research communications
The crystal structures determination and Hirshfeld surface analysis of N-(4-bromo-3-methoxyphenyl)- and N-{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}- derivatives of N-{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide
aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India
*Correspondence e-mail: mnizam.new@gmail.com
Two new phenylsulfonylindole derivatives, namely, N-{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}-N-(4-bromo-3-methoxyphenyl)benzenesulfonamide, C28H22Br2N2O5S2, (I), and N,N-bis{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide, C36H27Br2N3O6S3, (II), reveal the impact of intramolecular π–π interactions of the indole moieties as a factor not only governing the conformation of N,N-bis(1H-indol-2-yl)methyl)amines, but also significantly influencing the crystal patterns. For I, the crystal packing is dominated by C—H⋯π and π–π bonding, with a particular significance of mutual indole–indole interactions. In the case of II, the molecules adopt short intramolecular π–π interactions between two nearly parallel indole ring systems [with the centroids of their pyrrole rings separated by 3.267 (2) Å] accompanied by a set of forced Br⋯O contacts. This provides suppression of similar interactions between the molecules, while the importance of weak C—H⋯O hydrogen bonding to the packing naturally increases. Short contacts of the latter type [C⋯O = 3.389 (6) Å] assemble pairs of molecules into centrosymmetric dimers with a cyclic R22(13) ring motif. These findings are consistent with the results of a Hirshfeld surface analysis and together they suggest a tool for modulating the supramolecular behavior of phenylsulfonylated indoles.
1. Chemical context
Sulfonamide derivatives found applications in modern medicine to control diseases caused by bacterial infections (Brown, 1971; Zhao et al., 2016). These species have been famous as sulfa drugs for over 70 years since the discovery of their activity. They are still used as antibiotics (Gulcin & Taslimi, 2018), in spite of the later introduction of penicillin. In particular, numerous formulations based on have repeatedly been used as chemotherapeutics for their antibacterial (Ovung & Bhattacharyya, 2021; Badr, 2008), antifungal (Hanafy et al., 2007) and hypoglycemic properties (Chohan et al., 2010; El-Sayed et al., 2011). Among drugs of other types, also display appreciable antitumor, anticancer, and antithyroid activities (Scozzafava et al., 2003). Some sulfonamide products also possess carbonic anhydrases (CA) inhibition properties (Suparan et al., 2001). The production of new compounds with noteworthy biological activity, which are suited as antiviral and antimicrobial agents, drives interest in synthetic approaches for sulfonamide-functionalized heterocyclic ring systems (Azzam et al., 2020). Identifying the significance of such compounds for biochemical uses and drug discovery, and our continuing study of the development of indole products have prompted us to examine a series of corresponding N-sulfonyl- and bromo-substituted species. The need for deeper functionalization of the systems by introducing bromine substitutes is motivated by the fact that the presence of halogen atoms in molecules commonly enhances various biological activities and thus halogenation may be recognized as an essential tool for drug optimization (Murphy et al., 2003). For example, the occurrence of bromine atoms on a phenol ring is important for improved antimicrobial activity (Bouthenet et al., 2011). Structural trends in such compounds, including subtle features of their intermolecular interactions, could be applicable to the specific targeting of the substrates in biomedical systems and therefore they may provide new insights into the action of sulfonamide derivatives. In particular, Adsmond & Grant (2001) categorized the hydrogen-bonding preferences of The availability of multiple aromatic groups in N-sulfonylated indoles imposes also possibility for versatile stacking patterns, which may be competitive to conventional hydrogen bonding. We report herein the crystal-structure determination and Hirshfeld surface analysis of two new indoles: namely, N-{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}-N-(4-bromo-3-methoxyphenyl)benzenesulfonamide, C28H22Br2N2O5S2, (I), and N,N-bis{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide, C36H27Br2N3O6S3, (II), which feature a complex interplay of weak hydrogen-bonding and π–π interactions.
2. Structural commentary
The molecular structures of the title compounds, which differ in substituents at the phenylsulfonylated exocyclic N2 atoms (N-(4-bromo-3-methoxyphenyl) for I and N-{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl} for II), are illustrated in Figs. 1 and 2, respectively. In both the cases, the indole ring systems (N1/C1–C8 and N3/C23–C30) are essentially planar, with a maximum deviation from the corresponding mean planes of 0.039 (4) Å observed for C8 atom in II. The torsion angles involving the sulfonamide fragments, O2—S1—N1—C1 [−152.6 (3) for I and −175.2 (3)° for II], O3—S2—C16—C17 [−153.9 (3) for I and −146.4 (3)° for II] and O5—S3—N3—C23 [−178.7 (3)° for II] indicate an anti-periplanar conformation of the sulfonyl moiety. The dihedral angle between sulfonyl-bound phenyl rings (C9–C14) and the carrier indole ring systems (N1/C1–C8) are 62.0 (2)° for I and 70.9 (2)° for II, unlike the orthogonal orientation of these groups in previously reported N-phenylsulfonyl indoles (Madhan et al., 2022, 2023a,b, 2024a,b). In I, the dihedral angle between two sulfonyl-bound phenyl rings (C9–C14 and C16–C21) is 59.0 (2)°, while in II they are nearly orthogonal [86.5 (2)°]. The methoxy-bound phenyl ring (C22–C27) in I is also inclined to the indole framework, subtending a dihedral angle of 73.23 (1)°.
The geometric parameters of I and II agree well with those reported for related structures (Madhan et al., 2022, 2023a,b, 2024a,b). The sulfonamide S atoms exhibit a distorted tetrahedral geometry with the O—S—O angles lying in the range of 119.9 (2)–120.3 (2)°. The increase in these angles, accompanied by a simultaneous decrease in the N—S—C angles [which are 104.3 (2)–106.1 (2)°], from the ideal tetrahedral values are attributed to the Thorpe–Ingold effect (Bassindale, 1984). The widening of the angles may be due to the repulsive interaction between the two short S=O bonds. In both compounds, the expansion of the ipso angles at atoms C1, C3, C4 (and C25, C27, C28 in II), together with the contraction of the apical angles at atoms C2, C5, C6 (and C26, C29, C30 in II) are caused by fusion of the smaller pyrrole ring with the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortion (Allen, 1981).
The molecular conformation of compound I is stabilized by the weak intramolecular hydrogen bond C2—H2⋯O1 [C2⋯O1 = 2.908 (5) Å] formed by the sulfone O atoms, which generates an S(6) ring motif. The similar interaction in compound II [C2⋯O1 = 2.993 (7) Å] is accompanied by three additional intramolecular hydrogen bonds involving methylene donors and sulfone acceptors [C15⋯O2 = 2.850 (5) Å, C22⋯O6 = 2.950 (5) Å and C29⋯O5= 2.907 (5) Å], which generate S(6) ring motifs.
The most striking feature of the molecular structures is the specific conformation of II, which is controlled by an intramolecular π–π interaction between the two indole ring systems (Fig. 2). Their planes are almost parallel, while adopting a small angle of 7.2 (2)°. Two pyrrole and two benzene rings are situated one on the top of another, with the corresponding intercentroid distances being 3.267 (5) and 3.593 (5) Å, respectively, and with the shortest contact of 3.035 (5) Å observed between atoms C8 and C23. A similar intramolecular pairing of aromatic rings separated by flexible triatomic spacers is relevant for the appropriate model of dibenzylketone (Lima et al., 2010). For the latter, the stacked conformation was associated with a relatively small stabilizing enthalpic effect of about 12.9 kJ mol−1 and therefore the did not inherit the intramolecular stacking observed for the gas phase and solution structures. In contrary, the energetics of the intramolecular indole–indole interaction could be estimated to be far superior (up to 50–60 kJ mol−1; Madhan et al., 2024a) due to the significantly larger interaction areas and higher contribution of London dispersion forces. The impact of the resulting intramolecular stacking on the sulfonylindole geometry is visible from the inspection of configuration around sulfonyl N atoms. The sum of the bond angles around N1 in I [359.5 (2)°] indicates sp2 (Beddoes et al., 1986). However, in the case of II, two such parameters are essentially smaller [346.6 (2)° and 349.9 (2)°, for N1 and N3, respectively] and therefore these indole N atoms are pyramidalized to almost the same extent as the exocyclic sulfonamide N2 atoms [347.8 (2)° in I and 342.2 (2)° in II]. The configuration for the latter is typical for which lack π-bonding between the N and S atoms (Blahun et al., 2020). The perceptible pyramidalization of the indole N atoms may be viewed as a consequence of the imposed by close contacts between the Br and O atoms of two stacked indole systems [the shortest contact is Br2⋯O6 = 3.592 (4) Å]. At the same time, as a result of the electron-withdrawing character of the phenylsulfonyl group, the indole N—Csp2 bond lengths [N1—C1 = 1.415 (4) and N1—C8 = 1.427 (4) Å in I; 1.427 (5)–1.430 (4)Å in II] are longer than the mean value of 1.355 (14) A° for this bond (Allen et al., 1987; Cambridge Structural Database (CSD), Version 5.37; Groom et al., 2016).
3. Supramolecular features
With the absence of conventional hydrogen-bond donor functionality, the supramolecular patterns of both compounds are controlled by weaker interactions, namely by weak C—H⋯O, C—H⋯Br and C—H⋯π hydrogen bonds (Tables 1 and 2) and slipped π–π stacking interactions (Table 3). In the case of I, the latter is prevalent. Antiparallel stacking of two inversion-related indole ring systems [symmetry code: (iii) −x + 1, −y + 1, −z + 1) assemble the molecules into dimers, which are connected into chains along the b-axis direction by means of π–π interactions between inversion-related phenyl rings [symmetry code: (iv) −x + 1, −y + 2, −z + 1] (Fig. 3). For the indole–indole interaction, the corresponding intercentroid distances of 3.532 (2) Å and shortest contacts, down to 3.456 (2) Å (Table 3), are consistent well with those for π–π interactions seen in the crystal structures of similar 1-(phenylsulfonyl)-1H-indole derivatives (Madhan et al., 2024a). Further connection of the chains by C—H⋯π hydrogen bonds yields corrugated layers parallel to the ab plane. Two such C—H⋯π interactions actualize above and below the indole-indole stacks and they are bifurcated, involving both benzo- and pyrrole rings as the acceptors. The corresponding separations are C18⋯Cg(N1/C1/C6–C8)ii = 3.861 (8) Å and C18⋯Cg(C1–C6)ii = 3.579 (1) Å [symmetry code: (ii) x − 1, y, z). The only C—H⋯O bond in the structure [C11⋯O4i = 3.503 (6)Å; symmetry code: (i) x + 1, y, z] is also identified withing this layer.
|
|
One can note that in I, and also in other comparable 1-(phenylsulfonyl)-1H-indoles (Madhan et al., 2024a), the favorable π–π bonded duo is generated due to the interactions at only one axial side of the indole ring system. Therefore, in the case of II, the intermolecular π–π interactions of the latter are completely suppressed due to the generation of the intramolecular indole–indole stack. This is in line with the increased significance of C—H⋯O interactions in the crystal of II. The shortest hydrogen-bond contacts are observed for sulfonic O-atom acceptors [C27⋯O1iv = 3.389 (6) Å; symmetry code: (iv) −x + 1, −y + 1, −z + 1]. These bonds assemble pairs of the molecules into centrosymmetric dimers (Fig. 4) with a cyclic R22(13) (Bernstein et al., 1995) ring motif. The dimers are further integrated into a three-dimensional framework. The amino-bound phenylsulfonyl groups are held together by a set of C—H⋯O bonds [viz. C18⋯O3ii = 3.575 (6) and C19⋯O4iii = 3.443 (6) Å; symmetry codes: (ii) x + 1, y, z; (iii) x + , −y + , z − ] and constitute their own layer connectivities in the form of flat square nets, which are parallel to the ac plane (Fig. 4b). These layers are separated by 17.39 Å, which is half of the b-axis parameter of the and are linked via bis(indolemethyl)amine fragments of the above dimers (Fig. 4b). These bis(indolemethyl)amine fragments themselves afford nominal layers with a set of weak intermolecular interactions, such as C—H⋯O bonds [C34⋯O5ii = 3.360 (6) Å; symmetry code: (ii) x + 1, y, z] and relatively distal π–π interactions between the outer phenyl rings, with an intercentroid distance of 3.952 (3) Å (Fig. 4c).
4. Hirshfeld surface analysis
In order to investigate the weak intermolecular interactions in the crystal, the Hirshfeld surfaces (dnorm, curvedness and shape-index) and 2D fingerprint plots were generated using Crystal Explorer 17.5 (Spackman et al., 2021). The dnorm mapping uses the normalized functions of di and de (Fig. 5), with white surfaces indicating contacts with distances equal to the sum of van der Waals (vdW) radii, while red and blue colors reflect contacts at the distances below and above sum of the corresponding vdW radii, respectively.
The Hirshfeld surfaces for two compounds mapped over dnorm using a fixed color scale of −0.125 (red) to 1.678 a.u. (blue) for I and −0.198 (red) to 1.491 a.u. (blue) for II are shown in Fig. 5. One can note weakness of intermolecular bonding in a system that is, particularly the case of I, showing preferably normal van der Waals separations (denoted with several white regions on the surface). The only identified pair of diffuse red spots corresponds to C—H⋯O bonds. In the case of II, the observed low intense and diffuse red spots are slightly larger in number, which supports the increased significance of weak hydrogen-bonding interactions. The electrostatic potential was also mapped on the Hirshfeld surface using a STO-3G basis set and the Hartree–Fock level of theory (Spackman & Jayatilaka, 2009). The C—H⋯O hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative electrostatic potentials, respectively (Fig. 6a). The presence of π–π stacking interactions is indicated by red and blue triangles on the shape-index surface (Fig. 6b). Areas on the Hirshfeld surface with high curvedness tend to divide the surface into contact patches with each neighboring molecule. The in the crystal is defined by the curvedness of the Hirshfeld surface (Fig. 6c). The nearest neighbor in the coordination environment of a molecule is identified from the color patches on the Hirshfeld surface depending on their closeness to adjacent molecules (Fig. 6d).
Two-dimensional fingerprint plots showing the occurrence of all intermolecular contacts (McKinnon et al., 2007) are presented in Fig. 7. The plots for H⋯H contacts (Fig. 7b), which represent the largest contributions to the Hirshfeld surfaces (over 30%), show a distinct pattern with a minimum value of de = di = 1.1 Å. Beyond these largest fractions, the short contacts are overwhelmingly O⋯H/H⋯O (Fig. 7c) and C⋯H/H⋯C (Fig. 7d), which deliver as much as 19.9 and 19.2%, respectively, to the Hirshfeld surface in I and 27.2 and 16.2% in II. The significant increase in the O⋯H/H⋯O contributions when moving from I to II reflects the growing significance of C—H⋯O binding. This is in line with a larger number of the available O-atom acceptors in the latter case, but also it is a consequence of the elimination of intermolecular π–π indole bonding. Accordingly, the pair of spikes identifying O⋯H/H⋯O contacts on the plots is more diffuse in the case of I. We note also a suppression of Br⋯H/H⋯Br contacts (6.9% for II versus 13.6% for I). This fact does not provide a basis for comparison of the acceptor abilities of the indole- and phenyl-bound Br atoms, but rather reflects the steric unavailability of Br in II due to the forced intramolecular interactions with sulfonyl O atoms. It is worth mentioning that the accumulation of unfavorable Br⋯O contacts within the molecule of II causes the elimination of such contacts between the molecules. This situation is evidenced by markedly different contributions of Br⋯O/O⋯Br contacts to the surface areas, which are 5.1% for I, but are completely absent in the case of II. An overlap between nearly parallel aromatic frames, due to the slipped π–π interactions, is clearly indicated by the C⋯C plots in the form of blue–green areas centered at ca de = di = 1.8 Å. A 50% decrease in the C⋯C contacts (2.4% for II versus 4.8% for I) is also a consequence of intramolecular indole–indole stacking, which mitigates against similar in nature intermolecular interactions.
In brief, the Hirshfeld surface analysis confirms the importance of weak hydrogen bonding and contacts associated with the π–π interactions in establishing the packing. These results complement the main merit of the structure analysis and in total they suggest the possibility of controling the supramolecular behavior of sulfonylated indoles as possible biomedical materials.
5. Database survey
A search of the Cambridge Structural Database (Version 5.37; Groom et al., 2016) indicated 123 compounds incorporating the phenylsulfonyl-1H-indole moiety. Of these, the most closely related examples are provided by structures of bromosubstituted 3-methyl-1-(phenylsulfonyl)-1H-indole derivatives (JOMJII, JOMJAA and JOMJEE; Madhan et al., 2024b), ethyl 2-acetoxymethyl-1-phenylsulfonyl-1H-indole-3-carboxylate (HUCQUS; Gunasekaran et al., 2009), 3-iodo-2-methyl-1-phenylsulfonyl-1H-indole (ULESEK; Ramathilagam et al., 2011) and 1-(2-bromomethyl-1-phenylsulfonyl-1H-indol-3-yl) propan-1-one (CIQFEP; Umadevi et al., 2013). In these structures, the sulfonyl-bound phenyl rings are almost orthogonal to the indole ring systems, with the corresponding dihedral angles lying in the range 73.35 (7)–89.91 (11)°.
6. Synthesis and crystallization
Compound I: To a solution of N-(3-methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (0.45 g, 0.845 mmol) in 5 ml of dry CH2Cl2, a mixture of phenyliodonium diacetate (0.40 g, 1.268 mmol) and CuBr2 (0.56 g, 2.537 mmol) in 10 ml of CH2Cl2 was slowly added at 273 K. The reaction mixture was allowed to stir for 3 h at 273 K under an N2 atmosphere. After completion of the reaction (monitored by TLC), it was poured over cooled saturated aqueous NaHCO3 solution (20 mL) and then extracted with CH2Cl2 (2 × 10 mL). The extract was dried over Na2SO4. Removal of the solvent followed by recrystallization of the crude product from 5 mL of methanol afforded N-{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}-N-(4-bromo-3-methoxyphenyl)benzenesulfonamide (0.45 g, 78%) as a colorless solid, m.p. = 495–496 K. 1H NMR (300 MHz, CDCl3), δ, p.p.m.: 7.96 (d, J = 8.4 Hz, 1H), 7.69–7.64 (m, 4H), 7.57–7.34 (m, 6H), 7.29–7.24 (m, 2H), 7.20–7.11 (m, 2H), 6.36 (s, 1H), 6.25 (d, J = 8.4 Hz, 1H), 5.28 (s, 2H), 3.49 (s, 3H). 13C{1H} NMR (75 MHz, CDCl3), δ, p.p.m.: 155.4, 138.0, 137.9, 137.4, 136.3, 134.2, 133.1, 132.6, 130.2, 129.4, 128.8, 128.4, 128.2, 126.8, 126.6, 124.5, 122.7, 120.1, 115.2, 113.6, 111.7, 107.7, 56.1, 45.8. DEPT-135 13C NMR (CDCl3), δ, p.p.m.: 134.2, 133.1, 132.6, 129.4, 128.9, 128.2, 126.8, 126.6, 124.5, 122.7, 120.2, 115.2, 113.6, 56.1, 45.8. HRMS (ESI) m/z: [M+H]+ Calculated for C28H2379Br2N2O5S2: 688.9415; found: 688.9407.
Compound II: To a solution of N,N-bis{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (0.25 g, 0.359 mmol) in 5 ml of dry CH2Cl2, a mixture of phenyliodonium diacetate (0.23 g, 0.719 mmol) and CuBr2 (0.24 g, 1.079 mmol) in 10 ml of CH2Cl2 was slowly added at 273 K. The reaction mixture was allowed to stir for 3 h at 273 K under an N2 atmosphere. After completion of the reaction (monitored by TLC), it was poured over cooled saturated aqueous NaHCO3 solution (20 mL) and then extracted with CH2Cl2 (2 × 10 mL). The extract was dried over Na2SO4. Removal of the solvent followed by recrystallization of the crude product from 5 ml of methanol afforded N,N-bis{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (0.15 g, 60%) as a colorless solid, m.p. = 529–531 K. 1H NMR (300 MHz, CDCl3), δ, p.p.m.: 7.93 (d, J = 8.1 Hz, 2H), 7.77 (d, J = 7.5 Hz, 2H), 7.52–7.45 (m, 6H), 7.38–7.19 (m, 13H), 7.14–7.09 (m, 2H), 5.14 (s, 4H). 13C{1H} NMR (75 MHz, CDCl3), δ, p.p.m.: 138.9, 137.4, 136.6, 133.9, 131.9, 129.5, 129.2, 128.0, 127.5, 126.6, 126.3, 124.6, 120.0, 115.7, 109.2, 45.0.
7. Refinement
Crystal data, data collection and structure . All hydrogen atoms were positioned geometrically and refined as riding with C—H = 0.93 Å (aromatic CH), 0.97 Å (CH2) and 0.96 Å (CH3) and 0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) for other H atoms.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989024009587/nu2007sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009587/nu2007Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989024009587/nu2007IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024009587/nu2007Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989024009587/nu2007IIsup5.cml
C28H22Br2N2O5S2 | F(000) = 1384 |
Mr = 690.41 | Dx = 1.660 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.5718 (6) Å | Cell parameters from 90697 reflections |
b = 14.4498 (8) Å | θ = 1.4–25.0° |
c = 20.0041 (12) Å | µ = 3.13 mm−1 |
β = 92.874 (2)° | T = 303 K |
V = 2763.3 (3) Å3 | Block, colorless |
Z = 4 | 0.29 × 0.24 × 0.20 mm |
Bruker D8 Venture Diffractometer | 4173 reflections with I > 2σ(I) |
Radiation source: micro focus sealed tube | Rint = 0.071 |
ω and φ scans | θmax = 25.7°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.589, Tmax = 0.753 | k = −17→17 |
90697 measured reflections | l = −24→24 |
5234 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0293P)2 + 5.9561P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
5234 reflections | Δρmax = 1.74 e Å−3 |
353 parameters | Δρmin = −1.41 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5912 (4) | 0.6131 (2) | 0.46145 (17) | 0.0360 (8) | |
C2 | 0.7216 (4) | 0.6188 (3) | 0.4946 (2) | 0.0485 (9) | |
H2 | 0.746482 | 0.669420 | 0.521272 | 0.058* | |
C3 | 0.8133 (5) | 0.5462 (3) | 0.4864 (2) | 0.0581 (11) | |
H3 | 0.901819 | 0.548866 | 0.507653 | 0.070* | |
C4 | 0.7775 (5) | 0.4695 (3) | 0.4473 (2) | 0.0575 (11) | |
H4 | 0.841931 | 0.421970 | 0.443087 | 0.069* | |
C5 | 0.6482 (5) | 0.4633 (3) | 0.41506 (19) | 0.0486 (10) | |
H5 | 0.623774 | 0.411785 | 0.389142 | 0.058* | |
C6 | 0.5536 (4) | 0.5362 (2) | 0.42199 (17) | 0.0372 (8) | |
C7 | 0.4158 (4) | 0.5529 (2) | 0.39470 (17) | 0.0397 (8) | |
C8 | 0.3685 (4) | 0.6356 (2) | 0.41568 (16) | 0.0337 (7) | |
C9 | 0.5386 (4) | 0.8611 (2) | 0.46312 (18) | 0.0401 (8) | |
C10 | 0.6823 (5) | 0.8709 (3) | 0.4644 (3) | 0.0610 (12) | |
H10 | 0.740032 | 0.827279 | 0.485932 | 0.073* | |
C11 | 0.7389 (6) | 0.9465 (3) | 0.4332 (3) | 0.0775 (16) | |
H11 | 0.835512 | 0.953850 | 0.433711 | 0.093* | |
C12 | 0.6537 (6) | 1.0105 (3) | 0.4017 (2) | 0.0686 (14) | |
H12 | 0.692625 | 1.061212 | 0.380876 | 0.082* | |
C13 | 0.5117 (6) | 1.0007 (3) | 0.4006 (2) | 0.0617 (12) | |
H13 | 0.454818 | 1.044675 | 0.379011 | 0.074* | |
C14 | 0.4518 (5) | 0.9258 (3) | 0.43145 (19) | 0.0479 (9) | |
H14 | 0.355072 | 0.919091 | 0.430866 | 0.057* | |
C15 | 0.2288 (4) | 0.6783 (3) | 0.39902 (17) | 0.0374 (8) | |
H15A | 0.168446 | 0.632698 | 0.376678 | 0.045* | |
H15B | 0.186408 | 0.696104 | 0.440144 | 0.045* | |
C16 | −0.0367 (4) | 0.7764 (3) | 0.31156 (18) | 0.0404 (8) | |
C17 | −0.1273 (4) | 0.7228 (3) | 0.3466 (2) | 0.0544 (11) | |
H17 | −0.117432 | 0.718441 | 0.392956 | 0.065* | |
C18 | −0.2334 (5) | 0.6754 (3) | 0.3113 (2) | 0.0640 (12) | |
H18 | −0.296109 | 0.639804 | 0.334362 | 0.077* | |
C19 | −0.2469 (4) | 0.6806 (3) | 0.2427 (2) | 0.0564 (11) | |
H19 | −0.317930 | 0.648112 | 0.219529 | 0.068* | |
C20 | −0.1556 (4) | 0.7338 (3) | 0.2082 (2) | 0.0557 (11) | |
H20 | −0.165121 | 0.737115 | 0.161734 | 0.067* | |
C21 | −0.0501 (4) | 0.7820 (3) | 0.2420 (2) | 0.0508 (10) | |
H21 | 0.011626 | 0.818004 | 0.218646 | 0.061* | |
C22 | 0.2982 (4) | 0.7476 (2) | 0.29018 (16) | 0.0347 (8) | |
C23 | 0.2612 (4) | 0.6733 (3) | 0.24960 (19) | 0.0453 (9) | |
H23 | 0.195602 | 0.630544 | 0.263040 | 0.054* | |
C24 | 0.3227 (4) | 0.6627 (3) | 0.18851 (18) | 0.0482 (10) | |
H24 | 0.300825 | 0.611588 | 0.161749 | 0.058* | |
C25 | 0.4159 (4) | 0.7279 (3) | 0.16766 (17) | 0.0395 (8) | |
C26 | 0.4523 (4) | 0.8037 (3) | 0.20774 (18) | 0.0405 (8) | |
C27 | 0.3937 (4) | 0.8122 (3) | 0.26980 (18) | 0.0386 (8) | |
H27 | 0.418840 | 0.861639 | 0.297649 | 0.046* | |
C28 | 0.5954 (7) | 0.9366 (4) | 0.2262 (3) | 0.090 (2) | |
H28A | 0.519832 | 0.977821 | 0.235067 | 0.135* | |
H28B | 0.667708 | 0.970260 | 0.205184 | 0.135* | |
H28C | 0.632434 | 0.910622 | 0.267595 | 0.135* | |
N1 | 0.4763 (3) | 0.67482 (19) | 0.45867 (14) | 0.0344 (6) | |
N2 | 0.2386 (3) | 0.7612 (2) | 0.35510 (14) | 0.0356 (6) | |
O1 | 0.5542 (3) | 0.75110 (19) | 0.56538 (13) | 0.0516 (7) | |
O2 | 0.3206 (3) | 0.78625 (18) | 0.51436 (13) | 0.0488 (7) | |
O3 | 0.1411 (3) | 0.91308 (19) | 0.31900 (14) | 0.0516 (7) | |
O4 | 0.0678 (3) | 0.8422 (2) | 0.42399 (13) | 0.0552 (7) | |
O5 | 0.5454 (3) | 0.8642 (2) | 0.18304 (14) | 0.0589 (8) | |
S1 | 0.46528 (10) | 0.76919 (6) | 0.50760 (4) | 0.0375 (2) | |
S2 | 0.10295 (10) | 0.83326 (7) | 0.35581 (5) | 0.0412 (2) | |
Br1 | 0.50238 (5) | 0.71099 (4) | 0.08522 (2) | 0.05801 (14) | |
Br2 | 0.31588 (6) | 0.46768 (3) | 0.34009 (2) | 0.06813 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0391 (19) | 0.0333 (18) | 0.0364 (18) | 0.0038 (15) | 0.0097 (15) | 0.0063 (15) |
C2 | 0.043 (2) | 0.044 (2) | 0.059 (2) | 0.0010 (17) | 0.0015 (18) | 0.0019 (19) |
C3 | 0.044 (2) | 0.062 (3) | 0.068 (3) | 0.013 (2) | 0.003 (2) | 0.009 (2) |
C4 | 0.060 (3) | 0.052 (3) | 0.061 (3) | 0.024 (2) | 0.014 (2) | 0.009 (2) |
C5 | 0.067 (3) | 0.038 (2) | 0.042 (2) | 0.0142 (19) | 0.0155 (19) | 0.0004 (17) |
C6 | 0.048 (2) | 0.0349 (18) | 0.0295 (17) | 0.0050 (16) | 0.0095 (15) | 0.0036 (14) |
C7 | 0.054 (2) | 0.0360 (19) | 0.0289 (17) | 0.0034 (17) | 0.0023 (16) | −0.0022 (15) |
C8 | 0.042 (2) | 0.0340 (18) | 0.0251 (16) | −0.0003 (15) | 0.0038 (14) | 0.0010 (14) |
C9 | 0.050 (2) | 0.0294 (18) | 0.042 (2) | 0.0005 (16) | 0.0067 (16) | −0.0062 (15) |
C10 | 0.049 (3) | 0.038 (2) | 0.097 (4) | 0.0055 (19) | 0.016 (2) | 0.003 (2) |
C11 | 0.066 (3) | 0.054 (3) | 0.117 (5) | −0.004 (2) | 0.041 (3) | −0.002 (3) |
C12 | 0.102 (4) | 0.038 (2) | 0.068 (3) | −0.008 (3) | 0.032 (3) | −0.001 (2) |
C13 | 0.096 (4) | 0.038 (2) | 0.051 (3) | 0.004 (2) | −0.003 (2) | −0.0018 (19) |
C14 | 0.058 (2) | 0.039 (2) | 0.045 (2) | 0.0029 (18) | −0.0065 (18) | −0.0071 (17) |
C15 | 0.0388 (19) | 0.042 (2) | 0.0314 (17) | −0.0015 (16) | 0.0040 (14) | 0.0008 (15) |
C16 | 0.0337 (19) | 0.045 (2) | 0.043 (2) | 0.0061 (16) | 0.0080 (15) | 0.0088 (16) |
C17 | 0.051 (2) | 0.070 (3) | 0.044 (2) | −0.001 (2) | 0.0175 (19) | 0.011 (2) |
C18 | 0.054 (3) | 0.071 (3) | 0.069 (3) | −0.010 (2) | 0.025 (2) | 0.011 (2) |
C19 | 0.041 (2) | 0.059 (3) | 0.069 (3) | 0.000 (2) | 0.000 (2) | 0.004 (2) |
C20 | 0.053 (3) | 0.071 (3) | 0.043 (2) | −0.002 (2) | −0.0014 (19) | 0.011 (2) |
C21 | 0.046 (2) | 0.063 (3) | 0.044 (2) | −0.006 (2) | 0.0044 (18) | 0.0190 (19) |
C22 | 0.0319 (18) | 0.043 (2) | 0.0296 (17) | 0.0069 (15) | 0.0018 (14) | 0.0011 (15) |
C23 | 0.044 (2) | 0.053 (2) | 0.0390 (19) | −0.0077 (18) | 0.0043 (16) | −0.0029 (17) |
C24 | 0.050 (2) | 0.061 (3) | 0.0338 (19) | −0.004 (2) | −0.0002 (17) | −0.0115 (18) |
C25 | 0.0339 (19) | 0.057 (2) | 0.0271 (16) | 0.0076 (17) | 0.0033 (14) | −0.0004 (16) |
C26 | 0.0366 (19) | 0.045 (2) | 0.0407 (19) | 0.0022 (16) | 0.0082 (15) | 0.0017 (17) |
C27 | 0.0382 (19) | 0.0396 (19) | 0.0384 (19) | 0.0015 (16) | 0.0060 (15) | −0.0028 (15) |
C28 | 0.109 (4) | 0.078 (4) | 0.086 (4) | −0.049 (3) | 0.052 (3) | −0.028 (3) |
N1 | 0.0377 (16) | 0.0299 (14) | 0.0358 (15) | 0.0025 (12) | 0.0041 (12) | −0.0035 (12) |
N2 | 0.0369 (16) | 0.0411 (16) | 0.0291 (14) | 0.0056 (13) | 0.0047 (12) | 0.0027 (12) |
O1 | 0.0678 (19) | 0.0501 (16) | 0.0359 (14) | 0.0026 (14) | −0.0065 (13) | −0.0033 (12) |
O2 | 0.0461 (15) | 0.0508 (16) | 0.0508 (16) | 0.0035 (13) | 0.0147 (12) | −0.0137 (13) |
O3 | 0.0532 (17) | 0.0416 (15) | 0.0599 (17) | 0.0042 (13) | 0.0024 (13) | 0.0061 (13) |
O4 | 0.0559 (17) | 0.0688 (19) | 0.0412 (15) | 0.0214 (15) | 0.0073 (13) | −0.0074 (14) |
O5 | 0.068 (2) | 0.0602 (18) | 0.0507 (17) | −0.0152 (15) | 0.0275 (15) | −0.0064 (14) |
S1 | 0.0441 (5) | 0.0353 (4) | 0.0334 (4) | 0.0024 (4) | 0.0055 (4) | −0.0053 (4) |
S2 | 0.0402 (5) | 0.0451 (5) | 0.0384 (5) | 0.0088 (4) | 0.0055 (4) | 0.0014 (4) |
Br1 | 0.0547 (3) | 0.0844 (3) | 0.0358 (2) | 0.0026 (2) | 0.01070 (17) | −0.0083 (2) |
Br2 | 0.0946 (4) | 0.0496 (3) | 0.0575 (3) | 0.0103 (2) | −0.0228 (2) | −0.0210 (2) |
C1—C2 | 1.386 (5) | C16—S2 | 1.768 (4) |
C1—C6 | 1.399 (5) | C17—C18 | 1.388 (6) |
C1—N1 | 1.415 (4) | C17—H17 | 0.9300 |
C2—C3 | 1.382 (6) | C18—C19 | 1.375 (6) |
C2—H2 | 0.9300 | C18—H18 | 0.9300 |
C3—C4 | 1.388 (6) | C19—C20 | 1.375 (6) |
C3—H3 | 0.9300 | C19—H19 | 0.9300 |
C4—C5 | 1.370 (6) | C20—C21 | 1.377 (6) |
C4—H4 | 0.9300 | C20—H20 | 0.9300 |
C5—C6 | 1.400 (5) | C21—H21 | 0.9300 |
C5—H5 | 0.9300 | C22—C23 | 1.381 (5) |
C6—C7 | 1.423 (5) | C22—C27 | 1.383 (5) |
C7—C8 | 1.352 (5) | C22—N2 | 1.457 (4) |
C7—Br2 | 1.876 (4) | C23—C24 | 1.391 (5) |
C8—N1 | 1.427 (4) | C23—H23 | 0.9300 |
C8—C15 | 1.495 (5) | C24—C25 | 1.377 (5) |
C9—C10 | 1.381 (6) | C24—H24 | 0.9300 |
C9—C14 | 1.384 (5) | C25—C26 | 1.391 (5) |
C9—S1 | 1.764 (4) | C25—Br1 | 1.898 (3) |
C10—C11 | 1.382 (6) | C26—O5 | 1.358 (4) |
C10—H10 | 0.9300 | C26—C27 | 1.394 (5) |
C11—C12 | 1.367 (7) | C27—H27 | 0.9300 |
C11—H11 | 0.9300 | C28—O5 | 1.425 (6) |
C12—C13 | 1.365 (7) | C28—H28A | 0.9600 |
C12—H12 | 0.9300 | C28—H28B | 0.9600 |
C13—C14 | 1.384 (6) | C28—H28C | 0.9600 |
C13—H13 | 0.9300 | N1—S1 | 1.685 (3) |
C14—H14 | 0.9300 | N2—S2 | 1.665 (3) |
C15—N2 | 1.491 (4) | O1—S1 | 1.425 (3) |
C15—H15A | 0.9700 | O2—S1 | 1.420 (3) |
C15—H15B | 0.9700 | O3—S2 | 1.426 (3) |
C16—C17 | 1.380 (5) | O4—S2 | 1.427 (3) |
C16—C21 | 1.393 (5) | ||
C2—C1—C6 | 121.1 (3) | C19—C18—H18 | 119.7 |
C2—C1—N1 | 131.4 (3) | C17—C18—H18 | 119.7 |
C6—C1—N1 | 107.5 (3) | C18—C19—C20 | 120.1 (4) |
C3—C2—C1 | 117.4 (4) | C18—C19—H19 | 120.0 |
C3—C2—H2 | 121.3 | C20—C19—H19 | 120.0 |
C1—C2—H2 | 121.3 | C19—C20—C21 | 120.4 (4) |
C2—C3—C4 | 122.2 (4) | C19—C20—H20 | 119.8 |
C2—C3—H3 | 118.9 | C21—C20—H20 | 119.8 |
C4—C3—H3 | 118.9 | C20—C21—C16 | 119.3 (4) |
C5—C4—C3 | 120.6 (4) | C20—C21—H21 | 120.3 |
C5—C4—H4 | 119.7 | C16—C21—H21 | 120.3 |
C3—C4—H4 | 119.7 | C23—C22—C27 | 120.4 (3) |
C4—C5—C6 | 118.5 (4) | C23—C22—N2 | 121.9 (3) |
C4—C5—H5 | 120.8 | C27—C22—N2 | 117.7 (3) |
C6—C5—H5 | 120.8 | C22—C23—C24 | 119.6 (4) |
C1—C6—C5 | 120.3 (4) | C22—C23—H23 | 120.2 |
C1—C6—C7 | 106.8 (3) | C24—C23—H23 | 120.2 |
C5—C6—C7 | 132.9 (4) | C25—C24—C23 | 120.0 (4) |
C8—C7—C6 | 110.5 (3) | C25—C24—H24 | 120.0 |
C8—C7—Br2 | 126.3 (3) | C23—C24—H24 | 120.0 |
C6—C7—Br2 | 123.2 (3) | C24—C25—C26 | 120.8 (3) |
C7—C8—N1 | 107.1 (3) | C24—C25—Br1 | 119.5 (3) |
C7—C8—C15 | 127.2 (3) | C26—C25—Br1 | 119.6 (3) |
N1—C8—C15 | 125.6 (3) | O5—C26—C25 | 116.5 (3) |
C10—C9—C14 | 120.9 (4) | O5—C26—C27 | 124.6 (3) |
C10—C9—S1 | 119.3 (3) | C25—C26—C27 | 118.8 (3) |
C14—C9—S1 | 119.6 (3) | C22—C27—C26 | 120.3 (3) |
C9—C10—C11 | 119.1 (4) | C22—C27—H27 | 119.8 |
C9—C10—H10 | 120.5 | C26—C27—H27 | 119.8 |
C11—C10—H10 | 120.5 | O5—C28—H28A | 109.5 |
C12—C11—C10 | 120.3 (5) | O5—C28—H28B | 109.5 |
C12—C11—H11 | 119.9 | H28A—C28—H28B | 109.5 |
C10—C11—H11 | 119.9 | O5—C28—H28C | 109.5 |
C13—C12—C11 | 120.5 (4) | H28A—C28—H28C | 109.5 |
C13—C12—H12 | 119.8 | H28B—C28—H28C | 109.5 |
C11—C12—H12 | 119.8 | C1—N1—C8 | 108.1 (3) |
C12—C13—C14 | 120.6 (4) | C1—N1—S1 | 124.0 (2) |
C12—C13—H13 | 119.7 | C8—N1—S1 | 127.4 (2) |
C14—C13—H13 | 119.7 | C22—N2—C15 | 117.1 (3) |
C9—C14—C13 | 118.6 (4) | C22—N2—S2 | 115.6 (2) |
C9—C14—H14 | 120.7 | C15—N2—S2 | 115.1 (2) |
C13—C14—H14 | 120.7 | C26—O5—C28 | 117.3 (3) |
N2—C15—C8 | 112.3 (3) | O2—S1—O1 | 120.03 (17) |
N2—C15—H15A | 109.1 | O2—S1—N1 | 106.60 (15) |
C8—C15—H15A | 109.1 | O1—S1—N1 | 105.69 (15) |
N2—C15—H15B | 109.1 | O2—S1—C9 | 109.41 (18) |
C8—C15—H15B | 109.1 | O1—S1—C9 | 108.10 (18) |
H15A—C15—H15B | 107.9 | N1—S1—C9 | 106.14 (15) |
C17—C16—C21 | 120.7 (4) | O3—S2—O4 | 119.92 (18) |
C17—C16—S2 | 119.0 (3) | O3—S2—N2 | 106.35 (16) |
C21—C16—S2 | 120.1 (3) | O4—S2—N2 | 106.66 (15) |
C16—C17—C18 | 118.8 (4) | O3—S2—C16 | 108.91 (17) |
C16—C17—H17 | 120.6 | O4—S2—C16 | 108.18 (18) |
C18—C17—H17 | 120.6 | N2—S2—C16 | 105.98 (16) |
C19—C18—C17 | 120.7 (4) | ||
C6—C1—C2—C3 | 0.8 (6) | Br1—C25—C26—C27 | −176.4 (3) |
N1—C1—C2—C3 | −179.1 (4) | C23—C22—C27—C26 | 0.8 (5) |
C1—C2—C3—C4 | −0.8 (6) | N2—C22—C27—C26 | −178.9 (3) |
C2—C3—C4—C5 | 0.2 (7) | O5—C26—C27—C22 | 179.1 (3) |
C3—C4—C5—C6 | 0.4 (6) | C25—C26—C27—C22 | −1.7 (5) |
C2—C1—C6—C5 | −0.2 (5) | C2—C1—N1—C8 | 178.6 (4) |
N1—C1—C6—C5 | 179.7 (3) | C6—C1—N1—C8 | −1.2 (4) |
C2—C1—C6—C7 | −179.1 (3) | C2—C1—N1—S1 | −9.6 (5) |
N1—C1—C6—C7 | 0.8 (4) | C6—C1—N1—S1 | 170.5 (2) |
C4—C5—C6—C1 | −0.4 (5) | C7—C8—N1—C1 | 1.2 (4) |
C4—C5—C6—C7 | 178.1 (4) | C15—C8—N1—C1 | 179.8 (3) |
C1—C6—C7—C8 | −0.1 (4) | C7—C8—N1—S1 | −170.2 (3) |
C5—C6—C7—C8 | −178.7 (4) | C15—C8—N1—S1 | 8.4 (5) |
C1—C6—C7—Br2 | −177.9 (2) | C23—C22—N2—C15 | 44.3 (5) |
C5—C6—C7—Br2 | 3.4 (6) | C27—C22—N2—C15 | −136.0 (3) |
C6—C7—C8—N1 | −0.7 (4) | C23—C22—N2—S2 | −96.5 (4) |
Br2—C7—C8—N1 | 177.1 (2) | C27—C22—N2—S2 | 83.3 (3) |
C6—C7—C8—C15 | −179.3 (3) | C8—C15—N2—C22 | 59.7 (4) |
Br2—C7—C8—C15 | −1.5 (5) | C8—C15—N2—S2 | −159.4 (2) |
C14—C9—C10—C11 | −0.3 (7) | C25—C26—O5—C28 | −173.4 (4) |
S1—C9—C10—C11 | −175.7 (4) | C27—C26—O5—C28 | 5.8 (6) |
C9—C10—C11—C12 | 0.1 (8) | C1—N1—S1—O2 | −152.6 (3) |
C10—C11—C12—C13 | 0.0 (8) | C8—N1—S1—O2 | 17.5 (3) |
C11—C12—C13—C14 | 0.1 (7) | C1—N1—S1—O1 | −23.9 (3) |
C10—C9—C14—C13 | 0.3 (6) | C8—N1—S1—O1 | 146.3 (3) |
S1—C9—C14—C13 | 175.7 (3) | C1—N1—S1—C9 | 90.8 (3) |
C12—C13—C14—C9 | −0.2 (6) | C8—N1—S1—C9 | −99.1 (3) |
C7—C8—C15—N2 | −111.1 (4) | C10—C9—S1—O2 | 164.5 (3) |
N1—C8—C15—N2 | 70.5 (4) | C14—C9—S1—O2 | −11.0 (3) |
C21—C16—C17—C18 | −0.9 (6) | C10—C9—S1—O1 | 32.2 (4) |
S2—C16—C17—C18 | −177.5 (3) | C14—C9—S1—O1 | −143.3 (3) |
C16—C17—C18—C19 | 1.0 (7) | C10—C9—S1—N1 | −80.8 (4) |
C17—C18—C19—C20 | −0.6 (7) | C14—C9—S1—N1 | 103.7 (3) |
C18—C19—C20—C21 | 0.1 (7) | C22—N2—S2—O3 | −46.6 (3) |
C19—C20—C21—C16 | 0.1 (7) | C15—N2—S2—O3 | 171.8 (2) |
C17—C16—C21—C20 | 0.4 (6) | C22—N2—S2—O4 | −175.7 (3) |
S2—C16—C21—C20 | 177.0 (3) | C15—N2—S2—O4 | 42.8 (3) |
C27—C22—C23—C24 | 1.3 (6) | C22—N2—S2—C16 | 69.2 (3) |
N2—C22—C23—C24 | −179.0 (3) | C15—N2—S2—C16 | −72.3 (3) |
C22—C23—C24—C25 | −2.4 (6) | C17—C16—S2—O3 | −153.9 (3) |
C23—C24—C25—C26 | 1.5 (6) | C21—C16—S2—O3 | 29.4 (4) |
C23—C24—C25—Br1 | 178.5 (3) | C17—C16—S2—O4 | −22.0 (4) |
C24—C25—C26—O5 | 179.8 (4) | C21—C16—S2—O4 | 161.3 (3) |
Br1—C25—C26—O5 | 2.8 (5) | C17—C16—S2—N2 | 92.0 (3) |
C24—C25—C26—C27 | 0.5 (6) | C21—C16—S2—N2 | −84.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1 | 0.93 | 2.39 | 2.908 (5) | 115 |
C11—H11···O4i | 0.93 | 2.76 | 3.503 (6) | 137 |
C15—H15B···O2 | 0.97 | 2.31 | 2.886 (4) | 117 |
C18—H18···Cg(N1/C1/C6–C8)ii | 0.93 | 2.99 | 3.861 (8) | 156 |
C18—H18···Cg(C1–C6)ii | 0.93 | 2.81 | 3.579 (1) | 141 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
C36H27Br2N3O6S3 | F(000) = 1720 |
Mr = 853.60 | Dx = 1.617 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2664 (4) Å | Cell parameters from 73921 reflections |
b = 34.7886 (18) Å | θ = 1.4–25.0° |
c = 12.5972 (6) Å | µ = 2.54 mm−1 |
β = 104.550 (2)° | T = 303 K |
V = 3506.5 (3) Å3 | Block, colorless |
Z = 4 | 0.29 × 0.19 × 0.04 mm |
Bruker D8 Venture Diffractometer | 5196 reflections with I > 2σ(I) |
Radiation source: micro focus sealed tube | Rint = 0.071 |
ω and φ scans | θmax = 25.5°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −9→9 |
Tmin = 0.491, Tmax = 0.745 | k = −41→41 |
73921 measured reflections | l = −15→15 |
6434 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0397P)2 + 5.0983P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.001 |
6434 reflections | Δρmax = 0.46 e Å−3 |
451 parameters | Δρmin = −0.47 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2266 (5) | 0.42112 (11) | 0.6112 (3) | 0.0474 (10) | |
C2 | 0.2075 (6) | 0.45836 (12) | 0.5688 (4) | 0.0691 (14) | |
H2 | 0.242319 | 0.465117 | 0.506636 | 0.083* | |
C3 | 0.1341 (8) | 0.48456 (15) | 0.6241 (6) | 0.090 (2) | |
H3 | 0.119704 | 0.509708 | 0.598397 | 0.108* | |
C4 | 0.0814 (7) | 0.47499 (17) | 0.7155 (6) | 0.091 (2) | |
H4 | 0.032049 | 0.493682 | 0.749854 | 0.109* | |
C5 | 0.1002 (5) | 0.43816 (16) | 0.7576 (4) | 0.0700 (14) | |
H5 | 0.065741 | 0.431822 | 0.820239 | 0.084* | |
C6 | 0.1726 (5) | 0.41075 (12) | 0.7029 (3) | 0.0482 (10) | |
C7 | 0.2180 (5) | 0.37117 (11) | 0.7239 (3) | 0.0432 (9) | |
C8 | 0.2986 (4) | 0.35808 (10) | 0.6506 (3) | 0.0361 (8) | |
C9 | 0.0542 (5) | 0.37495 (11) | 0.3929 (3) | 0.0431 (9) | |
C10 | −0.0441 (6) | 0.40600 (13) | 0.3488 (3) | 0.0568 (11) | |
H10 | 0.004062 | 0.429860 | 0.343575 | 0.068* | |
C11 | −0.2147 (7) | 0.40109 (18) | 0.3127 (4) | 0.0713 (14) | |
H11 | −0.282247 | 0.421807 | 0.283294 | 0.086* | |
C12 | −0.2844 (6) | 0.36617 (19) | 0.3199 (4) | 0.0747 (15) | |
H12 | −0.399556 | 0.363131 | 0.295081 | 0.090* | |
C13 | −0.1865 (6) | 0.33531 (16) | 0.3634 (4) | 0.0711 (14) | |
H13 | −0.235668 | 0.311493 | 0.367608 | 0.085* | |
C14 | −0.0158 (6) | 0.33944 (12) | 0.4008 (4) | 0.0564 (11) | |
H14 | 0.050914 | 0.318655 | 0.430778 | 0.068* | |
C15 | 0.3938 (5) | 0.32126 (10) | 0.6489 (3) | 0.0416 (9) | |
H15A | 0.315178 | 0.300654 | 0.621888 | 0.050* | |
H15B | 0.464582 | 0.324063 | 0.598503 | 0.050* | |
C16 | 0.6415 (5) | 0.24696 (10) | 0.6959 (3) | 0.0429 (9) | |
C17 | 0.8099 (6) | 0.24045 (14) | 0.7415 (4) | 0.0619 (12) | |
H17 | 0.853833 | 0.242415 | 0.816857 | 0.074* | |
C18 | 0.9117 (7) | 0.23100 (17) | 0.6738 (6) | 0.0870 (18) | |
H18 | 1.024933 | 0.226412 | 0.703439 | 0.104* | |
C19 | 0.8454 (10) | 0.22842 (16) | 0.5629 (6) | 0.091 (2) | |
H19 | 0.914182 | 0.222430 | 0.517049 | 0.109* | |
C20 | 0.6786 (10) | 0.23460 (17) | 0.5192 (4) | 0.094 (2) | |
H20 | 0.634731 | 0.232593 | 0.443842 | 0.113* | |
C21 | 0.5756 (7) | 0.24368 (13) | 0.5848 (4) | 0.0671 (14) | |
H21 | 0.462055 | 0.247598 | 0.554608 | 0.081* | |
C22 | 0.6628 (5) | 0.33072 (11) | 0.7938 (3) | 0.0455 (9) | |
H22A | 0.717555 | 0.322827 | 0.868007 | 0.055* | |
H22B | 0.732885 | 0.322749 | 0.746573 | 0.055* | |
C23 | 0.6489 (4) | 0.37330 (11) | 0.7907 (3) | 0.0390 (8) | |
C24 | 0.6816 (5) | 0.39717 (12) | 0.7143 (3) | 0.0454 (9) | |
C25 | 0.6421 (5) | 0.43593 (12) | 0.7368 (3) | 0.0462 (9) | |
C26 | 0.6451 (6) | 0.47079 (14) | 0.6812 (4) | 0.0646 (13) | |
H26 | 0.682286 | 0.471908 | 0.617395 | 0.078* | |
C27 | 0.5912 (7) | 0.50320 (14) | 0.7244 (5) | 0.0746 (15) | |
H27 | 0.592151 | 0.526653 | 0.689090 | 0.090* | |
C28 | 0.5358 (7) | 0.50180 (13) | 0.8183 (5) | 0.0706 (14) | |
H28 | 0.501929 | 0.524470 | 0.845424 | 0.085* | |
C29 | 0.5286 (5) | 0.46829 (12) | 0.8734 (4) | 0.0541 (11) | |
H29 | 0.487987 | 0.467571 | 0.935870 | 0.065* | |
C30 | 0.5854 (5) | 0.43506 (10) | 0.8315 (3) | 0.0415 (9) | |
C31 | 0.8482 (5) | 0.39173 (12) | 1.0480 (3) | 0.0443 (9) | |
C32 | 0.9122 (6) | 0.42849 (16) | 1.0514 (4) | 0.0699 (14) | |
H32 | 0.841943 | 0.449515 | 1.030325 | 0.084* | |
C33 | 1.0838 (8) | 0.4333 (2) | 1.0869 (5) | 0.094 (2) | |
H33 | 1.130676 | 0.457639 | 1.088526 | 0.113* | |
C34 | 1.1843 (7) | 0.4018 (3) | 1.1197 (5) | 0.098 (2) | |
H34 | 1.299428 | 0.405079 | 1.142745 | 0.117* | |
C35 | 1.1190 (7) | 0.3657 (2) | 1.1194 (5) | 0.0891 (19) | |
H35 | 1.188587 | 0.344814 | 1.144262 | 0.107* | |
C36 | 0.9479 (6) | 0.36050 (15) | 1.0816 (4) | 0.0664 (13) | |
H36 | 0.901555 | 0.336052 | 1.079059 | 0.080* | |
N1 | 0.3054 (4) | 0.38863 (8) | 0.5760 (2) | 0.0400 (7) | |
N2 | 0.4990 (4) | 0.31064 (8) | 0.7588 (2) | 0.0389 (7) | |
N3 | 0.5879 (4) | 0.39605 (8) | 0.8669 (2) | 0.0375 (7) | |
O1 | 0.3214 (4) | 0.41488 (10) | 0.3958 (3) | 0.0727 (9) | |
O2 | 0.3521 (4) | 0.34514 (9) | 0.4273 (2) | 0.0566 (7) | |
O3 | 0.3523 (4) | 0.24801 (9) | 0.7430 (3) | 0.0728 (10) | |
O4 | 0.6071 (5) | 0.25830 (9) | 0.8922 (2) | 0.0659 (9) | |
O5 | 0.5475 (4) | 0.41314 (9) | 1.0495 (2) | 0.0549 (7) | |
O6 | 0.5948 (4) | 0.34548 (8) | 1.0092 (2) | 0.0606 (8) | |
S1 | 0.27243 (13) | 0.38060 (3) | 0.43993 (8) | 0.0467 (2) | |
S2 | 0.51553 (13) | 0.26365 (3) | 0.78055 (9) | 0.0470 (2) | |
S3 | 0.63083 (12) | 0.38513 (3) | 1.00122 (8) | 0.0416 (2) | |
Br1 | 0.74777 (6) | 0.38250 (2) | 0.58953 (4) | 0.07276 (18) | |
Br2 | 0.17344 (7) | 0.34427 (2) | 0.84137 (4) | 0.07746 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.042 (2) | 0.038 (2) | 0.052 (2) | 0.0029 (17) | −0.0057 (18) | −0.0091 (18) |
C2 | 0.078 (3) | 0.040 (2) | 0.071 (3) | 0.008 (2) | −0.016 (3) | 0.001 (2) |
C3 | 0.091 (4) | 0.044 (3) | 0.110 (5) | 0.023 (3) | −0.022 (4) | −0.021 (3) |
C4 | 0.060 (3) | 0.073 (4) | 0.119 (5) | 0.031 (3) | −0.019 (3) | −0.050 (4) |
C5 | 0.045 (3) | 0.083 (4) | 0.076 (3) | 0.017 (2) | 0.004 (2) | −0.031 (3) |
C6 | 0.0325 (19) | 0.055 (2) | 0.052 (2) | 0.0094 (17) | 0.0005 (17) | −0.0170 (19) |
C7 | 0.036 (2) | 0.054 (2) | 0.038 (2) | 0.0044 (17) | 0.0058 (16) | −0.0004 (17) |
C8 | 0.0357 (19) | 0.0359 (19) | 0.0353 (19) | 0.0020 (15) | 0.0061 (15) | 0.0013 (15) |
C9 | 0.051 (2) | 0.046 (2) | 0.0330 (19) | 0.0019 (18) | 0.0108 (17) | −0.0048 (16) |
C10 | 0.067 (3) | 0.058 (3) | 0.040 (2) | 0.007 (2) | 0.004 (2) | 0.0027 (19) |
C11 | 0.071 (3) | 0.091 (4) | 0.044 (3) | 0.025 (3) | 0.000 (2) | −0.005 (2) |
C12 | 0.052 (3) | 0.111 (5) | 0.058 (3) | 0.001 (3) | 0.007 (2) | −0.027 (3) |
C13 | 0.065 (3) | 0.080 (4) | 0.068 (3) | −0.024 (3) | 0.018 (3) | −0.024 (3) |
C14 | 0.066 (3) | 0.048 (2) | 0.052 (3) | −0.004 (2) | 0.008 (2) | −0.0083 (19) |
C15 | 0.046 (2) | 0.0311 (19) | 0.046 (2) | 0.0052 (16) | 0.0086 (17) | −0.0013 (16) |
C16 | 0.053 (2) | 0.0288 (19) | 0.045 (2) | 0.0068 (16) | 0.0103 (18) | 0.0000 (16) |
C17 | 0.051 (3) | 0.071 (3) | 0.061 (3) | 0.007 (2) | 0.009 (2) | −0.014 (2) |
C18 | 0.057 (3) | 0.092 (4) | 0.116 (5) | 0.008 (3) | 0.030 (3) | −0.021 (4) |
C19 | 0.134 (6) | 0.070 (4) | 0.093 (5) | 0.018 (4) | 0.075 (4) | 0.003 (3) |
C20 | 0.152 (6) | 0.083 (4) | 0.049 (3) | 0.058 (4) | 0.029 (3) | −0.002 (3) |
C21 | 0.089 (4) | 0.051 (3) | 0.054 (3) | 0.025 (2) | 0.006 (3) | −0.010 (2) |
C22 | 0.039 (2) | 0.046 (2) | 0.050 (2) | 0.0004 (17) | 0.0076 (17) | −0.0103 (18) |
C23 | 0.0342 (19) | 0.044 (2) | 0.0376 (19) | −0.0023 (15) | 0.0062 (15) | −0.0092 (16) |
C24 | 0.038 (2) | 0.059 (3) | 0.041 (2) | −0.0138 (18) | 0.0134 (17) | −0.0082 (18) |
C25 | 0.042 (2) | 0.049 (2) | 0.045 (2) | −0.0151 (18) | 0.0055 (18) | −0.0016 (18) |
C26 | 0.061 (3) | 0.068 (3) | 0.063 (3) | −0.021 (2) | 0.012 (2) | 0.015 (2) |
C27 | 0.077 (3) | 0.047 (3) | 0.087 (4) | −0.014 (2) | −0.003 (3) | 0.019 (3) |
C28 | 0.077 (3) | 0.039 (3) | 0.089 (4) | −0.001 (2) | 0.009 (3) | 0.000 (2) |
C29 | 0.055 (3) | 0.045 (2) | 0.057 (3) | 0.0029 (19) | 0.004 (2) | −0.007 (2) |
C30 | 0.042 (2) | 0.035 (2) | 0.043 (2) | −0.0041 (16) | 0.0021 (17) | −0.0016 (16) |
C31 | 0.043 (2) | 0.059 (3) | 0.0315 (19) | −0.0041 (18) | 0.0097 (16) | −0.0073 (17) |
C32 | 0.058 (3) | 0.083 (4) | 0.060 (3) | −0.018 (3) | 0.000 (2) | 0.007 (3) |
C33 | 0.072 (4) | 0.132 (6) | 0.070 (4) | −0.053 (4) | 0.004 (3) | 0.007 (4) |
C34 | 0.042 (3) | 0.196 (8) | 0.058 (3) | −0.008 (4) | 0.019 (3) | −0.018 (4) |
C35 | 0.053 (3) | 0.134 (6) | 0.073 (4) | 0.028 (4) | 0.002 (3) | −0.033 (4) |
C36 | 0.060 (3) | 0.074 (3) | 0.061 (3) | 0.013 (2) | 0.007 (2) | −0.020 (2) |
N1 | 0.0451 (17) | 0.0349 (16) | 0.0385 (17) | 0.0024 (13) | 0.0079 (14) | −0.0004 (13) |
N2 | 0.0416 (17) | 0.0309 (16) | 0.0441 (17) | 0.0046 (13) | 0.0106 (14) | 0.0029 (13) |
N3 | 0.0416 (17) | 0.0360 (16) | 0.0348 (16) | −0.0013 (13) | 0.0095 (13) | −0.0033 (12) |
O1 | 0.083 (2) | 0.072 (2) | 0.063 (2) | −0.0196 (18) | 0.0183 (18) | 0.0201 (17) |
O2 | 0.0584 (18) | 0.068 (2) | 0.0465 (16) | 0.0097 (15) | 0.0196 (14) | −0.0085 (14) |
O3 | 0.0582 (19) | 0.0482 (18) | 0.118 (3) | −0.0067 (15) | 0.034 (2) | 0.0129 (18) |
O4 | 0.099 (3) | 0.0575 (19) | 0.0452 (17) | 0.0221 (17) | 0.0260 (17) | 0.0143 (14) |
O5 | 0.0543 (17) | 0.0699 (19) | 0.0461 (16) | 0.0056 (14) | 0.0228 (14) | −0.0075 (14) |
O6 | 0.074 (2) | 0.0516 (18) | 0.0562 (18) | −0.0182 (15) | 0.0162 (16) | 0.0063 (14) |
S1 | 0.0528 (6) | 0.0515 (6) | 0.0365 (5) | −0.0042 (5) | 0.0126 (4) | 0.0050 (4) |
S2 | 0.0541 (6) | 0.0357 (5) | 0.0551 (6) | 0.0062 (4) | 0.0211 (5) | 0.0076 (4) |
S3 | 0.0416 (5) | 0.0473 (5) | 0.0378 (5) | −0.0050 (4) | 0.0136 (4) | −0.0027 (4) |
Br1 | 0.0661 (3) | 0.1085 (4) | 0.0535 (3) | −0.0273 (3) | 0.0333 (2) | −0.0247 (3) |
Br2 | 0.0688 (3) | 0.1127 (5) | 0.0610 (3) | 0.0127 (3) | 0.0352 (3) | 0.0225 (3) |
C1—C6 | 1.387 (6) | C21—H21 | 0.9300 |
C1—C2 | 1.395 (6) | C22—C23 | 1.485 (5) |
C1—N1 | 1.429 (5) | C22—N2 | 1.489 (5) |
C2—C3 | 1.377 (8) | C22—H22A | 0.9700 |
C2—H2 | 0.9300 | C22—H22B | 0.9700 |
C3—C4 | 1.371 (9) | C23—C24 | 1.348 (5) |
C3—H3 | 0.9300 | C23—N3 | 1.430 (4) |
C4—C5 | 1.380 (8) | C24—C25 | 1.432 (6) |
C4—H4 | 0.9300 | C24—Br1 | 1.861 (4) |
C5—C6 | 1.397 (6) | C25—C30 | 1.387 (6) |
C5—H5 | 0.9300 | C25—C26 | 1.405 (6) |
C6—C7 | 1.434 (6) | C26—C27 | 1.374 (7) |
C7—C8 | 1.347 (5) | C26—H26 | 0.9300 |
C7—Br2 | 1.864 (4) | C27—C28 | 1.373 (8) |
C8—N1 | 1.429 (5) | C27—H27 | 0.9300 |
C8—C15 | 1.507 (5) | C28—C29 | 1.366 (6) |
C9—C14 | 1.378 (6) | C28—H28 | 0.9300 |
C9—C10 | 1.381 (6) | C29—C30 | 1.400 (6) |
C9—S1 | 1.763 (4) | C29—H29 | 0.9300 |
C10—C11 | 1.379 (7) | C30—N3 | 1.427 (5) |
C10—H10 | 0.9300 | C31—C36 | 1.365 (6) |
C11—C12 | 1.357 (8) | C31—C32 | 1.381 (6) |
C11—H11 | 0.9300 | C31—S3 | 1.760 (4) |
C12—C13 | 1.373 (8) | C32—C33 | 1.386 (7) |
C12—H12 | 0.9300 | C32—H32 | 0.9300 |
C13—C14 | 1.379 (7) | C33—C34 | 1.375 (10) |
C13—H13 | 0.9300 | C33—H33 | 0.9300 |
C14—H14 | 0.9300 | C34—C35 | 1.366 (10) |
C15—N2 | 1.485 (5) | C34—H34 | 0.9300 |
C15—H15A | 0.9700 | C35—C36 | 1.387 (7) |
C15—H15B | 0.9700 | C35—H35 | 0.9300 |
C16—C21 | 1.373 (6) | C36—H36 | 0.9300 |
C16—C17 | 1.385 (6) | N1—S1 | 1.690 (3) |
C16—S2 | 1.765 (4) | N2—S2 | 1.658 (3) |
C17—C18 | 1.380 (7) | N3—S3 | 1.683 (3) |
C17—H17 | 0.9300 | O1—S1 | 1.417 (3) |
C18—C19 | 1.370 (9) | O2—S1 | 1.426 (3) |
C18—H18 | 0.9300 | O3—S2 | 1.421 (3) |
C19—C20 | 1.367 (9) | O4—S2 | 1.432 (3) |
C19—H19 | 0.9300 | O5—S3 | 1.416 (3) |
C20—C21 | 1.364 (8) | O6—S3 | 1.420 (3) |
C20—H20 | 0.9300 | ||
C6—C1—C2 | 122.1 (4) | H22A—C22—H22B | 107.7 |
C6—C1—N1 | 108.6 (3) | C24—C23—N3 | 107.8 (3) |
C2—C1—N1 | 129.2 (4) | C24—C23—C22 | 127.3 (3) |
C3—C2—C1 | 116.3 (6) | N3—C23—C22 | 124.9 (3) |
C3—C2—H2 | 121.8 | C23—C24—C25 | 110.0 (3) |
C1—C2—H2 | 121.8 | C23—C24—Br1 | 126.0 (3) |
C4—C3—C2 | 122.5 (5) | C25—C24—Br1 | 123.7 (3) |
C4—C3—H3 | 118.7 | C30—C25—C26 | 120.0 (4) |
C2—C3—H3 | 118.7 | C30—C25—C24 | 107.0 (3) |
C3—C4—C5 | 121.3 (5) | C26—C25—C24 | 132.9 (4) |
C3—C4—H4 | 119.4 | C27—C26—C25 | 117.5 (5) |
C5—C4—H4 | 119.4 | C27—C26—H26 | 121.2 |
C4—C5—C6 | 117.7 (6) | C25—C26—H26 | 121.2 |
C4—C5—H5 | 121.1 | C28—C27—C26 | 121.6 (5) |
C6—C5—H5 | 121.1 | C28—C27—H27 | 119.2 |
C1—C6—C5 | 120.1 (4) | C26—C27—H27 | 119.2 |
C1—C6—C7 | 106.2 (3) | C29—C28—C27 | 122.3 (5) |
C5—C6—C7 | 133.6 (5) | C29—C28—H28 | 118.8 |
C8—C7—C6 | 110.4 (4) | C27—C28—H28 | 118.8 |
C8—C7—Br2 | 127.2 (3) | C28—C29—C30 | 116.9 (5) |
C6—C7—Br2 | 122.3 (3) | C28—C29—H29 | 121.6 |
C7—C8—N1 | 107.9 (3) | C30—C29—H29 | 121.6 |
C7—C8—C15 | 130.4 (3) | C25—C30—C29 | 121.6 (4) |
N1—C8—C15 | 121.1 (3) | C25—C30—N3 | 107.9 (3) |
C14—C9—C10 | 121.0 (4) | C29—C30—N3 | 130.3 (4) |
C14—C9—S1 | 119.2 (3) | C36—C31—C32 | 122.1 (4) |
C10—C9—S1 | 119.8 (3) | C36—C31—S3 | 119.1 (3) |
C11—C10—C9 | 119.0 (5) | C32—C31—S3 | 118.8 (3) |
C11—C10—H10 | 120.5 | C31—C32—C33 | 118.3 (5) |
C9—C10—H10 | 120.5 | C31—C32—H32 | 120.9 |
C12—C11—C10 | 120.4 (5) | C33—C32—H32 | 120.9 |
C12—C11—H11 | 119.8 | C34—C33—C32 | 119.6 (6) |
C10—C11—H11 | 119.8 | C34—C33—H33 | 120.2 |
C11—C12—C13 | 120.6 (5) | C32—C33—H33 | 120.2 |
C11—C12—H12 | 119.7 | C35—C34—C33 | 121.6 (5) |
C13—C12—H12 | 119.7 | C35—C34—H34 | 119.2 |
C12—C13—C14 | 120.3 (5) | C33—C34—H34 | 119.2 |
C12—C13—H13 | 119.8 | C34—C35—C36 | 119.2 (6) |
C14—C13—H13 | 119.8 | C34—C35—H35 | 120.4 |
C9—C14—C13 | 118.8 (4) | C36—C35—H35 | 120.4 |
C9—C14—H14 | 120.6 | C31—C36—C35 | 119.2 (5) |
C13—C14—H14 | 120.6 | C31—C36—H36 | 120.4 |
N2—C15—C8 | 112.6 (3) | C35—C36—H36 | 120.4 |
N2—C15—H15A | 109.1 | C8—N1—C1 | 106.8 (3) |
C8—C15—H15A | 109.1 | C8—N1—S1 | 121.4 (2) |
N2—C15—H15B | 109.1 | C1—N1—S1 | 118.4 (3) |
C8—C15—H15B | 109.1 | C15—N2—C22 | 115.8 (3) |
H15A—C15—H15B | 107.8 | C15—N2—S2 | 113.9 (2) |
C21—C16—C17 | 120.6 (4) | C22—N2—S2 | 112.5 (2) |
C21—C16—S2 | 120.0 (3) | C30—N3—C23 | 107.2 (3) |
C17—C16—S2 | 119.2 (3) | C30—N3—S3 | 120.8 (2) |
C18—C17—C16 | 119.3 (5) | C23—N3—S3 | 121.9 (2) |
C18—C17—H17 | 120.4 | O1—S1—O2 | 119.9 (2) |
C16—C17—H17 | 120.4 | O1—S1—N1 | 105.65 (19) |
C19—C18—C17 | 119.7 (5) | O2—S1—N1 | 107.17 (16) |
C19—C18—H18 | 120.1 | O1—S1—C9 | 109.3 (2) |
C17—C18—H18 | 120.1 | O2—S1—C9 | 109.17 (18) |
C20—C19—C18 | 120.3 (5) | N1—S1—C9 | 104.47 (17) |
C20—C19—H19 | 119.8 | O3—S2—O4 | 120.0 (2) |
C18—C19—H19 | 119.8 | O3—S2—N2 | 106.90 (17) |
C21—C20—C19 | 120.8 (5) | O4—S2—N2 | 106.97 (18) |
C21—C20—H20 | 119.6 | O3—S2—C16 | 109.1 (2) |
C19—C20—H20 | 119.6 | O4—S2—C16 | 107.72 (19) |
C20—C21—C16 | 119.3 (5) | N2—S2—C16 | 105.13 (17) |
C20—C21—H21 | 120.4 | O5—S3—O6 | 120.34 (19) |
C16—C21—H21 | 120.4 | O5—S3—N3 | 105.89 (16) |
C23—C22—N2 | 113.7 (3) | O6—S3—N3 | 107.18 (17) |
C23—C22—H22A | 108.8 | O5—S3—C31 | 109.42 (18) |
N2—C22—H22A | 108.8 | O6—S3—C31 | 108.5 (2) |
C23—C22—H22B | 108.8 | N3—S3—C31 | 104.31 (17) |
N2—C22—H22B | 108.8 | ||
C6—C1—C2—C3 | 1.0 (6) | C32—C33—C34—C35 | −0.7 (9) |
N1—C1—C2—C3 | −176.3 (4) | C33—C34—C35—C36 | 2.2 (9) |
C1—C2—C3—C4 | −0.3 (8) | C32—C31—C36—C35 | −0.6 (7) |
C2—C3—C4—C5 | 0.3 (9) | S3—C31—C36—C35 | −179.4 (4) |
C3—C4—C5—C6 | −0.9 (8) | C34—C35—C36—C31 | −1.6 (8) |
C2—C1—C6—C5 | −1.7 (6) | C7—C8—N1—C1 | 1.3 (4) |
N1—C1—C6—C5 | 176.1 (3) | C15—C8—N1—C1 | −170.3 (3) |
C2—C1—C6—C7 | −178.1 (4) | C7—C8—N1—S1 | −138.7 (3) |
N1—C1—C6—C7 | −0.4 (4) | C15—C8—N1—S1 | 49.7 (4) |
C4—C5—C6—C1 | 1.6 (6) | C6—C1—N1—C8 | −0.5 (4) |
C4—C5—C6—C7 | 176.9 (4) | C2—C1—N1—C8 | 177.0 (4) |
C1—C6—C7—C8 | 1.2 (4) | C6—C1—N1—S1 | 140.9 (3) |
C5—C6—C7—C8 | −174.6 (4) | C2—C1—N1—S1 | −41.6 (5) |
C1—C6—C7—Br2 | 179.2 (3) | C8—C15—N2—C22 | −80.9 (4) |
C5—C6—C7—Br2 | 3.4 (6) | C8—C15—N2—S2 | 146.3 (3) |
C6—C7—C8—N1 | −1.6 (4) | C23—C22—N2—C15 | 55.1 (4) |
Br2—C7—C8—N1 | −179.4 (3) | C23—C22—N2—S2 | −171.5 (3) |
C6—C7—C8—C15 | 169.0 (4) | C25—C30—N3—C23 | 0.3 (4) |
Br2—C7—C8—C15 | −8.8 (6) | C29—C30—N3—C23 | 176.2 (4) |
C14—C9—C10—C11 | 0.2 (6) | C25—C30—N3—S3 | 146.3 (3) |
S1—C9—C10—C11 | −179.8 (3) | C29—C30—N3—S3 | −37.7 (5) |
C9—C10—C11—C12 | −0.4 (7) | C24—C23—N3—C30 | 0.2 (4) |
C10—C11—C12—C13 | 0.2 (8) | C22—C23—N3—C30 | −176.6 (3) |
C11—C12—C13—C14 | 0.2 (8) | C24—C23—N3—S3 | −145.4 (3) |
C10—C9—C14—C13 | 0.2 (6) | C22—C23—N3—S3 | 37.8 (5) |
S1—C9—C14—C13 | −179.8 (3) | C8—N1—S1—O1 | −168.6 (3) |
C12—C13—C14—C9 | −0.5 (7) | C1—N1—S1—O1 | 55.9 (3) |
C7—C8—C15—N2 | −41.2 (5) | C8—N1—S1—O2 | −39.6 (3) |
N1—C8—C15—N2 | 128.3 (3) | C1—N1—S1—O2 | −175.2 (3) |
C21—C16—C17—C18 | 0.7 (7) | C8—N1—S1—C9 | 76.1 (3) |
S2—C16—C17—C18 | −173.8 (4) | C1—N1—S1—C9 | −59.4 (3) |
C16—C17—C18—C19 | 0.4 (8) | C14—C9—S1—O1 | 163.0 (3) |
C17—C18—C19—C20 | −1.0 (9) | C10—C9—S1—O1 | −17.0 (4) |
C18—C19—C20—C21 | 0.5 (10) | C14—C9—S1—O2 | 30.0 (4) |
C19—C20—C21—C16 | 0.6 (9) | C10—C9—S1—O2 | −150.0 (3) |
C17—C16—C21—C20 | −1.2 (7) | C14—C9—S1—N1 | −84.3 (3) |
S2—C16—C21—C20 | 173.2 (4) | C10—C9—S1—N1 | 95.7 (3) |
N2—C22—C23—C24 | −103.1 (4) | C15—N2—S2—O3 | −45.1 (3) |
N2—C22—C23—N3 | 73.1 (5) | C22—N2—S2—O3 | −179.5 (3) |
N3—C23—C24—C25 | −0.6 (4) | C15—N2—S2—O4 | −174.9 (3) |
C22—C23—C24—C25 | 176.1 (3) | C22—N2—S2—O4 | 50.7 (3) |
N3—C23—C24—Br1 | −174.8 (3) | C15—N2—S2—C16 | 70.8 (3) |
C22—C23—C24—Br1 | 1.9 (6) | C22—N2—S2—C16 | −63.6 (3) |
C23—C24—C25—C30 | 0.7 (4) | C21—C16—S2—O3 | 39.1 (4) |
Br1—C24—C25—C30 | 175.1 (3) | C17—C16—S2—O3 | −146.4 (3) |
C23—C24—C25—C26 | −176.4 (4) | C21—C16—S2—O4 | 170.9 (4) |
Br1—C24—C25—C26 | −2.0 (6) | C17—C16—S2—O4 | −14.6 (4) |
C30—C25—C26—C27 | 0.3 (6) | C21—C16—S2—N2 | −75.3 (4) |
C24—C25—C26—C27 | 177.2 (4) | C17—C16—S2—N2 | 99.2 (4) |
C25—C26—C27—C28 | −0.1 (7) | C30—N3—S3—O5 | 40.2 (3) |
C26—C27—C28—C29 | −1.0 (8) | C23—N3—S3—O5 | −178.7 (3) |
C27—C28—C29—C30 | 1.8 (7) | C30—N3—S3—O6 | 169.8 (3) |
C26—C25—C30—C29 | 0.6 (6) | C23—N3—S3—O6 | −49.1 (3) |
C24—C25—C30—C29 | −177.0 (4) | C30—N3—S3—C31 | −75.2 (3) |
C26—C25—C30—N3 | 177.0 (3) | C23—N3—S3—C31 | 65.8 (3) |
C24—C25—C30—N3 | −0.6 (4) | C36—C31—S3—O5 | 134.2 (3) |
C28—C29—C30—C25 | −1.6 (6) | C32—C31—S3—O5 | −44.7 (4) |
C28—C29—C30—N3 | −177.1 (4) | C36—C31—S3—O6 | 1.1 (4) |
C36—C31—C32—C33 | 2.0 (7) | C32—C31—S3—O6 | −177.8 (3) |
S3—C31—C32—C33 | −179.1 (4) | C36—C31—S3—N3 | −112.9 (3) |
C31—C32—C33—C34 | −1.4 (8) | C32—C31—S3—N3 | 68.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1 | 0.93 | 2.43 | 2.993 (7) | 119 |
C13—H13···O3i | 0.93 | 2.80 | 3.324 (6) | 117 |
C14—H14···O4i | 0.93 | 2.78 | 3.558 (5) | 142 |
C15—H15B···O2 | 0.97 | 2.25 | 2.850 (5) | 119 |
C18—H18···O3ii | 0.93 | 2.73 | 3.575 (6) | 151 |
C19—H19···O4iii | 0.93 | 2.59 | 3.443 (6) | 152 |
C19—H19···O6iii | 0.93 | 2.81 | 3.467 (6) | 129 |
C20—H20···Br2iii | 0.93 | 3.02 | 3.536 (5) | 117 |
C22—H22A···O6 | 0.97 | 2.39 | 2.950 (5) | 116 |
C27—H27···O1iv | 0.93 | 2.48 | 3.389 (6) | 164 |
C28—H28···O5v | 0.93 | 2.63 | 3.547 (6) | 170 |
C29—H29···O5 | 0.93 | 2.35 | 2.907 (5) | 118 |
C34—H34···O5ii | 0.93 | 2.62 | 3.360 (6) | 137 |
C35—H35···Cg(C16–C21)vi | 0.93 | 2.91 | 3.729 (7) | 147 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z+2; (vi) x−1/2, −y−1/2, z−1/2. |
Cg is a group centroid; plane···CgB is the distance between the mean plane of group A and the centroid of interacting group B; ipa is the interplanar angle; sa is the slippage angle, which is the angle of the CgA···CgB axis to the group A mean plane normal. |
Compound | Group A | Group B | Shortest contact | CgA···CgB | Plane···CgB | ipa | sa |
I | (N1/C1/C6–C8) | (C1–C6)iii | 3.456 (2) | 3.532 (2) | 3.450 (2) | 1.2 (2) | 12.4 (2) |
(C9–C14) | (C9–C14)iv | 3.397 (2) | 3.824 (2) | 3.397 (2) | 0 | 27.3 (2) | |
II | (N1/C1/C6–C8) | (N3/C30/C23–C25) | 3.225 (2) | 3.267 (2) | 3.256 (2) | 10.4 (3) | 4.8 (2) |
(C1–C6) | (C25–C30) | 3.499 (2) | 3.593 (3) | 3.531 (2) | 4.9 (3) | 10.7 (2) | |
(C9–C14) | (C31–C36)vii | 3.464 (2) | 3.952 (3) | 3.636 (2) | 6.64 (16) | 23.0 (2) |
Symmetry codes for I: (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z + 1; for II: (vii) x - 1, y, z - 1. |
Acknowledgements
The authors are thanks to the SAIF, IIT, Madras, India, for the data collection.
References
Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. Web of Science CrossRef PubMed CAS Google Scholar
Allen, F. H. (1981). Acta Cryst. B37, 900–906. CrossRef CAS Web of Science IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020). J. Mol. Struct. 1201, 127194. Web of Science CSD CrossRef Google Scholar
Badr, E. E. (2008). J. Dispersion Sci. Technol. 29, 1143–1149. Web of Science CrossRef CAS Google Scholar
Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons. Google Scholar
Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blahun, O. P., Rozhenko, A. B., Rusanov, E., Zhersh, S., Tolmachev, A. A., Volochnyuk, D. M. & Grygorenko, O. O. (2020). J. Org. Chem. 85, 5288–5299. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bouthenet, E., Oh, K.-B., Park, S., Nagi, N. K., Lee, H.-S. & Matthews, S. E. (2011). Bioorg. Med. Chem. Lett. 21, 7142–7145. Web of Science CrossRef CAS PubMed Google Scholar
Brown, G. M. (1971). Adv. Enzymol. Relat. Areas Mol. Biol. 35, 35–77. CAS PubMed Web of Science Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chohan, Z. H., Youssoufi, M. H., Jarrahpour, A. & Ben Hadda, T. (2010). Eur. J. Med. Chem. 45, 1189–1199. Web of Science CrossRef CAS PubMed Google Scholar
El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720. Web of Science CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gulcin, I. & Taslimi, P. (2018). Expert Opin. Ther. Pat. 28, 541–549. Web of Science CAS PubMed Google Scholar
Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Nippon Ishinkin Gakkai Zasshi, 48, 47–50. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lima, C. F. R. A. C., Sousa, C. A. D., Rodriguez-Borges, J. E., Melo, A., Gomes, L. R., Low, J. N. & Santos, L. M. N. B. F. (2010). Phys. Chem. Chem. Phys. 12, 11228–11237. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024a). Acta Cryst. E80, 682–690. Web of Science CSD CrossRef IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203. Web of Science CSD CrossRef IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023a). Acta Cryst. E79, 521–525. Web of Science CSD CrossRef IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741–746. Web of Science CSD CrossRef IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2024b). Acta Cryst. E80, 845–851. Web of Science CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Murphy, C. D. (2003). J. Appl. Microbiol. 94, 539–548. Web of Science CrossRef PubMed CAS Google Scholar
Ovung, A. & Bhattacharyya, J. (2021). Biophys. Rev. 13, 259–272. Web of Science CrossRef CAS PubMed Google Scholar
Ramathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Suparan, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2001). Bioorg. Med. Chem. 9, 703–714. Web of Science PubMed Google Scholar
Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802–o1803. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, Y., Shadrick, W. R., Wallace, M. J., Wu, Y., Griffith, E. C., Qi, J., Yun, M., White, S. W. & Lee, R. E. (2016). Bioorg. Med. Chem. Lett. 26, 3950–3954. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.