research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of di-μ2-iodido-bis­­[(2,2′-bi­quinoline-κ2N,N′)copper(I)]

crossmark logo

aDepartment of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar 196, Ethiopia, bPeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya, St, 117198, Moscow, Russian Federation, cFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospekt bldg 4, 119071 Moscow, Russian Federation, and dUniversity of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, 100000, Hanoi, Vietnam
*Correspondence e-mail: wodajo.ayalew@uog.edu.et

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 5 September 2022; accepted 24 January 2023; online 7 February 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The mol­ecular and crystal structures of the title compound, [Cu2I2(C18H12N2)2], were examined by single-crystal X-ray diffraction and Hirshfeld surface analysis. The Cu atom is coordinated in a distorted tetra­hedral geometry by two N atoms from the 2,2′-bi­quinoline ligands and the two μ2-bridging iodide ligands. The mol­ecules are in contact via ππ-stacking inter­actions. Hirshfeld surface analysis showed that the most important contributions to the inter­molecular inter­actions are H⋯H (39.7%), H⋯I/I⋯H (17.8%), C⋯H/H⋯C (17.5%), C⋯C (16.5%), N⋯C/C⋯N (3.9%) and N⋯H/H⋯N (3.5%).

1. Chemical context

Metal complexes with N-heterocyclic ligands find wide applications in various fields such as catalysis and medicine, among others (Delgado-Rebollo et al., 2019[Delgado-Rebollo, M., García-Morales, C., Maya, C., Prieto, A., Echavarren, A. M. & Pérez, P. J. (2019). J. Organomet. Chem. 898, 120856.]; Novikov et al., 2021[Novikov, A. P., Volkov, M. A., Safonov, A. V., Grigoriev, M. S. & Abkhalimov, E. V. (2021). Crystals, 11, 1417.]; Fong, 2016[Fong, C. W. (2016). Free Radical Biol. Med. 95, 216-229.]; Artemjev et al., 2022[Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372.]). Copper(I) bypiridine complexes are of inter­est because of their structural peculiarities, cuprophilic inter­actions, and important photochemical properties. Therefore, bypyridine-type systems are often the ligands of choice to explore new metal complexes with potentially useful properties (Ferraro et al., 2022[Ferraro, V., Castro, J., Trave, E. & Bortoluzzi, M. (2022). J. Organomet. Chem. 957, 122171.]; Starosta et al., 2012[Starosta, R., Komarnicka, U. K., Nagaj, J., Stokowa-Sołtys, K. & Bykowska, A. (2012). Acta Cryst. E68, m756-m757.]; Vatsadze et al., 2010[Vatsadze, S. Z., Dolganov, A. V., Yakimanskii, A. V., Goikhman, M. Y., Podeshvo, I. V., Lyssenko, K. A., Maksimov, A. L. & Magdesieva, T. V. (2010). Russ. Chem. Bull. 59, 724-732.]). 2,2′-Bi­quinoline is an important and widely employed di­imine ligand. The geometry of the resulting metal derivatives depends on the ligand and counter-ion, the metal:ligand ratio and the solvent and synthetic conditions. Here we report the preparation and structural characterization of a copper iodide complex with 2,2′-bi­quinoline. We used Hirshfeld surface analysis to estimate the contribution of non-covalent inter­actions to the crystal structure.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the centrosymmetric space group P[\overline{1}] with one crystallographically independent mol­ecule in the unit cell. The mol­ecular structure is illustrated in Fig. 1[link]. The Cu atom is coordinated in a distorted tetra­hedral geometry (Table 1[link]) by two nitro­gen atoms from the 2,2′-bi­quinoline ligands and the two μ2-bridged iodide ligands. The Cu1—I1 and Cu1i—I1 distances [symmetry code: (i) −x + 1, −y, −z + 1] are 2.5734 (2) and 2.6487 (2) Å, which are close to the distances in similar compounds (Sun et al., 2013[Sun, X. M., Ning, W. H., Liu, J. L., Liu, S. X., Guo, P. C. & Ren, X. M. (2013). Chin. J. Inorg. Chem. 29, 2176-2182.]; Starosta et al., 2012[Starosta, R., Komarnicka, U. K., Nagaj, J., Stokowa-Sołtys, K. & Bykowska, A. (2012). Acta Cryst. E68, m756-m757.]) with a substituted quinoline ligand. The Cu—N distances of 2.0930 (13) and 2.0900 (14) Å are almost equal within standard uncertainty.

Table 1
Selected geometric parameters (Å, °)

I1—Cu1 2.5734 (2) Cu1—N2 2.0900 (14)
I1—Cu1i 2.6487 (2) Cu1—N1 2.0930 (13)
       
Cu1—I1—Cu1i 68.829 (8) N2—Cu1—I1i 110.91 (4)
N2—Cu1—N1 79.28 (5) N1—Cu1—I1i 106.99 (4)
N2—Cu1—I1 122.14 (4) I1—Cu1—I1i 111.171 (8)
N1—Cu1—I1 122.34 (4)    
Symmetry code: (i) [-x+1, -y, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, including atom and ring labelling. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) −x + 1, −y, −z + 1.]

The quinoline fragments in the bi­quinoline ligand adopt, as expected, a planar geometry. The maximum and minimum deviations of the atoms from these planes are between −0.018 (2) and 0.026 (2) Å. The angle between the quinolines described by rings 1/2 (as defined in Fig. 1[link]) is 5.08 (9)° and between 3/4 is 0.59 (8)°. Then, the quinoline formed by rings 1 and 2 (ring 5) makes an angle of 7.56 (5)° with the quinoline described by rings 3/4 (ring 6).

3. Supra­molecular features

The crystal packing is shown in Fig. 2[link], viewed down the c axis. Mol­ecules both within the layers and between them are connected by ππ-stacking inter­actions between six-membered rings of the quinoline rings. The ππ-stacking inter­action parameters are presented in Table 2[link]. Ring 4, defined by N2/C18/C10–C13 in Fig. 1[link], participates in the shortest inter­actions. The contact with another ring 4, related by the symmetry operationx, −y + 1, −z + 1, is perhaps the most efficient, based on the distance, the angle between the planes, and the shift between ring centroids.

Table 2
π–π-stacking inter­action parameters (Å, °)

Ring 1 Ring No. Ring 2 Ring No. Angle Centroid–centroid distance Shift distance between ring centroids
C1–C6 1 C1–C6(−x + 1, −y, −z + 2) 1 0.000 3.874 1.459
C13–C18 3 N1/C1/C6–C9(−x + 1, −y + 1, −z + 1) 2 4.772 3.711 1.480
    N2/C18/C10–C13(−x, −y + 1, −z + 1) 4 0.590 3.665 1.602
N1/C1/C6–C9 2 N2/C18/C10–C13(−x + 1, −y + 1, −z + 1) 4 5.301 3.564 1.139
    C13–C18(−x + 1, −y + 1, −z + 1) 3 4.772 3.711 1.283
N2/C18/C10–C13 4 N2/C18/C10–C13(−x, −y + 1, −z + 1) 4 0.000 3.652 1.555
    C13–C18(−x, −y + 1, −z + 1) 3 0.590 3.665 1.579
    N1/C1/C6–C9(−x + 1, −y + 1, −z + 1) 2 5.301 3.564 1.068
[Figure 2]
Figure 2
View along the c axis of the crystal packing of the title compound, showing the stacking of layers formed by the Cu complex.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update of 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed only a few hits for bis­[(μ2-halogen)-2,2′-bi­quinoline-di-copper(I)]. We only found data for compounds with substituted quinoline rings in position-4 with carboxyl­ate fragments. All compounds crystallize in the triclinic space group P[\overline{1}]. In IRIVIP (Vatsadze et al., 2010[Vatsadze, S. Z., Dolganov, A. V., Yakimanskii, A. V., Goikhman, M. Y., Podeshvo, I. V., Lyssenko, K. A., Maksimov, A. L. & Magdesieva, T. V. (2010). Russ. Chem. Bull. 59, 724-732.]), n-hexyl carboxyl­ate groups are attached to the quinoline rings at position 4. In YIJFAA, YIJFEE, and YIJFII (Sun et al., 2013[Sun, X. M., Ning, W. H., Liu, J. L., Liu, S. X., Guo, P. C. & Ren, X. M. (2013). Chin. J. Inorg. Chem. 29, 2176-2182.]), ethyl carboxyl­ate fragments are attached, and in PAYKIL (Starosta et al., 2012[Starosta, R., Komarnicka, U. K., Nagaj, J., Stokowa-Sołtys, K. & Bykowska, A. (2012). Acta Cryst. E68, m756-m757.]), there are methyl carboxyl­ate fragments. In IRIVIP and YIJFAA, instead of the iodine atom, as in the title structure, there are chlorine atoms; in YIJFEE, there are bromine atoms. In other structures, the copper atoms are bonded through iodine atoms.

5. Hirshfeld surface analysis

Crystal Explorer21 was used to calculate the Hirshfeld surfaces and two-dimensional fingerprint plots (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The donor–acceptor groups are visualized using a standard (high) surface resolution and dnorm surfaces are mapped over a fixed colour scale from −0.0579 (red) to 1.3919 (blue) a.u., as illustrated in Fig. 3[link](a). Red spots on the surface correspond to C⋯C and I⋯H inter­actions. The presence of π-stacking inter­actions is confirmed by the characteristic red and blue triangles on the shape-index surface [Fig. 3[link](b)]. Fingerprint plots of the most important non-covalent inter­actions for the title compound are shown in Fig. 4[link]. The largest contribution to the crystal packing is made by contacts of the H⋯H type (39.7%). Then contacts of the H⋯I/I⋯H and C⋯H/H⋯C types make approximately equal contributions (17.8 and 17.5%, respectively). C⋯C inter­actions responsible for π-stacking contribute 16.5%. Contacts that contribute less than 1% are not shown in Fig. 4[link].

[Figure 3]
Figure 3
Hirshfeld surface mapped over (a) dnorm and (b) shape-index to visualize the inter­actions in the title compound.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for the title compound divided into H⋯H (39.7%), H⋯I/I⋯H (17.8%), C⋯H/H⋯C (17.5%), C⋯C (16.5%), N⋯C/C⋯N (3.9%) and N⋯H/H⋯N (3.5%) inter­actions.

6. Synthesis and crystallization

The title compound was prepared by refluxing CuI with one equivalent of 2,2′-bi­quinoline in ethanol for 24 h. The compound precipitates as a purple solid in 87% yield. Found (%): C, 48.39; H, 2.71; N, 6.27. forC36H24Cu2I2N4. Calculated (%): C, 48.61; H, 2.64; N, 6.19.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were placed at calculated positions (C—H = 0.95 Å) and refined using a riding model with [Uiso(H) = 1.2Ueq(C)].

Table 3
Experimental details

Crystal data
Chemical formula [Cu2I2(C18H12N2)2]
Mr 893.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.2032 (2), 9.4084 (3), 10.8312 (3)
α, β, γ (°) 70.9328 (8), 76.1237 (9), 74.2486 (9)
V3) 749.84 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 3.51
Crystal size (mm) 0.12 × 0.10 × 0.06
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.656, 0.798
No. of measured, independent and observed [I > 2σ(I)] reflections 22231, 5464, 4875
Rint 0.030
(sin θ/λ)max−1) 0.759
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.050, 1.07
No. of reflections 5464
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.93, −1.00
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Di-µ2-iodido-bis[(2,2'-biquinoline-κ2N,N')copper(I)] top
Crystal data top
[Cu2I2(C18H12N2)2]Z = 1
Mr = 893.49F(000) = 432
Triclinic, P1Dx = 1.979 Mg m3
a = 8.2032 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4084 (3) ÅCell parameters from 9951 reflections
c = 10.8312 (3) Åθ = 2.3–32.6°
α = 70.9328 (8)°µ = 3.51 mm1
β = 76.1237 (9)°T = 100 K
γ = 74.2486 (9)°Plate, red
V = 749.84 (4) Å30.12 × 0.10 × 0.06 mm
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
4875 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 32.6°, θmin = 2.3°
Tmin = 0.656, Tmax = 0.798h = 1212
22231 measured reflectionsk = 1414
5464 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0241P)2 + 0.2045P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5464 reflectionsΔρmax = 0.93 e Å3
200 parametersΔρmin = 1.00 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.00061 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.72676 (2)0.05497 (2)0.36228 (2)0.01463 (4)
Cu10.47151 (3)0.14895 (2)0.52815 (2)0.01482 (5)
N10.50362 (17)0.22489 (16)0.68043 (14)0.0137 (2)
N20.32363 (17)0.37275 (15)0.48351 (13)0.0126 (2)
C10.5986 (2)0.14322 (19)0.77875 (16)0.0149 (3)
C20.7206 (2)0.0086 (2)0.76410 (18)0.0188 (3)
H20.73350.02530.68810.023*
C30.8205 (2)0.0730 (2)0.86007 (19)0.0225 (3)
H30.90500.16160.84860.027*
C40.7991 (3)0.0268 (2)0.97589 (19)0.0235 (4)
H40.86580.08691.04300.028*
C50.6831 (2)0.1034 (2)0.99178 (18)0.0221 (3)
H50.66880.13331.07010.027*
C60.5837 (2)0.1942 (2)0.89164 (16)0.0168 (3)
C70.4734 (2)0.3365 (2)0.89624 (17)0.0204 (3)
H70.46030.37410.97020.024*
C80.3849 (2)0.4209 (2)0.79434 (17)0.0186 (3)
H80.31340.51870.79540.022*
C90.4017 (2)0.35984 (18)0.68682 (16)0.0134 (3)
C100.30656 (19)0.44564 (18)0.57445 (16)0.0130 (3)
C110.2064 (2)0.59515 (18)0.56565 (17)0.0151 (3)
H110.19890.64360.63180.018*
C120.1199 (2)0.67017 (18)0.46130 (17)0.0161 (3)
H120.05050.77030.45520.019*
C130.1348 (2)0.59756 (18)0.36296 (16)0.0135 (3)
C140.0488 (2)0.6683 (2)0.25249 (17)0.0171 (3)
H140.02250.76810.24310.021*
C150.0680 (2)0.5933 (2)0.15911 (17)0.0183 (3)
H150.01030.64130.08500.022*
C160.1738 (2)0.4440 (2)0.17292 (17)0.0181 (3)
H160.18680.39310.10740.022*
C170.2579 (2)0.37192 (19)0.27946 (17)0.0162 (3)
H170.32790.27170.28760.019*
C180.23990 (19)0.44731 (18)0.37738 (16)0.0129 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01422 (5)0.01364 (5)0.01633 (6)0.00129 (3)0.00081 (3)0.00714 (4)
Cu10.01437 (9)0.01477 (9)0.01559 (10)0.00062 (7)0.00375 (7)0.00671 (7)
N10.0120 (6)0.0154 (6)0.0140 (6)0.0033 (5)0.0023 (5)0.0041 (5)
N20.0117 (5)0.0134 (6)0.0131 (6)0.0013 (5)0.0023 (4)0.0049 (5)
C10.0130 (7)0.0179 (7)0.0145 (7)0.0057 (6)0.0020 (5)0.0035 (6)
C20.0187 (8)0.0184 (7)0.0188 (8)0.0028 (6)0.0069 (6)0.0028 (6)
C30.0211 (8)0.0196 (8)0.0249 (9)0.0041 (7)0.0097 (7)0.0003 (7)
C40.0250 (9)0.0243 (9)0.0207 (8)0.0102 (7)0.0117 (7)0.0042 (7)
C50.0252 (9)0.0282 (9)0.0150 (7)0.0111 (7)0.0076 (6)0.0013 (7)
C60.0149 (7)0.0234 (8)0.0133 (7)0.0081 (6)0.0018 (5)0.0036 (6)
C70.0183 (8)0.0309 (9)0.0160 (8)0.0060 (7)0.0015 (6)0.0121 (7)
C80.0170 (7)0.0244 (8)0.0175 (8)0.0024 (6)0.0030 (6)0.0113 (7)
C90.0113 (6)0.0162 (7)0.0138 (7)0.0027 (5)0.0015 (5)0.0059 (6)
C100.0103 (6)0.0148 (6)0.0145 (7)0.0032 (5)0.0009 (5)0.0053 (5)
C110.0147 (7)0.0140 (6)0.0186 (7)0.0033 (5)0.0016 (5)0.0077 (6)
C120.0152 (7)0.0118 (6)0.0206 (8)0.0023 (5)0.0009 (6)0.0055 (6)
C130.0116 (6)0.0118 (6)0.0159 (7)0.0019 (5)0.0022 (5)0.0026 (5)
C140.0137 (7)0.0162 (7)0.0181 (8)0.0016 (6)0.0033 (6)0.0012 (6)
C150.0175 (7)0.0188 (7)0.0166 (7)0.0013 (6)0.0058 (6)0.0023 (6)
C160.0175 (7)0.0212 (8)0.0164 (7)0.0011 (6)0.0043 (6)0.0077 (6)
C170.0152 (7)0.0162 (7)0.0180 (7)0.0006 (6)0.0036 (6)0.0072 (6)
C180.0104 (6)0.0135 (6)0.0145 (7)0.0021 (5)0.0016 (5)0.0041 (5)
Geometric parameters (Å, º) top
I1—Cu12.5734 (2)C7—C81.369 (3)
I1—Cu1i2.6487 (2)C7—H70.9500
Cu1—N22.0900 (14)C8—C91.422 (2)
Cu1—N12.0930 (13)C8—H80.9500
Cu1—I1i2.6487 (2)C9—C101.488 (2)
Cu1—Cu1i2.9520 (4)C10—C111.409 (2)
N1—C91.330 (2)C11—C121.367 (2)
N1—C11.367 (2)C11—H110.9500
N2—C101.3354 (19)C12—C131.409 (2)
N2—C181.369 (2)C12—H120.9500
C1—C21.414 (2)C13—C141.415 (2)
C1—C61.421 (2)C13—C181.423 (2)
C2—C31.374 (2)C14—C151.369 (2)
C2—H20.9500C14—H140.9500
C3—C41.415 (3)C15—C161.418 (2)
C3—H30.9500C15—H150.9500
C4—C51.365 (3)C16—C171.372 (2)
C4—H40.9500C16—H160.9500
C5—C61.418 (2)C17—C181.418 (2)
C5—H50.9500C17—H170.9500
C6—C71.406 (3)
Cu1—I1—Cu1i68.829 (8)C8—C7—H7119.9
N2—Cu1—N179.28 (5)C6—C7—H7119.9
N2—Cu1—I1122.14 (4)C7—C8—C9118.99 (16)
N1—Cu1—I1122.34 (4)C7—C8—H8120.5
N2—Cu1—I1i110.91 (4)C9—C8—H8120.5
N1—Cu1—I1i106.99 (4)N1—C9—C8122.17 (15)
I1—Cu1—I1i111.171 (8)N1—C9—C10116.58 (13)
N2—Cu1—Cu1i141.62 (4)C8—C9—C10121.24 (15)
N1—Cu1—Cu1i136.76 (4)N2—C10—C11122.82 (15)
I1—Cu1—Cu1i56.791 (7)N2—C10—C9115.92 (14)
I1i—Cu1—Cu1i54.380 (7)C11—C10—C9121.26 (14)
C9—N1—C1119.18 (14)C12—C11—C10119.63 (14)
C9—N1—Cu1113.35 (11)C12—C11—H11120.2
C1—N1—Cu1126.92 (11)C10—C11—H11120.2
C10—N2—C18118.23 (14)C11—C12—C13119.38 (15)
C10—N2—Cu1113.89 (11)C11—C12—H12120.3
C18—N2—Cu1127.82 (10)C13—C12—H12120.3
N1—C1—C2118.85 (15)C12—C13—C14122.40 (15)
N1—C1—C6121.75 (15)C12—C13—C18117.93 (15)
C2—C1—C6119.33 (16)C14—C13—C18119.67 (14)
C3—C2—C1119.82 (17)C15—C14—C13120.22 (16)
C3—C2—H2120.1C15—C14—H14119.9
C1—C2—H2120.1C13—C14—H14119.9
C2—C3—C4120.78 (18)C14—C15—C16120.11 (16)
C2—C3—H3119.6C14—C15—H15119.9
C4—C3—H3119.6C16—C15—H15119.9
C5—C4—C3120.43 (17)C17—C16—C15121.04 (15)
C5—C4—H4119.8C17—C16—H16119.5
C3—C4—H4119.8C15—C16—H16119.5
C4—C5—C6120.13 (17)C16—C17—C18119.85 (15)
C4—C5—H5119.9C16—C17—H17120.1
C6—C5—H5119.9C18—C17—H17120.1
C7—C6—C5122.99 (16)N2—C18—C17118.90 (14)
C7—C6—C1117.63 (16)N2—C18—C13122.00 (14)
C5—C6—C1119.34 (17)C17—C18—C13119.10 (15)
C8—C7—C6120.15 (15)
C9—N1—C1—C2173.05 (15)C18—N2—C10—C9179.42 (13)
Cu1—N1—C1—C216.1 (2)Cu1—N2—C10—C93.07 (17)
C9—N1—C1—C63.8 (2)N1—C9—C10—N24.8 (2)
Cu1—N1—C1—C6166.98 (11)C8—C9—C10—N2175.83 (14)
N1—C1—C2—C3178.35 (16)N1—C9—C10—C11174.64 (14)
C6—C1—C2—C31.4 (3)C8—C9—C10—C114.7 (2)
C1—C2—C3—C42.0 (3)N2—C10—C11—C120.9 (2)
C2—C3—C4—C52.6 (3)C9—C10—C11—C12179.63 (15)
C3—C4—C5—C60.4 (3)C10—C11—C12—C131.0 (2)
C4—C5—C6—C7174.13 (17)C11—C12—C13—C14179.90 (16)
C4—C5—C6—C13.8 (3)C11—C12—C13—C180.2 (2)
N1—C1—C6—C73.1 (2)C12—C13—C14—C15179.67 (15)
C2—C1—C6—C7173.76 (16)C18—C13—C14—C150.7 (2)
N1—C1—C6—C5178.82 (15)C13—C14—C15—C160.2 (3)
C2—C1—C6—C54.3 (2)C14—C15—C16—C170.3 (3)
C5—C6—C7—C8177.99 (17)C15—C16—C17—C180.3 (3)
C1—C6—C7—C80.0 (2)C10—N2—C18—C17179.51 (14)
C6—C7—C8—C92.2 (3)Cu1—N2—C18—C173.4 (2)
C1—N1—C9—C81.5 (2)C10—N2—C18—C130.9 (2)
Cu1—N1—C9—C8170.55 (12)Cu1—N2—C18—C13176.23 (11)
C1—N1—C9—C10177.85 (13)C16—C17—C18—N2179.42 (15)
Cu1—N1—C9—C1010.14 (17)C16—C17—C18—C130.2 (2)
C7—C8—C9—N11.6 (3)C12—C13—C18—N20.7 (2)
C7—C8—C9—C10179.14 (15)C14—C13—C18—N2178.92 (15)
C18—N2—C10—C110.1 (2)C12—C13—C18—C17179.65 (15)
Cu1—N2—C10—C11177.45 (12)C14—C13—C18—C170.7 (2)
Symmetry code: (i) x+1, y, z+1.
ππ-stacking interaction parameters (Å, °) top
Ring 1Ring No.Ring 2Ring No.AngleCentroid–centroid distanceShift distance between ring centroids
C1–C61C1–C6(-x + 1, -y, -z + 2)10.0003.8741.459
C13–C183N1/C1/C6–C9(-x + 1, -y + 1, -z + 1)24.7723.7111.480
N2/C18/C10–C13(-x, -y + 1, -z + 1)40.5903.6651.602
N1/C1/C6–C92N2/C18/C10–C13(-x + 1, -y + 1, -z + 1)45.3013.5641.139
C13–C18(-x + 1, -y + 1, -z + 1)34.7723.7111.283
N2/C18/C10–C134N2/C18/C10–C13(-x, -y + 1, -z + 1)40.0003.6521.555
C13–C18(-x, -y + 1, -z + 1)30.5903.6651.579
N1/C1/C6–C9(-x + 1, -y + 1, -z + 1)25.3013.5641.068
 

Acknowledgements

Authors contributions are as follows: Conceptualization, AWT, AGT and TAL; methodology, APN, AGT; validation: AWT, AGT; formal analysis: APN, AGT, TAL; investigation: AWT, AGT and TAL; resources, AGT, TAL; data curation, APN, EKK; writing (original draft), AWT; writing (review and editing), APN, AGT, TAL; visualization, AWT, TAL; supervision, AWT, AGT; project administration, AGT; funding acquisition, AGT, TAL.

Funding information

Funding for this research was provided by: Ministry of Science and Higher Education of the Russian Federation (subject No. 122011300061-3). This work was supported by the RUDN University Strategic Academic Leadership Program: Russian Foundation for Basic Research (grant No. 21-53-54001).

References

First citationArtemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelgado-Rebollo, M., García-Morales, C., Maya, C., Prieto, A., Echavarren, A. M. & Pérez, P. J. (2019). J. Organomet. Chem. 898, 120856.  Google Scholar
First citationFerraro, V., Castro, J., Trave, E. & Bortoluzzi, M. (2022). J. Organomet. Chem. 957, 122171.  Web of Science CSD CrossRef Google Scholar
First citationFong, C. W. (2016). Free Radical Biol. Med. 95, 216–229.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNovikov, A. P., Volkov, M. A., Safonov, A. V., Grigoriev, M. S. & Abkhalimov, E. V. (2021). Crystals, 11, 1417.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, R., Komarnicka, U. K., Nagaj, J., Stokowa-Sołtys, K. & Bykowska, A. (2012). Acta Cryst. E68, m756–m757.  CSD CrossRef IUCr Journals Google Scholar
First citationSun, X. M., Ning, W. H., Liu, J. L., Liu, S. X., Guo, P. C. & Ren, X. M. (2013). Chin. J. Inorg. Chem. 29, 2176–2182.  CAS Google Scholar
First citationVatsadze, S. Z., Dolganov, A. V., Yakimanskii, A. V., Goikhman, M. Y., Podeshvo, I. V., Lyssenko, K. A., Maksimov, A. L. & Magdesieva, T. V. (2010). Russ. Chem. Bull. 59, 724–732.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds