research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, crystal structures and Hirshfeld surface analysis of three salts of 1-(4-nitro­phenyl)­piperazine

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, cThomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria VA 22312, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 5 December 2022; accepted 14 March 2023; online 21 March 2023)

The structures and Hirshfeld surface analysis of three salts of 1-(4-nitro­phenyl)­piperazine are discussed. In 4-(4-nitro­phen­yl)piperazin-1-ium salicylate (C10H14N3O2+·C7H5O3), there are strong hydrogen bonds between cation and anion and the 4-nitro­phenyl substituent occupies an equatorial position in the piperazinium ring. The cation and anion are linked together by supra­molecular inter­actions [graph-set notation of hydrogen bonding [C_{2}^{2}](6) propagating in the a-axis direction]. Additionally, there is ππ stacking involving the salicylate anion and the piperazinium cation in adjacent asymmetric units as well as a C—H⋯π inter­action between a hydrogen atom on the piperazine ring and the phenyl ring within the salicyclate anion. In bis­[4-(4-nitro­phen­yl)piperazin-1-ium] bis­(4-fluoro­benzoate) trihydrate (2C10H14N3O2+·2C7H4FO2·3H2O), there are two cations, two anions, and three water mol­ecules of solvation in the asymmetric unit, all linked by hydrogen bonds [graph-set notation of hydrogen bonding R22(20) between adjacent cations and R33(9) between a cation and its adjacent anion]. In the anion, the 4-nitro­phenyl ring occupies an axial substitution position in the piperazinium ring, which is relatively rare. Within the asymmetric unit, the phenyl groups in the cations show an offset ππ inter­action. Additionally, there is a C—H⋯π inter­action between a hydrogen atom on the phenyl ring within a cation and the phenyl ring within an anion. In 4-(4-nitro­phen­yl)piperazin-1-ium 3,5-di­nitro­benzoate (C10H14N3O2+·C7H4N2O6), there is a strong N—H⋯O hydrogen bond linking the cation and anion and the 4-nitro­phenyl ring occupies an axial substitution position in the piperazinium ring, as seen in the previous structure. In the crystal, the cation and the anion form a complex three-dimensional hydrogen-bonded array involving R22(8), R44(12) and R44(20) rings propogating in the a-axis direction. The nitro­phenyl group is disordered with occupancies of 0.806 (10) and 0.194 (10).

1. Chemical context

Piperazines and substituted piperazines are important pharmacophores that can be found in many biologically active compounds across a number of different therapeutic areas (Berkheij, 2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369-2371.]), being used as anti­fungal (Upadhayaya et al., 2004[Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]), anti-bacterial, anti-malarial and anti-psychotic agents (Chaudhary et al., 2006[Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819-1826.]). An insight into advances on the anti­microbial activity of piperazine derivatives has been reported (Kharb et al., 2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470-2488.]).

Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]; Bogatcheva et al., 2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]). A review of pharmacological and toxicological information for piperazine derivatives is given by Elliott (2011[Elliott, S. (2011). Drug Test. Anal. 3, 430-438.]).

4-Nitro­phenyl­piperazinium chloride monohydrate has been used as an inter­mediate in the synthesis of anti­cancer drugs, transcriptase inhibitors and anti­fungal reagents and is also an important reagent for potassium channel openers, which show considerable biomolecular current-voltage rectification characteristics (Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]).

The inclusion behaviour of 4-sulfonato­calix[n]arenes (SCXn) (n = 4, 6, 8) with 1-(4-nitro­phen­yl)piperazine (NPP) has been investigated by UV spectroscopy and fluorescence spectroscopy at different pH values (Zhang et al., 2014[Zhang, Y., Chao, J., Zhao, S., Xu, P., Wang, H., Guo, Z. & Liu, D. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 44-51.]). The design, synthesis and biological profiling of aryl piperazine-based scaffolds for the management of androgen-sensitive prostatic disorders has been published (Gupta et al., 2016[Gupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). Med. Chem. Commun. 7, 2111-2121.]). 4-Nitro­phenyl­piperazine was the starting material in the synthesis and biological evaluation of novel piperazine-containing hydrazone derivatives (Kaya et al., 2016[Kaya, B., Ozkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. Chem. article ID 5878410. https://dx.doi.org/10.1155/2016/5878410.]). Several previous investigations in this area are outlined in the Database Survey section.

In view of the importance of piperazines in general, and the use of 4-nitro­phenyl­piperazine in particular, the present paper reports the crystal structure studies of three salts of 4-nitro­phenyl­piperazine, viz., 4-nitro­phenyl­piperazinium salicylate (1), 4-nitro­phenyl­piperazinium 4-fluoro­benzoate trihydrate (2) and 4-nitro­phenyl­piperazinium 3,5-di­nitro­benzoate (3).

[Scheme 1]

2. Structural commentary

Compound 1, (4-nitro­phenyl­piperazinium salicylate; C10H14N3O2·C7H5O3), crystallizes in the monoclinic space group P21/n with four mol­ecules in the unit cell (Fig. 1[link]). The structure contains a 4-phenyl­piperazinium cation linked to a salicylate anion by an N—H⋯O hydrogen bond [H⋯O = 1.792 (15) Å; N⋯O = 2.6957 (18) Å; N—H⋯O = 174.0 (18)°, Table 1[link]]. In the salicylate anion, there is an intra­molecular hydrogen bond involving the phenol hydrogen and the carboxyl­ate group [ S11(6) in graph-set notation (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]): H⋯O = 1.733 (17) Å; O⋯O = 2.5221 (17) Å; O—H⋯O = 152 (2)°]. In the conformation of the cation and anion, the dihedral angles between the piperazine ring and the phenyl ring, the piperazine ring with the salicylate ring, the phenyl ring with the salicylate ring, the nitro group and the phenyl ring, and the salicylate ring and its carboxyl­ate group are 36.83 (6), 28.65 (6), 55.01 (5), 1.8 (3) and 7.0 (2)°, respectively. The first dihedral angle of 36.83 (6)° is indicative of the fact that the 4-nitro­phenyl ring occupies an equatorial position in the phenyl ring, with the nitro­gen lone pair occupying an axial position (see Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O5i 0.97 2.53 3.430 (2) 155
C9—H9A⋯O5ii 0.97 2.47 3.407 (2) 164
N2—H21⋯O3iii 0.92 (2) 1.88 (2) 2.784 (2) 170 (2)
N2—H22⋯O4 0.91 (2) 1.79 (2) 2.6957 (18) 174 (2)
O5—H5O⋯O4 0.86 (2) 1.73 (2) 2.5221 (17) 152 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Diagram showing atom labelling and the arrangement of cation and anion in 1. Hydrogen bonds are shown by dashed lines. Atomic displacement parameters are at the 30% probability level.

Compound 2, (4-nitro­phenyl­piperazinium 4-fluoro­benzoate; 2C10H14N3O2·2C7H4FO2·3H2O, crystallizes in the monoclinic space group P21/n with four formula units in the unit cell. The structure consists of two 4-nitro­phenyl­piperazinium cations, two 4-fluoro­benzoate anions and three water solvate mol­ecules (see Fig. 2[link]). Each cation is linked to a corresponding anion by a strong N—H⋯O hydrogen bond (Table 2[link]). The water mol­ecules are also involved in hydrogen bonding, which will be discussed in further detail in section 3. As shown by Fig. 2[link], the structure has been divided into four rings, with rings A and D representing the two 4-fluoro­benzoate anions and rings C and D representing the two nitro­phenyl­piperazinium cations. Rings A and B are linked by a strong N—H⋯O hydrogen bond [H⋯O = 1.86 (2) Å; N⋯O = 2.739 (5) Å; N—H⋯O = 169 (4)°], as are rings C and D [H⋯O = 1.84 (2) Å; N⋯O = 2.733 (5)Å; N—H⋯O = 176 (4)°]. Additionally, ring B′s piperazine substituent forms a weak C—H⋯O inter­action with an oxygen atom in ring C′s terminal nitro group [H⋯O = 2.53 Å; C⋯O = 3.437 (6) Å; C—H⋯O = 155°]. Ring C′s piperazine substituent forms a similar inter­action with ring B′s terminal nitro group [H⋯O = 2.53 Å; C⋯O = 3.401 (6) Å; C—H⋯O = 149°]. In the conformation of rings AD, the dihedral angles between the 4-nitro­phenyl rings in rings B and C, the 4-nitro­phenyl ring and nitro group in ring B, the 4-nitro­phenyl ring and nitro group in ring C, the piperazine ring and the 4-nitro­phenyl ring in ring B, the piperazine ring and 4-nitro­phenyl ring in ring C, the fluoro­benzene ring in ring D and the phenyl ring in ring C, and the fluoro­benzene ring in A and the phenyl ring in C are 11.4 (4), 1.1 (2), 0.2 (2), 141.72 (16), 145.17 (17), 101.47 (17) and 103.32 (17)°, respectively. The third and fourth angles listed indicate that the 4-nitro­phenyl ring occupies an axial position in both cations, which is relatively rare. In a previous paper containing eleven analogous structures, only one had this substitution pattern (Archana et al., 2022[Archana, S. D., Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Butcher, R. J. (2022). Acta Cryst. E78, 1016-1027.]).

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2C—H2CA⋯O3D 0.90 (2) 1.84 (2) 2.733 (5) 176 (4)
N2C—H2CB⋯O4Ai 0.87 (2) 1.87 (2) 2.726 (5) 166 (4)
C3C—H3C⋯O1Cii 0.93 2.62 3.261 (7) 126
C9C—H9CA⋯O5 0.97 2.51 3.332 (6) 142
C9C—H9CB⋯O2B 0.97 2.53 3.401 (6) 149
C15D—H15D⋯F1Aiii 0.93 2.52 3.369 (5) 152
N2B—H2BA⋯O4Div 0.88 (2) 1.92 (2) 2.764 (5) 163 (4)
N2B—H2BB⋯O3A 0.89 (2) 1.86 (2) 2.739 (5) 169 (4)
C3B—H3B⋯F1Dv 0.93 2.63 3.436 (6) 145
C8B—H8BA⋯O1C 0.97 2.53 3.437 (6) 155
C8B—H8BB⋯O6ii 0.97 2.49 3.182 (6) 129
C15A—H15A⋯F1Dvi 0.93 2.48 3.310 (5) 149
O5—H5A⋯O3Avii 0.84 (2) 1.96 (2) 2.794 (4) 172 (5)
O5—H5D⋯O4D 0.83 (2) 1.95 (2) 2.778 (5) 175 (5)
O6—H6A⋯O4Aii 0.84 (2) 2.04 (4) 2.795 (6) 149 (7)
O6—H6D⋯O7 0.84 (2) 1.91 (2) 2.744 (7) 174 (8)
O7—H7A⋯O3D 0.83 (2) 1.99 (3) 2.794 (5) 163 (7)
O7—H7B⋯O5viii 0.83 (2) 1.93 (2) 2.759 (6) 172 (7)
Symmetry codes: (i) x+1, y, z; (ii) [-x, -y, -z]; (iii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-1, y, z]; (v) [-x+1, -y, -z]; (vi) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [-x+1, -y+1, -z].
[Figure 2]
Figure 2
Diagram showing atom labelling indicating four rings AD, the arrangement of cation and anion and the three water mol­ecules of solvation in 2. Hydrogen bonds are shown by dashed lines. Atomic displacement parameters are at the 30% probability level.

Compound 3, (4-nitro­phenyl­piperazinium 3,5-di­nitro­benzoate; C10H14N3O2·C7H4N2O6), crystallizes in the monoclinic space group C2/c with eight formula units in the unit cell. The structure consists of a 4-nitro­phenyl­piperazinium cation and a 3,5-di­nitro­benzoate anion linked by a strong N—H⋯O hydrogen bond [H⋯O = 1.77 (2) Å; N⋯O = 2.705 (3) Å; N—H⋯O = 170.7 (17)°, Table 3[link]] as shown in Fig. 3[link]. The nitro­phenyl ring is disordered with occupancies of 0.806 (10)/0.194 (10). In the cation, the dihedral angles between the piperazine ring and the major component of the 4-nitro­phenyl ring, and the phenyl ring and its attached nitro group are 62.4 (1) and 10.1 (7)°, respectively. The former angle is indicative of the fact that the 4-nitro­phenyl ring occupies an axial position, as it also did in 2. In the anion, the dihedral angle between the 3,5-di­nitro­benzoate phenyl ring and its carboxyl­ate substituent is 18.7 (1)°.

Table 3
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O8 0.95 (2) 1.77 (2) 2.705 (3) 170.7 (17)
N2—H22⋯O7i 0.92 (2) 1.81 (2) 2.715 (3) 166.4 (18)
C8—H8A⋯O4ii 0.97 2.54 3.245 (3) 130
C8—H8B⋯O2iii 0.97 2.40 3.354 (4) 168
C8—H8B⋯O2Aiii 0.97 2.39 3.353 (16) 172
C9—H9A⋯O1iii 0.97 2.54 3.497 (5) 171
C9—H9A⋯O1Aiii 0.97 2.47 3.378 (14) 155
C10—H10B⋯O4iv 0.97 2.60 3.425 (3) 143
C12—H12⋯O2v 0.93 2.53 3.231 (4) 133
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 3]
Figure 3
Diagram showing atom labelling and the arrangement of cation and anion in 3 (only major component shown). Hydrogen bonds are shown by dashed lines. Atomic displacement parameters are at the 30% probability level.

3. Supra­molecular features

In discussing the supra­molecular features of the three structures, the direct hydrogen bonding involving the linking of the 4-nitro­phenyl­piperazinium cations and organic acid anions is omitted since it has already been discussed in the previous section. For 1, there is a zigzag chain of hydrogen bonds [graph-set notation [C_{2}^{2}](6) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.])], propagating in the b-axis direction involving the piperazinium cations and salicylate anions, as shown in Fig. 4[link]. These are also illustrated in the Hirshfeld fingerprint plot (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), which shows the prominent spikes involving both types of N—H⋯O hydrogen bonding (see Fig. 5[link]). In the packing of the piperazinium cation and the salicylate anion, the salicylate anion forms a ππ inter­action with the phenyl ring of a piperazinium cation [Cg2⋯Cg3i distance = 3.9296 (2) Å; symmetry code: (i) [{3\over 2}] − x, y − [{1\over 2}], [{1\over 2}] − z; slippage:1.505 Å; Cg2 and Cg3 are the centroids of the C1–C6 and C11–C16 rings, respectively]. Additionally, there is a C—H⋯π inter­action between a hydrogen atom in the piperazine ring and the phenyl ring within the salicyclate anion (H⋯Cgii distance, 2.76 Å; C8—H8BCg2ii angle of 156°, symmetry code: (ii) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z).

[Figure 4]
Figure 4
Packing diagram for 1 showing the zigzag chain of hydrogen bonds [graph-set notation [C_{2}^{2}](6)] propagating in the a-axis direction.
[Figure 5]
Figure 5
Fingerprint plot for 1 delineated into O⋯H/H⋯O contacts showing the prominent spikes indicating N—H⋯O hydrogen bonds.

For 2, there are two anions and two cations as well as three water mol­ecules of solvation in the asymmetric unit. This leads to a complex three-dimensional array of hydrogen bonding involving both R22(20) motifs between rings B and C, and R33(9) motifs between rings C and D as well as one water mol­ecule, as seen in Fig. 6[link]. There are also C—H⋯F inter­actions between adjacent fluoro­benzoate anions linking them into centrosymmetric dimers (symmetry code: [{3\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z; see Table 2[link] for numerical details). These inter­actions are shown clearly as spikes in the fingerprint plots delineated into C—H⋯F and N—H⋯O inter­actions (Figs. 7[link] and 8[link], respectively). In the crystal, the phenyl ring in B forms an offset ππ inter­action with the phenyl ring in C [Cg2⋯Cg4 distance, 3.8568 (7) Å; slippage of 1.835 Å; perpendicular distance of 3.454 (2) Å; Cg2 and Cg4 are the centroids of the C1B–C6B and C1C–C6C rings, respectively]. Additionally, there is a C–H⋯π inter­action between a hydrogen atom on the phenyl ring in C and the phenyl ring in D [H6CCg6i, 2.91; C6—H6CCg6i angle of 161°, symmetry code: (i) 1 − x, 1 − y, −z; Cg6 is the centroid of the C11D–C16D ring].

[Figure 6]
Figure 6
Packing diagram for 2 showing the complex three-dimensional array of hydrogen bonding involving both R22(20) motifs between rings B and C (middle left in diagram with ring B on right and ring C on left) and R33(9) motifs between rings C and D (ring D on upper left of diagram) as well as one water mol­ecule.
[Figure 7]
Figure 7
Fingerprint plot for 2 delineated into F⋯H/H⋯F contacts showing the prominent spikes as C—H⋯F inter­actions.
[Figure 8]
Figure 8
Fingerprint plot for 2 delineated into O⋯H/H⋯O contacts showing the prominent spikes as N—H⋯O inter­actions.

For 3, the cation and the anion form a complex three-dimensional array of hydrogen bonding involving R22(8), R44(12) and R44(20) rings propogating in the a-axis direction between the 4-nitro­phenyl group of one cation with the piperazinium ring of an adjacent cation (symmetry code: [{1\over 2}] − x, [{1\over 2}] − y, 1 − z), two cations and two anions in adjacent asymmetric units (−x, −y, 1 − z), two cations and two anions in adjacent asymmetric units (symmetry code: −[{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z), respectively, as seen in Fig. 9[link] (Table 3[link]). These show as sharp spikes in the fingerprint plot showing the N—H⋯O inter­actions (Fig. 10[link]). Additionally, the nitro­benzene group within the piperazinium cation forms a ππ inter­action with the phenyl group of another piperazinium cation in an adjacent asymmetric unit [Cg2⋯Cg2i distance, 4.4132 (9) Å; perpendicular distance: 3.5596 (9) Å; slippage of 2.609 Å, symmetry code: (i) [{1\over 2}] − x, [{1\over 2}] − y, 1 − z; Cg2 is the centroid of the C1–C6D ring].

[Figure 9]
Figure 9
Packing diagram for 3 (only major component shown) showing the complex three-dimensional array of hydrogen bonding involving R22(8), R44(12) and R44(20) rings propagating in the a-axis direction between the the 4-nitro­phenyl group of one cation with the piperazinium ring of an adjacent cation (symmetry code: [{1\over 2}] − x, [{1\over 2}] − y, 1 − z, involving O1iii and O2iii; Table 4[link]), two cations and two anions in adjacent asymmetric units (−x, −y, 1 − z, involving O7i), and two cations and two anions in adjacent asymmetric units (symmetry code: −[{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z, involving O4iv) .
[Figure 10]
Figure 10
Fingerprint plot for 3 delineated into O⋯H/H⋯O contacts showing the prominent spikes as N—H⋯O inter­actions.

4. Database survey

Related structures containing 1-phenyl­piperazine or the 1-phenyl­piperazinium cation include racemic perhydro­tri­phenyl­ene (PHTP), which has been shown to form a polar inclusion compound with 1-(4-nitro­phen­yl)piperazine (NPP) as a guest mol­ecule (CSD refcode NOVWOK; König et al., 1997[König, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632-10640.]). The crystal structure of the simple salt 4-nitro­phen­ylpiperazinium chloride monohydrate has been reported (LIJNAU; Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]). The crystal structure of 4,6-di­meth­oxy­pyrimidin-2-amine-1-(4-nitro­phen­yl)piperazine (1:1) has been published (LUDMUU; Wang et al., 2014[Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J., Qian, S.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. Cryst. Mat. 229, 97-98.]) as well as the synthesis and crystal structure of a Schiff base, 5-methyl-2-{[4-(4-nitro­phen­yl)piperazin-1-yl]meth­yl}phenol (WUWBIC; Ayeni et al., 2019[Ayeni, A. O., Watkins, G. M. & Hosten, E. C. (2019). Bull. Chem. Soc. Ethiop. 33, 341-348.]).

NMR-based investigations of acyl-functionalized piperazines concerning their conformational behavior in solution has been studied and crystal structures of 1-(4-fluoro­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIQYIM), 1-(4-bromo­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIRHES), 1-(3-bromo­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIRHIW) and (piperazine-1,4-di­yl)bis­[(4-fluoro­phen­yl)methanone] (BIRGOB) have been reported (Wodtke et al., 2018[Wodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921-40933.]). We have recently reported the crystal structures of some salts of 4-meth­oxy­phenyl­piperazine (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]) and also 2-meth­oxy­phenyl­piperazine (Harish Chinthal et al., 2020[Harish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779-1793.]). We have recently reported the crystal structures of some salts of piperazine derivatives (Archana et al., 2021[Archana, S. D., Kumar, H. K., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2021). Acta Cryst. E77, 1135-1139.]). Very recently, we have reported the crystal structures of six salts of 4-nitro­phenyl­piperazine (NEBVOJ; NEBVUP; NEBWAW; NEBWEA; NEBWIE; NEBWOK) and four salts of 1-phenyl­piperazine (Mahesha et al., 2022a[Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022a). Acta Cryst. E78, 510-518.], 2022b[Mahesha, N., Kumar, H. K., Akkurt, M., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022b). Acta Cryst. E78, 709-715.]). The syntheses and crystal structures of 4-(4-nitro­phen­yl)piperazin-1-ium benzoate monohydrate (BEFGIG) and 4-(4-nitro­phen­yl)piperazin-1-ium 2-carb­oxy-4,6-di­nitro­phenolate (BEFGOM) have been reported (Shankara Prasad et al., 2022[Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840-845.]).

5. Synthesis and crystallization

For the synthesis of salts 13, a solution of commercially available (from Sigma-Aldrich) 4-nitro­phenyl­piperazine (100 mg, 0.483 mol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate acids in methanol (10 ml) and ethyl acetate (10 ml) viz., salicylic acid (67 mg) for 1, 4-fluoro­benzoic acid (68 mg) for 2 and 3,5-di­nitro­benzoic acid (102 mg) for 3 (see Fig. 11[link] for reaction scheme). The corresponding solutions were stirred for 15 minutes at room temperature and allowed to stand at the same temperature. X-ray quality crystals were formed on slow evaporation (for 1 and 2) for a week. For 3, DMF (3 ml) was used for crystallization. The corresponding melting points were 453–458 K (1), 373–378 K (2) and 445–447 K (3).

[Figure 11]
Figure 11
Reaction scheme for the synthesis of 1, 2 and 3.

6. Refinement

Crystal data, data collection and structure refinement details for the three structures are summarized in Table 4[link]. In all structures, a riding model was used for the H atoms attached to C with Uiso(H) = 1.2Ueq(C) while the N–H and water O–H hydrogen atoms were refined isotropically. In 3 the nitro­phenyl group is disordered with occupancies of 0.806 (10)/0.194 (10) and constrained to have similar metrical parameters.

Table 4
Experimental details

  1 2 3
Crystal data
Chemical formula C10H14N3O2+·C7H5O3 2C10H14N3O2+·2C7H4FO2·3H2O C10H14N3O2+·C7H3N2O6
Mr 345.35 748.73 419.35
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Monoclinic, C2/c
Temperature (K) 293 293 293
a, b, c (Å) 7.0018 (3), 7.3938 (3), 31.531 (1) 16.882 (2), 9.719 (1), 23.445 (4) 27.953 (6), 8.1422 (6), 24.657 (5)
β (°) 90.132 (4) 104.17 (1) 136.55 (4)
V3) 1632.35 (11) 3729.7 (9) 3859 (2)
Z 4 4 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.11 0.11 0.12
Crystal size (mm) 0.48 × 0.40 × 0.40 0.32 × 0.16 × 0.14 0.48 × 0.48 × 0.40
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis RED and CrysAlis CCD Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis RED and CrysAlis CCD Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis RED and CrysAlis CCD Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.886, 1.000 0.887, 1.000 0.621, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6955, 3506, 2606 14552, 6755, 2429 8107, 4119, 2838
Rint 0.016 0.063 0.015
(sin θ/λ)max−1) 0.655 0.602 0.655
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 1.04 0.089, 0.154, 1.06 0.044, 0.119, 1.03
No. of reflections 3506 6755 4119
No. of parameters 235 508 337
No. of restraints 3 10 262
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.21 0.19, −0.18 0.24, −0.24
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO, CrysAlis RED and CrysAlis CCD Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-(4-Nitrophenyl)piperazin-1-ium 2-hydroxybenzoate (1) top
Crystal data top
C10H14N3O2+·C7H5O3F(000) = 728
Mr = 345.35Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0018 (3) ÅCell parameters from 3505 reflections
b = 7.3938 (3) Åθ = 2.6–27.7°
c = 31.531 (1) ŵ = 0.11 mm1
β = 90.132 (4)°T = 293 K
V = 1632.35 (11) Å3Prism, yellow
Z = 40.48 × 0.40 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2606 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.016
Rotation method data acquisition using ω scans.θmax = 27.8°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 87
Tmin = 0.886, Tmax = 1.000k = 59
6955 measured reflectionsl = 3041
3506 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.6706P]
where P = (Fo2 + 2Fc2)/3
3506 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.22 e Å3
3 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9480 (2)0.4305 (2)0.40335 (5)0.0322 (4)
C21.1448 (3)0.4516 (3)0.40783 (6)0.0420 (4)
H21.2144030.5068750.3863540.050*
C31.2372 (3)0.3912 (3)0.44378 (6)0.0481 (5)
H31.3684460.4066010.4466570.058*
C41.1344 (3)0.3082 (3)0.47539 (5)0.0410 (4)
C50.9401 (3)0.2866 (3)0.47224 (6)0.0435 (4)
H50.8719880.2311480.4939300.052*
C60.8476 (3)0.3485 (3)0.43645 (6)0.0416 (4)
H60.7158170.3355310.4342730.050*
C70.6915 (2)0.6105 (3)0.37246 (5)0.0376 (4)
H7A0.7426120.7299320.3782420.045*
H7B0.6160320.5736400.3967270.045*
C80.5651 (2)0.6186 (3)0.33363 (5)0.0380 (4)
H8A0.4999760.5038590.3300130.046*
H8B0.4691350.7119020.3373610.046*
C90.8353 (3)0.5226 (3)0.29013 (5)0.0423 (4)
H9A0.9097320.5508030.2650770.051*
H9B0.7802360.4032440.2864700.051*
C100.9632 (2)0.5244 (3)0.32892 (5)0.0371 (4)
H10A1.0640430.4355570.3256890.045*
H10B1.0217440.6425700.3320350.045*
C110.3106 (2)0.5498 (2)0.16617 (5)0.0327 (4)
C120.1281 (2)0.6228 (2)0.17173 (5)0.0322 (4)
C130.0084 (3)0.6071 (3)0.13974 (6)0.0407 (4)
H130.1302190.6541060.1436880.049*
C140.0370 (3)0.5219 (3)0.10231 (6)0.0462 (5)
H140.0551000.5103330.0811790.055*
C150.2181 (3)0.4534 (3)0.09584 (6)0.0500 (5)
H150.2488830.3978640.0702910.060*
C160.3527 (3)0.4681 (3)0.12755 (6)0.0434 (5)
H160.4746600.4223230.1230460.052*
C170.4577 (2)0.5577 (2)0.20097 (6)0.0383 (4)
N10.84988 (19)0.4826 (2)0.36656 (4)0.0346 (3)
N20.6802 (2)0.6586 (2)0.29534 (5)0.0402 (4)
H210.735 (3)0.771 (2)0.2977 (6)0.048*
H220.597 (2)0.659 (3)0.2733 (5)0.048*
N31.2348 (3)0.2403 (3)0.51271 (6)0.0578 (5)
O11.1425 (3)0.1642 (3)0.54024 (5)0.0781 (5)
O21.4076 (3)0.2658 (3)0.51533 (6)0.0970 (7)
O30.61169 (19)0.4778 (2)0.19676 (5)0.0570 (4)
O40.41348 (19)0.6511 (2)0.23358 (4)0.0500 (4)
O50.07825 (18)0.7116 (2)0.20780 (4)0.0468 (3)
H5O0.178 (2)0.710 (3)0.2234 (6)0.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (9)0.0313 (9)0.0295 (8)0.0005 (7)0.0032 (7)0.0013 (7)
C20.0369 (9)0.0525 (11)0.0367 (9)0.0005 (8)0.0012 (7)0.0080 (8)
C30.0357 (9)0.0647 (13)0.0439 (11)0.0055 (9)0.0085 (8)0.0037 (10)
C40.0503 (11)0.0412 (10)0.0315 (9)0.0072 (9)0.0107 (8)0.0010 (8)
C50.0532 (11)0.0445 (11)0.0329 (9)0.0067 (9)0.0016 (8)0.0052 (8)
C60.0366 (9)0.0507 (11)0.0374 (9)0.0081 (8)0.0053 (7)0.0048 (8)
C70.0338 (9)0.0470 (11)0.0320 (9)0.0031 (8)0.0028 (7)0.0005 (8)
C80.0354 (9)0.0405 (10)0.0382 (9)0.0016 (8)0.0072 (7)0.0009 (8)
C90.0453 (10)0.0538 (12)0.0279 (9)0.0024 (9)0.0022 (7)0.0002 (8)
C100.0359 (9)0.0453 (10)0.0301 (9)0.0003 (8)0.0014 (7)0.0010 (8)
C110.0349 (9)0.0287 (8)0.0344 (9)0.0014 (7)0.0043 (7)0.0036 (7)
C120.0341 (8)0.0309 (9)0.0317 (8)0.0008 (7)0.0033 (7)0.0027 (7)
C130.0348 (9)0.0412 (10)0.0462 (10)0.0003 (8)0.0078 (8)0.0045 (8)
C140.0573 (12)0.0411 (11)0.0400 (10)0.0038 (9)0.0191 (9)0.0009 (8)
C150.0727 (14)0.0436 (11)0.0337 (10)0.0077 (10)0.0050 (9)0.0050 (8)
C160.0475 (11)0.0419 (10)0.0409 (10)0.0124 (9)0.0005 (8)0.0005 (8)
C170.0369 (9)0.0351 (9)0.0429 (10)0.0007 (8)0.0076 (8)0.0074 (8)
N10.0338 (7)0.0434 (8)0.0267 (7)0.0016 (6)0.0025 (6)0.0036 (6)
N20.0442 (9)0.0431 (9)0.0333 (8)0.0078 (7)0.0150 (6)0.0049 (7)
N30.0719 (13)0.0590 (11)0.0423 (10)0.0081 (10)0.0188 (9)0.0060 (9)
O10.0997 (13)0.0862 (13)0.0481 (9)0.0073 (11)0.0204 (9)0.0270 (9)
O20.0658 (11)0.1458 (19)0.0794 (13)0.0075 (12)0.0338 (9)0.0346 (12)
O30.0401 (8)0.0599 (9)0.0710 (10)0.0141 (7)0.0141 (7)0.0035 (8)
O40.0517 (8)0.0608 (9)0.0375 (7)0.0066 (7)0.0175 (6)0.0052 (7)
O50.0427 (7)0.0608 (9)0.0368 (7)0.0106 (7)0.0033 (5)0.0085 (6)
Geometric parameters (Å, º) top
C1—C21.394 (2)C10—N11.462 (2)
C1—C61.398 (2)C10—H10A0.9700
C1—N11.401 (2)C10—H10B0.9700
C2—C31.378 (2)C11—C161.391 (2)
C2—H20.9300C11—C121.399 (2)
C3—C41.375 (3)C11—C171.504 (2)
C3—H30.9300C12—O51.359 (2)
C4—C51.373 (3)C12—C131.393 (2)
C4—N31.458 (2)C13—C141.375 (3)
C5—C61.378 (2)C13—H130.9300
C5—H50.9300C14—C151.381 (3)
C6—H60.9300C14—H140.9300
C7—N11.470 (2)C15—C161.376 (3)
C7—C81.510 (2)C15—H150.9300
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700C17—O31.237 (2)
C8—N21.483 (2)C17—O41.277 (2)
C8—H8A0.9700N2—H210.918 (15)
C8—H8B0.9700N2—H220.907 (15)
C9—N21.489 (2)N3—O11.221 (2)
C9—C101.514 (2)N3—O21.227 (3)
C9—H9A0.9700O5—H5O0.855 (15)
C9—H9B0.9700
C2—C1—C6118.13 (15)C9—C10—H10A109.8
C2—C1—N1122.42 (15)N1—C10—H10B109.8
C6—C1—N1119.41 (15)C9—C10—H10B109.8
C3—C2—C1120.64 (17)H10A—C10—H10B108.2
C3—C2—H2119.7C16—C11—C12118.20 (15)
C1—C2—H2119.7C16—C11—C17120.64 (16)
C4—C3—C2119.66 (17)C12—C11—C17121.15 (15)
C4—C3—H3120.2O5—C12—C13117.97 (15)
C2—C3—H3120.2O5—C12—C11121.87 (14)
C5—C4—C3121.31 (16)C13—C12—C11120.15 (16)
C5—C4—N3119.60 (18)C14—C13—C12120.03 (17)
C3—C4—N3119.09 (18)C14—C13—H13120.0
C4—C5—C6118.97 (18)C12—C13—H13120.0
C4—C5—H5120.5C13—C14—C15120.56 (17)
C6—C5—H5120.5C13—C14—H14119.7
C5—C6—C1121.28 (17)C15—C14—H14119.7
C5—C6—H6119.4C16—C15—C14119.40 (18)
C1—C6—H6119.4C16—C15—H15120.3
N1—C7—C8111.35 (14)C14—C15—H15120.3
N1—C7—H7A109.4C15—C16—C11121.61 (17)
C8—C7—H7A109.4C15—C16—H16119.2
N1—C7—H7B109.4C11—C16—H16119.2
C8—C7—H7B109.4O3—C17—O4123.89 (16)
H7A—C7—H7B108.0O3—C17—C11119.89 (17)
N2—C8—C7110.44 (14)O4—C17—C11116.22 (15)
N2—C8—H8A109.6C1—N1—C10117.67 (13)
C7—C8—H8A109.6C1—N1—C7116.15 (13)
N2—C8—H8B109.6C10—N1—C7112.18 (13)
C7—C8—H8B109.6C8—N2—C9110.67 (14)
H8A—C8—H8B108.1C8—N2—H21109.9 (13)
N2—C9—C10109.57 (14)C9—N2—H21108.5 (12)
N2—C9—H9A109.8C8—N2—H22105.9 (12)
C10—C9—H9A109.8C9—N2—H22112.8 (13)
N2—C9—H9B109.8H21—N2—H22109.1 (18)
C10—C9—H9B109.8O1—N3—O2123.11 (18)
H9A—C9—H9B108.2O1—N3—C4118.53 (19)
N1—C10—C9109.44 (14)O2—N3—C4118.3 (2)
N1—C10—H10A109.8C12—O5—H5O105.3 (15)
C6—C1—C2—C30.7 (3)C12—C11—C16—C152.0 (3)
N1—C1—C2—C3177.07 (17)C17—C11—C16—C15177.55 (18)
C1—C2—C3—C40.5 (3)C16—C11—C17—O36.2 (3)
C2—C3—C4—C51.1 (3)C12—C11—C17—O3173.34 (17)
C2—C3—C4—N3178.25 (18)C16—C11—C17—O4173.08 (17)
C3—C4—C5—C60.5 (3)C12—C11—C17—O47.4 (2)
N3—C4—C5—C6178.85 (17)C2—C1—N1—C1012.9 (2)
C4—C5—C6—C10.7 (3)C6—C1—N1—C10164.78 (16)
C2—C1—C6—C51.3 (3)C2—C1—N1—C7124.13 (18)
N1—C1—C6—C5176.53 (17)C6—C1—N1—C758.1 (2)
N1—C7—C8—N254.0 (2)C9—C10—N1—C1163.32 (15)
N2—C9—C10—N159.2 (2)C9—C10—N1—C758.00 (19)
C16—C11—C12—O5177.19 (16)C8—C7—N1—C1164.92 (15)
C17—C11—C12—O53.3 (3)C8—C7—N1—C1055.73 (19)
C16—C11—C12—C132.3 (3)C7—C8—N2—C956.27 (19)
C17—C11—C12—C13177.21 (16)C10—C9—N2—C859.12 (19)
O5—C12—C13—C14178.56 (17)C5—C4—N3—O10.6 (3)
C11—C12—C13—C141.0 (3)C3—C4—N3—O1178.8 (2)
C12—C13—C14—C150.8 (3)C5—C4—N3—O2177.9 (2)
C13—C14—C15—C161.2 (3)C3—C4—N3—O22.7 (3)
C14—C15—C16—C110.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O5i0.972.533.430 (2)155
C9—H9A···O5ii0.972.473.407 (2)164
N2—H21···O3iii0.92 (2)1.88 (2)2.784 (2)170 (2)
N2—H22···O40.91 (2)1.79 (2)2.6957 (18)174 (2)
O5—H5O···O40.86 (2)1.73 (2)2.5221 (17)152 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2.
Bis[4-(4-nitrophenyl)piperazin-1-ium] bis(4-fluorobenzoate) trihydrate (2) top
Crystal data top
2C10H14N3O2+·2C7H4FO2·3H2OF(000) = 1576
Mr = 748.73Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.882 (2) ÅCell parameters from 3000 reflections
b = 9.719 (1) Åθ = 2.7–27.9°
c = 23.445 (4) ŵ = 0.11 mm1
β = 104.17 (1)°T = 293 K
V = 3729.7 (9) Å3Prism, yellow
Z = 40.32 × 0.16 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2429 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.063
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1820
Tmin = 0.887, Tmax = 1.000k = 1011
14552 measured reflectionsl = 2728
6755 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: mixed
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0366P)2 + 1.3296P]
where P = (Fo2 + 2Fc2)/3
6755 reflections(Δ/σ)max < 0.001
508 parametersΔρmax = 0.19 e Å3
10 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1C0.0312 (2)0.0993 (6)0.05767 (19)0.1313 (19)
O2C0.0276 (2)0.3166 (5)0.07469 (19)0.1200 (17)
N1C0.3330 (2)0.2257 (4)0.05682 (18)0.0771 (13)
N2C0.5029 (2)0.2032 (6)0.10503 (19)0.0755 (13)
H2CA0.525 (3)0.228 (5)0.0755 (15)0.091*
H2CB0.5443 (19)0.181 (4)0.1336 (15)0.091*
N3C0.0042 (3)0.2079 (7)0.0642 (2)0.0969 (18)
C1C0.2521 (3)0.2222 (5)0.05718 (18)0.0548 (12)
C2C0.2079 (3)0.1001 (5)0.0481 (2)0.0711 (15)
H2C0.2332240.0194570.0407070.085*
C3C0.1267 (3)0.0971 (6)0.0501 (2)0.0772 (16)
H3C0.0977240.0148540.0441090.093*
C4C0.0892 (3)0.2159 (7)0.0607 (2)0.0682 (15)
C5C0.1305 (3)0.3366 (6)0.0683 (2)0.0733 (15)
H5C0.1042100.4171700.0747140.088*
C6C0.2101 (3)0.3398 (5)0.0666 (2)0.0683 (14)
H6C0.2375940.4235230.0719200.082*
C7C0.3781 (3)0.1119 (5)0.0402 (2)0.0780 (16)
H7CA0.3954090.1356540.0049360.094*
H7CB0.3430970.0316260.0317060.094*
C8C0.4513 (3)0.0795 (5)0.0889 (2)0.0778 (15)
H8CA0.4337400.0468300.1228850.093*
H8CB0.4828180.0071130.0763780.093*
C9C0.4560 (3)0.3197 (6)0.1201 (2)0.0896 (18)
H9CA0.4904490.4007340.1279550.107*
H9CB0.4380910.2981230.1553970.107*
C10C0.3834 (3)0.3483 (5)0.0706 (3)0.0967 (19)
H10A0.3516000.4224840.0814790.116*
H10B0.4014370.3769350.0362030.116*
F1D0.80958 (18)0.2961 (4)0.15139 (13)0.1174 (11)
O3D0.56389 (18)0.2765 (4)0.01163 (13)0.0890 (12)
O4D0.68138 (17)0.2812 (3)0.07894 (14)0.0732 (9)
C11D0.6858 (2)0.2799 (4)0.02171 (19)0.0491 (11)
C12D0.6447 (3)0.2743 (5)0.0801 (2)0.0695 (14)
H12D0.5880340.2667420.0902220.083*
C13D0.6866 (3)0.2796 (5)0.1238 (2)0.0842 (17)
H13D0.6588640.2769260.1632590.101*
C14D0.7692 (3)0.2888 (5)0.1075 (2)0.0737 (15)
C15D0.8119 (3)0.2932 (5)0.0508 (2)0.0707 (14)
H15D0.8685650.2991460.0411810.085*
C16D0.7698 (3)0.2886 (5)0.0074 (2)0.0629 (13)
H16D0.7983410.2913990.0318660.075*
C17D0.6400 (3)0.2786 (5)0.0263 (2)0.0595 (13)
O2B0.3231 (2)0.2769 (5)0.20682 (17)0.1045 (14)
O1B0.3290 (2)0.0563 (5)0.20074 (18)0.1105 (15)
N1B0.0349 (2)0.1235 (4)0.21687 (19)0.0790 (13)
N2B0.2044 (2)0.1456 (5)0.16528 (17)0.0588 (11)
H2BA0.2443 (18)0.172 (4)0.1358 (13)0.071*
H2BB0.227 (2)0.120 (4)0.1942 (13)0.071*
N3B0.2917 (3)0.1638 (6)0.20481 (18)0.0761 (14)
C1B0.0441 (3)0.1348 (5)0.21270 (19)0.0566 (13)
C2B0.0898 (3)0.0181 (5)0.2067 (2)0.0733 (15)
H2B0.0656660.0683070.2047900.088*
C3B0.1698 (3)0.0287 (6)0.2037 (2)0.0735 (15)
H3B0.1990540.0500620.1995300.088*
C4B0.2063 (3)0.1544 (7)0.20692 (19)0.0605 (14)
C5B0.1634 (3)0.2711 (5)0.21249 (18)0.0651 (14)
H5B0.1885420.3566720.2142510.078*
C6B0.0836 (3)0.2623 (5)0.21548 (18)0.0640 (14)
H6B0.0551170.3422800.2194240.077*
C7B0.0848 (3)0.0001 (5)0.2001 (2)0.0835 (16)
H7BA0.1040350.0326590.2334680.100*
H7BB0.0519750.0721140.1887840.100*
C8B0.1567 (3)0.0313 (5)0.1496 (2)0.0746 (15)
H8BA0.1376060.0558190.1151760.090*
H8BB0.1910390.0496240.1402310.090*
C9B0.1539 (3)0.2701 (5)0.1840 (2)0.0664 (14)
H9BA0.1865740.3406910.1965460.080*
H9BB0.1345160.3058350.1512640.080*
C10B0.0822 (3)0.2335 (5)0.2341 (2)0.0730 (15)
H10C0.0478020.3137460.2453320.088*
H10D0.1017340.2046660.2678450.088*
F1A0.49683 (18)0.1699 (4)0.43216 (14)0.1397 (14)
O4A0.38370 (18)0.0984 (4)0.19821 (14)0.0888 (11)
O3A0.26382 (17)0.0937 (3)0.26186 (12)0.0729 (10)
C11A0.3810 (2)0.1255 (4)0.29882 (19)0.0477 (11)
C16A0.4654 (3)0.1210 (4)0.2880 (2)0.0600 (13)
H16A0.4961390.1084800.2496170.072*
C15A0.5051 (3)0.1346 (5)0.3326 (2)0.0745 (15)
H15A0.5617280.1298030.3250260.089*
C14A0.4589 (3)0.1549 (6)0.3875 (2)0.0849 (17)
C13A0.3756 (3)0.1629 (6)0.4012 (2)0.0885 (18)
H13A0.3459640.1782670.4396900.106*
C12A0.3368 (3)0.1473 (5)0.3559 (2)0.0666 (14)
H12A0.2801280.1516960.3640600.080*
C17A0.3395 (3)0.1061 (5)0.2497 (2)0.0585 (13)
O50.6374 (2)0.4752 (4)0.15259 (17)0.0930 (12)
H5A0.678 (2)0.513 (5)0.1756 (19)0.112*
H5D0.653 (3)0.419 (4)0.131 (2)0.112*
O60.3427 (3)0.0628 (6)0.1109 (2)0.1407 (17)
H6A0.349 (4)0.042 (7)0.1444 (15)0.169*
H6D0.371 (4)0.135 (4)0.106 (3)0.169*
O70.4318 (3)0.3010 (5)0.0864 (3)0.1502 (18)
H7A0.473 (3)0.311 (7)0.059 (2)0.180*
H7B0.414 (4)0.373 (4)0.104 (3)0.180*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1C0.077 (3)0.203 (5)0.119 (4)0.059 (3)0.032 (2)0.048 (4)
O2C0.064 (3)0.187 (5)0.111 (4)0.008 (3)0.025 (2)0.019 (4)
N1C0.045 (3)0.063 (3)0.120 (4)0.003 (2)0.014 (2)0.015 (3)
N2C0.043 (3)0.123 (4)0.060 (3)0.001 (3)0.012 (2)0.013 (3)
N3C0.062 (4)0.165 (6)0.060 (3)0.010 (4)0.010 (3)0.029 (4)
C1C0.041 (3)0.065 (3)0.052 (3)0.002 (3)0.000 (2)0.002 (3)
C2C0.055 (3)0.075 (4)0.080 (4)0.008 (3)0.012 (3)0.012 (3)
C3C0.059 (4)0.091 (5)0.078 (4)0.026 (3)0.011 (3)0.013 (3)
C4C0.040 (3)0.111 (5)0.051 (3)0.003 (4)0.007 (2)0.009 (4)
C5C0.053 (3)0.091 (5)0.073 (4)0.010 (3)0.010 (3)0.003 (3)
C6C0.049 (3)0.065 (4)0.088 (4)0.003 (3)0.013 (3)0.000 (3)
C7C0.052 (3)0.088 (4)0.090 (4)0.003 (3)0.011 (3)0.019 (3)
C8C0.058 (3)0.089 (4)0.089 (4)0.009 (3)0.022 (3)0.007 (3)
C9C0.063 (4)0.103 (5)0.110 (5)0.023 (3)0.035 (3)0.025 (4)
C10C0.054 (3)0.069 (4)0.162 (6)0.001 (3)0.017 (3)0.004 (4)
F1D0.107 (2)0.179 (3)0.084 (2)0.010 (2)0.0579 (19)0.012 (2)
O3D0.048 (2)0.157 (3)0.063 (2)0.004 (2)0.0152 (17)0.019 (2)
O4D0.065 (2)0.100 (3)0.054 (2)0.0097 (18)0.0136 (17)0.009 (2)
C11D0.045 (3)0.053 (3)0.050 (3)0.000 (2)0.014 (2)0.005 (3)
C12D0.056 (3)0.090 (4)0.059 (4)0.005 (3)0.009 (3)0.008 (3)
C13D0.084 (4)0.124 (5)0.048 (3)0.010 (4)0.024 (3)0.017 (3)
C14D0.073 (4)0.090 (4)0.074 (4)0.006 (3)0.048 (3)0.008 (4)
C15D0.058 (3)0.085 (4)0.069 (4)0.003 (3)0.016 (3)0.002 (4)
C16D0.058 (3)0.080 (4)0.054 (3)0.004 (3)0.019 (3)0.011 (3)
C17D0.056 (3)0.072 (4)0.050 (3)0.004 (3)0.012 (3)0.008 (3)
O2B0.073 (3)0.147 (4)0.101 (3)0.043 (3)0.036 (2)0.035 (3)
O1B0.055 (2)0.145 (4)0.134 (4)0.022 (2)0.028 (2)0.016 (3)
N1B0.041 (2)0.065 (3)0.131 (4)0.004 (2)0.020 (2)0.014 (3)
N2B0.047 (3)0.074 (3)0.056 (3)0.008 (3)0.0141 (19)0.009 (3)
N3B0.051 (3)0.123 (5)0.054 (3)0.006 (3)0.012 (2)0.001 (3)
C1B0.039 (3)0.065 (4)0.059 (3)0.007 (3)0.001 (2)0.002 (3)
C2B0.044 (3)0.069 (4)0.103 (4)0.002 (3)0.010 (3)0.009 (3)
C3B0.052 (3)0.080 (4)0.085 (4)0.011 (3)0.010 (3)0.006 (3)
C4B0.038 (3)0.091 (4)0.050 (3)0.008 (3)0.005 (2)0.002 (3)
C5B0.060 (3)0.078 (4)0.054 (3)0.010 (3)0.009 (2)0.005 (3)
C6B0.053 (3)0.069 (4)0.068 (4)0.002 (3)0.010 (2)0.010 (3)
C7B0.049 (3)0.066 (4)0.137 (5)0.002 (3)0.025 (3)0.003 (4)
C8B0.057 (3)0.074 (4)0.100 (4)0.004 (3)0.033 (3)0.017 (3)
C9B0.060 (3)0.060 (3)0.081 (4)0.004 (3)0.021 (3)0.001 (3)
C10B0.052 (3)0.082 (4)0.086 (4)0.004 (3)0.018 (3)0.014 (3)
F1A0.100 (2)0.246 (4)0.090 (2)0.018 (2)0.055 (2)0.043 (3)
O4A0.067 (2)0.145 (3)0.051 (2)0.020 (2)0.0076 (18)0.003 (2)
O3A0.0438 (19)0.116 (3)0.061 (2)0.0097 (18)0.0175 (16)0.012 (2)
C11A0.042 (3)0.052 (3)0.048 (3)0.001 (2)0.010 (2)0.000 (3)
C16A0.055 (3)0.070 (3)0.054 (3)0.001 (3)0.010 (2)0.005 (3)
C15A0.055 (3)0.102 (4)0.070 (4)0.013 (3)0.021 (3)0.018 (4)
C14A0.068 (4)0.131 (5)0.069 (4)0.011 (4)0.043 (3)0.023 (4)
C13A0.075 (4)0.141 (5)0.050 (3)0.012 (4)0.017 (3)0.024 (4)
C12A0.055 (3)0.090 (4)0.053 (3)0.005 (3)0.010 (3)0.009 (3)
C17A0.055 (3)0.072 (4)0.050 (3)0.007 (3)0.016 (3)0.007 (3)
O50.061 (2)0.112 (3)0.100 (3)0.002 (2)0.008 (2)0.036 (3)
O60.115 (3)0.170 (5)0.149 (4)0.041 (3)0.056 (3)0.068 (4)
O70.122 (4)0.128 (4)0.156 (5)0.024 (3)0.050 (3)0.019 (4)
Geometric parameters (Å, º) top
O1C—N3C1.203 (6)N1B—C10B1.449 (5)
O2C—N3C1.237 (6)N1B—C7B1.464 (5)
N1C—C1C1.368 (5)N2B—C8B1.470 (5)
N1C—C7C1.449 (5)N2B—C9B1.483 (5)
N1C—C10C1.454 (5)N2B—H2BA0.875 (18)
N2C—C9C1.474 (6)N2B—H2BB0.892 (18)
N2C—C8C1.478 (6)N3B—C4B1.456 (6)
N2C—H2CA0.897 (19)C1B—C2B1.398 (6)
N2C—H2CB0.869 (19)C1B—C6B1.402 (5)
N3C—C4C1.460 (6)C2B—C3B1.372 (5)
C1C—C2C1.391 (5)C2B—H2B0.9300
C1C—C6C1.391 (5)C3B—C4B1.363 (6)
C2C—C3C1.382 (6)C3B—H3B0.9300
C2C—H2C0.9300C4B—C5B1.369 (6)
C3C—C4C1.368 (6)C5B—C6B1.369 (5)
C3C—H3C0.9300C5B—H5B0.9300
C4C—C5C1.354 (6)C6B—H6B0.9300
C5C—C6C1.355 (5)C7B—C8B1.505 (5)
C5C—H5C0.9300C7B—H7BA0.9700
C6C—H6C0.9300C7B—H7BB0.9700
C7C—C8C1.495 (5)C8B—H8BA0.9700
C7C—H7CA0.9700C8B—H8BB0.9700
C7C—H7CB0.9700C9B—C10B1.508 (5)
C8C—H8CA0.9700C9B—H9BA0.9700
C8C—H8CB0.9700C9B—H9BB0.9700
C9C—C10C1.493 (6)C10B—H10C0.9700
C9C—H9CA0.9700C10B—H10D0.9700
C9C—H9CB0.9700F1A—C14A1.363 (5)
C10C—H10A0.9700O4A—C17A1.257 (5)
C10C—H10B0.9700O3A—C17A1.245 (4)
F1D—C14D1.368 (5)C11A—C12A1.379 (5)
O3D—C17D1.247 (4)C11A—C16A1.386 (5)
O4D—C17D1.260 (5)C11A—C17A1.499 (6)
C11D—C12D1.376 (5)C16A—C15A1.380 (6)
C11D—C16D1.377 (5)C16A—H16A0.9300
C11D—C17D1.514 (6)C15A—C14A1.346 (6)
C12D—C13D1.381 (6)C15A—H15A0.9300
C12D—H12D0.9300C14A—C13A1.365 (6)
C13D—C14D1.356 (6)C13A—C12A1.387 (6)
C13D—H13D0.9300C13A—H13A0.9300
C14D—C15D1.350 (6)C12A—H12A0.9300
C15D—C16D1.375 (6)O5—H5A0.843 (19)
C15D—H15D0.9300O5—H5D0.833 (19)
C16D—H16D0.9300O6—H6A0.84 (2)
O2B—N3B1.216 (5)O6—H6D0.84 (2)
O1B—N3B1.236 (5)O7—H7A0.83 (2)
N1B—C1B1.365 (5)O7—H7B0.83 (2)
C1C—N1C—C7C125.0 (4)C10B—N1B—C7B111.1 (4)
C1C—N1C—C10C123.3 (4)C8B—N2B—C9B112.3 (3)
C7C—N1C—C10C111.6 (4)C8B—N2B—H2BA113 (3)
C9C—N2C—C8C111.6 (4)C9B—N2B—H2BA106 (3)
C9C—N2C—H2CA109 (3)C8B—N2B—H2BB110 (3)
C8C—N2C—H2CA111 (3)C9B—N2B—H2BB109 (3)
C9C—N2C—H2CB113 (3)H2BA—N2B—H2BB107 (4)
C8C—N2C—H2CB108 (3)O2B—N3B—O1B122.8 (5)
H2CA—N2C—H2CB105 (4)O2B—N3B—C4B118.7 (5)
O1C—N3C—O2C123.3 (6)O1B—N3B—C4B118.5 (5)
O1C—N3C—C4C120.2 (6)N1B—C1B—C2B121.0 (5)
O2C—N3C—C4C116.5 (6)N1B—C1B—C6B122.0 (5)
N1C—C1C—C2C121.3 (5)C2B—C1B—C6B117.0 (4)
N1C—C1C—C6C122.0 (5)C3B—C2B—C1B121.2 (5)
C2C—C1C—C6C116.7 (4)C3B—C2B—H2B119.4
C3C—C2C—C1C120.9 (5)C1B—C2B—H2B119.4
C3C—C2C—H2C119.6C4B—C3B—C2B120.2 (5)
C1C—C2C—H2C119.6C4B—C3B—H3B119.9
C4C—C3C—C2C119.6 (5)C2B—C3B—H3B119.9
C4C—C3C—H3C120.2C3B—C4B—C5B120.3 (4)
C2C—C3C—H3C120.2C3B—C4B—N3B119.5 (6)
C5C—C4C—C3C120.6 (5)C5B—C4B—N3B120.2 (5)
C5C—C4C—N3C121.3 (6)C6B—C5B—C4B120.3 (5)
C3C—C4C—N3C118.1 (6)C6B—C5B—H5B119.9
C4C—C5C—C6C119.9 (5)C4B—C5B—H5B119.9
C4C—C5C—H5C120.1C5B—C6B—C1B121.1 (5)
C6C—C5C—H5C120.1C5B—C6B—H6B119.5
C5C—C6C—C1C122.3 (5)C1B—C6B—H6B119.5
C5C—C6C—H6C118.9N1B—C7B—C8B110.2 (4)
C1C—C6C—H6C118.9N1B—C7B—H7BA109.6
N1C—C7C—C8C110.3 (4)C8B—C7B—H7BA109.6
N1C—C7C—H7CA109.6N1B—C7B—H7BB109.6
C8C—C7C—H7CA109.6C8B—C7B—H7BB109.6
N1C—C7C—H7CB109.6H7BA—C7B—H7BB108.1
C8C—C7C—H7CB109.6N2B—C8B—C7B110.0 (4)
H7CA—C7C—H7CB108.1N2B—C8B—H8BA109.7
N2C—C8C—C7C110.4 (4)C7B—C8B—H8BA109.7
N2C—C8C—H8CA109.6N2B—C8B—H8BB109.7
C7C—C8C—H8CA109.6C7B—C8B—H8BB109.7
N2C—C8C—H8CB109.6H8BA—C8B—H8BB108.2
C7C—C8C—H8CB109.6N2B—C9B—C10B109.4 (4)
H8CA—C8C—H8CB108.1N2B—C9B—H9BA109.8
N2C—C9C—C10C110.1 (4)C10B—C9B—H9BA109.8
N2C—C9C—H9CA109.6N2B—C9B—H9BB109.8
C10C—C9C—H9CA109.6C10B—C9B—H9BB109.8
N2C—C9C—H9CB109.6H9BA—C9B—H9BB108.2
C10C—C9C—H9CB109.6N1B—C10B—C9B110.4 (4)
H9CA—C9C—H9CB108.2N1B—C10B—H10C109.6
N1C—C10C—C9C110.2 (4)C9B—C10B—H10C109.6
N1C—C10C—H10A109.6N1B—C10B—H10D109.6
C9C—C10C—H10A109.6C9B—C10B—H10D109.6
N1C—C10C—H10B109.6H10C—C10B—H10D108.1
C9C—C10C—H10B109.6C12A—C11A—C16A118.0 (4)
H10A—C10C—H10B108.1C12A—C11A—C17A121.4 (4)
C12D—C11D—C16D118.9 (4)C16A—C11A—C17A120.5 (4)
C12D—C11D—C17D120.9 (4)C15A—C16A—C11A121.8 (4)
C16D—C11D—C17D120.2 (4)C15A—C16A—H16A119.1
C11D—C12D—C13D120.7 (4)C11A—C16A—H16A119.1
C11D—C12D—H12D119.7C14A—C15A—C16A117.6 (5)
C13D—C12D—H12D119.7C14A—C15A—H15A121.2
C14D—C13D—C12D118.2 (5)C16A—C15A—H15A121.2
C14D—C13D—H13D120.9C15A—C14A—F1A118.7 (5)
C12D—C13D—H13D120.9C15A—C14A—C13A123.8 (5)
C15D—C14D—C13D122.9 (5)F1A—C14A—C13A117.6 (5)
C15D—C14D—F1D119.7 (5)C14A—C13A—C12A117.7 (5)
C13D—C14D—F1D117.4 (5)C14A—C13A—H13A121.1
C14D—C15D—C16D118.7 (5)C12A—C13A—H13A121.1
C14D—C15D—H15D120.7C11A—C12A—C13A121.1 (4)
C16D—C15D—H15D120.7C11A—C12A—H12A119.5
C15D—C16D—C11D120.6 (4)C13A—C12A—H12A119.5
C15D—C16D—H16D119.7O3A—C17A—O4A123.3 (4)
C11D—C16D—H16D119.7O3A—C17A—C11A118.9 (4)
O3D—C17D—O4D123.9 (4)O4A—C17A—C11A117.8 (4)
O3D—C17D—C11D118.3 (4)H5A—O5—H5D110 (5)
O4D—C17D—C11D117.8 (4)H6A—O6—H6D98 (7)
C1B—N1B—C10B125.1 (4)H7A—O7—H7B115 (7)
C1B—N1B—C7B123.7 (4)
C7C—N1C—C1C—C2C8.1 (7)C10B—N1B—C1B—C2B167.7 (4)
C10C—N1C—C1C—C2C175.0 (5)C7B—N1B—C1B—C2B17.0 (7)
C7C—N1C—C1C—C6C172.0 (4)C10B—N1B—C1B—C6B10.8 (7)
C10C—N1C—C1C—C6C4.9 (7)C7B—N1B—C1B—C6B164.5 (5)
N1C—C1C—C2C—C3C178.4 (4)N1B—C1B—C2B—C3B178.7 (4)
C6C—C1C—C2C—C3C1.6 (7)C6B—C1B—C2B—C3B0.1 (7)
C1C—C2C—C3C—C4C0.3 (7)C1B—C2B—C3B—C4B0.4 (7)
C2C—C3C—C4C—C5C1.3 (8)C2B—C3B—C4B—C5B0.7 (7)
C2C—C3C—C4C—N3C178.2 (4)C2B—C3B—C4B—N3B178.8 (4)
O1C—N3C—C4C—C5C179.5 (5)O2B—N3B—C4B—C3B178.9 (5)
O2C—N3C—C4C—C5C0.4 (7)O1B—N3B—C4B—C3B0.7 (7)
O1C—N3C—C4C—C3C0.1 (7)O2B—N3B—C4B—C5B1.6 (7)
O2C—N3C—C4C—C3C179.0 (5)O1B—N3B—C4B—C5B178.8 (5)
C3C—C4C—C5C—C6C1.4 (7)C3B—C4B—C5B—C6B0.6 (7)
N3C—C4C—C5C—C6C178.0 (4)N3B—C4B—C5B—C6B178.9 (4)
C4C—C5C—C6C—C1C0.0 (7)C4B—C5B—C6B—C1B0.3 (7)
N1C—C1C—C6C—C5C178.5 (4)N1B—C1B—C6B—C5B178.6 (4)
C2C—C1C—C6C—C5C1.4 (7)C2B—C1B—C6B—C5B0.0 (6)
C1C—N1C—C7C—C8C124.1 (5)C1B—N1B—C7B—C8B116.6 (5)
C10C—N1C—C7C—C8C58.7 (5)C10B—N1B—C7B—C8B59.3 (5)
C9C—N2C—C8C—C7C55.0 (5)C9B—N2B—C8B—C7B55.5 (5)
N1C—C7C—C8C—N2C55.7 (5)N1B—C7B—C8B—N2B56.2 (5)
C8C—N2C—C9C—C10C55.5 (5)C8B—N2B—C9B—C10B55.5 (5)
C1C—N1C—C10C—C9C123.4 (5)C1B—N1B—C10B—C9B116.0 (5)
C7C—N1C—C10C—C9C59.4 (6)C7B—N1B—C10B—C9B59.8 (5)
N2C—C9C—C10C—N1C56.9 (6)N2B—C9B—C10B—N1B56.8 (5)
C16D—C11D—C12D—C13D1.1 (8)C12A—C11A—C16A—C15A1.5 (7)
C17D—C11D—C12D—C13D178.1 (5)C17A—C11A—C16A—C15A178.1 (5)
C11D—C12D—C13D—C14D0.8 (8)C11A—C16A—C15A—C14A1.1 (8)
C12D—C13D—C14D—C15D0.1 (9)C16A—C15A—C14A—F1A179.4 (5)
C12D—C13D—C14D—F1D179.0 (5)C16A—C15A—C14A—C13A0.1 (9)
C13D—C14D—C15D—C16D0.3 (9)C15A—C14A—C13A—C12A0.8 (9)
F1D—C14D—C15D—C16D178.6 (4)F1A—C14A—C13A—C12A179.8 (5)
C14D—C15D—C16D—C11D0.1 (8)C16A—C11A—C12A—C13A0.6 (7)
C12D—C11D—C16D—C15D0.8 (7)C17A—C11A—C12A—C13A178.9 (5)
C17D—C11D—C16D—C15D178.5 (5)C14A—C13A—C12A—C11A0.4 (8)
C12D—C11D—C17D—O3D2.2 (7)C12A—C11A—C17A—O3A8.3 (7)
C16D—C11D—C17D—O3D177.0 (4)C16A—C11A—C17A—O3A171.2 (4)
C12D—C11D—C17D—O4D178.6 (4)C12A—C11A—C17A—O4A174.1 (4)
C16D—C11D—C17D—O4D2.2 (7)C16A—C11A—C17A—O4A6.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2C—H2CA···O3D0.90 (2)1.84 (2)2.733 (5)176 (4)
N2C—H2CB···O4Ai0.87 (2)1.87 (2)2.726 (5)166 (4)
C3C—H3C···O1Cii0.932.623.261 (7)126
C9C—H9CA···O50.972.513.332 (6)142
C9C—H9CB···O2B0.972.533.401 (6)149
C15D—H15D···F1Aiii0.932.523.369 (5)152
N2B—H2BA···O4Div0.88 (2)1.92 (2)2.764 (5)163 (4)
N2B—H2BB···O3A0.89 (2)1.86 (2)2.739 (5)169 (4)
C3B—H3B···F1Dv0.932.633.436 (6)145
C8B—H8BA···O1C0.972.533.437 (6)155
C8B—H8BB···O6ii0.972.493.182 (6)129
C15A—H15A···F1Dvi0.932.483.310 (5)149
O5—H5A···O3Avii0.84 (2)1.96 (2)2.794 (4)172 (5)
O5—H5D···O4D0.83 (2)1.95 (2)2.778 (5)175 (5)
O6—H6A···O4Aii0.84 (2)2.04 (4)2.795 (6)149 (7)
O6—H6D···O70.84 (2)1.91 (2)2.744 (7)174 (8)
O7—H7A···O3D0.83 (2)1.99 (3)2.794 (5)163 (7)
O7—H7B···O5viii0.83 (2)1.93 (2)2.759 (6)172 (7)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x+3/2, y+1/2, z1/2; (iv) x1, y, z; (v) x+1, y, z; (vi) x3/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1, y+1, z.
4-(4-Nitrophenyl)piperazin-1-ium 3,5-dinitrobenzoate (3) top
Crystal data top
C10H14N3O2+·C7H3N2O6F(000) = 1744
Mr = 419.35Dx = 1.443 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.953 (6) ÅCell parameters from 4154 reflections
b = 8.1422 (6) Åθ = 2.6–27.7°
c = 24.657 (5) ŵ = 0.12 mm1
β = 136.55 (4)°T = 293 K
V = 3859 (2) Å3Prism, orange
Z = 80.48 × 0.48 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2838 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.015
Rotation method data acquisition using ω scans.θmax = 27.7°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 3523
Tmin = 0.621, Tmax = 1.000k = 1010
8107 measured reflectionsl = 3130
4119 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0543P)2 + 1.7099P]
where P = (Fo2 + 2Fc2)/3
4119 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.24 e Å3
262 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.02612 (8)0.1284 (2)0.33993 (9)0.0580 (4)
N20.02315 (7)0.0150 (2)0.44281 (9)0.0452 (4)
H210.0246 (11)0.041 (2)0.4078 (11)0.054 (5)*
H220.0488 (10)0.044 (2)0.4941 (13)0.060 (6)*
O10.29131 (19)0.2691 (7)0.4152 (3)0.0936 (12)0.806 (10)
O20.28193 (17)0.5004 (6)0.4502 (2)0.0809 (12)0.806 (10)
N30.26170 (14)0.3612 (7)0.42375 (18)0.0631 (11)0.806 (10)
C10.08449 (14)0.1834 (4)0.3603 (2)0.0484 (8)0.806 (10)
C20.12478 (14)0.0767 (5)0.36260 (19)0.0547 (7)0.806 (10)
H2A0.1129730.0338240.3507220.066*0.806 (10)
C30.18272 (12)0.1354 (5)0.38267 (16)0.0554 (8)0.806 (10)
H3A0.2096820.0640180.3842270.067*0.806 (10)
C40.20037 (11)0.3006 (5)0.40042 (16)0.0508 (8)0.806 (10)
C50.16008 (13)0.4073 (4)0.3981 (2)0.0621 (8)0.806 (10)
H5A0.1718900.5178460.4099760.075*0.806 (10)
C60.10214 (14)0.3487 (4)0.3780 (2)0.0613 (8)0.806 (10)
H6A0.0751810.4200070.3764710.074*0.806 (10)
O1A0.2969 (7)0.342 (2)0.4346 (10)0.082 (3)0.194 (10)
O2A0.2788 (8)0.575 (2)0.4647 (10)0.092 (4)0.194 (10)
N3A0.2640 (8)0.436 (2)0.4386 (12)0.067 (2)0.194 (10)
C1A0.0900 (6)0.2138 (18)0.3708 (9)0.0517 (19)0.194 (10)
C2A0.1283 (6)0.1262 (16)0.3643 (9)0.0519 (18)0.194 (10)
H2AA0.1162650.0184170.3461600.062*0.194 (10)
C3A0.1845 (6)0.1997 (19)0.3848 (7)0.0519 (17)0.194 (10)
H3AA0.2101720.1411250.3804270.062*0.194 (10)
C4A0.2025 (5)0.3609 (18)0.4119 (7)0.0608 (19)0.194 (10)
C5A0.1642 (6)0.4485 (14)0.4184 (8)0.064 (2)0.194 (10)
H5AA0.1761950.5562820.4365050.077*0.194 (10)
C6A0.1079 (6)0.3750 (17)0.3979 (9)0.062 (2)0.194 (10)
H6AA0.0822880.4335760.4022380.075*0.194 (10)
C70.01491 (10)0.0473 (3)0.33759 (11)0.0549 (5)
H7A0.0334950.1056030.3217950.066*
H7B0.0346050.0694840.2988250.066*
C80.04986 (8)0.1082 (2)0.41735 (9)0.0453 (4)
H8A0.0404520.2243380.4143780.054*
H8B0.0997960.0936150.4555100.054*
C90.02899 (9)0.1652 (3)0.44076 (12)0.0566 (5)
H9A0.0776360.1968390.4806710.068*
H9B0.0063490.2202700.4521980.068*
C100.00458 (10)0.2165 (3)0.36060 (13)0.0665 (6)
H10A0.0540780.1938430.3214420.080*
H10B0.0014670.3337480.3604800.080*
O30.34048 (7)0.22513 (19)0.30638 (8)0.0637 (4)
O40.43333 (6)0.11002 (19)0.19876 (9)0.0728 (4)
O50.43221 (7)0.0409 (2)0.00913 (7)0.0831 (5)
O60.33493 (8)0.1049 (2)0.05113 (8)0.0724 (4)
O70.11517 (5)0.10834 (17)0.40386 (6)0.0513 (3)
O80.11592 (5)0.06375 (17)0.33293 (7)0.0543 (3)
N40.37128 (7)0.14524 (19)0.24700 (10)0.0500 (4)
N50.36882 (8)0.05526 (19)0.06164 (8)0.0563 (4)
C110.22389 (7)0.03229 (19)0.27718 (9)0.0358 (4)
C120.26050 (8)0.0878 (2)0.29183 (9)0.0379 (4)
H120.2370680.1244310.3418170.046*
C130.33255 (8)0.0880 (2)0.23089 (10)0.0411 (4)
C140.36957 (8)0.0396 (2)0.15541 (10)0.0457 (4)
H140.4179390.0403580.1151590.055*
C150.33151 (8)0.0098 (2)0.14243 (9)0.0432 (4)
C160.25940 (8)0.0165 (2)0.20176 (9)0.0398 (4)
H160.2353520.0530460.1911400.048*
C170.14489 (7)0.0247 (2)0.34377 (9)0.0376 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0508 (8)0.0655 (11)0.0574 (9)0.0030 (8)0.0391 (8)0.0125 (8)
N20.0288 (7)0.0606 (10)0.0318 (7)0.0051 (7)0.0173 (6)0.0001 (7)
O10.0676 (16)0.116 (3)0.112 (2)0.0083 (18)0.0703 (18)0.002 (2)
O20.0652 (15)0.090 (3)0.0628 (17)0.0371 (19)0.0384 (14)0.006 (2)
N30.0402 (13)0.088 (3)0.0429 (14)0.0095 (16)0.0242 (12)0.0118 (16)
C10.0460 (11)0.0555 (16)0.0392 (12)0.0086 (10)0.0294 (10)0.0044 (11)
C20.0532 (11)0.0565 (18)0.0525 (11)0.0103 (12)0.0378 (10)0.0025 (13)
C30.0523 (11)0.0624 (19)0.0520 (11)0.0039 (13)0.0380 (10)0.0016 (13)
C40.0438 (10)0.061 (2)0.0415 (11)0.0109 (11)0.0291 (9)0.0037 (12)
C50.0620 (12)0.0578 (17)0.0624 (15)0.0131 (12)0.0438 (12)0.0005 (13)
C60.0606 (12)0.0606 (17)0.0696 (18)0.0051 (12)0.0495 (13)0.0016 (14)
O1A0.045 (4)0.091 (8)0.075 (6)0.005 (5)0.032 (4)0.013 (6)
O2A0.061 (5)0.068 (6)0.074 (7)0.026 (5)0.025 (4)0.004 (5)
N3A0.049 (3)0.065 (4)0.053 (3)0.013 (3)0.026 (3)0.008 (3)
C1A0.054 (2)0.060 (3)0.050 (2)0.007 (2)0.0401 (18)0.000 (2)
C2A0.049 (2)0.058 (3)0.051 (2)0.013 (2)0.0370 (17)0.001 (2)
C3A0.0483 (18)0.060 (3)0.053 (2)0.010 (2)0.0386 (16)0.006 (2)
C4A0.0518 (19)0.060 (3)0.052 (2)0.012 (2)0.0315 (17)0.006 (2)
C5A0.060 (2)0.062 (3)0.054 (2)0.014 (2)0.0357 (19)0.000 (2)
C6A0.060 (2)0.058 (3)0.056 (3)0.014 (2)0.0379 (19)0.000 (2)
C70.0513 (10)0.0639 (13)0.0459 (10)0.0144 (9)0.0341 (9)0.0059 (9)
C80.0346 (8)0.0487 (10)0.0395 (9)0.0048 (7)0.0227 (7)0.0014 (8)
C90.0436 (9)0.0572 (12)0.0699 (13)0.0088 (9)0.0415 (10)0.0121 (10)
C100.0492 (10)0.0591 (13)0.0887 (15)0.0088 (10)0.0493 (11)0.0230 (11)
O30.0575 (8)0.0796 (10)0.0590 (8)0.0076 (7)0.0439 (7)0.0009 (8)
O40.0396 (7)0.0735 (10)0.0930 (11)0.0004 (7)0.0441 (8)0.0027 (8)
O50.0490 (8)0.0826 (11)0.0350 (7)0.0164 (7)0.0035 (6)0.0085 (7)
O60.0707 (9)0.0865 (11)0.0444 (8)0.0093 (8)0.0367 (7)0.0170 (7)
O70.0331 (6)0.0708 (9)0.0299 (6)0.0012 (6)0.0163 (5)0.0073 (6)
O80.0301 (6)0.0648 (8)0.0530 (7)0.0033 (6)0.0253 (6)0.0166 (6)
N40.0391 (8)0.0462 (9)0.0597 (10)0.0086 (7)0.0341 (8)0.0102 (8)
N50.0507 (9)0.0451 (9)0.0328 (8)0.0016 (7)0.0172 (7)0.0044 (7)
C110.0291 (7)0.0349 (9)0.0316 (8)0.0000 (6)0.0182 (6)0.0014 (7)
C120.0327 (7)0.0384 (9)0.0313 (8)0.0006 (7)0.0195 (7)0.0015 (7)
C130.0327 (8)0.0366 (9)0.0433 (9)0.0042 (7)0.0241 (7)0.0044 (7)
C140.0273 (7)0.0395 (9)0.0396 (9)0.0024 (7)0.0143 (7)0.0008 (7)
C150.0360 (8)0.0366 (9)0.0284 (8)0.0008 (7)0.0140 (7)0.0017 (7)
C160.0351 (8)0.0393 (9)0.0332 (8)0.0012 (7)0.0209 (7)0.0004 (7)
C170.0291 (7)0.0422 (9)0.0319 (8)0.0022 (7)0.0190 (7)0.0014 (7)
Geometric parameters (Å, º) top
N1—C11.388 (3)C5A—C6A1.3900
N1—C71.457 (3)C5A—H5AA0.9300
N1—C101.465 (3)C6A—H6AA0.9300
N1—C1A1.508 (9)C7—C81.509 (3)
N2—C91.481 (3)C7—H7A0.9700
N2—C81.486 (2)C7—H7B0.9700
N2—H210.95 (2)C8—H8A0.9700
N2—H220.92 (2)C8—H8B0.9700
O1—N31.243 (4)C9—C101.506 (3)
O2—N31.222 (4)C9—H9A0.9700
N3—C41.443 (3)C9—H9B0.9700
C1—C21.3900C10—H10A0.9700
C1—C61.3900C10—H10B0.9700
C2—C31.3900O3—N41.216 (2)
C2—H2A0.9300O4—N41.229 (2)
C3—C41.3900O5—N51.224 (2)
C3—H3A0.9300O6—N51.219 (2)
C4—C51.3900O7—C171.250 (2)
C5—C61.3900O8—C171.2491 (19)
C5—H5A0.9300N4—C131.473 (2)
C6—H6A0.9300N5—C151.475 (2)
O1A—N3A1.251 (16)C11—C121.385 (2)
O2A—N3A1.217 (15)C11—C161.386 (2)
N3A—C4A1.455 (12)C11—C171.520 (2)
C1A—C2A1.3900C12—C131.386 (2)
C1A—C6A1.3900C12—H120.9300
C2A—C3A1.3900C13—C141.376 (2)
C2A—H2AA0.9300C14—C151.375 (3)
C3A—C4A1.3900C14—H140.9300
C3A—H3AA0.9300C15—C161.387 (2)
C4A—C5A1.3900C16—H160.9300
C1—N1—C7119.6 (2)C1A—C6A—H6AA120.0
C1—N1—C10123.3 (2)N1—C7—C8110.72 (15)
C7—N1—C10109.32 (15)N1—C7—H7A109.5
C7—N1—C1A127.9 (6)C8—C7—H7A109.5
C10—N1—C1A112.1 (6)N1—C7—H7B109.5
C9—N2—C8112.95 (14)C8—C7—H7B109.5
C9—N2—H21108.0 (12)H7A—C7—H7B108.1
C8—N2—H21107.8 (11)N2—C8—C7109.52 (15)
C9—N2—H22108.0 (12)N2—C8—H8A109.8
C8—N2—H22108.5 (12)C7—C8—H8A109.8
H21—N2—H22111.6 (17)N2—C8—H8B109.8
O2—N3—O1122.9 (3)C7—C8—H8B109.8
O2—N3—C4119.0 (3)H8A—C8—H8B108.2
O1—N3—C4118.1 (3)N2—C9—C10109.91 (17)
N1—C1—C2121.22 (19)N2—C9—H9A109.7
N1—C1—C6118.78 (19)C10—C9—H9A109.7
C2—C1—C6120.0N2—C9—H9B109.7
C3—C2—C1120.0C10—C9—H9B109.7
C3—C2—H2A120.0H9A—C9—H9B108.2
C1—C2—H2A120.0N1—C10—C9110.88 (16)
C2—C3—C4120.0N1—C10—H10A109.5
C2—C3—H3A120.0C9—C10—H10A109.5
C4—C3—H3A120.0N1—C10—H10B109.5
C5—C4—C3120.0C9—C10—H10B109.5
C5—C4—N3119.7 (2)H10A—C10—H10B108.1
C3—C4—N3120.3 (2)O3—N4—O4123.95 (17)
C4—C5—C6120.0O3—N4—C13118.51 (14)
C4—C5—H5A120.0O4—N4—C13117.53 (17)
C6—C5—H5A120.0O6—N5—O5123.96 (17)
C5—C6—C1120.0O6—N5—C15118.28 (15)
C5—C6—H6A120.0O5—N5—C15117.76 (19)
C1—C6—H6A120.0C12—C11—C16119.88 (14)
O2A—N3A—O1A128.2 (14)C12—C11—C17120.03 (14)
O2A—N3A—C4A117.8 (13)C16—C11—C17120.08 (15)
O1A—N3A—C4A114.0 (13)C11—C12—C13119.02 (15)
C2A—C1A—C6A120.0C11—C12—H12120.5
C2A—C1A—N1115.7 (8)C13—C12—H12120.5
C6A—C1A—N1124.0 (8)C14—C13—C12122.68 (17)
C1A—C2A—C3A120.0C14—C13—N4118.49 (15)
C1A—C2A—H2AA120.0C12—C13—N4118.82 (16)
C3A—C2A—H2AA120.0C15—C14—C13116.72 (15)
C4A—C3A—C2A120.0C15—C14—H14121.6
C4A—C3A—H3AA120.0C13—C14—H14121.6
C2A—C3A—H3AA120.0C14—C15—C16122.91 (16)
C3A—C4A—C5A120.0C14—C15—N5118.67 (15)
C3A—C4A—N3A120.6 (8)C16—C15—N5118.41 (17)
C5A—C4A—N3A119.3 (8)C11—C16—C15118.74 (16)
C6A—C5A—C4A120.0C11—C16—H16120.6
C6A—C5A—H5AA120.0C15—C16—H16120.6
C4A—C5A—H5AA120.0O8—C17—O7126.27 (14)
C5A—C6A—C1A120.0O8—C17—C11116.84 (14)
C5A—C6A—H6AA120.0O7—C17—C11116.90 (15)
C7—N1—C1—C213.5 (3)N1—C1A—C6A—C5A174.0 (12)
C10—N1—C1—C2159.33 (19)C1—N1—C7—C888.7 (2)
C7—N1—C1—C6166.94 (18)C10—N1—C7—C861.5 (2)
C10—N1—C1—C621.1 (3)C1A—N1—C7—C879.6 (8)
N1—C1—C2—C3179.6 (3)C9—N2—C8—C753.44 (19)
C6—C1—C2—C30.0N1—C7—C8—N257.24 (19)
C1—C2—C3—C40.0C8—N2—C9—C1053.10 (19)
C2—C3—C4—C50.0C1—N1—C10—C987.8 (3)
C2—C3—C4—N3178.0 (2)C7—N1—C10—C961.0 (2)
O2—N3—C4—C58.8 (4)C1A—N1—C10—C986.7 (7)
O1—N3—C4—C5170.6 (3)N2—C9—C10—N156.3 (2)
O2—N3—C4—C3169.2 (3)C16—C11—C12—C132.3 (2)
O1—N3—C4—C311.4 (4)C17—C11—C12—C13177.66 (15)
C3—C4—C5—C60.0C11—C12—C13—C142.0 (3)
N3—C4—C5—C6178.0 (2)C11—C12—C13—N4179.25 (15)
C4—C5—C6—C10.0O3—N4—C13—C14161.90 (16)
N1—C1—C6—C5179.6 (3)O4—N4—C13—C1417.5 (2)
C2—C1—C6—C50.0O3—N4—C13—C1216.9 (2)
C7—N1—C1A—C2A30.4 (11)O4—N4—C13—C12163.67 (16)
C10—N1—C1A—C2A170.6 (5)C12—C13—C14—C150.1 (3)
C7—N1—C1A—C6A155.4 (6)N4—C13—C14—C15178.72 (15)
C10—N1—C1A—C6A15.1 (10)C13—C14—C15—C161.9 (3)
C6A—C1A—C2A—C3A0.0C13—C14—C15—N5177.15 (15)
N1—C1A—C2A—C3A174.5 (11)O6—N5—C15—C14177.23 (17)
C1A—C2A—C3A—C4A0.0O5—N5—C15—C142.7 (3)
C2A—C3A—C4A—C5A0.0O6—N5—C15—C163.7 (3)
C2A—C3A—C4A—N3A175.8 (13)O5—N5—C15—C16176.40 (17)
O2A—N3A—C4A—C3A177.1 (15)C12—C11—C16—C150.6 (2)
O1A—N3A—C4A—C3A0 (2)C17—C11—C16—C15179.33 (15)
O2A—N3A—C4A—C5A1 (2)C14—C15—C16—C111.5 (3)
O1A—N3A—C4A—C5A175.8 (13)N5—C15—C16—C11177.46 (15)
C3A—C4A—C5A—C6A0.0C12—C11—C17—O8161.97 (15)
N3A—C4A—C5A—C6A175.9 (13)C16—C11—C17—O818.0 (2)
C4A—C5A—C6A—C1A0.0C12—C11—C17—O718.5 (2)
C2A—C1A—C6A—C5A0.0C16—C11—C17—O7161.58 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O80.95 (2)1.77 (2)2.705 (3)170.7 (17)
N2—H22···O7i0.92 (2)1.81 (2)2.715 (3)166.4 (18)
C8—H8A···O4ii0.972.543.245 (3)130
C8—H8B···O2iii0.972.403.354 (4)168
C8—H8B···O2Aiii0.972.393.353 (16)172
C9—H9A···O1iii0.972.543.497 (5)171
C9—H9A···O1Aiii0.972.473.378 (14)155
C10—H10B···O4iv0.972.603.425 (3)143
C12—H12···O2v0.932.533.231 (4)133
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z+1/2; (v) x1/2, y1/2, z.
 

Acknowledgements

SDA is grateful to the University of Mysore for research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

References

First citationArchana, S. D., Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Butcher, R. J. (2022). Acta Cryst. E78, 1016–1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArchana, S. D., Kumar, H. K., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2021). Acta Cryst. E77, 1135–1139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAyeni, A. O., Watkins, G. M. & Hosten, E. C. (2019). Bull. Chem. Soc. Ethiop. 33, 341–348.  CAS Google Scholar
First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.  Web of Science CrossRef CAS Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElliott, S. (2011). Drug Test. Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). Med. Chem. Commun. 7, 2111–2121.  Web of Science CrossRef CAS Google Scholar
First citationHarish Chinthal, C., Kavitha, C. N., Yathirajan, H. S., Foro, S., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 1779–1793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaya, B., Ozkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. Chem. article ID 5878410. https://dx.doi.org/10.1155/2016/5878410Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKönig, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632–10640.  Google Scholar
First citationLu, Y.-X. (2007). Acta Cryst. E63, o3611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022a). Acta Cryst. E78, 510–518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahesha, N., Kumar, H. K., Akkurt, M., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022b). Acta Cryst. E78, 709–715.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO, CrysAlis RED and CrysAlis CCD Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationShankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840–845.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J., Qian, S.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. Cryst. Mat. 229, 97–98.  CAS Google Scholar
First citationWodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921–40933.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Chao, J., Zhao, S., Xu, P., Wang, H., Guo, Z. & Liu, D. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 44–51.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds