research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the isomeric dipeptides L-glycyl-L-me­thio­nine and L-me­thionyl-L-glycine

crossmark logo

aDepartment of Biological Sciences, School of Science, Hampton University, Hampton, VA, 23669, USA, bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA, cDepartment of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA 70813, USA, and dSchool of Science, Hampton University, Hampton, VA, 23669, USA
*Correspondence e-mail: moclaville@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 4 June 2024; accepted 9 June 2024; online 14 June 2024)

The oxidation of me­thionyl peptides can contribute to increased biological (oxidative) stress and development of various inflammatory diseases. The conformation of peptides has an important role in the mechanism of oxidation and the inter­mediates formed in the reaction. Herein, the crystal structures of the isomeric dipeptides Gly-Met (Gly = glycine and Met = me­thio­nine) and Met-Gly, both C7H14N2O3S, are reported. Both mol­ecules exist in the solid state as zwitterions with nominal proton transfer from the carb­oxy­lic acid to the primary amine group. The Gly-Met mol­ecule has an extended backbone structure, while Met-Gly has two nearly planar regions kinked at the C atom bearing the NH3 group. In the crystals, both structures form extensive three-dimensional hydrogen-bonding networks via N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds having N⋯O distances in the range 2.6619 (13)–2.8513 (13) Å for Gly-Met and 2.6273 (8)–3.1465 (8) Å for Met-Gly.

Structural comparison of the isomeric dipeptides L-glycyl-L-methionine and L-methionyl-L-glycine

What is it about?

The oxidation of methionine peptides can lead to increased biological stress and inflammation. The way peptides are shaped influences their oxidation and the intermediate products formed. This study reports the crystal structures of two similar dipeptides: Gly-Met and Met-Gly. Both exist as zwitterions, meaning they have both positive and negative charges. Gly-Met has a straight structure, while Met-Gly has a kinked shape. Methionine and its peptides are important in protein oxidation. Methionine's sulfur atom can be easily oxidized, forming reactive radicals that can damage proteins and lead to diseases. The position of methionine in a peptide affects its oxidation. For example, Met-Gly forms stable radicals not seen in Gly-Met, and they dissociate differently when collided with radicals. Factors influencing methionine peptide oxidation include the peptide’s structure, methionine's position, surrounding groups, the type of oxidants, and solvent properties. Peptides can have different shapes depending on the environment. This report highlights the zwitterionic forms of Gly-Met and Met-Gly, suggesting that differences in peptide shape may explain varying oxidation behaviors observed in studies.

Why is it important?

Understanding the oxidation of methionine peptides is crucial because it helps explain how oxidative stress contributes to biological damage and inflammation. Methionine, a key amino acid in proteins, is easily oxidized, leading to the formation of harmful radicals that can damage proteins and disrupt their function. This damage is linked to various inflammatory and age-related diseases. Studying the crystal structures of methionine-containing peptides, such as Gly-Met and Met-Gly, provides insight into how their shape and conformation influence oxidation. Knowing the differences in their structures helps us understand why they oxidize differently and form different reaction intermediates. This knowledge is vital for developing strategies to prevent or mitigate oxidative damage in proteins, which could lead to new treatments for diseases related to oxidative stress and inflammation. Additionally, recognizing how factors like peptide structure, methionine position, and environmental conditions affect oxidation can help in designing more stable peptides for therapeutic and industrial applications. Overall, this research enhances our understanding of protein oxidation mechanisms and their implications for health and disease.

Read more on Kudos…
The following have contributed to this page:
Sainath Babu

1. Chemical context

Me­thio­nine and me­thionyl peptides play an important role in protein oxidation. The sulfur atom in me­thio­nine can easily be oxidized by free radicals or oxidants and lead to sulfur radical cations (Bobrowski & Holcman, 1989[Bobrowski, K. & Holcman, J. (1989). J. Phys. Chem. 93, 6381-6387.]) or a corresponding sulfoxide (Schöneich, 2005[Schöneich, C. (2005). BBA-Proteins Proteom., 1703, 111-119.]). The formation of reactive radical cations is responsible for me­thionyl protein damage and misconformation, which has been implicated in numerous inflammatory (Vogt, 1995[Vogt, W. (1995). Free Radic. Biol. Med. 18, 93-105.]) and age-related diseases (Schöneich, 2005[Schöneich, C. (2005). BBA-Proteins Proteom., 1703, 111-119.]; Stadtman et al., 2005[Stadtman, E. R., Van Remmen, H., Richardson, A., Wehr, N. B. & Levine, R. L. (2005). BBA-Proteins Proteom.,1703, 135-140.]).

