research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal engineering of a 1:1 5-fluoro­cytosine–4-hy­dr­oxy­benzaldehyde cocrystal: insights from X-ray crystallography and Hirshfeld analysis

crossmark logo

aDepartment of Chemistry, Thanthai Periyar Government Arts and Science College, Tiruchirappalli-620 023, (Affiliated to Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India), Tamil Nadu, India, bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology (Deemed to be University), Thanjavur 613 403, Tamil Nadu, India, cDepartment of Chemistry, Howard University, Washington, DC 20059, USA, and dDepartment of Chemistry, Clemson University, H.L. Hunter Laboratories, Clemson, SC 29634, USA
*Correspondence e-mail: mmohana.chem@gmail.com

Edited by S.-L. Zheng, Harvard University, USA (Received 25 April 2025; accepted 17 May 2025; online 23 May 2025)

The 1:1 cocrystal of 5-fluoro­cytosine (5FC) and 4-hy­droxy­benzaldehyde (4HB), C4H4FN3O·C7H6O2 has been synthesized and its structure characterized by single-crystal X-ray diffraction and Hirshfeld surface analysis. The compound crystallizes in the monoclinic P21/c space group. A robust supra­molecular architecture is stabilized by N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯F hydrogen bonds, forming R22(8), R44(22), R66(32), and R88(34) ring motifs. The N—H⋯O and N—H⋯N hydrogen bonds form strong directional inter­actions, contributing to the R22(8) and R88(34) motifs through dimeric and extended ring structures. O—H⋯O inter­actions link 5FC and 4HB mol­ecules, generating an R66(32) ring that enhances the packing. Weaker C—H⋯F bonds help form the R44(22) tetra­meric motif, supporting the overall three-dimensional supra­molecular framework. Additionally, C—F⋯π inter­actions between the fluorine atom and the aromatic ring add further to the crystal cohesion. Hirshfeld surface analysis and two-dimensional fingerprint plots confirm that O⋯H/H⋯O contacts are the most significant, highlighting the central role of hydrogen bonding in the stability and organization of the crystal structure.

1. Chemical context

Cocrystals have gained considerable attention in supra­molecular chemistry for their ability to improve the physical and chemical properties of active pharmaceutical ingredients (APIs) and functional materials without altering the mol­ecular structure of the drug. They are defined as crystalline, single-phase solids composed of two or more distinct mol­ecular and/or ionic compounds, typically in a stoichiometric ratio, which are neither simple salts nor solvates (Aitipamula et al., 2012[Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 2147-2152.]; Almarsson & Zaworotko, 2004[Almarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889-1896.]). Cocrystals are stabilized through non-covalent inter­actions such as hydrogen bonding, ππ stacking, halogen bonding, and van der Waals forces. Their design is guided by the principles of crystal engineering, involving the careful selection of suitable coformers and the application of supra­molecular synthons, such as the R22(8) hydrogen-bonded motif (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., Urbanczyk-Lipkowska, Z., Zia-Ebrahimi, M. & Panunto, T. W. (1990). J. Am. Chem. Soc. 112, 8415-8426.]; Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]). In the pharmaceutical industry, cocrystallization offers a promising strategy for enhancing the solubility, stability, and bioavailability of poorly soluble drugs. (Alvani & Shayanfar, 2022[Alvani, A. & Shayanfar, A. (2022). Cryst. Growth Des. 22, 6323-6337.]; Shi et al., 2024[Shi, J., Zhang, Y., An, Q., Li, Y. & Liu, L. (2024). J. Solid State Chem. 331, 124545.]). Compared to conventional techniques such as salt formation, micronization, solid dispersion, amorphous forms, and encapsulation, cocrystals offer the advantage of maintaining a stable crystalline structure, which facilitates detailed characterization by X-ray diffraction (Bolla & Nangia, 2016[Bolla, G. & Nangia, A. (2016). Chem. Commun. 52, 8342-8360.]; Bolla et al., 2022[Bolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514-11603.]).

[Scheme 1]

2. Structural commentary

Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic P21/c space group with one mol­ecule each of 5-fluoro­cytosine (5FC) and 4-hy­droxy­benzaldehyde (4HB) present in the asymmetric unit. An ellipsoid plot of the compound is shown in Fig. 1[link]. Proton transfer does not occur between the hydroxyl group of benzaldehyde and the pyrimidine ring nitro­gen atom of 5FC. The C—O bond length in the hydroxyl group of the 4HB mol­ecule is 1.3520 (13) Å, with the corresponding inter­nal bond angle [C2A—N1A—C3A = 120.00 (8)°] in agreement with reported literature values (Louis et al., 1982[Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059-1064.]; Mohana et al., 2016[Mohana, M., Muthiah, P. T., Sanjeewa, L. D. & McMillen, C. D. (2016). Acta Cryst. E72, 552-555.], 2023[Mohana, M., Thomas Muthiah, P., McMillen, C. D. & Butcher, R. J. (2023). Acta Cryst. C79, 61-67.]; Sangavi et al., 2024[Sangavi, M., Kumaraguru, N., Butcher, R. J. & McMillen, C. D. (2024). Acta Cryst. C80, 30-36.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title cocrystal with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features and Hirshfeld surface analysis

The primary inter­action motif is formed via N—H⋯O and C—H⋯F hydrogen bonds (Table 1[link]). The N4A amino group and F1A atom of the 5FC mol­ecule inter­act with the O2B and C7B atoms of the 4HB mol­ecule, resulting in an R22(8) heterodimeric synthon. Heterodimers are further linked through a weak C—H⋯Oiii [symmetry code: (iii) −x + 2, −y + 1, −z + 1] hydrogen bond involving the C4A atom of 5FC and the O1B atom of 4HB. The inter­action leads to the formation of an R44(22) tetra­meric synthon. The tetra­meric motif is further extended through a homodimeric R22(8) synthon, formed by N—H⋯Ni [symmetry code: (i) −x, y + [{1\over 2}], −z + [{3\over 2}]] and N—H⋯Oii [symmetry code: (ii) −x, y − [{1\over 2}], −z + [{3\over 2}]] hydrogen bonds. These inter­actions involve atoms N1A, N2A, N3A and O1A of the 5-fluoro­cytosine (5FC) mol­ecule. The formation of this homodimeric synthon bridges adjacent tetra­meric units, resulting in a large R88(34) ring motif. The alternating arrangement of R44(22) and R88(34) rings leads to the development of a three-dimensional supra­molecular cage-like architecture. This network is further consolidated by O—H⋯O hydrogen-bonding inter­actions between the O1A atom of the 5FC mol­ecule and the hydroxyl (–OH) group of the 4-hy­droxy­benzaldehyde (4HB) mol­ecule. The hydrogen bonding occurs via an O—H⋯Oiv [symmetry code: (iv) x + 1, −y + [{1\over 2}], z − [{1\over 2}]] inter­action, forming an R66(32) ring motif (Fig. 2[link]). This inter­action strengthens the packing and adds complexity to the supra­molecular network. In addition to hydrogen bonding, the crystal structure is further consolidated by weak C—H⋯F and C—F⋯π inter­actions. The C—F⋯π inter­action (Fig. 3[link]) is observed between 5FC mol­ecules [C1ACgv = 3.2676 (9) Å, C1A—F1ACg = 89.41 (6)°, where Cg is the centroid of the 5FC ring; symmetry code: (v) 1 + x, y, z]. The observed angle is consistent with values reported in the literature (Sikorski et al., 2005[Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690-o694.]; Vangala et al., 2002[Vangala, V. R., Nangia, A. & Lynch, D. E. (2002). Chem. Commun. pp. 1304-1305.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H1⋯N1Ai 0.88 (1) 2.06 (1) 2.9354 (12) 175 (1)
N3A—H1CC⋯O2B 0.89 (1) 2.10 (1) 2.9848 (13) 170 (1)
N3A—H1A⋯O1Aii 0.90 (1) 2.04 (1) 2.9328 (12) 176 (1)
C4A—H4A⋯O1Biii 0.93 2.48 3.2905 (14) 145
O1B—H1B⋯O1Aiv 0.86 (2) 1.85 (2) 2.6934 (13) 166 (2)
C6B—H6B⋯F1Aiii 0.93 2.56 3.3446 (14) 143
C7B—H7B⋯F1A 0.93 2.51 2.9886 (14) 112
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, -y+1, -z+1]; (iv) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Three-dimensional supra­molecular cage-like architecture formed via N—H⋯O, N—H⋯N, O—H⋯O, C—H⋯F and C—H⋯O hydrogen bonds. [Symmetry codes: (i) −x, y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x, y − [{1\over 2}], −z + [{3\over 2}]; (iii) −x + 2, −y + 1, −z + 1; (iv) x + 1, −y + [{1\over 2}], z − [{1\over 2}].]
[Figure 3]
Figure 3
A view of the C—F⋯π inter­action (symmetry operation 1 + x, y, z).

Hirshfeld surface (HS) analysis was performed for the title compound to visualize and qu­antify its inter­molecular inter­actions. Fig. 4[link] presents the van der Waals inter­actions using a Hirshfeld surface mapped over dnorm (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19-32.]), generated with Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). This analysis reveals significant inter­molecular hydrogen bonds of the types N—H⋯O, N—H⋯N and O—H⋯O inter­actions. In the surface representation, red areas indicate strong hydrogen bonding, blue regions correspond to contacts close to the sum of the van der Waals radii, and white regions represent weaker inter­actions.

[Figure 4]
Figure 4
The Hirshfeld surface mapped over dnorm showing the N—H⋯O, N—H⋯N and O—H⋯O inter­actions as dashed gray lines.

To analyze the relative contributions of different inter­molecular inter­actions, two-dimensional fingerprint plots were generated (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and these are shown in Fig. 5[link]. These plots indicate that the most prominent contacts are O⋯H/H⋯O (26.6%), followed by H⋯H (25.5%), C⋯H/H⋯C (16.7%), N⋯H/H⋯N (10.0%) and F⋯H/H⋯F (6.2%). The crystallographic analysis reveals a robust supra­molecular network in the title compound, stabilized by hydrogen bonds (N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯F) and C—F⋯π inter­actions, forming a three-dimensional cage-like supra­molecular architecture. Hirshfeld surface analysis highlights prominent O⋯H/H⋯O inter­actions, alongside other significant contacts, contributing to crystal stability. The study demonstrates how non-covalent inter­actions, including hydrogen-bonding and π inter­actions, govern the mol­ecular packing and cohesion, supporting the principles of supra­molecular chemistry in crystal engineering.

[Figure 5]
Figure 5
Fingerprint plots showing the total contribution of individual inter­actions and those delineated into O⋯H/H⋯O, H⋯H, C⋯H/H⋯C, N⋯H/H⋯N and F⋯H/H⋯F inter­actions.

4. Database survey

5-Fluoro­cytosine (5FC) is a synthetic anti­mycotic compound, first synthesized in 1957 and widely used as an anti­tumor agent. It is also active against fungal infection (Portalone & Colapietro, 2007[Portalone, G. & Colapietro, M. (2007). J. Chem. Crystallogr. 37, 141-145.]; Vermes et al., 2000[Vermes, A., Guchelaar, H. J. & Dankert, J. (2000). J. Antimicrob. Chemother. 46, 171-179.]). It becomes active by deamination of 5FC into 5-fluoro­uracil by the enzyme cytosine deaminase (CD) and inhibits RNA and DNA synthesis (Morschhauser, 2003[Morschhäuser, J. (2003). Pharm. Unserer Zeit 32, 124-129.]). The Cambridge Structural Database (CSD, v5.45, June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reference codes for the monohydrate are BIRMEU, BIRMEU01, BIRMEU02, BIRMEU03, MEBQUG, MEBQIU, MEBQOA and GATMUL (Louis et al., 1982[Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059-1064.]; Portalone & Colapietro, 2006[Portalone, G. & Colapietro, M. (2006). Acta Cryst. E62, o1049-o1051.]; Hulme & Tocher, 2006[Hulme, A. T. & Tocher, D. A. (2006). Cryst. Growth Des. 6, 481-487.]; Portalone, 2011[Portalone, G. (2011). Chem. Cent. J. 5, 51.]), and for the polymorphs: DUKWIQ, DUKWAI and DUKWEM (Tutughamiarso et al., 2009[Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574-o578.]). A wide range of cocrystals has also been documented, such as XOQQUS, MECTUL, MECVEX, MECVIB, MECVOH, MECVUN, MECWAU, MECWEY, MECWOI, MECWUO, MECXEZ, MECXID, MECXOJ, GIFWIF, UJUJAM, and POCWUD (Souza et al., 2019[Souza, M. S., Diniz, L. F., Alvarez, N., da Silva, C. C. P. & Ellena, J. (2019). New J. Chem. 43, 15924-15934.];Tutughamiarso et al., 2012[Tutughamiarso, M., Wagner, G. & Egert, E. (2012). Acta Cryst. B68, 431-443.]; Tutughamiarso & Egert, 2012[Tutughamiarso, M. & Egert, E. (2012). Acta Cryst. B68, 444-452.]; Mohana et al., 2016[Mohana, M., Muthiah, P. T., Sanjeewa, L. D. & McMillen, C. D. (2016). Acta Cryst. E72, 552-555.], 2023[Mohana, M., Thomas Muthiah, P., McMillen, C. D. & Butcher, R. J. (2023). Acta Cryst. C79, 61-67.]; Sangavi et al., 2024[Sangavi, M., Kumaraguru, N., Butcher, R. J. & McMillen, C. D. (2024). Acta Cryst. C80, 30-36.]). Salts include WEWZAA01, SIJXAM, SIJXIU, SIJXUG, EDATOS, GIFWEB, POCXAK, ZAPFEE and ROLTUJ WEWZAA01, SIJXAM, SIJXIU, SIJXUG, EDATOS, GIFWEB, POCXAK, ZAPFEE and ROLTUJ (Perumalla et al., 2013a[Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013a). Cryst. Growth Des. 13, 429-432.],b[Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013b). Mol. Pharm. 10, 2462-2466.]; Prabakaran et al., 2001[Prabakaran, P., Murugesan, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933-o936.]; Mohana et al., 2017[Mohana, M., Thomas Muthiah, P. & McMillen, C. D. (2017). Acta Cryst. E73, 361-364.]; Karthikeyan et al., 2014[Karthikeyan, A., Thomas Muthiah, P. & Perdih, F. (2014). Acta Cryst. E70, 328-330.]) have been reported in the literature. 4-Hy­droxy­benzaldehydes are potential therapeutic agents for the treatment of human angiostrongyliasis. The crystal structure of 4-hy­droxy­benzaldehyde (Jasinski et al., 2008[Jasinski, J. P., Butcher, R. J., Narayana, B., Swamy, M. T. & Yathirajan, H. S. (2008). Acta Cryst. E64, o187.]), as well as its cocrystal (Nowak & Sikorski, 2023[Nowak, P. & Sikorski, A. (2023). RSC Adv. 13, 20105-20112.]) and polymorphic forms (Simões et al., 2013[Simões, R. G., Bernardes, C. E. S. & da Piedade, M. E. M. (2013). Cryst. Growth Des. 13, 2803-2814.]) have also been reported. 5FC contains multiple hydrogen-bond donors and acceptors, including amino and carbonyl groups, and 4-HBA offers hydroxyl and aldehyde functionalities capable of forming hydrogen bonds, along with an aromatic ring that can engage in ππ inter­actions. The present work focuses on the supra­molecular hydrogen bonding inter­actions in the crystal structure of 1:1 cocrystals of 5-fluoro­cytosine-4-hy­droxy­benzaldehyde.

5. Synthesis and crystallization

The title compound was synthesized by mixing a hot ethano­lic solution of 5-fluoro­cytosine with 4-hy­droxy­benzaldehyde in a 1:1 molar ratio. The solution was heated in a water bath at 333 K for 30 minutes and then allowed to cool slowly to room temperature. After a few days, colorless crystals had separated out of the mother liquor.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms of the N—H, –NH2 and OH groups were located in difference-Fourier maps and refined freely. Other H atoms were placed geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C4H4FN3O·C7H6O2
Mr 251.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 297
a, b, c (Å) 4.2126 (1), 9.6687 (1), 26.8628 (5)
β (°) 94.186 (1)
V3) 1091.21 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.07
Crystal size (mm) 0.27 × 0.21 × 0.17
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD. (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.782, 0.840
No. of measured, independent and observed [I > 2σ(I)] reflections 19824, 2243, 2127
Rint 0.019
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.101, 1.04
No. of reflections 2243
No. of parameters 180
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD. (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), POVRay (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision Raytracer Pvt Ltd, Victoria, Australia. http://www.povray.org]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

4-Amino-5-fluoro-1H-pyrimidin-2-one–4-hydroxybenzaldehyde (1/1) top
Crystal data top
C4H4FN3O·C7H6O2F(000) = 520
Mr = 251.22Dx = 1.529 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 4.2126 (1) ÅCell parameters from 18043 reflections
b = 9.6687 (1) Åθ = 3.3–76.2°
c = 26.8628 (5) ŵ = 1.07 mm1
β = 94.186 (1)°T = 297 K
V = 1091.21 (3) Å3Block, colorless
Z = 40.27 × 0.21 × 0.17 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2243 independent reflections
Radiation source: micro-focus sealed X-ray tube2127 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.019
ω scansθmax = 76.2°, θmin = 3.3°
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2023)
h = 35
Tmin = 0.782, Tmax = 0.840k = 1212
19824 measured reflectionsl = 3333
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2241P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2243 reflectionsΔρmax = 0.20 e Å3
180 parametersΔρmin = 0.19 e Å3
4 restraintsExtinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0088 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The data collection, cell refinement, and data reduction were performed using CrysAlisPro (Rigaku OD, 2023). Structure solution was carried out with SHELXT 2014/5 (Sheldrick, 2015a) and refinement was done using SHELXL-2016/6 (Sheldrick, 2015b). Molecular graphics were prepared using PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and POVRay (Cason 2004).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.6004 (2)0.39753 (7)0.63425 (3)0.0557 (2)
O1A0.1067 (2)0.40145 (8)0.79019 (3)0.0439 (2)
N1A0.1299 (2)0.27556 (9)0.73165 (3)0.0331 (2)
N2A0.1501 (2)0.51932 (9)0.73260 (3)0.0344 (2)
H10.076 (3)0.5966 (14)0.7444 (6)0.050 (4)*
N3A0.3795 (3)0.15570 (10)0.67141 (4)0.0401 (3)
H1CC0.492 (3)0.1523 (16)0.6446 (5)0.049 (4)*
H1A0.294 (3)0.0798 (14)0.6845 (5)0.045 (4)*
C1A0.4154 (3)0.40215 (11)0.67318 (4)0.0351 (3)
C2A0.3072 (2)0.27452 (11)0.69223 (4)0.0313 (2)
C3A0.0531 (2)0.39737 (10)0.75270 (4)0.0323 (2)
C4A0.3331 (3)0.52236 (11)0.69305 (4)0.0356 (3)
H4A0.3994170.6059180.6801510.043*
O1B1.1638 (2)0.27251 (10)0.35919 (3)0.0520 (3)
H1B1.074 (4)0.2080 (18)0.3414 (7)0.076 (5)*
O2B0.6793 (3)0.13585 (11)0.57435 (3)0.0605 (3)
C1B1.0816 (3)0.25581 (12)0.40653 (4)0.0383 (3)
C2B0.8831 (3)0.14938 (12)0.42006 (4)0.0421 (3)
H2B0.7988600.0876220.3960530.050*
C3B0.8117 (3)0.13552 (13)0.46892 (4)0.0450 (3)
H3B0.6771700.0647570.4777490.054*
C4B0.9386 (3)0.22637 (12)0.50533 (4)0.0401 (3)
C5B1.1361 (3)0.33238 (13)0.49140 (4)0.0440 (3)
H5B1.2222740.3935270.5154640.053*
C6B1.2064 (3)0.34827 (13)0.44238 (5)0.0471 (3)
H6B1.3364730.4204300.4333860.056*
C7B0.8656 (3)0.21566 (14)0.55746 (4)0.0474 (3)
H7B0.9723430.2758780.5799010.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0776 (5)0.0414 (4)0.0534 (5)0.0025 (3)0.0416 (4)0.0020 (3)
O1A0.0648 (5)0.0344 (4)0.0352 (4)0.0058 (4)0.0229 (4)0.0028 (3)
N1A0.0453 (5)0.0265 (4)0.0287 (4)0.0013 (3)0.0106 (4)0.0013 (3)
N2A0.0456 (5)0.0250 (4)0.0338 (5)0.0007 (3)0.0103 (4)0.0009 (3)
N3A0.0588 (6)0.0295 (5)0.0341 (5)0.0013 (4)0.0177 (4)0.0018 (4)
C1A0.0421 (6)0.0337 (6)0.0310 (5)0.0024 (4)0.0131 (4)0.0025 (4)
C2A0.0383 (5)0.0296 (5)0.0265 (5)0.0006 (4)0.0053 (4)0.0009 (4)
C3A0.0416 (5)0.0285 (5)0.0274 (5)0.0006 (4)0.0065 (4)0.0018 (4)
C4A0.0423 (6)0.0290 (5)0.0364 (5)0.0035 (4)0.0096 (4)0.0047 (4)
O1B0.0734 (6)0.0513 (5)0.0327 (4)0.0134 (4)0.0137 (4)0.0001 (4)
O2B0.0838 (7)0.0605 (6)0.0404 (5)0.0017 (5)0.0255 (5)0.0006 (4)
C1B0.0477 (6)0.0370 (5)0.0311 (5)0.0040 (4)0.0082 (4)0.0018 (4)
C2B0.0536 (7)0.0389 (6)0.0343 (6)0.0031 (5)0.0075 (5)0.0055 (4)
C3B0.0549 (7)0.0419 (6)0.0397 (6)0.0053 (5)0.0140 (5)0.0004 (5)
C4B0.0464 (6)0.0422 (6)0.0324 (5)0.0101 (5)0.0080 (4)0.0005 (4)
C5B0.0528 (7)0.0425 (6)0.0367 (6)0.0017 (5)0.0026 (5)0.0072 (5)
C6B0.0595 (7)0.0406 (6)0.0418 (6)0.0090 (5)0.0083 (5)0.0015 (5)
C7B0.0569 (7)0.0521 (7)0.0342 (6)0.0110 (6)0.0102 (5)0.0031 (5)
Geometric parameters (Å, º) top
F1A—C1A1.3498 (12)O1B—H1B0.857 (15)
O1A—C3A1.2521 (13)O2B—C7B1.2122 (17)
N1A—C2A1.3397 (13)C1B—C6B1.3889 (17)
N1A—C3A1.3558 (13)C1B—C2B1.3907 (16)
N2A—C4A1.3578 (14)C2B—C3B1.3746 (16)
N2A—C3A1.3715 (13)C2B—H2B0.9300
N2A—H10.877 (13)C3B—C4B1.3920 (17)
N3A—C2A1.3231 (14)C3B—H3B0.9300
N3A—H1CC0.891 (13)C4B—C5B1.3887 (18)
N3A—H1A0.900 (12)C4B—C7B1.4594 (15)
C1A—C4A1.3353 (15)C5B—C6B1.3791 (17)
C1A—C2A1.4235 (14)C5B—H5B0.9300
C4A—H4A0.9300C6B—H6B0.9300
O1B—C1B1.3520 (13)C7B—H7B0.9300
C2A—N1A—C3A120.00 (8)O1B—C1B—C2B122.30 (10)
C4A—N2A—C3A121.95 (9)C6B—C1B—C2B119.97 (10)
C4A—N2A—H1120.1 (10)C3B—C2B—C1B119.96 (11)
C3A—N2A—H1117.8 (10)C3B—C2B—H2B120.0
C2A—N3A—H1CC121.8 (10)C1B—C2B—H2B120.0
C2A—N3A—H1A115.6 (9)C2B—C3B—C4B120.64 (11)
H1CC—N3A—H1A122.4 (14)C2B—C3B—H3B119.7
C4A—C1A—F1A121.33 (9)C4B—C3B—H3B119.7
C4A—C1A—C2A120.77 (10)C5B—C4B—C3B118.92 (10)
F1A—C1A—C2A117.90 (9)C5B—C4B—C7B118.91 (11)
N3A—C2A—N1A119.97 (9)C3B—C4B—C7B122.16 (11)
N3A—C2A—C1A120.74 (9)C6B—C5B—C4B120.93 (11)
N1A—C2A—C1A119.29 (9)C6B—C5B—H5B119.5
O1A—C3A—N1A121.43 (9)C4B—C5B—H5B119.5
O1A—C3A—N2A118.86 (9)C5B—C6B—C1B119.58 (11)
N1A—C3A—N2A119.71 (9)C5B—C6B—H6B120.2
C1A—C4A—N2A118.21 (9)C1B—C6B—H6B120.2
C1A—C4A—H4A120.9O2B—C7B—C4B126.30 (12)
N2A—C4A—H4A120.9O2B—C7B—H7B116.9
C1B—O1B—H1B107.7 (13)C4B—C7B—H7B116.9
O1B—C1B—C6B117.73 (11)
C3A—N1A—C2A—N3A179.36 (10)O1B—C1B—C2B—C3B178.79 (11)
C3A—N1A—C2A—C1A0.55 (16)C6B—C1B—C2B—C3B0.23 (19)
C4A—C1A—C2A—N3A177.61 (11)C1B—C2B—C3B—C4B0.64 (19)
F1A—C1A—C2A—N3A1.78 (16)C2B—C3B—C4B—C5B0.72 (18)
C4A—C1A—C2A—N1A2.30 (17)C2B—C3B—C4B—C7B179.39 (11)
F1A—C1A—C2A—N1A178.31 (9)C3B—C4B—C5B—C6B0.07 (18)
C2A—N1A—C3A—O1A178.50 (10)C7B—C4B—C5B—C6B178.65 (11)
C2A—N1A—C3A—N2A1.84 (16)C4B—C5B—C6B—C1B0.9 (2)
C4A—N2A—C3A—O1A177.67 (10)O1B—C1B—C6B—C5B178.06 (11)
C4A—N2A—C3A—N1A2.66 (16)C2B—C1B—C6B—C5B1.01 (19)
F1A—C1A—C4A—N2A179.10 (9)C5B—C4B—C7B—O2B173.98 (12)
C2A—C1A—C4A—N2A1.53 (17)C3B—C4B—C7B—O2B4.7 (2)
C3A—N2A—C4A—C1A0.92 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1···N1Ai0.88 (1)2.06 (1)2.9354 (12)175 (1)
N3A—H1CC···O2B0.89 (1)2.10 (1)2.9848 (13)170 (1)
N3A—H1A···O1Aii0.90 (1)2.04 (1)2.9328 (12)176 (1)
C4A—H4A···O1Biii0.932.483.2905 (14)145
O1B—H1B···O1Aiv0.86 (2)1.85 (2)2.6934 (13)166 (2)
C6B—H6B···F1Aiii0.932.563.3446 (14)143
C7B—H7B···F1A0.932.512.9886 (14)112
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1/2, z+3/2; (iii) x+2, y+1, z+1; (iv) x+1, y+1/2, z1/2.
 

Funding information

We thank Howard University and the National Science Foundation Major Research Instrumentation program (NSF DMR-2117502) for financially supporting the acquisition of the Rigaku Synergy single-crystal X-ray diffractometer used in this study.

References

First citationAitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des. 12, 2147–2152.  Web of Science CrossRef CAS Google Scholar
First citationAlmarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896.  Web of Science CrossRef Google Scholar
First citationAlvani, A. & Shayanfar, A. (2022). Cryst. Growth Des. 22, 6323–6337.  CrossRef CAS Google Scholar
First citationBolla, G. & Nangia, A. (2016). Chem. Commun. 52, 8342–8360.  Web of Science CrossRef CAS Google Scholar
First citationBolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514–11603.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision Raytracer Pvt Ltd, Victoria, Australia. http://www.povray.org  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., Urbanczyk-Lipkowska, Z., Zia-Ebrahimi, M. & Panunto, T. W. (1990). J. Am. Chem. Soc. 112, 8415–8426.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHulme, A. T. & Tocher, D. A. (2006). Cryst. Growth Des. 6, 481–487.  Web of Science CSD CrossRef CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Swamy, M. T. & Yathirajan, H. S. (2008). Acta Cryst. E64, o187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, A., Thomas Muthiah, P. & Perdih, F. (2014). Acta Cryst. E70, 328–330.  CSD CrossRef IUCr Journals Google Scholar
First citationLouis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059–1064.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMohana, M., Muthiah, P. T., Sanjeewa, L. D. & McMillen, C. D. (2016). Acta Cryst. E72, 552–555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohana, M., Thomas Muthiah, P. & McMillen, C. D. (2017). Acta Cryst. E73, 361–364.  CSD CrossRef IUCr Journals Google Scholar
First citationMohana, M., Thomas Muthiah, P., McMillen, C. D. & Butcher, R. J. (2023). Acta Cryst. C79, 61–67.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorschhäuser, J. (2003). Pharm. Unserer Zeit 32, 124–129.  PubMed Google Scholar
First citationNowak, P. & Sikorski, A. (2023). RSC Adv. 13, 20105–20112.  CSD CrossRef CAS PubMed Google Scholar
First citationPerumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013a). Cryst. Growth Des. 13, 429–432.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013b). Mol. Pharm. 10, 2462–2466.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPortalone, G. (2011). Chem. Cent. J. 5, 51.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPortalone, G. & Colapietro, M. (2006). Acta Cryst. E62, o1049–o1051.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortalone, G. & Colapietro, M. (2007). J. Chem. Crystallogr. 37, 141–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrabakaran, P., Murugesan, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933–o936.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD. (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSangavi, M., Kumaraguru, N., Butcher, R. J. & McMillen, C. D. (2024). Acta Cryst. C80, 30–36.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J., Zhang, Y., An, Q., Li, Y. & Liu, L. (2024). J. Solid State Chem. 331, 124545.  CSD CrossRef Google Scholar
First citationSikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690–o694.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSimões, R. G., Bernardes, C. E. S. & da Piedade, M. E. M. (2013). Cryst. Growth Des. 13, 2803–2814.  Google Scholar
First citationSouza, M. S., Diniz, L. F., Alvarez, N., da Silva, C. C. P. & Ellena, J. (2019). New J. Chem. 43, 15924–15934.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTutughamiarso, M. & Egert, E. (2012). Acta Cryst. B68, 444–452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574–o578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTutughamiarso, M., Wagner, G. & Egert, E. (2012). Acta Cryst. B68, 431–443.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVangala, V. R., Nangia, A. & Lynch, D. E. (2002). Chem. Commun. pp. 1304–1305.  CSD CrossRef Google Scholar
First citationVermes, A., Guchelaar, H. J. & Dankert, J. (2000). J. Antimicrob. Chemother. 46, 171–179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds