research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures determination and Hirshfeld surface analysis of N-(4-bromo-3-meth­­oxy­phen­yl)- and N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}- derivatives of N-{[3-bromo-1-(phenylsulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide

crossmark logo

aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by K. V. Domasevitch, National Taras Shevchenko University of Kyiv, Ukraine (Received 2 September 2024; accepted 29 September 2024; online 4 October 2024)

Two new phenyl­sulfonyl­indole derivatives, namely, N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}-N-(4-bromo-3-meth­oxy­phen­yl)benzene­sulfonamide, C28H22Br2N2O5S2, (I), and N,N-bis­{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C36H27Br2N3O6S3, (II), reveal the impact of intra­molecular ππ inter­actions of the indole moieties as a factor not only governing the conformation of N,N-bis­(1H-indol-2-yl)meth­yl)amines, but also significantly influencing the crystal patterns. For I, the crystal packing is dominated by C—H⋯π and ππ bonding, with a particular significance of mutual indole–indole inter­actions. In the case of II, the mol­ecules adopt short intra­molecular ππ inter­actions between two nearly parallel indole ring systems [with the centroids of their pyrrole rings separated by 3.267 (2) Å] accompanied by a set of forced Br⋯O contacts. This provides suppression of similar inter­actions between the mol­ecules, while the importance of weak C—H⋯O hydrogen bonding to the packing naturally increases. Short contacts of the latter type [C⋯O = 3.389 (6) Å] assemble pairs of mol­ecules into centrosymmetric dimers with a cyclic R22(13) ring motif. These findings are consistent with the results of a Hirshfeld surface analysis and together they suggest a tool for modulating the supra­molecular behavior of phenyl­sulfonyl­ated indoles.

1. Chemical context

Sulfonamide derivatives found applications in modern medicine to control diseases caused by bacterial infections (Brown, 1971[Brown, G. M. (1971). Adv. Enzymol. Relat. Areas Mol. Biol. 35, 35-77.]; Zhao et al., 2016[Zhao, Y., Shadrick, W. R., Wallace, M. J., Wu, Y., Griffith, E. C., Qi, J., Yun, M., White, S. W. & Lee, R. E. (2016). Bioorg. Med. Chem. Lett. 26, 3950-3954.]). These species have been famous as sulfa drugs for over 70 years since the discovery of their activity. They are still used as anti­biotics (Gulcin & Taslimi, 2018[Gulcin, I. & Taslimi, P. (2018). Expert Opin. Ther. Pat. 28, 541-549.]), in spite of the later introduction of penicillin. In particular, numerous formulations based on sulfonamides have repeatedly been used as chemotherapeutics for their anti­bacterial (Ovung & Bhattacharyya, 2021[Ovung, A. & Bhattacharyya, J. (2021). Biophys. Rev. 13, 259-272.]; Badr, 2008[Badr, E. E. (2008). J. Dispersion Sci. Technol. 29, 1143-1149.]), anti­fungal (Hanafy et al., 2007[Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Nippon Ishinkin Gakkai Zasshi, 48, 47-50.]) and hypoglycemic properties (Chohan et al., 2010[Chohan, Z. H., Youssoufi, M. H., Jarrahpour, A. & Ben Hadda, T. (2010). Eur. J. Med. Chem. 45, 1189-1199.]; El-Sayed et al., 2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]). Among drugs of other types, sulfonamides also display appreciable anti­tumor, anti­cancer, and anti­thyroid activities (Scozzafava et al., 2003[Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.]). Some sulfonamide products also possess carbonic anhydrases (CA) inhibition properties (Suparan et al., 2001[Suparan, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2001). Bioorg. Med. Chem. 9, 703-714.]). The production of new compounds with noteworthy biological activity, which are suited as anti­viral and anti­microbial agents, drives inter­est in synthetic approaches for sulfonamide-functionalized heterocyclic ring systems (Azzam et al., 2020[Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020). J. Mol. Struct. 1201, 127194.]). Identifying the significance of such compounds for biochemical uses and drug discovery, and our continuing study of the development of indole products have prompted us to examine a series of corresponding N-sulfonyl- and bromo-substituted species. The need for deeper functionalization of the systems by introducing bromine substitutes is motivated by the fact that the presence of halogen atoms in mol­ecules commonly enhances various biological activities and thus halogenation may be recognized as an essential tool for drug optimization (Murphy et al., 2003[Murphy, C. D. (2003). J. Appl. Microbiol. 94, 539-548.]). For example, the occurrence of bromine atoms on a phenol ring is important for improved anti­microbial activity (Bouthenet et al., 2011[Bouthenet, E., Oh, K.-B., Park, S., Nagi, N. K., Lee, H.-S. & Matthews, S. E. (2011). Bioorg. Med. Chem. Lett. 21, 7142-7145.]). Structural trends in such compounds, including subtle features of their inter­molecular inter­actions, could be applicable to the specific targeting of the substrates in biomedical systems and therefore they may provide new insights into the action of sulfonamide derivatives. In particular, Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]) categorized the hydrogen-bonding preferences of sulfonamides. The availability of multiple aromatic groups in N-sulfonyl­ated indoles imposes also possibility for versatile stacking patterns, which may be competitive to conventional hydrogen bonding. We report herein the crystal-structure determination and Hirshfeld surface analysis of two new indoles: namely, N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}-N-(4-bromo-3-meth­oxy­phen­yl)benzene­sulfonamide, C28H22Br2N2O5S2, (I), and N,N-bis­{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C36H27Br2N3O6S3, (II), which feature a complex inter­play of weak hydrogen-bonding and ππ inter­actions.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds, which differ in substituents at the phenyl­sulfonyl­ated exocyclic N2 atoms (N-(4-bromo-3-meth­oxy­phen­yl) for I and N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl} for II), are illustrated in Figs. 1[link] and 2[link], respectively. In both the cases, the indole ring systems (N1/C1–C8 and N3/C23–C30) are essentially planar, with a maximum deviation from the corresponding mean planes of 0.039 (4) Å observed for C8 atom in II. The torsion angles involving the sulfonamide fragments, O2—S1—N1—C1 [−152.6 (3) for I and −175.2 (3)° for II], O3—S2—C16—C17 [−153.9 (3) for I and −146.4 (3)° for II] and O5—S3—N3—C23 [−178.7 (3)° for II] indicate an anti-periplanar conformation of the sulfonyl moiety. The dihedral angle between sulfonyl-bound phenyl rings (C9–C14) and the carrier indole ring systems (N1/C1–C8) are 62.0 (2)° for I and 70.9 (2)° for II, unlike the orthogonal orientation of these groups in previously reported N-phenyl­sulfonyl indoles (Madhan et al., 2022[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198-1203.], 2023a[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023a). Acta Cryst. E79, 521-525.],b[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741-746.], 2024a[Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024a). Acta Cryst. E80, 682-690.],b[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2024b). Acta Cryst. E80, 845-851.]). In I, the dihedral angle between two sulfonyl-bound phenyl rings (C9–C14 and C16–C21) is 59.0 (2)°, while in II they are nearly orthogonal [86.5 (2)°]. The meth­oxy-bound phenyl ring (C22–C27) in I is also inclined to the indole framework, subtending a dihedral angle of 73.23 (1)°.

[Figure 1]
Figure 1
The mol­ecular structure of compound I, with atom labeling and displace­ment ellipsoids drawn at the 20% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound II, with atom labeling and displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate the intra­molecular ππ inter­actions of the indole ring systems.

The geometric parameters of I and II agree well with those reported for related structures (Madhan et al., 2022[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198-1203.], 2023a[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023a). Acta Cryst. E79, 521-525.],b[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741-746.], 2024a[Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024a). Acta Cryst. E80, 682-690.],b[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2024b). Acta Cryst. E80, 845-851.]). The sulfonamide S atoms exhibit a distorted tetra­hedral geometry with the O—S—O angles lying in the range of 119.9 (2)–120.3 (2)°. The increase in these angles, accompanied by a simultaneous decrease in the N—S—C angles [which are 104.3 (2)–106.1 (2)°], from the ideal tetra­hedral values are attributed to the Thorpe–Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). The widening of the angles may be due to the repulsive inter­action between the two short S=O bonds. In both compounds, the expansion of the ipso angles at atoms C1, C3, C4 (and C25, C27, C28 in II), together with the contraction of the apical angles at atoms C2, C5, C6 (and C26, C29, C30 in II) are caused by fusion of the smaller pyrrole ring with the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortion (Allen, 1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]).

The mol­ecular conformation of compound I is stabilized by the weak intra­molecular hydrogen bond C2—H2⋯O1 [C2⋯O1 = 2.908 (5) Å] formed by the sulfone O atoms, which generates an S(6) ring motif. The similar inter­action in compound II [C2⋯O1 = 2.993 (7) Å] is accompanied by three additional intra­molecular hydrogen bonds involving methyl­ene donors and sulfone acceptors [C15⋯O2 = 2.850 (5) Å, C22⋯O6 = 2.950 (5) Å and C29⋯O5= 2.907 (5) Å], which generate S(6) ring motifs.

The most striking feature of the mol­ecular structures is the specific conformation of II, which is controlled by an intra­molecular ππ inter­action between the two indole ring systems (Fig. 2[link]). Their planes are almost parallel, while adopting a small angle of 7.2 (2)°. Two pyrrole and two benzene rings are situated one on the top of another, with the corresponding inter­centroid distances being 3.267 (5) and 3.593 (5) Å, respectively, and with the shortest contact of 3.035 (5) Å observed between atoms C8 and C23. A similar intra­molecular pairing of aromatic rings separated by flexible triatomic spacers is relevant for the appropriate model of di­benzyl­ketone (Lima et al., 2010[Lima, C. F. R. A. C., Sousa, C. A. D., Rodriguez-Borges, J. E., Melo, A., Gomes, L. R., Low, J. N. & Santos, L. M. N. B. F. (2010). Phys. Chem. Chem. Phys. 12, 11228-11237.]). For the latter, the stacked conformation was associated with a relatively small stabilizing enthalpic effect of about 12.9 kJ mol−1 and therefore the crystal structure did not inherit the intra­molecular stacking observed for the gas phase and solution structures. In contrary, the energetics of the intra­molecular indole–indole inter­action could be estimated to be far superior (up to 50–60 kJ mol−1; Madhan et al., 2024a[Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024a). Acta Cryst. E80, 682-690.]) due to the significantly larger inter­action areas and higher contribution of London dispersion forces. The impact of the resulting intra­molecular stacking on the sulfonyl­indole geometry is visible from the inspection of configuration around sulfonyl N atoms. The sum of the bond angles around N1 in I [359.5 (2)°] indicates sp2 hybridization (Beddoes et al., 1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). However, in the case of II, two such parameters are essentially smaller [346.6 (2)° and 349.9 (2)°, for N1 and N3, respectively] and therefore these indole N atoms are pyramidalized to almost the same extent as the exocyclic sulfonamide N2 atoms [347.8 (2)° in I and 342.2 (2)° in II]. The configuration for the latter is typical for sulfonamides, which lack π-bonding between the N and S atoms (Blahun et al., 2020[Blahun, O. P., Rozhenko, A. B., Rusanov, E., Zhersh, S., Tolmachev, A. A., Volochnyuk, D. M. & Grygorenko, O. O. (2020). J. Org. Chem. 85, 5288-5299.]). The perceptible pyramidalization of the indole N atoms may be viewed as a consequence of the steric strain imposed by close contacts between the Br and O atoms of two stacked indole systems [the shortest contact is Br2⋯O6 = 3.592 (4) Å]. At the same time, as a result of the electron-withdrawing character of the phenyl­sulfonyl group, the indole N—Csp2 bond lengths [N1—C1 = 1.415 (4) and N1—C8 = 1.427 (4) Å in I; 1.427 (5)–1.430 (4)Å in II] are longer than the mean value of 1.355 (14) A° for this bond (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]; Cambridge Structural Database (CSD), Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

3. Supra­molecular features

With the absence of conventional hydrogen-bond donor functionality, the supra­molecular patterns of both compounds are controlled by weaker inter­actions, namely by weak C—H⋯O, C—H⋯Br and C—H⋯π hydrogen bonds (Tables 1[link] and 2[link]) and slipped ππ stacking inter­actions (Table 3[link]). In the case of I, the latter is prevalent. Anti­parallel stacking of two inversion-related indole ring systems [symmetry code: (iii) −x + 1, −y + 1, −z + 1) assemble the mol­ecules into dimers, which are connected into chains along the b-axis direction by means of ππ inter­actions between inversion-related phenyl rings [symmetry code: (iv) −x + 1, −y + 2, −z + 1] (Fig. 3[link]). For the indole–indole inter­action, the corresponding inter­centroid distances of 3.532 (2) Å and shortest contacts, down to 3.456 (2) Å (Table 3[link]), are consistent well with those for ππ inter­actions seen in the crystal structures of similar 1-(phenyl­sulfon­yl)-1H-indole derivatives (Madhan et al., 2024a[Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024a). Acta Cryst. E80, 682-690.]). Further connection of the chains by C—H⋯π hydrogen bonds yields corrugated layers parallel to the ab plane. Two such C—H⋯π inter­actions actualize above and below the indole-indole stacks and they are bifurcated, involving both benzo- and pyrrole rings as the acceptors. The corresponding separations are C18⋯Cg(N1/C1/C6–C8)ii = 3.861 (8) Å and C18⋯Cg(C1–C6)ii = 3.579 (1) Å [symmetry code: (ii) x − 1, y, z). The only C—H⋯O bond in the structure [C11⋯O4i = 3.503 (6)Å; symmetry code: (i) x + 1, y, z] is also identified withing this layer.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.39 2.908 (5) 115
C11—H11⋯O4i 0.93 2.76 3.503 (6) 137
C15—H15B⋯O2 0.97 2.31 2.886 (4) 117
C18—H18⋯Cg(N1/C1/C6–C8)ii 0.93 2.99 3.861 (8) 156
C18—H18⋯Cg(C1–C6)ii 0.93 2.81 3.579 (1) 141
Symmetry codes: (i) [x+1, y, z]; (ii) [x-1, y, z].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.43 2.993 (7) 119
C13—H13⋯O3i 0.93 2.80 3.324 (6) 117
C14—H14⋯O4i 0.93 2.78 3.558 (5) 142
C15—H15B⋯O2 0.97 2.25 2.850 (5) 119
C18—H18⋯O3ii 0.93 2.73 3.575 (6) 151
C19—H19⋯O4iii 0.93 2.59 3.443 (6) 152
C19—H19⋯O6iii 0.93 2.81 3.467 (6) 129
C20—H20⋯Br2iii 0.93 3.02 3.536 (5) 117
C22—H22A⋯O6 0.97 2.39 2.950 (5) 116
C27—H27⋯O1iv 0.93 2.48 3.389 (6) 164
C28—H28⋯O5v 0.93 2.63 3.547 (6) 170
C29—H29⋯O5 0.93 2.35 2.907 (5) 118
C34—H34⋯O5ii 0.93 2.62 3.360 (6) 137
C35—H35⋯Cg(C16–C21)vi 0.93 2.91 3.729 (7) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, y, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z+1]; (v) [-x+1, -y+1, -z+2]; (vi) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 3
Geometry of stacking inter­actions (Å, °) for I and II

Cg is a group centroid; plane⋯CgB is the distance between the mean plane of group A and the centroid of inter­acting group B; ipa is the inter­planar angle; sa is the slippage angle, which is the angle of the CgACgB axis to the group A mean plane normal.

Compound Group A Group B Shortest contact CgACgB Plane⋯CgB ipa sa
I (N1/C1/C6–C8) (C1–C6)iii 3.456 (2) 3.532 (2) 3.450 (2) 1.2 (2) 12.4 (2)
  (C9–C14) (C9–C14)iv 3.397 (2) 3.824 (2) 3.397 (2) 0 27.3 (2)
II (N1/C1/C6–C8) (N3/C30/C23–C25) 3.225 (2) 3.267 (2) 3.256 (2) 10.4 (3) 4.8 (2)
  (C1–C6) (C25–C30) 3.499 (2) 3.593 (3) 3.531 (2) 4.9 (3) 10.7 (2)
  (C9–C14) (C31–C36)vii 3.464 (2) 3.952 (3) 3.636 (2) 6.64 (16) 23.0 (2)
Symmetry codes for I: (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 1, −y + 2, −z + 1; for II: (vii) x − 1, y, z − 1.
[Figure 3]
Figure 3
(a) Crystal packing of compound I, viewed in a projection nearly on the ab plane, showing a non-covalent layer assembled by ππ and C—H⋯O inter­actions (identified by dotted lines). (b) Packing of two successive corrugated layers. [Symmetry codes: (i) x + 1, y, z; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 1, −y + 2, −z + 1.]

One can note that in I, and also in other comparable 1-(phenyl­sulfon­yl)-1H-indoles (Madhan et al., 2024a[Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024a). Acta Cryst. E80, 682-690.]), the favorable ππ bonded duo is generated due to the inter­actions at only one axial side of the indole ring system. Therefore, in the case of II, the inter­molecular ππ inter­actions of the latter are completely suppressed due to the generation of the intra­molecular indole–indole stack. This is in line with the increased significance of C—H⋯O inter­actions in the crystal of II. The shortest hydrogen-bond contacts are observed for sulfonic O-atom acceptors [C27⋯O1iv = 3.389 (6) Å; symmetry code: (iv) −x + 1, −y + 1, −z + 1]. These bonds assemble pairs of the mol­ecules into centrosymmetric dimers (Fig. 4[link]) with a cyclic R22(13) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring motif. The dimers are further integrated into a three-dimensional framework. The amino-bound phenyl­sulfonyl groups are held together by a set of C—H⋯O bonds [viz. C18⋯O3ii = 3.575 (6) and C19⋯O4iii = 3.443 (6) Å; symmetry codes: (ii) x + 1, y, z; (iii) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]] and constitute their own layer connectivities in the form of flat square nets, which are parallel to the ac plane (Fig. 4[link]b). These layers are separated by 17.39 Å, which is half of the b-axis parameter of the unit cell, and are linked via bis­(indole­meth­yl)amine fragments of the above dimers (Fig. 4[link]b). These bis­(indole­meth­yl)amine fragments themselves afford nominal layers with a set of weak inter­molecular inter­actions, such as C—H⋯O bonds [C34⋯O5ii = 3.360 (6) Å; symmetry code: (ii) x + 1, y, z] and relatively distal ππ inter­actions between the outer phenyl rings, with an inter­centroid distance of 3.952 (3) Å (Fig. 4[link]c).

[Figure 4]
Figure 4
(a) Projection of the structure of II on the ab plane, showing the assembly of centrosymmetric C—H⋯O-bonded dimers and their integration into the three-dimensional framework. An individual dimer is colored red and its principal inter­actions C27—H⋯O1iv, C13—H⋯O3i, C14—H⋯O4i and C35—H⋯Cg(C16–C21)vi are labeled as 1–4, respectively. Two subconnectivities, which are orthogonal to the drawing plane, are marked with gray strips and they are detailed in the projections on the ac plane: (b) phenyl­sulfonyl layer; (c) ππ and C–H⋯O inter­actions between the mol­ecules of II. [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) x + 1, y, z; (iii) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (iv) −x + 1, −y + 1, −z + 1; (vi) x − [{1\over 2}], −y − [{1\over 2}], z − [{1\over 2}]; (vii) x − 1, y, z − 1.]

4. Hirshfeld surface analysis

In order to investigate the weak inter­molecular inter­actions in the crystal, the Hirshfeld surfaces (dnorm, curvedness and shape-index) and 2D fingerprint plots were generated using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The dnorm mapping uses the normalized functions of di and de (Fig. 5[link]), with white surfaces indicating contacts with distances equal to the sum of van der Waals (vdW) radii, while red and blue colors reflect contacts at the distances below and above sum of the corresponding vdW radii, respectively.

[Figure 5]
Figure 5
The Hirshfeld surfaces of compounds I and II mapped over dnorm.

The Hirshfeld surfaces for two compounds mapped over dnorm using a fixed color scale of −0.125 (red) to 1.678 a.u. (blue) for I and −0.198 (red) to 1.491 a.u. (blue) for II are shown in Fig. 5[link]. One can note weakness of inter­molecular bonding in a system that is, particularly the case of I, showing preferably normal van der Waals separations (denoted with several white regions on the surface). The only identified pair of diffuse red spots corresponds to C—H⋯O bonds. In the case of II, the observed low intense and diffuse red spots are slightly larger in number, which supports the increased significance of weak hydrogen-bonding inter­actions. The electrostatic potential was also mapped on the Hirshfeld surface using a STO-3G basis set and the Hartree–Fock level of theory (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The C—H⋯O hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative electrostatic potentials, respectively (Fig. 6[link]a). The presence of ππ stacking inter­actions is indicated by red and blue triangles on the shape-index surface (Fig. 6[link]b). Areas on the Hirshfeld surface with high curvedness tend to divide the surface into contact patches with each neighboring mol­ecule. The coordination number in the crystal is defined by the curvedness of the Hirshfeld surface (Fig. 6[link]c). The nearest neighbor in the coordination environment of a mol­ecule is identified from the color patches on the Hirshfeld surface depending on their closeness to adjacent mol­ecules (Fig. 6[link]d).

[Figure 6]
Figure 6
Hirshfeld surfaces for visualizing the inter­molecular contacts of the title compounds: (a) electrostatic potential, (b) shape-index, (c) curvedness and (d) fragment patches.

Two-dimensional fingerprint plots showing the occurrence of all inter­molecular contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are presented in Fig. 7[link]. The plots for H⋯H contacts (Fig. 7[link]b), which represent the largest contributions to the Hirshfeld surfaces (over 30%), show a distinct pattern with a minimum value of de = di = 1.1 Å. Beyond these largest fractions, the short contacts are overwhelmingly O⋯H/H⋯O (Fig. 7[link]c) and C⋯H/H⋯C (Fig. 7[link]d), which deliver as much as 19.9 and 19.2%, respectively, to the Hirshfeld surface in I and 27.2 and 16.2% in II. The significant increase in the O⋯H/H⋯O contributions when moving from I to II reflects the growing significance of C—H⋯O binding. This is in line with a larger number of the available O-atom acceptors in the latter case, but also it is a consequence of the elimination of inter­molecular ππ indole bonding. Accordingly, the pair of spikes identifying O⋯H/H⋯O contacts on the plots is more diffuse in the case of I. We note also a suppression of Br⋯H/H⋯Br contacts (6.9% for II versus 13.6% for I). This fact does not provide a basis for comparison of the acceptor abilities of the indole- and phenyl-bound Br atoms, but rather reflects the steric unavailability of Br in II due to the forced intra­molecular inter­actions with sulfonyl O atoms. It is worth mentioning that the accumulation of unfavorable Br⋯O contacts within the mol­ecule of II causes the elimination of such contacts between the mol­ecules. This situation is evidenced by markedly different contributions of Br⋯O/O⋯Br contacts to the surface areas, which are 5.1% for I, but are completely absent in the case of II. An overlap between nearly parallel aromatic frames, due to the slipped ππ inter­actions, is clearly indicated by the C⋯C plots in the form of blue–green areas centered at ca de = di = 1.8 Å. A 50% decrease in the C⋯C contacts (2.4% for II versus 4.8% for I) is also a consequence of intra­molecular indole–indole stacking, which mitigates against similar in nature inter­molecular inter­actions.

[Figure 7]
Figure 7
Two-dimensional fingerprint plots for I and II for all contacts and delineated into the principal contributions of H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, Br.·H/H⋯Br, Br⋯O/O⋯Br, C⋯C, Br⋯C/C⋯Br and O⋯C/C⋯O contacts. Other contributors account for less than 1.0% of contacts to the surface areas.

In brief, the Hirshfeld surface analysis confirms the importance of weak hydrogen bonding and contacts associated with the ππ inter­actions in establishing the packing. These results complement the main merit of the structure analysis and in total they suggest the possibility of controling the supra­molecular behavior of sulfonyl­ated indoles as possible biomedical materials.

5. Database survey

A search of the Cambridge Structural Database (Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated 123 compounds incorporating the phenyl­sulfonyl-1H-indole moiety. Of these, the most closely related examples are provided by structures of bromo­substituted 3-methyl-1-(phenyl­sulfon­yl)-1H-indole derivatives (JOMJII, JOMJAA and JOMJEE; Madhan et al., 2024b[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2024b). Acta Cryst. E80, 845-851.]), ethyl 2-acet­oxy­methyl-1-phenyl­sulfonyl-1H-indole-3-carboxyl­ate (HUCQUS; Gunasekaran et al., 2009[Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069.]), 3-iodo-2-methyl-1-phenyl­sulfonyl-1H-indole (ULESEK; Ramathilagam et al., 2011[Ramathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632.]) and 1-(2-bromo­methyl-1-phenyl­sulfonyl-1H-indol-3-yl) propan-1-one (CIQFEP; Umadevi et al., 2013[Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802-o1803.]). In these structures, the sulfonyl-bound phenyl rings are almost orthogonal to the indole ring systems, with the corresponding dihedral angles lying in the range 73.35 (7)–89.91 (11)°.

6. Synthesis and crystallization

Compound I: To a solution of N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide (0.45 g, 0.845 mmol) in 5 ml of dry CH2Cl2, a mixture of phenyl­iodo­nium di­acetate (0.40 g, 1.268 mmol) and CuBr2 (0.56 g, 2.537 mmol) in 10 ml of CH2Cl2 was slowly added at 273 K. The reaction mixture was allowed to stir for 3 h at 273 K under an N2 atmosphere. After completion of the reaction (monitored by TLC), it was poured over cooled saturated aqueous NaHCO3 solution (20 mL) and then extracted with CH2Cl2 (2 × 10 mL). The extract was dried over Na2SO4. Removal of the solvent followed by recrystallization of the crude product from 5 mL of methanol afforded N-{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}-N-(4-bromo-3-meth­oxy­phen­yl)benzene­sulfonamide (0.45 g, 78%) as a colorless solid, m.p. = 495–496 K. 1H NMR (300 MHz, CDCl3), δ, p.p.m.: 7.96 (d, J = 8.4 Hz, 1H), 7.69–7.64 (m, 4H), 7.57–7.34 (m, 6H), 7.29–7.24 (m, 2H), 7.20–7.11 (m, 2H), 6.36 (s, 1H), 6.25 (d, J = 8.4 Hz, 1H), 5.28 (s, 2H), 3.49 (s, 3H). 13C{1H} NMR (75 MHz, CDCl3), δ, p.p.m.: 155.4, 138.0, 137.9, 137.4, 136.3, 134.2, 133.1, 132.6, 130.2, 129.4, 128.8, 128.4, 128.2, 126.8, 126.6, 124.5, 122.7, 120.1, 115.2, 113.6, 111.7, 107.7, 56.1, 45.8. DEPT-135 13C NMR (CDCl3), δ, p.p.m.: 134.2, 133.1, 132.6, 129.4, 128.9, 128.2, 126.8, 126.6, 124.5, 122.7, 120.2, 115.2, 113.6, 56.1, 45.8. HRMS (ESI) m/z: [M+H]+ Calculated for C28H2379Br2N2O5S2: 688.9415; found: 688.9407.

Compound II: To a solution of N,N-bis­{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide (0.25 g, 0.359 mmol) in 5 ml of dry CH2Cl2, a mixture of phenyl­iodo­nium di­acetate (0.23 g, 0.719 mmol) and CuBr2 (0.24 g, 1.079 mmol) in 10 ml of CH2Cl2 was slowly added at 273 K. The reaction mixture was allowed to stir for 3 h at 273 K under an N2 atmosphere. After completion of the reaction (monitored by TLC), it was poured over cooled saturated aqueous NaHCO3 solution (20 mL) and then extracted with CH2Cl2 (2 × 10 mL). The extract was dried over Na2SO4. Removal of the solvent followed by recrystallization of the crude product from 5 ml of methanol afforded N,N-bis­{[3-bromo-1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide (0.15 g, 60%) as a colorless solid, m.p. = 529–531 K. 1H NMR (300 MHz, CDCl3), δ, p.p.m.: 7.93 (d, J = 8.1 Hz, 2H), 7.77 (d, J = 7.5 Hz, 2H), 7.52–7.45 (m, 6H), 7.38–7.19 (m, 13H), 7.14–7.09 (m, 2H), 5.14 (s, 4H). 13C{1H} NMR (75 MHz, CDCl3), δ, p.p.m.: 138.9, 137.4, 136.6, 133.9, 131.9, 129.5, 129.2, 128.0, 127.5, 126.6, 126.3, 124.6, 120.0, 115.7, 109.2, 45.0.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All hydrogen atoms were positioned geometrically and refined as riding with C—H = 0.93 Å (aromatic CH), 0.97 Å (CH2) and 0.96 Å (CH3) and 0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) for other H atoms.

Table 4
Experimental details

  I II
Crystal data
Chemical formula C28H22Br2N2O5S2 C36H27Br2N3O6S3
Mr 690.41 853.60
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 303 303
a, b, c (Å) 9.5718 (6), 14.4498 (8), 20.0041 (12) 8.2664 (4), 34.7886 (18), 12.5972 (6)
β (°) 92.874 (2) 104.550 (2)
V3) 2763.3 (3) 3506.5 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.13 2.54
Crystal size (mm) 0.29 × 0.24 × 0.20 0.29 × 0.19 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture Diffractometer Bruker D8 Venture Diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.589, 0.753 0.491, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 90697, 5234, 4173 73921, 6434, 5196
Rint 0.071 0.071
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.05 0.048, 0.120, 1.12
No. of reflections 5234 6434
No. of parameters 353 451
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.74, −1.41 0.46, −0.47
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

N-{[3-Bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}-N-(4-bromo-3-methoxyphenyl)benzenesulfonamide (I) top
Crystal data top
C28H22Br2N2O5S2F(000) = 1384
Mr = 690.41Dx = 1.660 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.5718 (6) ÅCell parameters from 90697 reflections
b = 14.4498 (8) Åθ = 1.4–25.0°
c = 20.0041 (12) ŵ = 3.13 mm1
β = 92.874 (2)°T = 303 K
V = 2763.3 (3) Å3Block, colorless
Z = 40.29 × 0.24 × 0.20 mm
Data collection top
Bruker D8 Venture Diffractometer4173 reflections with I > 2σ(I)
Radiation source: micro focus sealed tubeRint = 0.071
ω and φ scansθmax = 25.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.589, Tmax = 0.753k = 1717
90697 measured reflectionsl = 2424
5234 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0293P)2 + 5.9561P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5234 reflectionsΔρmax = 1.74 e Å3
353 parametersΔρmin = 1.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5912 (4)0.6131 (2)0.46145 (17)0.0360 (8)
C20.7216 (4)0.6188 (3)0.4946 (2)0.0485 (9)
H20.7464820.6694200.5212720.058*
C30.8133 (5)0.5462 (3)0.4864 (2)0.0581 (11)
H30.9018190.5488660.5076530.070*
C40.7775 (5)0.4695 (3)0.4473 (2)0.0575 (11)
H40.8419310.4219700.4430870.069*
C50.6482 (5)0.4633 (3)0.41506 (19)0.0486 (10)
H50.6237740.4117850.3891420.058*
C60.5536 (4)0.5362 (2)0.42199 (17)0.0372 (8)
C70.4158 (4)0.5529 (2)0.39470 (17)0.0397 (8)
C80.3685 (4)0.6356 (2)0.41568 (16)0.0337 (7)
C90.5386 (4)0.8611 (2)0.46312 (18)0.0401 (8)
C100.6823 (5)0.8709 (3)0.4644 (3)0.0610 (12)
H100.7400320.8272790.4859320.073*
C110.7389 (6)0.9465 (3)0.4332 (3)0.0775 (16)
H110.8355120.9538500.4337110.093*
C120.6537 (6)1.0105 (3)0.4017 (2)0.0686 (14)
H120.6926251.0612120.3808760.082*
C130.5117 (6)1.0007 (3)0.4006 (2)0.0617 (12)
H130.4548181.0446750.3790110.074*
C140.4518 (5)0.9258 (3)0.43145 (19)0.0479 (9)
H140.3550720.9190910.4308660.057*
C150.2288 (4)0.6783 (3)0.39902 (17)0.0374 (8)
H15A0.1684460.6326980.3766780.045*
H15B0.1864080.6961040.4401440.045*
C160.0367 (4)0.7764 (3)0.31156 (18)0.0404 (8)
C170.1273 (4)0.7228 (3)0.3466 (2)0.0544 (11)
H170.1174320.7184410.3929560.065*
C180.2334 (5)0.6754 (3)0.3113 (2)0.0640 (12)
H180.2961090.6398040.3343620.077*
C190.2469 (4)0.6806 (3)0.2427 (2)0.0564 (11)
H190.3179300.6481120.2195290.068*
C200.1556 (4)0.7338 (3)0.2082 (2)0.0557 (11)
H200.1651210.7371150.1617340.067*
C210.0501 (4)0.7820 (3)0.2420 (2)0.0508 (10)
H210.0116260.8180040.2186460.061*
C220.2982 (4)0.7476 (2)0.29018 (16)0.0347 (8)
C230.2612 (4)0.6733 (3)0.24960 (19)0.0453 (9)
H230.1956020.6305440.2630400.054*
C240.3227 (4)0.6627 (3)0.18851 (18)0.0482 (10)
H240.3008250.6115880.1617490.058*
C250.4159 (4)0.7279 (3)0.16766 (17)0.0395 (8)
C260.4523 (4)0.8037 (3)0.20774 (18)0.0405 (8)
C270.3937 (4)0.8122 (3)0.26980 (18)0.0386 (8)
H270.4188400.8616390.2976490.046*
C280.5954 (7)0.9366 (4)0.2262 (3)0.090 (2)
H28A0.5198320.9778210.2350670.135*
H28B0.6677080.9702600.2051840.135*
H28C0.6324340.9106220.2675950.135*
N10.4763 (3)0.67482 (19)0.45867 (14)0.0344 (6)
N20.2386 (3)0.7612 (2)0.35510 (14)0.0356 (6)
O10.5542 (3)0.75110 (19)0.56538 (13)0.0516 (7)
O20.3206 (3)0.78625 (18)0.51436 (13)0.0488 (7)
O30.1411 (3)0.91308 (19)0.31900 (14)0.0516 (7)
O40.0678 (3)0.8422 (2)0.42399 (13)0.0552 (7)
O50.5454 (3)0.8642 (2)0.18304 (14)0.0589 (8)
S10.46528 (10)0.76919 (6)0.50760 (4)0.0375 (2)
S20.10295 (10)0.83326 (7)0.35581 (5)0.0412 (2)
Br10.50238 (5)0.71099 (4)0.08522 (2)0.05801 (14)
Br20.31588 (6)0.46768 (3)0.34009 (2)0.06813 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0391 (19)0.0333 (18)0.0364 (18)0.0038 (15)0.0097 (15)0.0063 (15)
C20.043 (2)0.044 (2)0.059 (2)0.0010 (17)0.0015 (18)0.0019 (19)
C30.044 (2)0.062 (3)0.068 (3)0.013 (2)0.003 (2)0.009 (2)
C40.060 (3)0.052 (3)0.061 (3)0.024 (2)0.014 (2)0.009 (2)
C50.067 (3)0.038 (2)0.042 (2)0.0142 (19)0.0155 (19)0.0004 (17)
C60.048 (2)0.0349 (18)0.0295 (17)0.0050 (16)0.0095 (15)0.0036 (14)
C70.054 (2)0.0360 (19)0.0289 (17)0.0034 (17)0.0023 (16)0.0022 (15)
C80.042 (2)0.0340 (18)0.0251 (16)0.0003 (15)0.0038 (14)0.0010 (14)
C90.050 (2)0.0294 (18)0.042 (2)0.0005 (16)0.0067 (16)0.0062 (15)
C100.049 (3)0.038 (2)0.097 (4)0.0055 (19)0.016 (2)0.003 (2)
C110.066 (3)0.054 (3)0.117 (5)0.004 (2)0.041 (3)0.002 (3)
C120.102 (4)0.038 (2)0.068 (3)0.008 (3)0.032 (3)0.001 (2)
C130.096 (4)0.038 (2)0.051 (3)0.004 (2)0.003 (2)0.0018 (19)
C140.058 (2)0.039 (2)0.045 (2)0.0029 (18)0.0065 (18)0.0071 (17)
C150.0388 (19)0.042 (2)0.0314 (17)0.0015 (16)0.0040 (14)0.0008 (15)
C160.0337 (19)0.045 (2)0.043 (2)0.0061 (16)0.0080 (15)0.0088 (16)
C170.051 (2)0.070 (3)0.044 (2)0.001 (2)0.0175 (19)0.011 (2)
C180.054 (3)0.071 (3)0.069 (3)0.010 (2)0.025 (2)0.011 (2)
C190.041 (2)0.059 (3)0.069 (3)0.000 (2)0.000 (2)0.004 (2)
C200.053 (3)0.071 (3)0.043 (2)0.002 (2)0.0014 (19)0.011 (2)
C210.046 (2)0.063 (3)0.044 (2)0.006 (2)0.0044 (18)0.0190 (19)
C220.0319 (18)0.043 (2)0.0296 (17)0.0069 (15)0.0018 (14)0.0011 (15)
C230.044 (2)0.053 (2)0.0390 (19)0.0077 (18)0.0043 (16)0.0029 (17)
C240.050 (2)0.061 (3)0.0338 (19)0.004 (2)0.0002 (17)0.0115 (18)
C250.0339 (19)0.057 (2)0.0271 (16)0.0076 (17)0.0033 (14)0.0004 (16)
C260.0366 (19)0.045 (2)0.0407 (19)0.0022 (16)0.0082 (15)0.0017 (17)
C270.0382 (19)0.0396 (19)0.0384 (19)0.0015 (16)0.0060 (15)0.0028 (15)
C280.109 (4)0.078 (4)0.086 (4)0.049 (3)0.052 (3)0.028 (3)
N10.0377 (16)0.0299 (14)0.0358 (15)0.0025 (12)0.0041 (12)0.0035 (12)
N20.0369 (16)0.0411 (16)0.0291 (14)0.0056 (13)0.0047 (12)0.0027 (12)
O10.0678 (19)0.0501 (16)0.0359 (14)0.0026 (14)0.0065 (13)0.0033 (12)
O20.0461 (15)0.0508 (16)0.0508 (16)0.0035 (13)0.0147 (12)0.0137 (13)
O30.0532 (17)0.0416 (15)0.0599 (17)0.0042 (13)0.0024 (13)0.0061 (13)
O40.0559 (17)0.0688 (19)0.0412 (15)0.0214 (15)0.0073 (13)0.0074 (14)
O50.068 (2)0.0602 (18)0.0507 (17)0.0152 (15)0.0275 (15)0.0064 (14)
S10.0441 (5)0.0353 (4)0.0334 (4)0.0024 (4)0.0055 (4)0.0053 (4)
S20.0402 (5)0.0451 (5)0.0384 (5)0.0088 (4)0.0055 (4)0.0014 (4)
Br10.0547 (3)0.0844 (3)0.0358 (2)0.0026 (2)0.01070 (17)0.0083 (2)
Br20.0946 (4)0.0496 (3)0.0575 (3)0.0103 (2)0.0228 (2)0.0210 (2)
Geometric parameters (Å, º) top
C1—C21.386 (5)C16—S21.768 (4)
C1—C61.399 (5)C17—C181.388 (6)
C1—N11.415 (4)C17—H170.9300
C2—C31.382 (6)C18—C191.375 (6)
C2—H20.9300C18—H180.9300
C3—C41.388 (6)C19—C201.375 (6)
C3—H30.9300C19—H190.9300
C4—C51.370 (6)C20—C211.377 (6)
C4—H40.9300C20—H200.9300
C5—C61.400 (5)C21—H210.9300
C5—H50.9300C22—C231.381 (5)
C6—C71.423 (5)C22—C271.383 (5)
C7—C81.352 (5)C22—N21.457 (4)
C7—Br21.876 (4)C23—C241.391 (5)
C8—N11.427 (4)C23—H230.9300
C8—C151.495 (5)C24—C251.377 (5)
C9—C101.381 (6)C24—H240.9300
C9—C141.384 (5)C25—C261.391 (5)
C9—S11.764 (4)C25—Br11.898 (3)
C10—C111.382 (6)C26—O51.358 (4)
C10—H100.9300C26—C271.394 (5)
C11—C121.367 (7)C27—H270.9300
C11—H110.9300C28—O51.425 (6)
C12—C131.365 (7)C28—H28A0.9600
C12—H120.9300C28—H28B0.9600
C13—C141.384 (6)C28—H28C0.9600
C13—H130.9300N1—S11.685 (3)
C14—H140.9300N2—S21.665 (3)
C15—N21.491 (4)O1—S11.425 (3)
C15—H15A0.9700O2—S11.420 (3)
C15—H15B0.9700O3—S21.426 (3)
C16—C171.380 (5)O4—S21.427 (3)
C16—C211.393 (5)
C2—C1—C6121.1 (3)C19—C18—H18119.7
C2—C1—N1131.4 (3)C17—C18—H18119.7
C6—C1—N1107.5 (3)C18—C19—C20120.1 (4)
C3—C2—C1117.4 (4)C18—C19—H19120.0
C3—C2—H2121.3C20—C19—H19120.0
C1—C2—H2121.3C19—C20—C21120.4 (4)
C2—C3—C4122.2 (4)C19—C20—H20119.8
C2—C3—H3118.9C21—C20—H20119.8
C4—C3—H3118.9C20—C21—C16119.3 (4)
C5—C4—C3120.6 (4)C20—C21—H21120.3
C5—C4—H4119.7C16—C21—H21120.3
C3—C4—H4119.7C23—C22—C27120.4 (3)
C4—C5—C6118.5 (4)C23—C22—N2121.9 (3)
C4—C5—H5120.8C27—C22—N2117.7 (3)
C6—C5—H5120.8C22—C23—C24119.6 (4)
C1—C6—C5120.3 (4)C22—C23—H23120.2
C1—C6—C7106.8 (3)C24—C23—H23120.2
C5—C6—C7132.9 (4)C25—C24—C23120.0 (4)
C8—C7—C6110.5 (3)C25—C24—H24120.0
C8—C7—Br2126.3 (3)C23—C24—H24120.0
C6—C7—Br2123.2 (3)C24—C25—C26120.8 (3)
C7—C8—N1107.1 (3)C24—C25—Br1119.5 (3)
C7—C8—C15127.2 (3)C26—C25—Br1119.6 (3)
N1—C8—C15125.6 (3)O5—C26—C25116.5 (3)
C10—C9—C14120.9 (4)O5—C26—C27124.6 (3)
C10—C9—S1119.3 (3)C25—C26—C27118.8 (3)
C14—C9—S1119.6 (3)C22—C27—C26120.3 (3)
C9—C10—C11119.1 (4)C22—C27—H27119.8
C9—C10—H10120.5C26—C27—H27119.8
C11—C10—H10120.5O5—C28—H28A109.5
C12—C11—C10120.3 (5)O5—C28—H28B109.5
C12—C11—H11119.9H28A—C28—H28B109.5
C10—C11—H11119.9O5—C28—H28C109.5
C13—C12—C11120.5 (4)H28A—C28—H28C109.5
C13—C12—H12119.8H28B—C28—H28C109.5
C11—C12—H12119.8C1—N1—C8108.1 (3)
C12—C13—C14120.6 (4)C1—N1—S1124.0 (2)
C12—C13—H13119.7C8—N1—S1127.4 (2)
C14—C13—H13119.7C22—N2—C15117.1 (3)
C9—C14—C13118.6 (4)C22—N2—S2115.6 (2)
C9—C14—H14120.7C15—N2—S2115.1 (2)
C13—C14—H14120.7C26—O5—C28117.3 (3)
N2—C15—C8112.3 (3)O2—S1—O1120.03 (17)
N2—C15—H15A109.1O2—S1—N1106.60 (15)
C8—C15—H15A109.1O1—S1—N1105.69 (15)
N2—C15—H15B109.1O2—S1—C9109.41 (18)
C8—C15—H15B109.1O1—S1—C9108.10 (18)
H15A—C15—H15B107.9N1—S1—C9106.14 (15)
C17—C16—C21120.7 (4)O3—S2—O4119.92 (18)
C17—C16—S2119.0 (3)O3—S2—N2106.35 (16)
C21—C16—S2120.1 (3)O4—S2—N2106.66 (15)
C16—C17—C18118.8 (4)O3—S2—C16108.91 (17)
C16—C17—H17120.6O4—S2—C16108.18 (18)
C18—C17—H17120.6N2—S2—C16105.98 (16)
C19—C18—C17120.7 (4)
C6—C1—C2—C30.8 (6)Br1—C25—C26—C27176.4 (3)
N1—C1—C2—C3179.1 (4)C23—C22—C27—C260.8 (5)
C1—C2—C3—C40.8 (6)N2—C22—C27—C26178.9 (3)
C2—C3—C4—C50.2 (7)O5—C26—C27—C22179.1 (3)
C3—C4—C5—C60.4 (6)C25—C26—C27—C221.7 (5)
C2—C1—C6—C50.2 (5)C2—C1—N1—C8178.6 (4)
N1—C1—C6—C5179.7 (3)C6—C1—N1—C81.2 (4)
C2—C1—C6—C7179.1 (3)C2—C1—N1—S19.6 (5)
N1—C1—C6—C70.8 (4)C6—C1—N1—S1170.5 (2)
C4—C5—C6—C10.4 (5)C7—C8—N1—C11.2 (4)
C4—C5—C6—C7178.1 (4)C15—C8—N1—C1179.8 (3)
C1—C6—C7—C80.1 (4)C7—C8—N1—S1170.2 (3)
C5—C6—C7—C8178.7 (4)C15—C8—N1—S18.4 (5)
C1—C6—C7—Br2177.9 (2)C23—C22—N2—C1544.3 (5)
C5—C6—C7—Br23.4 (6)C27—C22—N2—C15136.0 (3)
C6—C7—C8—N10.7 (4)C23—C22—N2—S296.5 (4)
Br2—C7—C8—N1177.1 (2)C27—C22—N2—S283.3 (3)
C6—C7—C8—C15179.3 (3)C8—C15—N2—C2259.7 (4)
Br2—C7—C8—C151.5 (5)C8—C15—N2—S2159.4 (2)
C14—C9—C10—C110.3 (7)C25—C26—O5—C28173.4 (4)
S1—C9—C10—C11175.7 (4)C27—C26—O5—C285.8 (6)
C9—C10—C11—C120.1 (8)C1—N1—S1—O2152.6 (3)
C10—C11—C12—C130.0 (8)C8—N1—S1—O217.5 (3)
C11—C12—C13—C140.1 (7)C1—N1—S1—O123.9 (3)
C10—C9—C14—C130.3 (6)C8—N1—S1—O1146.3 (3)
S1—C9—C14—C13175.7 (3)C1—N1—S1—C990.8 (3)
C12—C13—C14—C90.2 (6)C8—N1—S1—C999.1 (3)
C7—C8—C15—N2111.1 (4)C10—C9—S1—O2164.5 (3)
N1—C8—C15—N270.5 (4)C14—C9—S1—O211.0 (3)
C21—C16—C17—C180.9 (6)C10—C9—S1—O132.2 (4)
S2—C16—C17—C18177.5 (3)C14—C9—S1—O1143.3 (3)
C16—C17—C18—C191.0 (7)C10—C9—S1—N180.8 (4)
C17—C18—C19—C200.6 (7)C14—C9—S1—N1103.7 (3)
C18—C19—C20—C210.1 (7)C22—N2—S2—O346.6 (3)
C19—C20—C21—C160.1 (7)C15—N2—S2—O3171.8 (2)
C17—C16—C21—C200.4 (6)C22—N2—S2—O4175.7 (3)
S2—C16—C21—C20177.0 (3)C15—N2—S2—O442.8 (3)
C27—C22—C23—C241.3 (6)C22—N2—S2—C1669.2 (3)
N2—C22—C23—C24179.0 (3)C15—N2—S2—C1672.3 (3)
C22—C23—C24—C252.4 (6)C17—C16—S2—O3153.9 (3)
C23—C24—C25—C261.5 (6)C21—C16—S2—O329.4 (4)
C23—C24—C25—Br1178.5 (3)C17—C16—S2—O422.0 (4)
C24—C25—C26—O5179.8 (4)C21—C16—S2—O4161.3 (3)
Br1—C25—C26—O52.8 (5)C17—C16—S2—N292.0 (3)
C24—C25—C26—C270.5 (6)C21—C16—S2—N284.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.392.908 (5)115
C11—H11···O4i0.932.763.503 (6)137
C15—H15B···O20.972.312.886 (4)117
C18—H18···Cg(N1/C1/C6–C8)ii0.932.993.861 (8)156
C18—H18···Cg(C1–C6)ii0.932.813.579 (1)141
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
N,N-Bis{[3-bromo-1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II) top
Crystal data top
C36H27Br2N3O6S3F(000) = 1720
Mr = 853.60Dx = 1.617 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2664 (4) ÅCell parameters from 73921 reflections
b = 34.7886 (18) Åθ = 1.4–25.0°
c = 12.5972 (6) ŵ = 2.54 mm1
β = 104.550 (2)°T = 303 K
V = 3506.5 (3) Å3Block, colorless
Z = 40.29 × 0.19 × 0.04 mm
Data collection top
Bruker D8 Venture Diffractometer5196 reflections with I > 2σ(I)
Radiation source: micro focus sealed tubeRint = 0.071
ω and φ scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.491, Tmax = 0.745k = 4141
73921 measured reflectionsl = 1515
6434 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0397P)2 + 5.0983P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
6434 reflectionsΔρmax = 0.46 e Å3
451 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2266 (5)0.42112 (11)0.6112 (3)0.0474 (10)
C20.2075 (6)0.45836 (12)0.5688 (4)0.0691 (14)
H20.2423190.4651170.5066360.083*
C30.1341 (8)0.48456 (15)0.6241 (6)0.090 (2)
H30.1197040.5097080.5983970.108*
C40.0814 (7)0.47499 (17)0.7155 (6)0.091 (2)
H40.0320490.4936820.7498540.109*
C50.1002 (5)0.43816 (16)0.7576 (4)0.0700 (14)
H50.0657410.4318220.8202390.084*
C60.1726 (5)0.41075 (12)0.7029 (3)0.0482 (10)
C70.2180 (5)0.37117 (11)0.7239 (3)0.0432 (9)
C80.2986 (4)0.35808 (10)0.6506 (3)0.0361 (8)
C90.0542 (5)0.37495 (11)0.3929 (3)0.0431 (9)
C100.0441 (6)0.40600 (13)0.3488 (3)0.0568 (11)
H100.0040620.4298600.3435750.068*
C110.2147 (7)0.40109 (18)0.3127 (4)0.0713 (14)
H110.2822470.4218070.2832940.086*
C120.2844 (6)0.36617 (19)0.3199 (4)0.0747 (15)
H120.3995560.3631310.2950810.090*
C130.1865 (6)0.33531 (16)0.3634 (4)0.0711 (14)
H130.2356680.3114930.3676080.085*
C140.0158 (6)0.33944 (12)0.4008 (4)0.0564 (11)
H140.0509140.3186550.4307780.068*
C150.3938 (5)0.32126 (10)0.6489 (3)0.0416 (9)
H15A0.3151780.3006540.6218880.050*
H15B0.4645820.3240630.5985030.050*
C160.6415 (5)0.24696 (10)0.6959 (3)0.0429 (9)
C170.8099 (6)0.24045 (14)0.7415 (4)0.0619 (12)
H170.8538330.2424150.8168570.074*
C180.9117 (7)0.23100 (17)0.6738 (6)0.0870 (18)
H181.0249330.2264120.7034390.104*
C190.8454 (10)0.22842 (16)0.5629 (6)0.091 (2)
H190.9141820.2224300.5170490.109*
C200.6786 (10)0.23460 (17)0.5192 (4)0.094 (2)
H200.6347310.2325930.4438420.113*
C210.5756 (7)0.24368 (13)0.5848 (4)0.0671 (14)
H210.4620550.2475980.5546080.081*
C220.6628 (5)0.33072 (11)0.7938 (3)0.0455 (9)
H22A0.7175550.3228270.8680070.055*
H22B0.7328850.3227490.7465730.055*
C230.6489 (4)0.37330 (11)0.7907 (3)0.0390 (8)
C240.6816 (5)0.39717 (12)0.7143 (3)0.0454 (9)
C250.6421 (5)0.43593 (12)0.7368 (3)0.0462 (9)
C260.6451 (6)0.47079 (14)0.6812 (4)0.0646 (13)
H260.6822860.4719080.6173950.078*
C270.5912 (7)0.50320 (14)0.7244 (5)0.0746 (15)
H270.5921510.5266530.6890900.090*
C280.5358 (7)0.50180 (13)0.8183 (5)0.0706 (14)
H280.5019290.5244700.8454240.085*
C290.5286 (5)0.46829 (12)0.8734 (4)0.0541 (11)
H290.4879870.4675710.9358700.065*
C300.5854 (5)0.43506 (10)0.8315 (3)0.0415 (9)
C310.8482 (5)0.39173 (12)1.0480 (3)0.0443 (9)
C320.9122 (6)0.42849 (16)1.0514 (4)0.0699 (14)
H320.8419430.4495151.0303250.084*
C331.0838 (8)0.4333 (2)1.0869 (5)0.094 (2)
H331.1306760.4576391.0885260.113*
C341.1843 (7)0.4018 (3)1.1197 (5)0.098 (2)
H341.2994280.4050791.1427450.117*
C351.1190 (7)0.3657 (2)1.1194 (5)0.0891 (19)
H351.1885870.3448141.1442620.107*
C360.9479 (6)0.36050 (15)1.0816 (4)0.0664 (13)
H360.9015550.3360521.0790590.080*
N10.3054 (4)0.38863 (8)0.5760 (2)0.0400 (7)
N20.4990 (4)0.31064 (8)0.7588 (2)0.0389 (7)
N30.5879 (4)0.39605 (8)0.8669 (2)0.0375 (7)
O10.3214 (4)0.41488 (10)0.3958 (3)0.0727 (9)
O20.3521 (4)0.34514 (9)0.4273 (2)0.0566 (7)
O30.3523 (4)0.24801 (9)0.7430 (3)0.0728 (10)
O40.6071 (5)0.25830 (9)0.8922 (2)0.0659 (9)
O50.5475 (4)0.41314 (9)1.0495 (2)0.0549 (7)
O60.5948 (4)0.34548 (8)1.0092 (2)0.0606 (8)
S10.27243 (13)0.38060 (3)0.43993 (8)0.0467 (2)
S20.51553 (13)0.26365 (3)0.78055 (9)0.0470 (2)
S30.63083 (12)0.38513 (3)1.00122 (8)0.0416 (2)
Br10.74777 (6)0.38250 (2)0.58953 (4)0.07276 (18)
Br20.17344 (7)0.34427 (2)0.84137 (4)0.07746 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (2)0.038 (2)0.052 (2)0.0029 (17)0.0057 (18)0.0091 (18)
C20.078 (3)0.040 (2)0.071 (3)0.008 (2)0.016 (3)0.001 (2)
C30.091 (4)0.044 (3)0.110 (5)0.023 (3)0.022 (4)0.021 (3)
C40.060 (3)0.073 (4)0.119 (5)0.031 (3)0.019 (3)0.050 (4)
C50.045 (3)0.083 (4)0.076 (3)0.017 (2)0.004 (2)0.031 (3)
C60.0325 (19)0.055 (2)0.052 (2)0.0094 (17)0.0005 (17)0.0170 (19)
C70.036 (2)0.054 (2)0.038 (2)0.0044 (17)0.0058 (16)0.0004 (17)
C80.0357 (19)0.0359 (19)0.0353 (19)0.0020 (15)0.0061 (15)0.0013 (15)
C90.051 (2)0.046 (2)0.0330 (19)0.0019 (18)0.0108 (17)0.0048 (16)
C100.067 (3)0.058 (3)0.040 (2)0.007 (2)0.004 (2)0.0027 (19)
C110.071 (3)0.091 (4)0.044 (3)0.025 (3)0.000 (2)0.005 (2)
C120.052 (3)0.111 (5)0.058 (3)0.001 (3)0.007 (2)0.027 (3)
C130.065 (3)0.080 (4)0.068 (3)0.024 (3)0.018 (3)0.024 (3)
C140.066 (3)0.048 (2)0.052 (3)0.004 (2)0.008 (2)0.0083 (19)
C150.046 (2)0.0311 (19)0.046 (2)0.0052 (16)0.0086 (17)0.0013 (16)
C160.053 (2)0.0288 (19)0.045 (2)0.0068 (16)0.0103 (18)0.0000 (16)
C170.051 (3)0.071 (3)0.061 (3)0.007 (2)0.009 (2)0.014 (2)
C180.057 (3)0.092 (4)0.116 (5)0.008 (3)0.030 (3)0.021 (4)
C190.134 (6)0.070 (4)0.093 (5)0.018 (4)0.075 (4)0.003 (3)
C200.152 (6)0.083 (4)0.049 (3)0.058 (4)0.029 (3)0.002 (3)
C210.089 (4)0.051 (3)0.054 (3)0.025 (2)0.006 (3)0.010 (2)
C220.039 (2)0.046 (2)0.050 (2)0.0004 (17)0.0076 (17)0.0103 (18)
C230.0342 (19)0.044 (2)0.0376 (19)0.0023 (15)0.0062 (15)0.0092 (16)
C240.038 (2)0.059 (3)0.041 (2)0.0138 (18)0.0134 (17)0.0082 (18)
C250.042 (2)0.049 (2)0.045 (2)0.0151 (18)0.0055 (18)0.0016 (18)
C260.061 (3)0.068 (3)0.063 (3)0.021 (2)0.012 (2)0.015 (2)
C270.077 (3)0.047 (3)0.087 (4)0.014 (2)0.003 (3)0.019 (3)
C280.077 (3)0.039 (3)0.089 (4)0.001 (2)0.009 (3)0.000 (2)
C290.055 (3)0.045 (2)0.057 (3)0.0029 (19)0.004 (2)0.007 (2)
C300.042 (2)0.035 (2)0.043 (2)0.0041 (16)0.0021 (17)0.0016 (16)
C310.043 (2)0.059 (3)0.0315 (19)0.0041 (18)0.0097 (16)0.0073 (17)
C320.058 (3)0.083 (4)0.060 (3)0.018 (3)0.000 (2)0.007 (3)
C330.072 (4)0.132 (6)0.070 (4)0.053 (4)0.004 (3)0.007 (4)
C340.042 (3)0.196 (8)0.058 (3)0.008 (4)0.019 (3)0.018 (4)
C350.053 (3)0.134 (6)0.073 (4)0.028 (4)0.002 (3)0.033 (4)
C360.060 (3)0.074 (3)0.061 (3)0.013 (2)0.007 (2)0.020 (2)
N10.0451 (17)0.0349 (16)0.0385 (17)0.0024 (13)0.0079 (14)0.0004 (13)
N20.0416 (17)0.0309 (16)0.0441 (17)0.0046 (13)0.0106 (14)0.0029 (13)
N30.0416 (17)0.0360 (16)0.0348 (16)0.0013 (13)0.0095 (13)0.0033 (12)
O10.083 (2)0.072 (2)0.063 (2)0.0196 (18)0.0183 (18)0.0201 (17)
O20.0584 (18)0.068 (2)0.0465 (16)0.0097 (15)0.0196 (14)0.0085 (14)
O30.0582 (19)0.0482 (18)0.118 (3)0.0067 (15)0.034 (2)0.0129 (18)
O40.099 (3)0.0575 (19)0.0452 (17)0.0221 (17)0.0260 (17)0.0143 (14)
O50.0543 (17)0.0699 (19)0.0461 (16)0.0056 (14)0.0228 (14)0.0075 (14)
O60.074 (2)0.0516 (18)0.0562 (18)0.0182 (15)0.0162 (16)0.0063 (14)
S10.0528 (6)0.0515 (6)0.0365 (5)0.0042 (5)0.0126 (4)0.0050 (4)
S20.0541 (6)0.0357 (5)0.0551 (6)0.0062 (4)0.0211 (5)0.0076 (4)
S30.0416 (5)0.0473 (5)0.0378 (5)0.0050 (4)0.0136 (4)0.0027 (4)
Br10.0661 (3)0.1085 (4)0.0535 (3)0.0273 (3)0.0333 (2)0.0247 (3)
Br20.0688 (3)0.1127 (5)0.0610 (3)0.0127 (3)0.0352 (3)0.0225 (3)
Geometric parameters (Å, º) top
C1—C61.387 (6)C21—H210.9300
C1—C21.395 (6)C22—C231.485 (5)
C1—N11.429 (5)C22—N21.489 (5)
C2—C31.377 (8)C22—H22A0.9700
C2—H20.9300C22—H22B0.9700
C3—C41.371 (9)C23—C241.348 (5)
C3—H30.9300C23—N31.430 (4)
C4—C51.380 (8)C24—C251.432 (6)
C4—H40.9300C24—Br11.861 (4)
C5—C61.397 (6)C25—C301.387 (6)
C5—H50.9300C25—C261.405 (6)
C6—C71.434 (6)C26—C271.374 (7)
C7—C81.347 (5)C26—H260.9300
C7—Br21.864 (4)C27—C281.373 (8)
C8—N11.429 (5)C27—H270.9300
C8—C151.507 (5)C28—C291.366 (6)
C9—C141.378 (6)C28—H280.9300
C9—C101.381 (6)C29—C301.400 (6)
C9—S11.763 (4)C29—H290.9300
C10—C111.379 (7)C30—N31.427 (5)
C10—H100.9300C31—C361.365 (6)
C11—C121.357 (8)C31—C321.381 (6)
C11—H110.9300C31—S31.760 (4)
C12—C131.373 (8)C32—C331.386 (7)
C12—H120.9300C32—H320.9300
C13—C141.379 (7)C33—C341.375 (10)
C13—H130.9300C33—H330.9300
C14—H140.9300C34—C351.366 (10)
C15—N21.485 (5)C34—H340.9300
C15—H15A0.9700C35—C361.387 (7)
C15—H15B0.9700C35—H350.9300
C16—C211.373 (6)C36—H360.9300
C16—C171.385 (6)N1—S11.690 (3)
C16—S21.765 (4)N2—S21.658 (3)
C17—C181.380 (7)N3—S31.683 (3)
C17—H170.9300O1—S11.417 (3)
C18—C191.370 (9)O2—S11.426 (3)
C18—H180.9300O3—S21.421 (3)
C19—C201.367 (9)O4—S21.432 (3)
C19—H190.9300O5—S31.416 (3)
C20—C211.364 (8)O6—S31.420 (3)
C20—H200.9300
C6—C1—C2122.1 (4)H22A—C22—H22B107.7
C6—C1—N1108.6 (3)C24—C23—N3107.8 (3)
C2—C1—N1129.2 (4)C24—C23—C22127.3 (3)
C3—C2—C1116.3 (6)N3—C23—C22124.9 (3)
C3—C2—H2121.8C23—C24—C25110.0 (3)
C1—C2—H2121.8C23—C24—Br1126.0 (3)
C4—C3—C2122.5 (5)C25—C24—Br1123.7 (3)
C4—C3—H3118.7C30—C25—C26120.0 (4)
C2—C3—H3118.7C30—C25—C24107.0 (3)
C3—C4—C5121.3 (5)C26—C25—C24132.9 (4)
C3—C4—H4119.4C27—C26—C25117.5 (5)
C5—C4—H4119.4C27—C26—H26121.2
C4—C5—C6117.7 (6)C25—C26—H26121.2
C4—C5—H5121.1C28—C27—C26121.6 (5)
C6—C5—H5121.1C28—C27—H27119.2
C1—C6—C5120.1 (4)C26—C27—H27119.2
C1—C6—C7106.2 (3)C29—C28—C27122.3 (5)
C5—C6—C7133.6 (5)C29—C28—H28118.8
C8—C7—C6110.4 (4)C27—C28—H28118.8
C8—C7—Br2127.2 (3)C28—C29—C30116.9 (5)
C6—C7—Br2122.3 (3)C28—C29—H29121.6
C7—C8—N1107.9 (3)C30—C29—H29121.6
C7—C8—C15130.4 (3)C25—C30—C29121.6 (4)
N1—C8—C15121.1 (3)C25—C30—N3107.9 (3)
C14—C9—C10121.0 (4)C29—C30—N3130.3 (4)
C14—C9—S1119.2 (3)C36—C31—C32122.1 (4)
C10—C9—S1119.8 (3)C36—C31—S3119.1 (3)
C11—C10—C9119.0 (5)C32—C31—S3118.8 (3)
C11—C10—H10120.5C31—C32—C33118.3 (5)
C9—C10—H10120.5C31—C32—H32120.9
C12—C11—C10120.4 (5)C33—C32—H32120.9
C12—C11—H11119.8C34—C33—C32119.6 (6)
C10—C11—H11119.8C34—C33—H33120.2
C11—C12—C13120.6 (5)C32—C33—H33120.2
C11—C12—H12119.7C35—C34—C33121.6 (5)
C13—C12—H12119.7C35—C34—H34119.2
C12—C13—C14120.3 (5)C33—C34—H34119.2
C12—C13—H13119.8C34—C35—C36119.2 (6)
C14—C13—H13119.8C34—C35—H35120.4
C9—C14—C13118.8 (4)C36—C35—H35120.4
C9—C14—H14120.6C31—C36—C35119.2 (5)
C13—C14—H14120.6C31—C36—H36120.4
N2—C15—C8112.6 (3)C35—C36—H36120.4
N2—C15—H15A109.1C8—N1—C1106.8 (3)
C8—C15—H15A109.1C8—N1—S1121.4 (2)
N2—C15—H15B109.1C1—N1—S1118.4 (3)
C8—C15—H15B109.1C15—N2—C22115.8 (3)
H15A—C15—H15B107.8C15—N2—S2113.9 (2)
C21—C16—C17120.6 (4)C22—N2—S2112.5 (2)
C21—C16—S2120.0 (3)C30—N3—C23107.2 (3)
C17—C16—S2119.2 (3)C30—N3—S3120.8 (2)
C18—C17—C16119.3 (5)C23—N3—S3121.9 (2)
C18—C17—H17120.4O1—S1—O2119.9 (2)
C16—C17—H17120.4O1—S1—N1105.65 (19)
C19—C18—C17119.7 (5)O2—S1—N1107.17 (16)
C19—C18—H18120.1O1—S1—C9109.3 (2)
C17—C18—H18120.1O2—S1—C9109.17 (18)
C20—C19—C18120.3 (5)N1—S1—C9104.47 (17)
C20—C19—H19119.8O3—S2—O4120.0 (2)
C18—C19—H19119.8O3—S2—N2106.90 (17)
C21—C20—C19120.8 (5)O4—S2—N2106.97 (18)
C21—C20—H20119.6O3—S2—C16109.1 (2)
C19—C20—H20119.6O4—S2—C16107.72 (19)
C20—C21—C16119.3 (5)N2—S2—C16105.13 (17)
C20—C21—H21120.4O5—S3—O6120.34 (19)
C16—C21—H21120.4O5—S3—N3105.89 (16)
C23—C22—N2113.7 (3)O6—S3—N3107.18 (17)
C23—C22—H22A108.8O5—S3—C31109.42 (18)
N2—C22—H22A108.8O6—S3—C31108.5 (2)
C23—C22—H22B108.8N3—S3—C31104.31 (17)
N2—C22—H22B108.8
C6—C1—C2—C31.0 (6)C32—C33—C34—C350.7 (9)
N1—C1—C2—C3176.3 (4)C33—C34—C35—C362.2 (9)
C1—C2—C3—C40.3 (8)C32—C31—C36—C350.6 (7)
C2—C3—C4—C50.3 (9)S3—C31—C36—C35179.4 (4)
C3—C4—C5—C60.9 (8)C34—C35—C36—C311.6 (8)
C2—C1—C6—C51.7 (6)C7—C8—N1—C11.3 (4)
N1—C1—C6—C5176.1 (3)C15—C8—N1—C1170.3 (3)
C2—C1—C6—C7178.1 (4)C7—C8—N1—S1138.7 (3)
N1—C1—C6—C70.4 (4)C15—C8—N1—S149.7 (4)
C4—C5—C6—C11.6 (6)C6—C1—N1—C80.5 (4)
C4—C5—C6—C7176.9 (4)C2—C1—N1—C8177.0 (4)
C1—C6—C7—C81.2 (4)C6—C1—N1—S1140.9 (3)
C5—C6—C7—C8174.6 (4)C2—C1—N1—S141.6 (5)
C1—C6—C7—Br2179.2 (3)C8—C15—N2—C2280.9 (4)
C5—C6—C7—Br23.4 (6)C8—C15—N2—S2146.3 (3)
C6—C7—C8—N11.6 (4)C23—C22—N2—C1555.1 (4)
Br2—C7—C8—N1179.4 (3)C23—C22—N2—S2171.5 (3)
C6—C7—C8—C15169.0 (4)C25—C30—N3—C230.3 (4)
Br2—C7—C8—C158.8 (6)C29—C30—N3—C23176.2 (4)
C14—C9—C10—C110.2 (6)C25—C30—N3—S3146.3 (3)
S1—C9—C10—C11179.8 (3)C29—C30—N3—S337.7 (5)
C9—C10—C11—C120.4 (7)C24—C23—N3—C300.2 (4)
C10—C11—C12—C130.2 (8)C22—C23—N3—C30176.6 (3)
C11—C12—C13—C140.2 (8)C24—C23—N3—S3145.4 (3)
C10—C9—C14—C130.2 (6)C22—C23—N3—S337.8 (5)
S1—C9—C14—C13179.8 (3)C8—N1—S1—O1168.6 (3)
C12—C13—C14—C90.5 (7)C1—N1—S1—O155.9 (3)
C7—C8—C15—N241.2 (5)C8—N1—S1—O239.6 (3)
N1—C8—C15—N2128.3 (3)C1—N1—S1—O2175.2 (3)
C21—C16—C17—C180.7 (7)C8—N1—S1—C976.1 (3)
S2—C16—C17—C18173.8 (4)C1—N1—S1—C959.4 (3)
C16—C17—C18—C190.4 (8)C14—C9—S1—O1163.0 (3)
C17—C18—C19—C201.0 (9)C10—C9—S1—O117.0 (4)
C18—C19—C20—C210.5 (10)C14—C9—S1—O230.0 (4)
C19—C20—C21—C160.6 (9)C10—C9—S1—O2150.0 (3)
C17—C16—C21—C201.2 (7)C14—C9—S1—N184.3 (3)
S2—C16—C21—C20173.2 (4)C10—C9—S1—N195.7 (3)
N2—C22—C23—C24103.1 (4)C15—N2—S2—O345.1 (3)
N2—C22—C23—N373.1 (5)C22—N2—S2—O3179.5 (3)
N3—C23—C24—C250.6 (4)C15—N2—S2—O4174.9 (3)
C22—C23—C24—C25176.1 (3)C22—N2—S2—O450.7 (3)
N3—C23—C24—Br1174.8 (3)C15—N2—S2—C1670.8 (3)
C22—C23—C24—Br11.9 (6)C22—N2—S2—C1663.6 (3)
C23—C24—C25—C300.7 (4)C21—C16—S2—O339.1 (4)
Br1—C24—C25—C30175.1 (3)C17—C16—S2—O3146.4 (3)
C23—C24—C25—C26176.4 (4)C21—C16—S2—O4170.9 (4)
Br1—C24—C25—C262.0 (6)C17—C16—S2—O414.6 (4)
C30—C25—C26—C270.3 (6)C21—C16—S2—N275.3 (4)
C24—C25—C26—C27177.2 (4)C17—C16—S2—N299.2 (4)
C25—C26—C27—C280.1 (7)C30—N3—S3—O540.2 (3)
C26—C27—C28—C291.0 (8)C23—N3—S3—O5178.7 (3)
C27—C28—C29—C301.8 (7)C30—N3—S3—O6169.8 (3)
C26—C25—C30—C290.6 (6)C23—N3—S3—O649.1 (3)
C24—C25—C30—C29177.0 (4)C30—N3—S3—C3175.2 (3)
C26—C25—C30—N3177.0 (3)C23—N3—S3—C3165.8 (3)
C24—C25—C30—N30.6 (4)C36—C31—S3—O5134.2 (3)
C28—C29—C30—C251.6 (6)C32—C31—S3—O544.7 (4)
C28—C29—C30—N3177.1 (4)C36—C31—S3—O61.1 (4)
C36—C31—C32—C332.0 (7)C32—C31—S3—O6177.8 (3)
S3—C31—C32—C33179.1 (4)C36—C31—S3—N3112.9 (3)
C31—C32—C33—C341.4 (8)C32—C31—S3—N368.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.432.993 (7)119
C13—H13···O3i0.932.803.324 (6)117
C14—H14···O4i0.932.783.558 (5)142
C15—H15B···O20.972.252.850 (5)119
C18—H18···O3ii0.932.733.575 (6)151
C19—H19···O4iii0.932.593.443 (6)152
C19—H19···O6iii0.932.813.467 (6)129
C20—H20···Br2iii0.933.023.536 (5)117
C22—H22A···O60.972.392.950 (5)116
C27—H27···O1iv0.932.483.389 (6)164
C28—H28···O5v0.932.633.547 (6)170
C29—H29···O50.932.352.907 (5)118
C34—H34···O5ii0.932.623.360 (6)137
C35—H35···Cg(C16–C21)vi0.932.913.729 (7)147
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z+2; (vi) x1/2, y1/2, z1/2.
Geometry of stacking interactions (Å, °) for I and II top
Cg is a group centroid; plane···CgB is the distance between the mean plane of group A and the centroid of interacting group B; ipa is the interplanar angle; sa is the slippage angle, which is the angle of the CgA···CgB axis to the group A mean plane normal.
CompoundGroup AGroup BShortest contactCgA···CgBPlane···CgBipasa
I(N1/C1/C6–C8)(C1–C6)iii3.456 (2)3.532 (2)3.450 (2)1.2 (2)12.4 (2)
(C9–C14)(C9–C14)iv3.397 (2)3.824 (2)3.397 (2)027.3 (2)
II(N1/C1/C6–C8)(N3/C30/C23–C25)3.225 (2)3.267 (2)3.256 (2)10.4 (3)4.8 (2)
(C1–C6)(C25–C30)3.499 (2)3.593 (3)3.531 (2)4.9 (3)10.7 (2)
(C9–C14)(C31–C36)vii3.464 (2)3.952 (3)3.636 (2)6.64 (16)23.0 (2)
Symmetry codes for I: (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z + 1; for II: (vii) x - 1, y, z - 1.
 

Acknowledgements

The authors are thanks to the SAIF, IIT, Madras, India, for the data collection.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAzzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020). J. Mol. Struct. 1201, 127194.  Web of Science CSD CrossRef Google Scholar
First citationBadr, E. E. (2008). J. Dispersion Sci. Technol. 29, 1143–1149.  Web of Science CrossRef CAS Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlahun, O. P., Rozhenko, A. B., Rusanov, E., Zhersh, S., Tolmachev, A. A., Volochnyuk, D. M. & Grygorenko, O. O. (2020). J. Org. Chem. 85, 5288–5299.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBouthenet, E., Oh, K.-B., Park, S., Nagi, N. K., Lee, H.-S. & Matthews, S. E. (2011). Bioorg. Med. Chem. Lett. 21, 7142–7145.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrown, G. M. (1971). Adv. Enzymol. Relat. Areas Mol. Biol. 35, 35–77.  CAS PubMed Web of Science Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Youssoufi, M. H., Jarrahpour, A. & Ben Hadda, T. (2010). Eur. J. Med. Chem. 45, 1189–1199.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGulcin, I. & Taslimi, P. (2018). Expert Opin. Ther. Pat. 28, 541–549.  Web of Science CAS PubMed Google Scholar
First citationGunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Nippon Ishinkin Gakkai Zasshi, 48, 47–50.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLima, C. F. R. A. C., Sousa, C. A. D., Rodriguez-Borges, J. E., Melo, A., Gomes, L. R., Low, J. N. & Santos, L. M. N. B. F. (2010). Phys. Chem. Chem. Phys. 12, 11228–11237.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024a). Acta Cryst. E80, 682–690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023a). Acta Cryst. E79, 521–525.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741–746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2024b). Acta Cryst. E80, 845–851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMurphy, C. D. (2003). J. Appl. Microbiol. 94, 539–548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOvung, A. & Bhattacharyya, J. (2021). Biophys. Rev. 13, 259–272.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRamathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuparan, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2001). Bioorg. Med. Chem. 9, 703–714.  Web of Science PubMed Google Scholar
First citationUmadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802–o1803.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y., Shadrick, W. R., Wallace, M. J., Wu, Y., Griffith, E. C., Qi, J., Yun, M., White, S. W. & Lee, R. E. (2016). Bioorg. Med. Chem. Lett. 26, 3950–3954.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds