

research communications
Crystal engineering of a 1:1 5-fluorocytosine–4-hydroxybenzaldehyde cocrystal: insights from X-ray crystallography and Hirshfeld analysis
aDepartment of Chemistry, Thanthai Periyar Government Arts and Science College, Tiruchirappalli-620 023, (Affiliated to Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India), Tamil Nadu, India, bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology (Deemed to be University), Thanjavur 613 403, Tamil Nadu, India, cDepartment of Chemistry, Howard University, Washington, DC 20059, USA, and dDepartment of Chemistry, Clemson University, H.L. Hunter Laboratories, Clemson, SC 29634, USA
*Correspondence e-mail: mmohana.chem@gmail.com
The 1:1 cocrystal of 5-fluorocytosine (5FC) and 4-hydroxybenzaldehyde (4HB), C4H4FN3O·C7H6O2 has been synthesized and its structure characterized by single-crystal X-ray diffraction and Hirshfeld surface analysis. The compound crystallizes in the monoclinic P21/c A robust supramolecular architecture is stabilized by N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯F hydrogen bonds, forming R22(8), R44(22), R66(32), and R88(34) ring motifs. The N—H⋯O and N—H⋯N hydrogen bonds form strong directional interactions, contributing to the R22(8) and R88(34) motifs through dimeric and extended ring structures. O—H⋯O interactions link 5FC and 4HB molecules, generating an R66(32) ring that enhances the packing. Weaker C—H⋯F bonds help form the R44(22) tetrameric motif, supporting the overall three-dimensional supramolecular framework. Additionally, C—F⋯π interactions between the fluorine atom and the aromatic ring add further to the crystal cohesion. Hirshfeld surface analysis and two-dimensional fingerprint plots confirm that O⋯H/H⋯O contacts are the most significant, highlighting the central role of hydrogen bonding in the stability and organization of the crystal structure.
Keywords: cocrystal; supramolecular network; dimeric motif; tetrameric motif; Hirshfeld surface analysis,fingerprint plots.
CCDC reference: 2452037
1. Chemical context
Cocrystals have gained considerable attention in supramolecular chemistry for their ability to improve the physical and chemical properties of active pharmaceutical ingredients (APIs) and functional materials without altering the molecular structure of the drug. They are defined as crystalline, single-phase solids composed of two or more distinct molecular and/or ionic compounds, typically in a stoichiometric ratio, which are neither simple salts nor solvates (Aitipamula et al., 2012; Almarsson & Zaworotko, 2004
). Cocrystals are stabilized through non-covalent interactions such as hydrogen bonding, π–π stacking, halogen bonding, and Their design is guided by the principles of crystal engineering, involving the careful selection of suitable coformers and the application of supramolecular synthons, such as the R22(8) hydrogen-bonded motif (Etter, 1990
; Etter et al., 1990
; Desiraju, 1995
). In the pharmaceutical industry, cocrystallization offers a promising strategy for enhancing the solubility, stability, and bioavailability of poorly soluble drugs. (Alvani & Shayanfar, 2022
; Shi et al., 2024
). Compared to conventional techniques such as salt formation, micronization, solid dispersion, amorphous forms, and encapsulation, cocrystals offer the advantage of maintaining a stable crystalline structure, which facilitates detailed characterization by X-ray diffraction (Bolla & Nangia, 2016
; Bolla et al., 2022
).
2. Structural commentary
Single-crystal X-ray P21/c with one molecule each of 5-fluorocytosine (5FC) and 4-hydroxybenzaldehyde (4HB) present in the An ellipsoid plot of the compound is shown in Fig. 1. Proton transfer does not occur between the hydroxyl group of benzaldehyde and the pyrimidine ring nitrogen atom of 5FC. The C—O bond length in the hydroxyl group of the 4HB molecule is 1.3520 (13) Å, with the corresponding internal bond angle [C2A—N1A—C3A = 120.00 (8)°] in agreement with reported literature values (Louis et al., 1982
; Mohana et al., 2016
, 2023
; Sangavi et al., 2024
).
![]() | Figure 1 The molecular structure of the title cocrystal with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. |
3. Supramolecular features and Hirshfeld surface analysis
The primary interaction motif is formed via N—H⋯O and C—H⋯F hydrogen bonds (Table 1). The N4A amino group and F1A atom of the 5FC molecule interact with the O2B and C7B atoms of the 4HB molecule, resulting in an R22(8) heterodimeric synthon. Heterodimers are further linked through a weak C—H⋯Oiii [symmetry code: (iii) −x + 2, −y + 1, −z + 1] hydrogen bond involving the C4A atom of 5FC and the O1B atom of 4HB. The interaction leads to the formation of an R44(22) tetrameric synthon. The tetrameric motif is further extended through a homodimeric R22(8) synthon, formed by N—H⋯Ni [symmetry code: (i) −x, y +
, −z +
] and N—H⋯Oii [symmetry code: (ii) −x, y −
, −z +
] hydrogen bonds. These interactions involve atoms N1A, N2A, N3A and O1A of the 5-fluorocytosine (5FC) molecule. The formation of this homodimeric synthon bridges adjacent tetrameric units, resulting in a large R88(34) ring motif. The alternating arrangement of R44(22) and R88(34) rings leads to the development of a three-dimensional supramolecular cage-like architecture. This network is further consolidated by O—H⋯O hydrogen-bonding interactions between the O1A atom of the 5FC molecule and the hydroxyl (–OH) group of the 4-hydroxybenzaldehyde (4HB) molecule. The hydrogen bonding occurs via an O—H⋯Oiv [symmetry code: (iv) x + 1, −y +
, z −
] interaction, forming an R66(32) ring motif (Fig. 2
). This interaction strengthens the packing and adds complexity to the supramolecular network. In addition to hydrogen bonding, the is further consolidated by weak C—H⋯F and C—F⋯π interactions. The C—F⋯π interaction (Fig. 3
) is observed between 5FC molecules [C1A⋯Cgv = 3.2676 (9) Å, C1A—F1A⋯Cg = 89.41 (6)°, where Cg is the centroid of the 5FC ring; symmetry code: (v) 1 + x, y, z]. The observed angle is consistent with values reported in the literature (Sikorski et al., 2005
; Vangala et al., 2002
).
|
![]() | Figure 2 Three-dimensional supramolecular cage-like architecture formed via N—H⋯O, N—H⋯N, O—H⋯O, C—H⋯F and C—H⋯O hydrogen bonds. [Symmetry codes: (i) −x, y + |
![]() | Figure 3 A view of the C—F⋯π interaction (symmetry operation 1 + x, y, z). |
Hirshfeld surface (HS) analysis was performed for the title compound to visualize and quantify its intermolecular interactions. Fig. 4 presents the van der Waals interactions using a Hirshfeld surface mapped over dnorm (Spackman & Jayatilaka, 2009
), generated with Crystal Explorer 21 (Spackman et al., 2021
). This analysis reveals significant intermolecular hydrogen bonds of the types N—H⋯O, N—H⋯N and O—H⋯O interactions. In the surface representation, red areas indicate strong hydrogen bonding, blue regions correspond to contacts close to the sum of the van der Waals radii, and white regions represent weaker interactions.
![]() | Figure 4 The Hirshfeld surface mapped over dnorm showing the N—H⋯O, N—H⋯N and O—H⋯O interactions as dashed gray lines. |
To analyze the relative contributions of different intermolecular interactions, two-dimensional fingerprint plots were generated (McKinnon et al., 2007) and these are shown in Fig. 5
. These plots indicate that the most prominent contacts are O⋯H/H⋯O (26.6%), followed by H⋯H (25.5%), C⋯H/H⋯C (16.7%), N⋯H/H⋯N (10.0%) and F⋯H/H⋯F (6.2%). The crystallographic analysis reveals a robust supramolecular network in the title compound, stabilized by hydrogen bonds (N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯F) and C—F⋯π interactions, forming a three-dimensional cage-like supramolecular architecture. Hirshfeld surface analysis highlights prominent O⋯H/H⋯O interactions, alongside other significant contacts, contributing to crystal stability. The study demonstrates how non-covalent interactions, including hydrogen-bonding and π interactions, govern the molecular packing and cohesion, supporting the principles of supramolecular chemistry in crystal engineering.
![]() | Figure 5 Fingerprint plots showing the total contribution of individual interactions and those delineated into O⋯H/H⋯O, H⋯H, C⋯H/H⋯C, N⋯H/H⋯N and F⋯H/H⋯F interactions. |
4. Database survey
5-Fluorocytosine (5FC) is a synthetic antimycotic compound, first synthesized in 1957 and widely used as an antitumor agent. It is also active against fungal infection (Portalone & Colapietro, 2007; Vermes et al., 2000
). It becomes active by deamination of 5FC into 5-fluorouracil by the enzyme cytosine deaminase (CD) and inhibits RNA and DNA synthesis (Morschhauser, 2003
). The Cambridge Structural Database (CSD, v5.45, June 2024; Groom et al., 2016
) reference codes for the monohydrate are BIRMEU, BIRMEU01, BIRMEU02, BIRMEU03, MEBQUG, MEBQIU, MEBQOA and GATMUL (Louis et al., 1982
; Portalone & Colapietro, 2006
; Hulme & Tocher, 2006
; Portalone, 2011
), and for the polymorphs: DUKWIQ, DUKWAI and DUKWEM (Tutughamiarso et al., 2009
). A wide range of cocrystals has also been documented, such as XOQQUS, MECTUL, MECVEX, MECVIB, MECVOH, MECVUN, MECWAU, MECWEY, MECWOI, MECWUO, MECXEZ, MECXID, MECXOJ, GIFWIF, UJUJAM, and POCWUD (Souza et al., 2019
;Tutughamiarso et al., 2012
; Tutughamiarso & Egert, 2012
; Mohana et al., 2016
, 2023
; Sangavi et al., 2024
). Salts include WEWZAA01, SIJXAM, SIJXIU, SIJXUG, EDATOS, GIFWEB, POCXAK, ZAPFEE and ROLTUJ WEWZAA01, SIJXAM, SIJXIU, SIJXUG, EDATOS, GIFWEB, POCXAK, ZAPFEE and ROLTUJ (Perumalla et al., 2013a
,b
; Prabakaran et al., 2001
; Mohana et al., 2017
; Karthikeyan et al., 2014
) have been reported in the literature. 4-Hydroxybenzaldehydes are potential therapeutic agents for the treatment of human angiostrongyliasis. The of 4-hydroxybenzaldehyde (Jasinski et al., 2008
), as well as its cocrystal (Nowak & Sikorski, 2023
) and polymorphic forms (Simões et al., 2013
) have also been reported. 5FC contains multiple hydrogen-bond donors and acceptors, including amino and carbonyl groups, and 4-HBA offers hydroxyl and aldehyde functionalities capable of forming hydrogen bonds, along with an aromatic ring that can engage in π–π interactions. The present work focuses on the supramolecular hydrogen bonding interactions in the of 1:1 cocrystals of 5-fluorocytosine-4-hydroxybenzaldehyde.
5. Synthesis and crystallization
The title compound was synthesized by mixing a hot ethanolic solution of 5-fluorocytosine with 4-hydroxybenzaldehyde in a 1:1 molar ratio. The solution was heated in a water bath at 333 K for 30 minutes and then allowed to cool slowly to room temperature. After a few days, colorless crystals had separated out of the mother liquor.
6. Refinement
Crystal data, data collection and structure . The H atoms of the N—H, –NH2 and OH groups were located in difference-Fourier maps and refined freely. Other H atoms were placed geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).
|
Supporting information
CCDC reference: 2452037
https://doi.org/10.1107/S2056989025004463/oi2017sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025004463/oi2017Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025004463/oi2017Isup3.cml
C4H4FN3O·C7H6O2 | F(000) = 520 |
Mr = 251.22 | Dx = 1.529 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 4.2126 (1) Å | Cell parameters from 18043 reflections |
b = 9.6687 (1) Å | θ = 3.3–76.2° |
c = 26.8628 (5) Å | µ = 1.07 mm−1 |
β = 94.186 (1)° | T = 297 K |
V = 1091.21 (3) Å3 | Block, colorless |
Z = 4 | 0.27 × 0.21 × 0.17 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 2243 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 2127 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.019 |
ω scans | θmax = 76.2°, θmin = 3.3° |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2023) | h = −3→5 |
Tmin = 0.782, Tmax = 0.840 | k = −12→12 |
19824 measured reflections | l = −33→33 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2241P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2243 reflections | Δρmax = 0.20 e Å−3 |
180 parameters | Δρmin = −0.19 e Å−3 |
4 restraints | Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.0088 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The data collection, cell refinement, and data reduction were performed using CrysAlisPro (Rigaku OD, 2023). Structure solution was carried out with SHELXT 2014/5 (Sheldrick, 2015a) and refinement was done using SHELXL-2016/6 (Sheldrick, 2015b). Molecular graphics were prepared using PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and POVRay (Cason 2004). |
x | y | z | Uiso*/Ueq | ||
F1A | 0.6004 (2) | 0.39753 (7) | 0.63425 (3) | 0.0557 (2) | |
O1A | −0.1067 (2) | 0.40145 (8) | 0.79019 (3) | 0.0439 (2) | |
N1A | 0.1299 (2) | 0.27556 (9) | 0.73165 (3) | 0.0331 (2) | |
N2A | 0.1501 (2) | 0.51932 (9) | 0.73260 (3) | 0.0344 (2) | |
H1 | 0.076 (3) | 0.5966 (14) | 0.7444 (6) | 0.050 (4)* | |
N3A | 0.3795 (3) | 0.15570 (10) | 0.67141 (4) | 0.0401 (3) | |
H1CC | 0.492 (3) | 0.1523 (16) | 0.6446 (5) | 0.049 (4)* | |
H1A | 0.294 (3) | 0.0798 (14) | 0.6845 (5) | 0.045 (4)* | |
C1A | 0.4154 (3) | 0.40215 (11) | 0.67318 (4) | 0.0351 (3) | |
C2A | 0.3072 (2) | 0.27452 (11) | 0.69223 (4) | 0.0313 (2) | |
C3A | 0.0531 (2) | 0.39737 (10) | 0.75270 (4) | 0.0323 (2) | |
C4A | 0.3331 (3) | 0.52236 (11) | 0.69305 (4) | 0.0356 (3) | |
H4A | 0.399417 | 0.605918 | 0.680151 | 0.043* | |
O1B | 1.1638 (2) | 0.27251 (10) | 0.35919 (3) | 0.0520 (3) | |
H1B | 1.074 (4) | 0.2080 (18) | 0.3414 (7) | 0.076 (5)* | |
O2B | 0.6793 (3) | 0.13585 (11) | 0.57435 (3) | 0.0605 (3) | |
C1B | 1.0816 (3) | 0.25581 (12) | 0.40653 (4) | 0.0383 (3) | |
C2B | 0.8831 (3) | 0.14938 (12) | 0.42006 (4) | 0.0421 (3) | |
H2B | 0.798860 | 0.087622 | 0.396053 | 0.050* | |
C3B | 0.8117 (3) | 0.13552 (13) | 0.46892 (4) | 0.0450 (3) | |
H3B | 0.677170 | 0.064757 | 0.477749 | 0.054* | |
C4B | 0.9386 (3) | 0.22637 (12) | 0.50533 (4) | 0.0401 (3) | |
C5B | 1.1361 (3) | 0.33238 (13) | 0.49140 (4) | 0.0440 (3) | |
H5B | 1.222274 | 0.393527 | 0.515464 | 0.053* | |
C6B | 1.2064 (3) | 0.34827 (13) | 0.44238 (5) | 0.0471 (3) | |
H6B | 1.336473 | 0.420430 | 0.433386 | 0.056* | |
C7B | 0.8656 (3) | 0.21566 (14) | 0.55746 (4) | 0.0474 (3) | |
H7B | 0.972343 | 0.275878 | 0.579901 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1A | 0.0776 (5) | 0.0414 (4) | 0.0534 (5) | −0.0025 (3) | 0.0416 (4) | 0.0020 (3) |
O1A | 0.0648 (5) | 0.0344 (4) | 0.0352 (4) | 0.0058 (4) | 0.0229 (4) | 0.0028 (3) |
N1A | 0.0453 (5) | 0.0265 (4) | 0.0287 (4) | −0.0013 (3) | 0.0106 (4) | 0.0013 (3) |
N2A | 0.0456 (5) | 0.0250 (4) | 0.0338 (5) | 0.0007 (3) | 0.0103 (4) | −0.0009 (3) |
N3A | 0.0588 (6) | 0.0295 (5) | 0.0341 (5) | −0.0013 (4) | 0.0177 (4) | −0.0018 (4) |
C1A | 0.0421 (6) | 0.0337 (6) | 0.0310 (5) | −0.0024 (4) | 0.0131 (4) | 0.0025 (4) |
C2A | 0.0383 (5) | 0.0296 (5) | 0.0265 (5) | −0.0006 (4) | 0.0053 (4) | 0.0009 (4) |
C3A | 0.0416 (5) | 0.0285 (5) | 0.0274 (5) | 0.0006 (4) | 0.0065 (4) | 0.0018 (4) |
C4A | 0.0423 (6) | 0.0290 (5) | 0.0364 (5) | −0.0035 (4) | 0.0096 (4) | 0.0047 (4) |
O1B | 0.0734 (6) | 0.0513 (5) | 0.0327 (4) | −0.0134 (4) | 0.0137 (4) | 0.0001 (4) |
O2B | 0.0838 (7) | 0.0605 (6) | 0.0404 (5) | 0.0017 (5) | 0.0255 (5) | 0.0006 (4) |
C1B | 0.0477 (6) | 0.0370 (5) | 0.0311 (5) | 0.0040 (4) | 0.0082 (4) | 0.0018 (4) |
C2B | 0.0536 (7) | 0.0389 (6) | 0.0343 (6) | −0.0031 (5) | 0.0075 (5) | −0.0055 (4) |
C3B | 0.0549 (7) | 0.0419 (6) | 0.0397 (6) | −0.0053 (5) | 0.0140 (5) | −0.0004 (5) |
C4B | 0.0464 (6) | 0.0422 (6) | 0.0324 (5) | 0.0101 (5) | 0.0080 (4) | −0.0005 (4) |
C5B | 0.0528 (7) | 0.0425 (6) | 0.0367 (6) | 0.0017 (5) | 0.0026 (5) | −0.0072 (5) |
C6B | 0.0595 (7) | 0.0406 (6) | 0.0418 (6) | −0.0090 (5) | 0.0083 (5) | −0.0015 (5) |
C7B | 0.0569 (7) | 0.0521 (7) | 0.0342 (6) | 0.0110 (6) | 0.0102 (5) | −0.0031 (5) |
F1A—C1A | 1.3498 (12) | O1B—H1B | 0.857 (15) |
O1A—C3A | 1.2521 (13) | O2B—C7B | 1.2122 (17) |
N1A—C2A | 1.3397 (13) | C1B—C6B | 1.3889 (17) |
N1A—C3A | 1.3558 (13) | C1B—C2B | 1.3907 (16) |
N2A—C4A | 1.3578 (14) | C2B—C3B | 1.3746 (16) |
N2A—C3A | 1.3715 (13) | C2B—H2B | 0.9300 |
N2A—H1 | 0.877 (13) | C3B—C4B | 1.3920 (17) |
N3A—C2A | 1.3231 (14) | C3B—H3B | 0.9300 |
N3A—H1CC | 0.891 (13) | C4B—C5B | 1.3887 (18) |
N3A—H1A | 0.900 (12) | C4B—C7B | 1.4594 (15) |
C1A—C4A | 1.3353 (15) | C5B—C6B | 1.3791 (17) |
C1A—C2A | 1.4235 (14) | C5B—H5B | 0.9300 |
C4A—H4A | 0.9300 | C6B—H6B | 0.9300 |
O1B—C1B | 1.3520 (13) | C7B—H7B | 0.9300 |
C2A—N1A—C3A | 120.00 (8) | O1B—C1B—C2B | 122.30 (10) |
C4A—N2A—C3A | 121.95 (9) | C6B—C1B—C2B | 119.97 (10) |
C4A—N2A—H1 | 120.1 (10) | C3B—C2B—C1B | 119.96 (11) |
C3A—N2A—H1 | 117.8 (10) | C3B—C2B—H2B | 120.0 |
C2A—N3A—H1CC | 121.8 (10) | C1B—C2B—H2B | 120.0 |
C2A—N3A—H1A | 115.6 (9) | C2B—C3B—C4B | 120.64 (11) |
H1CC—N3A—H1A | 122.4 (14) | C2B—C3B—H3B | 119.7 |
C4A—C1A—F1A | 121.33 (9) | C4B—C3B—H3B | 119.7 |
C4A—C1A—C2A | 120.77 (10) | C5B—C4B—C3B | 118.92 (10) |
F1A—C1A—C2A | 117.90 (9) | C5B—C4B—C7B | 118.91 (11) |
N3A—C2A—N1A | 119.97 (9) | C3B—C4B—C7B | 122.16 (11) |
N3A—C2A—C1A | 120.74 (9) | C6B—C5B—C4B | 120.93 (11) |
N1A—C2A—C1A | 119.29 (9) | C6B—C5B—H5B | 119.5 |
O1A—C3A—N1A | 121.43 (9) | C4B—C5B—H5B | 119.5 |
O1A—C3A—N2A | 118.86 (9) | C5B—C6B—C1B | 119.58 (11) |
N1A—C3A—N2A | 119.71 (9) | C5B—C6B—H6B | 120.2 |
C1A—C4A—N2A | 118.21 (9) | C1B—C6B—H6B | 120.2 |
C1A—C4A—H4A | 120.9 | O2B—C7B—C4B | 126.30 (12) |
N2A—C4A—H4A | 120.9 | O2B—C7B—H7B | 116.9 |
C1B—O1B—H1B | 107.7 (13) | C4B—C7B—H7B | 116.9 |
O1B—C1B—C6B | 117.73 (11) | ||
C3A—N1A—C2A—N3A | −179.36 (10) | O1B—C1B—C2B—C3B | 178.79 (11) |
C3A—N1A—C2A—C1A | 0.55 (16) | C6B—C1B—C2B—C3B | −0.23 (19) |
C4A—C1A—C2A—N3A | 177.61 (11) | C1B—C2B—C3B—C4B | −0.64 (19) |
F1A—C1A—C2A—N3A | −1.78 (16) | C2B—C3B—C4B—C5B | 0.72 (18) |
C4A—C1A—C2A—N1A | −2.30 (17) | C2B—C3B—C4B—C7B | 179.39 (11) |
F1A—C1A—C2A—N1A | 178.31 (9) | C3B—C4B—C5B—C6B | 0.07 (18) |
C2A—N1A—C3A—O1A | −178.50 (10) | C7B—C4B—C5B—C6B | −178.65 (11) |
C2A—N1A—C3A—N2A | 1.84 (16) | C4B—C5B—C6B—C1B | −0.9 (2) |
C4A—N2A—C3A—O1A | 177.67 (10) | O1B—C1B—C6B—C5B | −178.06 (11) |
C4A—N2A—C3A—N1A | −2.66 (16) | C2B—C1B—C6B—C5B | 1.01 (19) |
F1A—C1A—C4A—N2A | −179.10 (9) | C5B—C4B—C7B—O2B | 173.98 (12) |
C2A—C1A—C4A—N2A | 1.53 (17) | C3B—C4B—C7B—O2B | −4.7 (2) |
C3A—N2A—C4A—C1A | 0.92 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2A—H1···N1Ai | 0.88 (1) | 2.06 (1) | 2.9354 (12) | 175 (1) |
N3A—H1CC···O2B | 0.89 (1) | 2.10 (1) | 2.9848 (13) | 170 (1) |
N3A—H1A···O1Aii | 0.90 (1) | 2.04 (1) | 2.9328 (12) | 176 (1) |
C4A—H4A···O1Biii | 0.93 | 2.48 | 3.2905 (14) | 145 |
O1B—H1B···O1Aiv | 0.86 (2) | 1.85 (2) | 2.6934 (13) | 166 (2) |
C6B—H6B···F1Aiii | 0.93 | 2.56 | 3.3446 (14) | 143 |
C7B—H7B···F1A | 0.93 | 2.51 | 2.9886 (14) | 112 |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x, y−1/2, −z+3/2; (iii) −x+2, −y+1, −z+1; (iv) x+1, −y+1/2, z−1/2. |
Funding information
We thank Howard University and the National Science Foundation Major Research Instrumentation program (NSF DMR-2117502) for financially supporting the acquisition of the Rigaku Synergy single-crystal X-ray diffractometer used in this study.
References
Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 2147–2152. Web of Science CrossRef CAS Google Scholar
Almarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896. Web of Science CrossRef Google Scholar
Alvani, A. & Shayanfar, A. (2022). Cryst. Growth Des. 22, 6323–6337. CrossRef CAS Google Scholar
Bolla, G. & Nangia, A. (2016). Chem. Commun. 52, 8342–8360. Web of Science CrossRef CAS Google Scholar
Bolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514–11603. Web of Science CrossRef CAS PubMed Google Scholar
Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision Raytracer Pvt Ltd, Victoria, Australia. http://www.povray.org Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., Urbanczyk-Lipkowska, Z., Zia-Ebrahimi, M. & Panunto, T. W. (1990). J. Am. Chem. Soc. 112, 8415–8426. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hulme, A. T. & Tocher, D. A. (2006). Cryst. Growth Des. 6, 481–487. Web of Science CSD CrossRef CAS Google Scholar
Jasinski, J. P., Butcher, R. J., Narayana, B., Swamy, M. T. & Yathirajan, H. S. (2008). Acta Cryst. E64, o187. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karthikeyan, A., Thomas Muthiah, P. & Perdih, F. (2014). Acta Cryst. E70, 328–330. CSD CrossRef IUCr Journals Google Scholar
Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059–1064. CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mohana, M., Muthiah, P. T., Sanjeewa, L. D. & McMillen, C. D. (2016). Acta Cryst. E72, 552–555. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohana, M., Thomas Muthiah, P. & McMillen, C. D. (2017). Acta Cryst. E73, 361–364. CSD CrossRef IUCr Journals Google Scholar
Mohana, M., Thomas Muthiah, P., McMillen, C. D. & Butcher, R. J. (2023). Acta Cryst. C79, 61–67. Web of Science CSD CrossRef IUCr Journals Google Scholar
Morschhäuser, J. (2003). Pharm. Unserer Zeit 32, 124–129. PubMed Google Scholar
Nowak, P. & Sikorski, A. (2023). RSC Adv. 13, 20105–20112. CSD CrossRef CAS PubMed Google Scholar
Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013a). Cryst. Growth Des. 13, 429–432. Web of Science CSD CrossRef CAS Google Scholar
Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013b). Mol. Pharm. 10, 2462–2466. Web of Science CSD CrossRef CAS PubMed Google Scholar
Portalone, G. (2011). Chem. Cent. J. 5, 51. Web of Science CSD CrossRef PubMed Google Scholar
Portalone, G. & Colapietro, M. (2006). Acta Cryst. E62, o1049–o1051. Web of Science CSD CrossRef IUCr Journals Google Scholar
Portalone, G. & Colapietro, M. (2007). J. Chem. Crystallogr. 37, 141–145. Web of Science CSD CrossRef CAS Google Scholar
Prabakaran, P., Murugesan, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933–o936. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD. (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sangavi, M., Kumaraguru, N., Butcher, R. J. & McMillen, C. D. (2024). Acta Cryst. C80, 30–36. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, J., Zhang, Y., An, Q., Li, Y. & Liu, L. (2024). J. Solid State Chem. 331, 124545. CSD CrossRef Google Scholar
Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690–o694. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Simões, R. G., Bernardes, C. E. S. & da Piedade, M. E. M. (2013). Cryst. Growth Des. 13, 2803–2814. Google Scholar
Souza, M. S., Diniz, L. F., Alvarez, N., da Silva, C. C. P. & Ellena, J. (2019). New J. Chem. 43, 15924–15934. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tutughamiarso, M. & Egert, E. (2012). Acta Cryst. B68, 444–452. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574–o578. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tutughamiarso, M., Wagner, G. & Egert, E. (2012). Acta Cryst. B68, 431–443. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Vangala, V. R., Nangia, A. & Lynch, D. E. (2002). Chem. Commun. pp. 1304–1305. CSD CrossRef Google Scholar
Vermes, A., Guchelaar, H. J. & Dankert, J. (2000). J. Antimicrob. Chemother. 46, 171–179. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.