) | 0.0171 (3) | |
H14 | −0.0225 | 0.7681 | 0.2431 | 0.021* | |
C15 | 0.0680 (2) | 0.5933 (2) | 0.15911 (17) | 0.0183 (3) | |
H15 | 0.0103 | 0.6413 | 0.0850 | 0.022* | |
C16 | 0.1738 (2) | 0.4440 (2) | 0.17292 (17) | 0.0181 (3) | |
H16 | 0.1868 | 0.3931 | 0.1074 | 0.022* | |
C17 | 0.2579 (2) | 0.37192 (19) | 0.27946 (17) | 0.0162 (3) | |
H17 | 0.3279 | 0.2717 | 0.2876 | 0.019* | |
C18 | 0.23990 (19) | 0.44731 (18) | 0.37738 (16) | 0.0129 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01422 (5) | 0.01364 (5) | 0.01633 (6) | −0.00129 (3) | −0.00081 (3) | −0.00714 (4) |
Cu1 | 0.01437 (9) | 0.01477 (9) | 0.01559 (10) | 0.00062 (7) | −0.00375 (7) | −0.00671 (7) |
N1 | 0.0120 (6) | 0.0154 (6) | 0.0140 (6) | −0.0033 (5) | −0.0023 (5) | −0.0041 (5) |
N2 | 0.0117 (5) | 0.0134 (6) | 0.0131 (6) | −0.0013 (5) | −0.0023 (4) | −0.0049 (5) |
C1 | 0.0130 (7) | 0.0179 (7) | 0.0145 (7) | −0.0057 (6) | −0.0020 (5) | −0.0035 (6) |
C2 | 0.0187 (8) | 0.0184 (7) | 0.0188 (8) | −0.0028 (6) | −0.0069 (6) | −0.0028 (6) |
C3 | 0.0211 (8) | 0.0196 (8) | 0.0249 (9) | −0.0041 (7) | −0.0097 (7) | 0.0003 (7) |
C4 | 0.0250 (9) | 0.0243 (9) | 0.0207 (8) | −0.0102 (7) | −0.0117 (7) | 0.0042 (7) |
C5 | 0.0252 (9) | 0.0282 (9) | 0.0150 (7) | −0.0111 (7) | −0.0076 (6) | −0.0013 (7) |
C6 | 0.0149 (7) | 0.0234 (8) | 0.0133 (7) | −0.0081 (6) | −0.0018 (5) | −0.0036 (6) |
C7 | 0.0183 (8) | 0.0309 (9) | 0.0160 (8) | −0.0060 (7) | −0.0015 (6) | −0.0121 (7) |
C8 | 0.0170 (7) | 0.0244 (8) | 0.0175 (8) | −0.0024 (6) | −0.0030 (6) | −0.0113 (7) |
C9 | 0.0113 (6) | 0.0162 (7) | 0.0138 (7) | −0.0027 (5) | −0.0015 (5) | −0.0059 (6) |
C10 | 0.0103 (6) | 0.0148 (6) | 0.0145 (7) | −0.0032 (5) | −0.0009 (5) | −0.0053 (5) |
C11 | 0.0147 (7) | 0.0140 (6) | 0.0186 (7) | −0.0033 (5) | −0.0016 (5) | −0.0077 (6) |
C12 | 0.0152 (7) | 0.0118 (6) | 0.0206 (8) | −0.0023 (5) | −0.0009 (6) | −0.0055 (6) |
C13 | 0.0116 (6) | 0.0118 (6) | 0.0159 (7) | −0.0019 (5) | −0.0022 (5) | −0.0026 (5) |
C14 | 0.0137 (7) | 0.0162 (7) | 0.0181 (8) | −0.0016 (6) | −0.0033 (6) | −0.0012 (6) |
C15 | 0.0175 (7) | 0.0188 (7) | 0.0166 (7) | −0.0013 (6) | −0.0058 (6) | −0.0023 (6) |
C16 | 0.0175 (7) | 0.0212 (8) | 0.0164 (7) | −0.0011 (6) | −0.0043 (6) | −0.0077 (6) |
C17 | 0.0152 (7) | 0.0162 (7) | 0.0180 (7) | −0.0006 (6) | −0.0036 (6) | −0.0072 (6) |
C18 | 0.0104 (6) | 0.0135 (6) | 0.0145 (7) | −0.0021 (5) | −0.0016 (5) | −0.0041 (5) |
I1—Cu1 | 2.5734 (2) | C7—C8 | 1.369 (3) |
I1—Cu1i | 2.6487 (2) | C7—H7 | 0.9500 |
Cu1—N2 | 2.0900 (14) | C8—C9 | 1.422 (2) |
Cu1—N1 | 2.0930 (13) | C8—H8 | 0.9500 |
Cu1—I1i | 2.6487 (2) | C9—C10 | 1.488 (2) |
Cu1—Cu1i | 2.9520 (4) | C10—C11 | 1.409 (2) |
N1—C9 | 1.330 (2) | C11—C12 | 1.367 (2) |
N1—C1 | 1.367 (2) | C11—H11 | 0.9500 |
N2—C10 | 1.3354 (19) | C12—C13 | 1.409 (2) |
N2—C18 | 1.369 (2) | C12—H12 | 0.9500 |
C1—C2 | 1.414 (2) | C13—C14 | 1.415 (2) |
C1—C6 | 1.421 (2) | C13—C18 | 1.423 (2) |
C2—C3 | 1.374 (2) | C14—C15 | 1.369 (2) |
C2—H2 | 0.9500 | C14—H14 | 0.9500 |
C3—C4 | 1.415 (3) | C15—C16 | 1.418 (2) |
C3—H3 | 0.9500 | C15—H15 | 0.9500 |
C4—C5 | 1.365 (3) | C16—C17 | 1.372 (2) |
C4—H4 | 0.9500 | C16—H16 | 0.9500 |
C5—C6 | 1.418 (2) | C17—C18 | 1.418 (2) |
C5—H5 | 0.9500 | C17—H17 | 0.9500 |
C6—C7 | 1.406 (3) | ||
Cu1—I1—Cu1i | 68.829 (8) | C8—C7—H7 | 119.9 |
N2—Cu1—N1 | 79.28 (5) | C6—C7—H7 | 119.9 |
N2—Cu1—I1 | 122.14 (4) | C7—C8—C9 | 118.99 (16) |
N1—Cu1—I1 | 122.34 (4) | C7—C8—H8 | 120.5 |
N2—Cu1—I1i | 110.91 (4) | C9—C8—H8 | 120.5 |
N1—Cu1—I1i | 106.99 (4) | N1—C9—C8 | 122.17 (15) |
I1—Cu1—I1i | 111.171 (8) | N1—C9—C10 | 116.58 (13) |
N2—Cu1—Cu1i | 141.62 (4) | C8—C9—C10 | 121.24 (15) |
N1—Cu1—Cu1i | 136.76 (4) | N2—C10—C11 | 122.82 (15) |
I1—Cu1—Cu1i | 56.791 (7) | N2—C10—C9 | 115.92 (14) |
I1i—Cu1—Cu1i | 54.380 (7) | C11—C10—C9 | 121.26 (14) |
C9—N1—C1 | 119.18 (14) | C12—C11—C10 | 119.63 (14) |
C9—N1—Cu1 | 113.35 (11) | C12—C11—H11 | 120.2 |
C1—N1—Cu1 | 126.92 (11) | C10—C11—H11 | 120.2 |
C10—N2—C18 | 118.23 (14) | C11—C12—C13 | 119.38 (15) |
C10—N2—Cu1 | 113.89 (11) | C11—C12—H12 | 120.3 |
C18—N2—Cu1 | 127.82 (10) | C13—C12—H12 | 120.3 |
N1—C1—C2 | 118.85 (15) | C12—C13—C14 | 122.40 (15) |
N1—C1—C6 | 121.75 (15) | C12—C13—C18 | 117.93 (15) |
C2—C1—C6 | 119.33 (16) | C14—C13—C18 | 119.67 (14) |
C3—C2—C1 | 119.82 (17) | C15—C14—C13 | 120.22 (16) |
C3—C2—H2 | 120.1 | C15—C14—H14 | 119.9 |
C1—C2—H2 | 120.1 | C13—C14—H14 | 119.9 |
C2—C3—C4 | 120.78 (18) | C14—C15—C16 | 120.11 (16) |
C2—C3—H3 | 119.6 | C14—C15—H15 | 119.9 |
C4—C3—H3 | 119.6 | C16—C15—H15 | 119.9 |
C5—C4—C3 | 120.43 (17) | C17—C16—C15 | 121.04 (15) |
C5—C4—H4 | 119.8 | C17—C16—H16 | 119.5 |
C3—C4—H4 | 119.8 | C15—C16—H16 | 119.5 |
C4—C5—C6 | 120.13 (17) | C16—C17—C18 | 119.85 (15) |
C4—C5—H5 | 119.9 | C16—C17—H17 | 120.1 |
C6—C5—H5 | 119.9 | C18—C17—H17 | 120.1 |
C7—C6—C5 | 122.99 (16) | N2—C18—C17 | 118.90 (14) |
C7—C6—C1 | 117.63 (16) | N2—C18—C13 | 122.00 (14) |
C5—C6—C1 | 119.34 (17) | C17—C18—C13 | 119.10 (15) |
C8—C7—C6 | 120.15 (15) | ||
C9—N1—C1—C2 | −173.05 (15) | C18—N2—C10—C9 | −179.42 (13) |
Cu1—N1—C1—C2 | 16.1 (2) | Cu1—N2—C10—C9 | 3.07 (17) |
C9—N1—C1—C6 | 3.8 (2) | N1—C9—C10—N2 | 4.8 (2) |
Cu1—N1—C1—C6 | −166.98 (11) | C8—C9—C10—N2 | −175.83 (14) |
N1—C1—C2—C3 | 178.35 (16) | N1—C9—C10—C11 | −174.64 (14) |
C6—C1—C2—C3 | 1.4 (3) | C8—C9—C10—C11 | 4.7 (2) |
C1—C2—C3—C4 | 2.0 (3) | N2—C10—C11—C12 | 0.9 (2) |
C2—C3—C4—C5 | −2.6 (3) | C9—C10—C11—C12 | −179.63 (15) |
C3—C4—C5—C6 | −0.4 (3) | C10—C11—C12—C13 | −1.0 (2) |
C4—C5—C6—C7 | −174.13 (17) | C11—C12—C13—C14 | 179.90 (16) |
C4—C5—C6—C1 | 3.8 (3) | C11—C12—C13—C18 | 0.2 (2) |
N1—C1—C6—C7 | −3.1 (2) | C12—C13—C14—C15 | 179.67 (15) |
C2—C1—C6—C7 | 173.76 (16) | C18—C13—C14—C15 | −0.7 (2) |
N1—C1—C6—C5 | 178.82 (15) | C13—C14—C15—C16 | 0.2 (3) |
C2—C1—C6—C5 | −4.3 (2) | C14—C15—C16—C17 | 0.3 (3) |
C5—C6—C7—C8 | 177.99 (17) | C15—C16—C17—C18 | −0.3 (3) |
C1—C6—C7—C8 | 0.0 (2) | C10—N2—C18—C17 | 179.51 (14) |
C6—C7—C8—C9 | 2.2 (3) | Cu1—N2—C18—C17 | −3.4 (2) |
C1—N1—C9—C8 | −1.5 (2) | C10—N2—C18—C13 | −0.9 (2) |
Cu1—N1—C9—C8 | 170.55 (12) | Cu1—N2—C18—C13 | 176.23 (11) |
C1—N1—C9—C10 | 177.85 (13) | C16—C17—C18—N2 | 179.42 (15) |
Cu1—N1—C9—C10 | −10.14 (17) | C16—C17—C18—C13 | −0.2 (2) |
C7—C8—C9—N1 | −1.6 (3) | C12—C13—C18—N2 | 0.7 (2) |
C7—C8—C9—C10 | 179.14 (15) | C14—C13—C18—N2 | −178.92 (15) |
C18—N2—C10—C11 | 0.1 (2) | C12—C13—C18—C17 | −179.65 (15) |
Cu1—N2—C10—C11 | −177.45 (12) | C14—C13—C18—C17 | 0.7 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
Ring 1 | Ring No. | Ring 2 | Ring No. | Angle | Centroid–centroid distance | Shift distance between ring centroids |
C1–C6 | 1 | C1–C6(-x + 1, -y, -z + 2) | 1 | 0.000 | 3.874 | 1.459 |
C13–C18 | 3 | N1/C1/C6–C9(-x + 1, -y + 1, -z + 1) | 2 | 4.772 | 3.711 | 1.480 |
N2/C18/C10–C13(-x, -y + 1, -z + 1) | 4 | 0.590 | 3.665 | 1.602 | ||
N1/C1/C6–C9 | 2 | N2/C18/C10–C13(-x + 1, -y + 1, -z + 1) | 4 | 5.301 | 3.564 | 1.139 |
C13–C18(-x + 1, -y + 1, -z + 1) | 3 | 4.772 | 3.711 | 1.283 | ||
N2/C18/C10–C13 | 4 | N2/C18/C10–C13(-x, -y + 1, -z + 1) | 4 | 0.000 | 3.652 | 1.555 |
C13–C18(-x, -y + 1, -z + 1) | 3 | 0.590 | 3.665 | 1.579 | ||
N1/C1/C6–C9(-x + 1, -y + 1, -z + 1) | 2 | 5.301 | 3.564 | 1.068 |
Acknowledgements
Authors contributions are as follows: Conceptualization, AWT, AGT and TAL; methodology, APN, AGT; validation: AWT, AGT; formal analysis: APN, AGT, TAL; investigation: AWT, AGT and TAL; resources, AGT, TAL; data curation, APN, EKK; writing (original draft), AWT; writing (review and editing), APN, AGT, TAL; visualization, AWT, TAL; supervision, AWT, AGT; project administration, AGT; funding acquisition, AGT, TAL.
Funding information
Funding for this research was provided by: Ministry of Science and Higher Education of the Russian Federation (subject No. 122011300061-3). This work was supported by the RUDN University Strategic Academic Leadership Program: Russian Foundation for Basic Research (grant No. 21-53-54001).
References
Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372. Web of Science CSD CrossRef PubMed Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Delgado-Rebollo, M., García-Morales, C., Maya, C., Prieto, A., Echavarren, A. M. & Pérez, P. J. (2019). J. Organomet. Chem. 898, 120856. Google Scholar
Ferraro, V., Castro, J., Trave, E. & Bortoluzzi, M. (2022). J. Organomet. Chem. 957, 122171. Web of Science CSD CrossRef Google Scholar
Fong, C. W. (2016). Free Radical Biol. Med. 95, 216–229. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Novikov, A. P., Volkov, M. A., Safonov, A. V., Grigoriev, M. S. & Abkhalimov, E. V. (2021). Crystals, 11, 1417. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, R., Komarnicka, U. K., Nagaj, J., Stokowa-Sołtys, K. & Bykowska, A. (2012). Acta Cryst. E68, m756–m757. CSD CrossRef IUCr Journals Google Scholar
Sun, X. M., Ning, W. H., Liu, J. L., Liu, S. X., Guo, P. C. & Ren, X. M. (2013). Chin. J. Inorg. Chem. 29, 2176–2182. CAS Google Scholar
Vatsadze, S. Z., Dolganov, A. V., Yakimanskii, A. V., Goikhman, M. Y., Podeshvo, I. V., Lyssenko, K. A., Maksimov, A. L. & Magdesieva, T. V. (2010). Russ. Chem. Bull. 59, 724–732. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.