[Scheme 1]

Gly-Met (Gly = glycine, Met = me­thio­nine) and its reverse sequence, Met-Gly, are two simple dipeptides. It has been shown that the position of me­thio­nine with respect to the N-terminus of the peptide determines the mechanism of oxidation of me­thionyl peptides. For instance, in photosensitized oxidation reactions, substantial amounts of radical cations stabilized with sulfur–nitro­gen (S∴N) three-electron bonded species were observed with Met-Gly, while similar stabilization of the radical cations was not observed with Gly-Met (Pedzinski et al., 2009[Pedzinski, T., Markiewicz, A. & Marciniak, B. (2009). Res. Chem. Intermed. 35, 497-506.]). In collision-induced radical dissociation, Gly-Met leads to the loss of a CH3—S—CH=CH2 fragment from the peptide, while such dissociation in Met-Gly leads to the loss of a CH3S· (Lau et al., 2013[Lau, J. K. C., Lo, S., Zhao, J., Siu, K. M. & Hopkinson, A. C. (2013). J. Am. Soc. Mass Spectrom. 24, 543-553.]) radical. Thus, the difference in me­thio­nine position leads to quite different reaction inter­mediates, which may eventually affect the stability of the peptide and its biological function.

The oxidation of me­thio­nine peptides is determined by several factors, including peptide structure, the position of me­thio­nine within the sequence, neighboring groups to me­thio­nine, nature of the oxidants, and solvent properties. The conformation of the peptide is also an important factor that needs to be considered to understand the mechanism of oxidation. Peptides can exist in either cationic, zwitterionic, or anionic conformations, depending on the solvent and the pH. The present report describes the zwitterionic structures of Gly-Met and Met-Gly dipeptides. We believe that some of the differences observed in the literature related to me­thionyl peptide oxidations could be attributed to the conformation of the peptide in solution.

2. Structural commentary

Both of the dipeptides are in their zwitterionic forms in the solid state (Fig. 1[link]). The amide N1 atom of both Gly-Met and Met-Gly is in the protonated NH3+ form, and the C6/O2/O3 carb­oxy­lic groups are in their deprotonated (COO) forms, as evidenced by the C—O distances of 1.2598 (13) and 1.2546 (13) Å in Gly-Met and 1.2534 (9) and 1.2635 (8) Å in Met-Gly. The C—NH3 distance is 1.4809 (14) Å in Gly-Met and 1.4855 (8) in Met-Gly. The backbone of the Gly-Met mol­ecule is extended, with its six torsion angle magnitudes in the range 163.44 (9)–177.94 (8)°. Thus, the ten atoms of the chain are close to coplanar with a mean deviation of 0.091 Å. The backbone of the Met-Gly mol­ecule is substanti­ally kinked at C3. The eight-atom segment containing the carboxyl­ate group is planar to within a mean deviation of 0.056 Å, and the five-atom segment containing the S atom is planar to within a mean deviation of 0.086 Å. These two planes inter­sect at C3, forming a dihedral angle of 70.502 (13)°. The absolute configurations of both mol­ecules were confirmed from their refined Flack parameters (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), with values of 0.02 (2) for Gly-Met and 0.011 (11) for Met-Gly.

[Figure 1]
Figure 1
The mol­ecular structures of Gly-Met and Met-Gly showing 50% displacement ellipsoids.

3. Supra­molecular features

Inter­molecular inter­actions in both structures are dominated by N—H⋯O hydrogen bonds, some of which are bifurcated. In Gly-Met (Table 1[link]), the NH3+ group donates hydrogen bonds to three separate mol­ecules, and the N—H group donates to a fourth (Fig. 2[link]), forming a complex three-dimensional array of hydrogen bonds. Graph sets (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) include C11(5) and C11(8) chains and R44(22) loops. In Met-Gly (Table 2[link]), the NH3+ group also donates hydrogen bonds to three different mol­ecules (Fig. 3[link]), but the N—H group does not participate in inter­molecular inter­actions and makes a very non-linear [N—H⋯O = 110.6 (10)°] intra­molecular contact to an O atom of the carboxyl­ate group. Nevertheless, the hydrogen-bonding array is three-dimensional, and graph sets include C11(8) chains, C22(6) chains and R44(22) loops.

Table 1
Hydrogen-bond geometry (Å, °) for Gly-Met[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O3i 0.83 (2) 2.15 (2) 2.8513 (13) 143.0 (18)
N1—H11N⋯O1 0.83 (2) 2.15 (2) 2.6619 (13) 120.1 (16)
N1—H12N⋯O2ii 0.886 (19) 1.850 (19) 2.7275 (12) 170.7 (18)
N1—H13N⋯O3iii 0.849 (19) 1.86 (2) 2.7006 (13) 168 (2)
N2—H2N⋯O2iv 0.832 (19) 2.000 (19) 2.8225 (12) 170.0 (18)
Symmetry codes: (i) [x+1, y, z]; (ii) [x+1, y+1, z]; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) [x, y+1, z].

Table 2
Hydrogen-bond geometry (Å, °) for Met-Gly[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O2i 0.885 (14) 1.854 (14) 2.7290 (8) 169.5 (13)
N1—H11N⋯O3i 0.885 (14) 2.593 (15) 3.1465 (8) 121.4 (11)
N1—H12N⋯O3ii 0.896 (13) 1.857 (13) 2.7531 (7) 179.6 (14)
N1—H13N⋯O3iii 0.907 (14) 2.015 (14) 2.7529 (8) 137.5 (11)
N1—H13N⋯O1 0.907 (14) 2.211 (13) 2.6940 (8) 112.7 (10)
N2—H2N⋯O2 0.879 (15) 2.185 (13) 2.6273 (8) 110.6 (10)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Hydrogen bonding in Gly-Met. H atoms on C are not shown.
[Figure 3]
Figure 3
Hydrogen bonding in Met-Gly. H atoms on C are not shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.45, Update 1, March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that no crystal structures were reported for either Gly-Met or Met-Gly. Other dipeptides containing me­thio­nine have been reported, including L-Ala-L-Met hemihydrate (Gorbitz, 2003[Görbitz, C. H. (2003). Acta Cryst. C59, o730-o732.]), DL-Ala-LD-Met (Jha et al., 2020[Jha, K. K., Gruza, B., Kumar, P., Chodkiewicz, M. L. & Dominiak, P. M. (2020). Acta Cryst. B76, 296-306.]), L-Pro-L-Met monohydrate (Padmanabhan & Yadava, 1983[Padmanabhan, V. M. & Yadava, V. S. (1983). Curr. Sci. 52, 904-906.]), L-Met-L-Met (Stenkamp & Jensen, 1975[Stenkamp, R. E. & Jensen, L. H. (1975). Acta Cryst. B31, 857-861.]), L-Met-L-Ala (Gorbitz, 2000[Görbitz, C. H. (2000). Acta Cryst. C56, e64-e65.]), and L-Met-L-Ser (Gorbitz et al., 2006[Görbitz, C. H., Bruvoll, M., Dizdarevic, S., Fimland, N., Hafizovic, J., Kalfjøs, H. T., Krivokapic, A. & Vestli, K. (2006). Acta Cryst. C62, o22-o25.]).

5. Synthesis and crystallization

The dipeptides Gly-Met and Met-Gly were obtained commercially (Chem-impex Inter­national Inc., Wood Dale, IL, USA). A supersaturated solution of each dipeptide was prepared in a small test tube by mixing the compound with warm methanol. Approximately 100 mg of dipeptide was added to 10 ml of methanol and additional solvent was added slowly in small increments with agitation and keeping the test tube at 333 K in a water bath. The solutions were allowed to cool and left undisturbed at room temperature over two weeks for slow evaporation and crystallization to yield colorless plates of Gly-Met and large colorless needles of Met-Gly.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in difference maps and those on carbon were treated as riding in geometrically idealized positions with C—H distances = 1.00 Å for R3CH, 0.99 Å for CH2 and 0.98 Å for methyl. Uiso(H) values were assigned as 1.2Ueq for the attached C atom (1.5Ueq for meth­yl). The positions of the H atoms attached to N atoms were refined. Their Uiso values were assigned as 1.2Ueq for the NH groups and 1.5Ueq for NH3.

Table 3
Experimental details

  Gly-Met Met-Gly
Crystal data
Chemical formula C7H14N2O3S C7H14N2O3S
Mr 206.26 206.26
Crystal system, space group Monoclinic, P21 Orthorhombic, P212121
Temperature (K) 90 90
a, b, c (Å) 6.2517 (2), 5.4935 (2), 14.5686 (6) 5.2521 (3), 11.4126 (7), 16.5403 (10)
α, β, γ (°) 90, 91.147 (4), 90 90, 90, 90
V3) 500.24 (3) 991.43 (10)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.30 0.31
Crystal size (mm) 0.38 × 0.29 × 0.03 0.25 × 0.24 × 0.17
 
Data collection
Diffractometer Bruker Kappa APEXII DUO CCD Bruker Kappa APEXII DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.836, 0.991 0.872, 0.950
No. of measured, independent and observed [I > 2σ(I)] reflections 11393, 5922, 5356 33593, 6231, 5939
Rint 0.026 0.030
(sin θ/λ)max−1) 0.909 0.909
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.079, 1.04 0.023, 0.061, 1.06
No. of reflections 5922 6231
No. of parameters 131 131
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.30 0.44, −0.20
Absolute structure Flack x determined using 2141 quotients [(I+)−(I)]/[(I+)+(I)] Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 2494 quotients [(I+)−(I)]/[(I+)+(I)] Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (2) 0.011 (11)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

L-Glycyl-L-methionine (Gly-Met) top
Crystal data top
C7H14N2O3SF(000) = 220
Mr = 206.26Dx = 1.369 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.2517 (2) ÅCell parameters from 5067 reflections
b = 5.4935 (2) Åθ = 2.8–40.1°
c = 14.5686 (6) ŵ = 0.30 mm1
β = 91.147 (4)°T = 90 K
V = 500.24 (3) Å3Plate, colourless
Z = 20.38 × 0.29 × 0.03 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
5922 independent reflections
Radiation source: fine-focus sealed tube5356 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.026
φ and ω scansθmax = 40.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 911
Tmin = 0.836, Tmax = 0.991k = 99
11393 measured reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0417P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.53 e Å3
5922 reflectionsΔρmin = 0.30 e Å3
131 parametersAbsolute structure: Flack x determined using 2141 quotients [(I+)-(I-)]/[(I+)+(I-)] Parsons et al. (2013)
1 restraintAbsolute structure parameter: 0.02 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20146 (4)0.44474 (6)0.42848 (2)0.01468 (6)
O10.69310 (13)0.51962 (16)0.16278 (6)0.01361 (15)
O20.19251 (13)0.15688 (15)0.17287 (6)0.01189 (14)
O30.17853 (13)0.50896 (16)0.09597 (6)0.01188 (13)
N10.87880 (15)0.89936 (16)0.08355 (7)0.00999 (15)
H11N0.913 (3)0.757 (4)0.0948 (13)0.015*
H12N0.981 (3)0.994 (4)0.1072 (12)0.015*
H13N0.865 (3)0.912 (4)0.0257 (13)0.015*
N20.42247 (14)0.73584 (17)0.22578 (7)0.00962 (14)
H2N0.353 (3)0.863 (4)0.2171 (13)0.012*
C10.67091 (16)0.9440 (2)0.12752 (8)0.01317 (16)
H1D0.5632790.9950800.0806090.016*
H1E0.6863421.0762540.1733290.016*
C20.59716 (16)0.71258 (19)0.17425 (7)0.00938 (15)
C30.30874 (16)0.51654 (19)0.25172 (7)0.00890 (15)
H30.4102960.4060100.2853990.011*
C40.22080 (16)0.38311 (18)0.16587 (7)0.00835 (15)
C50.12523 (18)0.5846 (2)0.31603 (8)0.01112 (17)
H5A0.1843070.6755500.3694480.013*
H5B0.0230820.6925580.2829030.013*
C60.00678 (19)0.3600 (2)0.34991 (8)0.01315 (18)
H6A0.1093330.2490240.3813090.016*
H6B0.0575070.2721650.2968220.016*
C70.3286 (2)0.1514 (2)0.43812 (9)0.0175 (2)
H7A0.3813350.0989190.3774880.026*
H7B0.4487520.1632810.4800640.026*
H7C0.2247430.0324880.4620530.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01416 (11)0.01407 (11)0.01605 (12)0.00108 (10)0.00637 (8)0.00091 (10)
O10.0117 (3)0.0077 (3)0.0216 (4)0.0011 (3)0.0036 (3)0.0016 (3)
O20.0114 (3)0.0072 (3)0.0170 (4)0.0006 (2)0.0009 (3)0.0006 (3)
O30.0144 (3)0.0112 (3)0.0100 (3)0.0016 (3)0.0009 (2)0.0005 (3)
N10.0094 (3)0.0088 (4)0.0118 (4)0.0009 (3)0.0007 (3)0.0011 (3)
N20.0087 (3)0.0068 (3)0.0133 (4)0.0008 (3)0.0007 (3)0.0006 (3)
C10.0119 (4)0.0079 (3)0.0199 (4)0.0005 (4)0.0050 (3)0.0024 (4)
C20.0085 (4)0.0074 (3)0.0121 (4)0.0012 (3)0.0009 (3)0.0003 (3)
C30.0086 (3)0.0077 (3)0.0104 (4)0.0009 (3)0.0001 (3)0.0014 (3)
C40.0068 (3)0.0076 (3)0.0107 (4)0.0006 (3)0.0011 (3)0.0006 (3)
C50.0121 (4)0.0104 (4)0.0110 (4)0.0013 (3)0.0021 (3)0.0007 (3)
C60.0141 (4)0.0113 (4)0.0142 (4)0.0011 (3)0.0054 (3)0.0003 (3)
C70.0147 (5)0.0183 (5)0.0194 (5)0.0046 (4)0.0030 (4)0.0025 (4)
Geometric parameters (Å, º) top
S1—C71.8037 (13)C1—H1D0.9900
S1—C61.8114 (11)C1—H1E0.9900
O1—C21.2310 (13)C3—C41.5415 (15)
O2—C41.2598 (13)C3—C51.5417 (15)
O3—C41.2546 (13)C3—H31.0000
N1—C11.4809 (14)C5—C61.5262 (16)
N1—H11N0.83 (2)C5—H5A0.9900
N1—H12N0.886 (19)C5—H5B0.9900
N1—H13N0.849 (19)C6—H6A0.9900
N2—C21.3437 (14)C6—H6B0.9900
N2—C31.4527 (14)C7—H7A0.9800
N2—H2N0.832 (19)C7—H7B0.9800
C1—C21.5181 (16)C7—H7C0.9800
C7—S1—C698.22 (6)C4—C3—H3108.8
C1—N1—H11N107.2 (13)C5—C3—H3108.8
C1—N1—H12N111.5 (12)O3—C4—O2125.57 (10)
H11N—N1—H12N107.1 (19)O3—C4—C3117.55 (9)
C1—N1—H13N110.1 (12)O2—C4—C3116.86 (9)
H11N—N1—H13N107.3 (19)C6—C5—C3111.85 (9)
H12N—N1—H13N113.3 (18)C6—C5—H5A109.2
C2—N2—C3118.29 (9)C3—C5—H5A109.2
C2—N2—H2N115.1 (13)C6—C5—H5B109.2
C3—N2—H2N118.5 (13)C3—C5—H5B109.2
N1—C1—C2109.41 (9)H5A—C5—H5B107.9
N1—C1—H1D109.8C5—C6—S1110.86 (8)
C2—C1—H1D109.8C5—C6—H6A109.5
N1—C1—H1E109.8S1—C6—H6A109.5
C2—C1—H1E109.8C5—C6—H6B109.5
H1D—C1—H1E108.2S1—C6—H6B109.5
O1—C2—N2124.15 (10)H6A—C6—H6B108.1
O1—C2—C1120.47 (9)S1—C7—H7A109.5
N2—C2—C1115.37 (9)S1—C7—H7B109.5
N2—C3—C4110.59 (8)H7A—C7—H7B109.5
N2—C3—C5109.33 (9)S1—C7—H7C109.5
C4—C3—C5110.53 (8)H7A—C7—H7C109.5
N2—C3—H3108.8H7B—C7—H7C109.5
C3—N2—C2—O115.40 (16)C5—C3—C4—O393.47 (11)
C3—N2—C2—C1163.44 (9)N2—C3—C4—O2153.99 (9)
N1—C1—C2—O18.46 (15)C5—C3—C4—O284.80 (11)
N1—C1—C2—N2172.66 (9)N2—C3—C5—C6176.94 (9)
C2—N2—C3—C462.19 (12)C4—C3—C5—C661.10 (12)
C2—N2—C3—C5175.89 (9)C3—C5—C6—S1177.94 (8)
N2—C3—C4—O327.75 (13)C7—S1—C6—C5171.26 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O3i0.83 (2)2.15 (2)2.8513 (13)143.0 (18)
N1—H11N···O10.83 (2)2.15 (2)2.6619 (13)120.1 (16)
N1—H12N···O2ii0.886 (19)1.850 (19)2.7275 (12)170.7 (18)
N1—H13N···O3iii0.849 (19)1.86 (2)2.7006 (13)168 (2)
N2—H2N···O2iv0.832 (19)2.000 (19)2.8225 (12)170.0 (18)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z; (iv) x, y+1, z.
L-Methionyl-L-glycine (Met-Gly) top
Crystal data top
C7H14N2O3SDx = 1.382 Mg m3
Mr = 206.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9827 reflections
a = 5.2521 (3) Åθ = 3.0–40.2°
b = 11.4126 (7) ŵ = 0.31 mm1
c = 16.5403 (10) ÅT = 90 K
V = 991.43 (10) Å3Needle fragment, colourless
Z = 40.25 × 0.24 × 0.17 mm
F(000) = 440
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
6231 independent reflections
Radiation source: fine-focus sealed tube5939 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.030
φ and ω scansθmax = 40.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 89
Tmin = 0.872, Tmax = 0.950k = 2020
33593 measured reflectionsl = 3030
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.0451P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.44 e Å3
6231 reflectionsΔρmin = 0.20 e Å3
131 parametersAbsolute structure: Flack x determined using 2494 quotients [(I+)-(I-)]/[(I+)+(I-)] Parsons et al. (2013)
0 restraintsAbsolute structure parameter: 0.011 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29353 (4)0.65791 (2)0.59184 (2)0.01687 (4)
O10.56607 (10)0.47315 (6)0.32954 (3)0.01617 (10)
O20.07675 (10)0.65590 (6)0.16589 (4)0.01625 (10)
O30.24892 (10)0.71309 (4)0.08834 (3)0.01128 (8)
N10.29316 (11)0.32887 (5)0.42498 (3)0.00925 (8)
H11N0.230 (3)0.2667 (12)0.4002 (8)0.014*
H12N0.280 (3)0.3155 (11)0.4782 (8)0.014*
H13N0.461 (3)0.3287 (11)0.4122 (7)0.014*
N20.21065 (12)0.55612 (5)0.27617 (3)0.01213 (9)
H2N0.044 (3)0.5631 (11)0.2749 (8)0.015*
C10.37117 (14)0.56727 (6)0.50511 (4)0.01293 (10)
H1D0.4712360.6132180.4655190.016*
H1E0.4750360.4994020.5224920.016*
C20.12412 (13)0.52445 (6)0.46605 (4)0.01108 (9)
H2A0.0289030.5930140.4453080.013*
H2B0.0178120.4864940.5079710.013*
C30.16563 (12)0.43738 (5)0.39633 (3)0.00966 (9)
H30.0033670.4162450.3726060.012*
C40.33345 (12)0.48982 (6)0.32997 (4)0.01035 (9)
C50.34421 (13)0.61524 (6)0.21120 (4)0.01259 (10)
H5A0.4594620.5592600.1837930.015*
H5B0.4489800.6795430.2337240.015*
C60.15608 (12)0.66476 (6)0.15042 (3)0.00962 (9)
C70.59992 (18)0.66260 (8)0.64043 (6)0.02365 (16)
H7A0.6624810.5825650.6485610.035*
H7B0.5841320.7018840.6928820.035*
H7C0.7199970.7059150.6063240.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01555 (8)0.01596 (7)0.01911 (8)0.00057 (6)0.00040 (6)0.00632 (6)
O10.00866 (19)0.0242 (2)0.0157 (2)0.00274 (18)0.00070 (17)0.00795 (19)
O20.00915 (19)0.0230 (2)0.0166 (2)0.00048 (18)0.00041 (16)0.01047 (19)
O30.0129 (2)0.01408 (18)0.00689 (15)0.00366 (14)0.00063 (14)0.00177 (14)
N10.00953 (18)0.01015 (17)0.00807 (17)0.00097 (16)0.00063 (15)0.00075 (14)
N20.0095 (2)0.0172 (2)0.00969 (19)0.00194 (19)0.00069 (17)0.00605 (17)
C10.0123 (2)0.0118 (2)0.0147 (2)0.0001 (2)0.0012 (2)0.00119 (19)
C20.0104 (2)0.0112 (2)0.0117 (2)0.00167 (18)0.00146 (18)0.00075 (18)
C30.0085 (2)0.0115 (2)0.0090 (2)0.00079 (17)0.00053 (16)0.00217 (16)
C40.0096 (2)0.0131 (2)0.00842 (19)0.00101 (18)0.00038 (17)0.00254 (17)
C50.0094 (2)0.0181 (3)0.0103 (2)0.0009 (2)0.00068 (18)0.00519 (19)
C60.0102 (2)0.0109 (2)0.00774 (19)0.00110 (18)0.00008 (16)0.00155 (17)
C70.0228 (4)0.0199 (3)0.0283 (4)0.0025 (3)0.0075 (3)0.0061 (3)
Geometric parameters (Å, º) top
S1—C71.7995 (9)C1—H1D0.9900
S1—C11.8150 (7)C1—H1E0.9900
O1—C41.2365 (8)C2—C31.5379 (9)
O2—C61.2534 (9)C2—H2A0.9900
O3—C61.2635 (8)C2—H2B0.9900
N1—C31.4855 (8)C3—C41.5297 (9)
N1—H11N0.885 (14)C3—H31.0000
N1—H12N0.896 (13)C5—C61.5186 (9)
N1—H13N0.907 (14)C5—H5A0.9900
N2—C41.3342 (8)C5—H5B0.9900
N2—C51.4499 (9)C7—H7A0.9800
N2—H2N0.879 (15)C7—H7B0.9800
C1—C21.5296 (10)C7—H7C0.9800
C7—S1—C199.74 (4)N1—C3—C2111.31 (5)
C3—N1—H11N110.5 (9)C4—C3—C2111.53 (5)
C3—N1—H12N114.9 (8)N1—C3—H3108.9
H11N—N1—H12N106.8 (12)C4—C3—H3108.9
C3—N1—H13N111.5 (8)C2—C3—H3108.9
H11N—N1—H13N105.0 (12)O1—C4—N2124.13 (6)
H12N—N1—H13N107.6 (12)O1—C4—C3120.88 (6)
C4—N2—C5121.62 (6)N2—C4—C3114.95 (6)
C4—N2—H2N123.3 (8)N2—C5—C6110.43 (6)
C5—N2—H2N115.0 (8)N2—C5—H5A109.6
C2—C1—S1108.98 (5)C6—C5—H5A109.6
C2—C1—H1D109.9N2—C5—H5B109.6
S1—C1—H1D109.9C6—C5—H5B109.6
C2—C1—H1E109.9H5A—C5—H5B108.1
S1—C1—H1E109.9O2—C6—O3125.28 (6)
H1D—C1—H1E108.3O2—C6—C5118.01 (5)
C1—C2—C3113.76 (6)O3—C6—C5116.70 (6)
C1—C2—H2A108.8S1—C7—H7A109.5
C3—C2—H2A108.8S1—C7—H7B109.5
C1—C2—H2B108.8H7A—C7—H7B109.5
C3—C2—H2B108.8S1—C7—H7C109.5
H2A—C2—H2B107.7H7A—C7—H7C109.5
N1—C3—C4107.17 (5)H7B—C7—H7C109.5
C7—S1—C1—C2165.35 (5)C2—C3—C4—O193.98 (8)
S1—C1—C2—C3174.71 (4)N1—C3—C4—N2154.05 (6)
C1—C2—C3—N162.23 (7)C2—C3—C4—N283.89 (7)
C1—C2—C3—C457.41 (7)C4—N2—C5—C6169.26 (6)
C5—N2—C4—O10.09 (11)N2—C5—C6—O24.52 (9)
C5—N2—C4—C3177.89 (6)N2—C5—C6—O3176.26 (6)
N1—C3—C4—O128.08 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O2i0.885 (14)1.854 (14)2.7290 (8)169.5 (13)
N1—H11N···O3i0.885 (14)2.593 (15)3.1465 (8)121.4 (11)
N1—H12N···O3ii0.896 (13)1.857 (13)2.7531 (7)179.6 (14)
N1—H13N···O3iii0.907 (14)2.015 (14)2.7529 (8)137.5 (11)
N1—H13N···O10.907 (14)2.211 (13)2.6940 (8)112.7 (10)
N2—H2N···O20.879 (15)2.185 (13)2.6273 (8)110.6 (10)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

SB is currently affiliated with the MED Institute and MOC is currently affiliated with Council for Higher Education Accreditation.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Biological Sciences (award No. HRD-1238828 to M.O. Claville; award No. CHE-1230357 to M.O. Claville); Louisiana Board of Regents (award No. LEQSF (1999–2000)-ENH-TR-13 to F. R. Fronczek).

References

First citationBobrowski, K. & Holcman, J. (1989). J. Phys. Chem. 93, 6381–6387.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGörbitz, C. H. (2000). Acta Cryst. C56, e64–e65.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. (2003). Acta Cryst. C59, o730–o732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H., Bruvoll, M., Dizdarevic, S., Fimland, N., Hafizovic, J., Kalfjøs, H. T., Krivokapic, A. & Vestli, K. (2006). Acta Cryst. C62, o22–o25.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJha, K. K., Gruza, B., Kumar, P., Chodkiewicz, M. L. & Dominiak, P. M. (2020). Acta Cryst. B76, 296–306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLau, J. K. C., Lo, S., Zhao, J., Siu, K. M. & Hopkinson, A. C. (2013). J. Am. Soc. Mass Spectrom. 24, 543–553.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPadmanabhan, V. M. & Yadava, V. S. (1983). Curr. Sci. 52, 904–906.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPedzinski, T., Markiewicz, A. & Marciniak, B. (2009). Res. Chem. Intermed. 35, 497–506.  Web of Science CrossRef CAS Google Scholar
First citationSchöneich, C. (2005). BBA-Proteins Proteom., 1703, 111–119.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStadtman, E. R., Van Remmen, H., Richardson, A., Wehr, N. B. & Levine, R. L. (2005). BBA-Proteins Proteom.,1703, 135–140.  Google Scholar
First citationStenkamp, R. E. & Jensen, L. H. (1975). Acta Cryst. B31, 857–861.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationVogt, W. (1995). Free Radic. Biol. Med. 18, 93–105.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds