research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three 4-methyl­piperidinium salts (one as three polymorphs) with tetrahalogenidoaurate(III), halide and (in one case) di­chloro­iodate(I) counter-anions

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: [email protected]

Edited by C. Schulzke, Universität Greifswald, Germany (Received 9 April 2025; accepted 30 May 2025; online 12 June 2025)

Gold complexes with amine ligands (and related compounds), Part 18. Part 17: Döring & Jones (2024c[Döring, C. & Jones, P. G. (2024c). Acta Cryst. E80, 894-909.]).

The structures of three 4-methyl­pyridinium tetra­halogenidoaurate(III) halides, one also including a di­chloro­iodate(I) anion, are presented. Bis(4-methyl­piperidinium) tetra­bromido­aurate(III) bromide, (4-Me-pipH)2[AuBr4]Br, 1, crystallizes in space group C2/c with Z = 4. The gold atom lies on the inversion centre 0.75, 0.75, 0.5 and the bromide ion on the twofold axis 0.5, y, 0.25. Bis(4-methyl­piperidinium) tetra­chlorido­aurate(III) chloride, (4-Me-pipH)2[AuCl4]Cl, 2, was obtained as three polymorphs, none of which is isotypic to 1. Polymorph 2a crystallizes in space group P21/c with Z = 4; all atoms lie on general positions. Polymorph 2b crystallizes in space group P2/c with Z = 8; two chloride ions lie on the twofold axes 0, y, 1/4 and 0.5, y, 0.25. Polymorph 2c crystallizes in space group P1 with Z = 10; all atoms lie on general positions. Hexa­kis­(4-methyl­piperidinium) tetra­kis­{tetra­chlorido­aurate(III)} di­chloro­iodate(I) chloride, (4-Me-pipH)6[AuCl4]4(ICl2)Cl, 3, crystallizes in space group P1 with Z = 1; two gold atoms occupy inversion centres, as do the iodine atom and one chloride. This is the first time that we have observed the chlorinating agent PhICl2 to be `non-innocent'. The main inter­est centres on the crystal packings, which involve hydrogen, halogen and coinage bonds, and display prominent substructures, one type involving the cations and the halides, and the other type involving the anions. A common feature in the packing of compounds 1 and 2 is a chain consisting of cations linked by halide ions. In 1, the chains are flanked by tetra­bromido­aurate ions via short Br⋯Br contacts. The anions form zigzag chains via Br⋯Br⋯Br groupings. In polymorph 2a, chains of cations and chloride ions connect to chains of tetra­chlorido­aurate ions to form a layer structure. In polymorph 2b, cation/chloride chains connect with chains of tetra­chlorido­aurate and chloride anions to form a layer structure; approximately linear Au⋯Cl⋯Au groupings are a striking feature (these are also seen in 2c and 3). The asymmetric unit of polymorph 2c is an ensemble ca 27 Å long. Cation/chloride chains are linked by tetra­chlorido­aurates to form one-dimensional polymers. The tetra­chlorido­aurate and chloride ions associate to form a layer structure. In the packing of compound 3 the chloride/tetra­chlorido­aurate substructure is dominant. Two tetra­chlorido­aurate ions associate with the free chloride to form a layer structure; the layers are linked in the third dimension via the third tetra­chloro­aurate and the di­chloro­iodate ions. There is no independent cation/chloride substructure; the cations may be considered as being inter­spersed in the spaces of the anionic substructure, forming hydrogen bonds (some multicentred) to chlorine atoms of the anions. A brief database survey of other structures involving aryl- or alkyl­ammonium cations, tetra­halogenidoaurates and halides is presented, including packing diagrams of selected examples.

1. Chemical context

In this series of publications, we have structurally investigated several classes of amine complexes of gold(I) and gold(III) halides, whereby the term `amine' has been used loosely to include aza­aromatics. The gold(I) derivatives were often synthesized by the reaction of the ligand with chlorido- or bromido­(tetra­hydro­thio­phene)­gold(I), from which the tetra­hydro­thio­phene ligand is easily replaced. Oxidation to the gold(III) species was achieved using elemental bromine or the chlorine equivalent iodo­phenyl dichloride PhICl2. Extensive background material is given in Part 12 of this series (Döring & Jones, 2023[Döring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017-1027.]).

One of the problems in these syntheses is the sensitivity of some products to hydrolysis and to traces of H+, so that crystallizations, which often take weeks or months, can lead to salts of the protonated amine with tetra­halogenidoaurates(III). This tendency is exacerbated by the tendency of the frequently used solvent di­chloro­methane to react with amines, even in the absence of any other species (e.g. with pyridine; Rudine et al., 2010[Rudine, A. B., Walter, M. G. & Wamser, C. C. (2010). J. Org. Chem. 75, 4292-4295.]). The structures of the isolated salts have however often proved to be inter­esting in their own right; for instance, they often exhibit short halogen⋯halogen contacts between tetra­halogenidoaurate(III) ions, sometimes leading to networks of these ions (Döring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930-936.]; this publication was not assigned a series number).

[Scheme 1]

In the series of 4-methyl­piperidine (4-Me-pip) complexes, we have previously determined the structures of bis­(4-methyl­piperidine)­gold(I) chloride, [Au(4-Me-pip)2]Cl; bis­(4-methyl­piperidine)­gold(I) di­chlorido­aurate(I), [Au(4-Me-pip)2] [AuCl2]; bis­(4-methyl­piperidine)­gold(I) di­bromido­aurate(I), [Au(4-Me-pip)2] [AuBr2]; the 1:1 adduct chlorido­(4-methyl­piperidine)­gold(I) bis­(4-methyl­piperidine)­gold(I) chlor­ide, AuCl(4-Me-pip)·[Au(4-Me-pip)2]Cl, as its di­chloro­methane solvate (Döring & Jones, 2024a[Döring, C. & Jones, P. G. (2024a). Acta Cryst. E80, 157-165.]); tri­chlorido­(4-Me-pip)gold(III), (4-Me-pip)AuCl3; tri­bromido­(4-Me-pip)gold(III), (4-Me-pip)AuBr3 (Döring & Jones, 2024b[Döring, C. & Jones, P. G. (2024b). Acta Cryst. E80, 476-480.]); and 4-methyl­piperidinium tetra­chlorido­aurate(III), (4-Me-pipH)[AuCl4] (Döring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930-936.]). In the last of these papers, we presented the structures of six compounds for which the tetra­halogenidoaurate ions assembled to form approximately square networks with gold atoms at the corners and short halogen⋯halogen contacts Au—XX—Au along the sides of the squares (Fig. 1[link]). Here we present the structures of the more complex ionic systems bis­(4-methyl­piperidinium) tetra­bromido­aurate(III) bromide, (4-Me-pipH)2[AuBr4]Br 1; bis­(4-methyl­piperidinium) tetra­chlorido­aurate(III) chloride, (4-Me-pipH)2[AuCl4]Cl 2 (three polymorphs); and hexa­kis­(4-methyl­piperidinium) tetra­kis­{tetra­chlorido­aurate(III)} di­chloro­iodate(I) chloride, (4-Me-pipH)6[AuCl4]4(ICl2)Cl 3. The presence of both halide and tetra­halogenidoaurate ions extends the potential types of anion assemblies.

[Figure 1]
Figure 1
The approximately square network of tetra­chlorido­aurate ions in the compound (4-Me-pipH)[AuCl4] (Döring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930-936.]). The dashed bonds indicate Cl⋯Cl contacts.

2. Structural commentary

All compounds crystallize solvent-free. In the Figures (Figs. 2[link]–6[link][link][link][link]), the asymmetric units have been extended by symmetry where necessary to show complete residues; the dashed lines indicate short contacts that are discussed in Supra­molecular features. Bis(4-methyl­piperidinium) tetra­bromido­aurate(III) bromide, (4-Me-pipH)2[AuBr4]Br 1 (Fig. 2[link]) crystallizes in space group C2/c with Z = 4. The gold atom lies on the inversion centre 0.75, 0.75, 0.5 and the bromide ion on the twofold axis 0.5, y, 0.25. Bis(4-methyl­piperidinium) tetra­chlorido­aurate(III) chloride, (4-Me-pipH)2[AuCl4]Cl 2, was obtained as three polymorphs, none of which is isotypic to 1. Polymorph 2a (Fig. 3[link]) crystallizes in space group P21/c with Z = 4; all atoms lie on general positions. Polymorph 2b (Fig. 4[link]) crystallizes in space group P2/c with Z = 8; two chloride ions lie on the twofold axes 0, y, 0.25 (Cl10) and 0.5, y, 0.25 (Cl11). Polymorph 2c (Fig. 5[link]) crystallizes in space group P[\overline{1}] with Z = 10; all atoms lie on general positions. The asymmetric unit thus contains 20 residues. The chlorine atoms of the tetra­chlorido­aurate anions are numbered Cl1–Cl20 and the free chloride ions Cl21–Cl25. Hexa­kis­(4-methyl­piperidinium) tetra­kis­{tetra­chlorido­aurate(III)} di­chloro­iodate(I) chloride, (4-Me-pipH)6[AuCl4]4(ICl2)Cl 3 (Fig. 6[link]) crystallizes in space group P[\overline{1}] with Z = 1; two gold atoms occupy inversion centres, Au2 at 1, 0.5, 0.5 and Au3 at 0.5, 0, 0, as do the iodine atom I1, at 1, 1, 0.5, and one chloride, Cl9, at 0.5, 0.5, 0. This is the first time in our experience that the chlorinating agent PhICl2 has proved to be `non-innocent'.

[Figure 2]
Figure 2
The formula unit of compound 1 in the crystal, extended by symmetry to complete the tetra­bromido­aurate ion. Only the asymmetric unit is labelled; ellipsoids represent 50% probability levels and the dashed lines represent short contacts that are discussed in Supra­molecular features. This also applies to Figs. 2[link]–5[link][link][link].
[Figure 3]
Figure 3
The formula unit of compound 2, polymorph 2a, in the crystal.
[Figure 4]
Figure 4
The formula unit of compound 2, polymorph 2b, in the crystal.
[Figure 5]
Figure 5
The formula unit of compound 2, polymorph 2c, in the crystal. For clarity, hydrogen atoms bonded to carbon have been omitted. Atoms Cl1, Cl2 and Cl18 are partially obscured. The borderline contact Cl20⋯Cl21 is excluded.
[Figure 6]
Figure 6
The formula unit of compound 3 in the crystal, extended by symmetry to complete the tetra­chlorido­aurate and di­chloro­iodate ions. Only the asymmetric unit is labelled.

Selected mol­ecular dimensions are shown in Tables 1[link]–5[link][link][link][link]. The tetra­halogenidoaurate(III) ions show the expected square-planar (4/mmm) symmetry to a good approximation, although there is some scatter of the Au—Cl bond lengths, which range from 2.2624 (13) to 2.3007 (8) Å. It is tempting to suggest that the differences are attributable to the short inter­ionic contacts, but no clear pattern can be discerned. In the cations, the methyl substituent is consistently equatorial, with C—C—C—Cmeth­yl torsion angles around ±180°.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Au1—Br2 2.4259 (4) Au1—Br1 2.4301 (4)
       
Br2i—Au1—Br2 180.0 Br2—Au1—Br1 89.599 (15)
Br2—Au1—Br1i 90.400 (15) Br1i—Au1—Br1 180.0
       
C12—C13—C14—C17 −178.7 (4) C17—C14—C15—C16 177.0 (4)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 2
Selected geometric parameters (Å, °) for 2a[link]

Au1—Cl1 2.2752 (8) Au1—Cl2 2.2872 (8)
Au1—Cl4 2.2802 (7) Au1—Cl3 2.2879 (8)
       
Cl1—Au1—Cl4 89.91 (3) Cl4—Au1—Cl3 89.80 (3)
Cl1—Au1—Cl2 89.77 (3) Cl2—Au1—Cl3 90.72 (3)
Cl4—Au1—Cl2 176.77 (3) C12—N11—C16 112.8 (3)
Cl1—Au1—Cl3 176.43 (3)    
       
C12—C13—C14—C17 −178.9 (3) C22—C23—C24—C27 −176.3 (3)
C17—C14—C15—C16 178.1 (3) C27—C24—C25—C26 177.4 (3)

Table 3
Selected geometric parameters (Å, °) for 2b[link]

Au1—Cl2 2.2701 (11) Au2—Cl6 2.2751 (11)
Au1—Cl1 2.2856 (11) Au2—Cl7 2.2792 (11)
Au1—Cl3 2.2879 (11) Au2—Cl8 2.2832 (11)
Au1—Cl4 2.2904 (11) Au2—Cl5 2.2842 (11)
       
Cl2—Au1—Cl1 90.12 (4) Cl6—Au2—Cl7 89.54 (4)
Cl2—Au1—Cl3 90.08 (4) Cl6—Au2—Cl8 178.35 (4)
Cl1—Au1—Cl3 179.05 (5) Cl7—Au2—Cl8 89.74 (4)
Cl2—Au1—Cl4 177.98 (5) Cl6—Au2—Cl5 90.13 (4)
Cl1—Au1—Cl4 89.72 (4) Cl7—Au2—Cl5 179.55 (5)
Cl3—Au1—Cl4 90.11 (4) Cl8—Au2—Cl5 90.59 (4)
       
C12—C13—C14—C17 −178.5 (4) C32—C33—C34—C37 −178.7 (4)
C17—C14—C15—C16 178.8 (4) C37—C34—C35—C36 180.0 (4)
C22—C23—C24—C27 −178.7 (4) C42—C43—C44—C47 175.4 (8)
C27—C24—C25—C26 178.8 (4) C47—C44—C45—C46 −177.9 (9)

Table 4
Selected geometric parameters (Å, °) for 2c[link]

Au1—Cl3 2.2671 (13) Au3—Cl10 2.2747 (13)
Au1—Cl4 2.2749 (13) Au3—Cl12 2.2875 (14)
Au1—Cl1 2.2750 (13) Au4—Cl13 2.2816 (13)
Au1—Cl2 2.2953 (13) Au4—Cl15 2.2962 (13)
Au2—Cl7 2.2667 (13) Au4—Cl14 2.2983 (14)
Au2—Cl5 2.2792 (13) Au4—Cl16 2.2985 (13)
Au2—Cl8 2.2872 (13) Au5—Cl17 2.2788 (14)
Au2—Cl6 2.2902 (13) Au5—Cl20 2.2794 (13)
Au3—Cl9 2.2624 (13) Au5—Cl18 2.2795 (14)
Au3—Cl11 2.2698 (13) Au5—Cl19 2.2969 (14)
       
Cl3—Au1—Cl4 89.77 (5) Cl9—Au3—Cl12 90.95 (5)
Cl3—Au1—Cl1 178.58 (6) Cl11—Au3—Cl12 89.13 (5)
Cl4—Au1—Cl1 89.91 (5) Cl10—Au3—Cl12 178.86 (6)
Cl3—Au1—Cl2 90.35 (5) Cl13—Au4—Cl15 179.66 (5)
Cl4—Au1—Cl2 178.72 (5) Cl13—Au4—Cl14 89.19 (5)
Cl1—Au1—Cl2 89.99 (5) Cl15—Au4—Cl14 90.76 (5)
Cl7—Au2—Cl5 178.76 (6) Cl13—Au4—Cl16 89.79 (5)
Cl7—Au2—Cl8 91.29 (5) Cl15—Au4—Cl16 90.25 (5)
Cl5—Au2—Cl8 89.45 (5) Cl14—Au4—Cl16 178.41 (5)
Cl7—Au2—Cl6 89.04 (5) Cl17—Au5—Cl20 90.16 (5)
Cl5—Au2—Cl6 90.24 (5) Cl17—Au5—Cl18 89.47 (5)
Cl8—Au2—Cl6 178.58 (5) Cl20—Au5—Cl18 179.45 (6)
Cl9—Au3—Cl11 177.25 (6) Cl17—Au5—Cl19 179.24 (5)
Cl9—Au3—Cl10 89.01 (5) Cl20—Au5—Cl19 89.98 (5)
Cl11—Au3—Cl10 90.97 (5) Cl18—Au5—Cl19 90.40 (5)
       
C12—C13—C14—C17 −179.3 (5) C62—C63—C64—C67 175.4 (7)
C17—C14—C15—C16 178.2 (5) C67—C64—C65—C66 −178.5 (6)
C22—C23—C24—C27 180.0 (5) C72—C73—C74—C77 −179.3 (6)
C27—C24—C25—C26 177.4 (5) C77—C74—C75—C76 178.6 (5)
C32—C33—C34—C37 179.9 (5) C82—C83—C84—C87 −178.5 (6)
C37—C34—C35—C36 −179.8 (5) C87—C84—C85—C86 178.3 (5)
C42—C43—C44—C47 −179.1 (5) C92—C93—C94—C97 178.1 (5)
C47—C44—C45—C46 179.4 (5) C97—C94—C95—C96 −177.3 (5)
C52—C53—C54—C57 177.1 (5) C102—C103—C104—C107 174.2 (5)
C57—C54—C55—C56 −176.5 (5) C107—C104—C105—C106 −175.4 (5)

Table 5
Selected geometric parameters (Å, °) for 3[link]

Au1—Cl1 2.2733 (8) Au2—Cl5 2.2794 (8)
Au1—Cl4 2.2792 (9) Au2—Cl6 2.3052 (8)
Au1—Cl2 2.2882 (9) Au3—Cl8 2.2837 (9)
Au1—Cl3 2.3003 (8) I1—Cl10 2.5574 (9)
       
Cl1—Au1—Cl4 89.87 (3) Cl5—Au2—Cl6i 88.49 (3)
Cl1—Au1—Cl2 90.75 (3) Cl6—Au2—Cl6i 180.0
Cl4—Au1—Cl2 177.70 (3) Cl7ii—Au3—Cl7 180.00 (4)
Cl1—Au1—Cl3 179.16 (3) Cl7—Au3—Cl8ii 89.72 (3)
Cl4—Au1—Cl3 89.40 (3) Cl7—Au3—Cl8 90.28 (3)
Cl2—Au1—Cl3 89.96 (3) Cl8ii—Au3—Cl8 180.0
Cl5—Au2—Cl5i 180.0 Cl10—I1—Cl10iii 180.0
Cl5—Au2—Cl6 91.51 (3)    
       
C12—C13—C14—C17 −176.0 (3) C27—C24—C25—C26 178.0 (3)
C17—C14—C15—C16 175.6 (3) C32—C33—C34—C37 −174.8 (3)
C22—C23—C24—C27 −178.0 (3) C37—C34—C35—C36 174.3 (3)
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y, -z]; (iii) [-x+2, -y+2, -z+1].

3. Supra­molecular features

In the packing diagrams, atom labels indicate atoms of the asymmetric unit (except where otherwise indicated). Hydrogen atoms of CH2 and CH groups are omitted (but their contacts are present in the deposited material); we subjectively assess the C—H⋯X contacts to be less important than N—H⋯X, although there are several of the former type, as would be expected in compounds with many more C—H than N—H moieties. In the text, primes (′) indicate previously defined or generalized symmetry operators. Classical hydrogen bonds are listed in Tables 6[link]–10[link][link][link][link].

Table 6
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H02⋯Br3 0.95 (3) 2.36 (3) 3.300 (4) 169 (4)
N11—H01⋯Br3ii 0.95 (3) 2.52 (4) 3.281 (4) 137 (4)
Symmetry code: (ii) [-x+1, -y+1, -z+1].

Table 7
Hydrogen-bond geometry (Å, °) for 2a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H01⋯Cl5 0.89 (2) 2.21 (2) 3.098 (3) 177 (4)
N11—H02⋯Cl5i 0.88 (2) 2.32 (3) 3.145 (3) 157 (4)
N21—H03⋯Cl3 0.89 (2) 2.80 (3) 3.453 (3) 131 (3)
N21—H04⋯Cl4 0.89 (2) 2.94 (4) 3.494 (3) 122 (3)
N21—H04⋯Cl5 0.89 (2) 2.43 (3) 3.144 (3) 138 (3)
N21—H04⋯Cl5ii 0.89 (2) 2.81 (4) 3.239 (3) 111 (3)
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [-x+1, -y+1, -z+1].

Table 8
Hydrogen-bond geometry (Å, °) for 2b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H02⋯Cl9 0.92 (2) 2.67 (4) 3.349 (4) 131 (4)
N11—H02⋯Cl4 0.92 (2) 2.68 (4) 3.405 (4) 136 (4)
N11—H01⋯Cl11 0.91 (2) 2.28 (3) 3.177 (4) 169 (6)
N21—H03⋯Cl9 0.91 (2) 2.41 (3) 3.222 (4) 148 (4)
N21—H04⋯Cl11 0.91 (2) 2.24 (3) 3.146 (5) 169 (5)
N31—H05⋯Cl10 0.92 (2) 2.26 (3) 3.147 (4) 163 (5)
N31—H06⋯Cl9 0.91 (2) 2.28 (3) 3.147 (4) 158 (5)
N41—H41A⋯Cl10 0.91 2.31 3.158 (7) 155
N41—H41B⋯Cl4 0.91 2.68 3.517 (7) 152
N41—H41B⋯Cl9 0.91 2.83 3.360 (6) 118
N41′—H41C⋯Cl10 0.91 2.20 3.084 (10) 163
N41′—H41D⋯Cl9 0.91 2.64 3.430 (9) 146

Table 9
Hydrogen-bond geometry (Å, °) for 2c[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H01⋯Cl21 0.90 (2) 2.18 (3) 3.073 (5) 171 (5)
N11—H02⋯Cl6i 0.89 (2) 2.60 (5) 3.335 (5) 140 (6)
N21—H03⋯Cl21 0.90 (2) 2.30 (2) 3.182 (5) 167 (4)
N21—H04⋯Cl22 0.90 (2) 2.50 (4) 3.252 (5) 142 (4)
N31—H05⋯Cl21 0.90 (2) 2.22 (3) 3.099 (5) 167 (6)
N31—H06⋯Cl22 0.90 (2) 2.27 (3) 3.134 (5) 162 (7)
N41—H07⋯Cl23 0.89 (2) 2.32 (2) 3.196 (5) 171 (5)
N41—H08⋯Cl22 0.89 (2) 2.59 (6) 3.224 (5) 129 (6)
N51—H09⋯Cl22 0.93 (3) 2.33 (4) 3.180 (5) 151 (6)
N51—H010⋯Cl23 0.93 (3) 2.22 (3) 3.126 (5) 166 (6)
N61—H61B⋯Cl23 0.91 2.28 3.161 (6) 164
N61—H61A⋯Cl24 0.91 2.57 3.325 (5) 141
N71—H71A⋯Cl23 0.91 2.32 3.216 (5) 169
N71—H71B⋯Cl24 0.91 2.57 3.254 (5) 132
N81—H81B⋯Cl25 0.91 2.26 3.157 (5) 170
N81—H81A⋯Cl24 0.91 2.24 3.146 (5) 175
N91—H017⋯Cl24 0.93 (3) 2.56 (6) 3.356 (5) 144 (7)
N91—H018⋯Cl25 0.93 (3) 2.23 (3) 3.134 (5) 163 (7)
N101—H019⋯Cl5 0.93 (3) 2.64 (4) 3.459 (5) 147 (6)
N101—H019⋯Cl8 0.93 (3) 2.72 (5) 3.471 (5) 138 (6)
N101—H020⋯Cl25 0.93 (3) 2.15 (3) 3.075 (5) 170 (4)
Symmetry code: (i) [x+1, y, z-1].

Table 10
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H01⋯Cl9 0.91 (2) 2.41 (2) 3.270 (3) 157 (3)
N11—H02⋯Cl2 0.92 (2) 2.98 (3) 3.479 (3) 116 (2)
N11—H02⋯Cl10 0.92 (2) 2.58 (2) 3.465 (3) 164 (3)
N21—H03⋯Cl3 0.91 (2) 2.82 (3) 3.317 (3) 116 (3)
N21—H03⋯Cl5 0.91 (2) 2.72 (3) 3.402 (3) 133 (3)
N21—H03⋯Cl6i 0.91 (2) 2.79 (2) 3.547 (3) 142 (3)
N21—H04⋯Cl2 0.91 (2) 2.83 (3) 3.566 (3) 139 (3)
N21—H04⋯Cl10 0.91 (2) 2.63 (3) 3.371 (3) 139 (3)
N31—H05⋯Cl3 0.91 (2) 2.92 (3) 3.569 (3) 130 (3)
N31—H05⋯Cl9 0.91 (2) 2.83 (3) 3.538 (3) 136 (3)
N31—H06⋯Cl8 0.91 (2) 2.54 (2) 3.406 (3) 161 (3)
Symmetry code: (i) [-x+2, -y+1, -z+1].

A common feature in the packing of compounds 1 and 2 is a chain consisting of cations linked by halide ions. The closely related compounds (pipH)2[AuCl4]Cl and (pyrrolidinium)2[AuBr4]Br (Döring & Jones, 2023[Döring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017-1027.]) both show related chains; the latter was shown in the original publication, but the former was not shown explicitly, so we provide it here (Fig. 7[link]). The chains involve hydrogen-bonded rings, each with two cationic NH2 groups and two chloride ions, with graph set R42(8). These are connected by the apical chloride anions, which accept four hydrogen bonds, two from each of the two connected rings. The presence of an alkyl­ammonium-type cation is not a prerequisite for such chains; another example is the structure of bis­(cyclo­hexyl­amine)­gold(I) chloride (Döring & Jones, 2018[Döring, C. & Jones, P. G. (2018). Z. Naturforsch. 73b, 43-74.]), which has a formally uncharged NH2 group in the coordinated amine. The packing of compound 1 involves exactly analogous chains of NH2 groups and bromides, running parallel to the c axis (Fig. 8[link]); each chain is flanked by tetra­bromido­aurate ions via short contacts Br3⋯Br1 of 3.6584 (7) Å, which can be classified as halogen bonds (for reviews see e.g. Metrangelo et al., 2008[Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.] or Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]). Fig. 9[link] shows the zigzag chains formed by the anions; the angle Br1⋯Br3⋯Br1(1 − x, y, [{1\over 2}] − z) is 74.38 (2)° and Au1—Br1⋯Br3′ is 168.10 (2)°. The chains propagate parallel to [101]. Fig. 10[link] shows a projection of the complete packing parallel to the c axis; the cation/bromide chains occupy the regions at the corners and the centre of the projected cell.

[Figure 7]
Figure 7
Packing diagram of the cations and chloride ions in the structure of (pipH)2[AuCl4]Cl (Döring & Jones, 2023[Döring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017-1027.]); dashed lines indicate hydrogen bonds.
[Figure 8]
Figure 8
Packing diagram of compound 1 viewed parallel to the b axis. Thin dashed lines show H⋯Br hydrogen bonds; thick dashed lines show short Br⋯Br contacts.
[Figure 9]
Figure 9
Packing diagram of the anion chains in compound 1. The view direction is perpendicular to ([\overline{1}]01).
[Figure 10]
Figure 10
Packing diagram of compound 1 projected parallel to the c axis. Dashed lines indicate H⋯Br and Br⋯Br contacts.

In compound 2, polymorph 2a, chains of cations and chloride ions run parallel to the b axis, but the arrangement differs from that of compound 1 in that the apically linked rings are of two alternating types. One type, involving N11 and its hydrogens, is the same graph set R42(8) as for 1, but the other rings only involve one hydrogen H04 at N21, thus forming H2Cl2 rings of graph set R22(4) (Fig. 11[link]). The other hydrogen H03 forms a long hydrogen bond to Cl3 of the tetra­chlorido­aurate ion. A further type of chain, which also runs parallel to the b axis, is formed of tetra­chlorido­aurate ions only, with short axial Cl3⋯Au1([{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z) contacts of 3.5574 (8) Å and an Au1—Cl3⋯Au1′ angle of 160.69 (3)° (Fig. 12[link]). Such contacts are well-known for square-planar gold(III) species and have recently been formalized as `coinage bonds' (Daolio et al., 2021[Daolio, D., Pizzi, A., Terraneo, G., Ursini, M., Frontera, A. & Resnati, G. (2021). Angew. Chem. Int. Ed. 60, 14385-14389.]; Pizzi et al., 2022[Pizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm 24, 3846-3851.]). The chains are linked by the H03⋯Cl3 hydrogen bond and by a short Cl4⋯Cl5 contact of 3.6319 (11) Å. The two types of chain are linked to form a layer structure parallel to (10[\overline{1}]) (Fig. 13[link], in which the chains run horizontally).

[Figure 11]
Figure 11
The cation/chloride chain of compound 2, polymorph 2a, viewed perpendicular to (101). Dashed lines indicate hydrogen bonds.
[Figure 12]
Figure 12
Two tetra­chlorido­aurate(III) chains of compound 2, polymorph 2a, with peripherally attached chloride ions, viewed parallel to the a axis. Dashed lines indicate Au⋯Cl or Cl⋯Cl contacts.
[Figure 13]
Figure 13
The layer structure of compound 2, polymorph 2a, viewed perpendicular to (10[\overline{1}]). Dashed inter­actions indicate Cl⋯Cl and Au⋯Cl contacts (thick) or hydrogen bonds (thin). The atom Cl4 is partially obscured, and the label N21 is placed some distance to the right of its atom.

In polymorph 2b, the cation/chloride chains again consist solely of apex-linked R42(8) rings, which run parallel to the a axis (Fig. 14[link]). The tetra­chlorido­aurate and chloride anions Cl9 associate to form zigzag chains with overall direction parallel to the b axis (Fig. 15[link]), with short contacts Au1⋯Cl9 = 3.3908 (12), Au2⋯Cl9 = 3.7034 (12) and Cl2⋯Cl6(x, −1 + y, z) = 3.4761 (17) Å. Associated angles are Au1⋯Cl9⋯Au2 = 174.97 (4), Au1—Cl2⋯Cl6′ = 154.66 (5) and Au2—Cl6⋯Cl2(x, 1 + y, z) = 163.48 (5)°, whereby the approximately linear Au⋯Cl⋯Au grouping at the chloride ion Cl9 is striking. The anion chains of the polymorphs 2a, with propagation via axial Au⋯Cl contacts only, and 2b, with Au⋯Cl⋯Au and Cl⋯Cl contacts, are thus quite different. The two chain types of 2b combine to form a layer structure parallel to the ab plane (Fig. 16[link]). The inter-chain linkages, in which Cl9 plays a prominent part (it accepts four hydrogen bonds and two coinage bonds), include the three-centre hydrogen bond systems N11—H02⋯(Cl4, Cl9) and N41—H41B⋯(Cl4, Cl9). The second disorder component of the ring at N41, which is not shown in the Figures, forms hydrogen bonds to Cl10 (short) and Cl9 (long).

[Figure 14]
Figure 14
The cation/chloride chain of compound 2, polymorph 2b, viewed perpendicular to the ab plane. Dashed lines indicate hydrogen bonds. This chain lies at y, z ≃ 0.25, 0.25; another chain lies at y, z ≃ 0.75, 0.75.
[Figure 15]
Figure 15
Two tetra­chlorido­aurate(III)/chloride chains of compound 2, polymorph 2b, viewed perpendicular to the bc plane in the region x ≃ 0.25. Dashed lines indicate Au⋯Cl or Cl⋯Cl contacts.
[Figure 16]
Figure 16
The layer structure of compound 2, polymorph 2b, viewed perpendicular to the ab plane in the region z ≃ 0.25. Dashed inter­actions indicate Cl⋯Cl and Au⋯Cl contacts (thick) or hydrogen bonds (thin).

The asymmetric unit of polymorph 2c (Fig. 5[link]), an ensemble of 20 residues approximately 27 Å long, was chosen to contain a chain of four complete R42(8) rings, linked at the apices Cl22, Cl23 and Cl24. At the right-hand end of this ensemble, the donor N101—H019 is part of a three-centre hydrogen bond to Cl5 and Cl8, two chlorines of the tetra­chlorido­aurate anion centred on Au2. At the left-hand end, the donor N11—H02 seems at first sight to be unused, but it is linked to Cl6 of the same tetra­chlorido­aurate ion, translated by the operator (1 + x, y, −1 + z). This leads to the formation of a one-dimensional polymer parallel to [10[\overline{1}]] (Fig. 17[link]). The tetra­chlorido­aurate/chloride substructure is given first as a simplified view (Fig. 18[link]), in which the inter­actions (Table 11[link]) are of the type Au⋯Cl (via coinage bonds to the free chlorides) or Cl⋯Cl (between tetra­chlorido­aurate ions). Two separate regions based on Au1–3 and Au4/5 can be recognised, each of which contains an Au⋯Cl⋯Au grouping, both forming one-dimensional arrays parallel to the b axis. This view, however, omits the contacts Au1⋯Cl19 and Au2⋯Cl14 between the tetra­chlorido­aurate ions of the two arrays. The view including these contacts (Fig. 19[link]) is much more complex. It shows the formation of a layer parallel to ([\overline{1}]02). The contact lengths have been inter­preted liberally as regards length; one of the former is very long, whereas some of the latter are extremely short. The cation/chloride assemblies of Fig. 17[link] inter­sect with the tetra­chlorido­aurate substructure via the hydrogen and coinage bonds at Cl22, the hydrogen bonds H02⋯Cl6′ and H019⋯(Cl5, Cl8) and possibly the borderline contact Cl20⋯Cl21. A projection of the entire structure down the b axis (Fig. 20[link]) shows the tetra­chlorido­aurate/chloride layers edge-on, running diagonally.

Table 11
Short Au⋯Cl and Cl⋯Cl contacts (Å, °) in the structure of 2c

Contact Distance Operator Associated angles
Au1⋯Cl19a 3.8488 (14) −1 + x, y, z Au1⋯Cl19a—Au5a 167.56 (6)
Au1⋯Cl24 3.4365 (15)   Au1⋯Cl24⋯Au3 174.92 (4)
Au2⋯Cl14a 3.4556 (14) 1 − x, 2 − y, 1 − z Au2⋯Cl14a—Au4a 161.47 (6)
Au3⋯Cl24 3.7048 (15)    
Au4⋯Cl22 3.3764 (13)   Au4⋯Cl22⋯Au5 167.40 (4)
Au5⋯Cl22 4.0102 (13)    
Cl1⋯Cl5a 3.2111 (18) x, 1 − y, 1 − z Au1—Cl1⋯Cl5a 168.60 (7), Cl1⋯Cl5a—Au2a 163.62 (7)
Cl9⋯Cl9a 3.079 (3) 1 − x, 2 − y, 1 − z Au3—Cl9⋯Cl9a 159.28 (9)
Cl11⋯Cl11a 3.204 (3) 1 − x, 1 − y, 1 − z Au3—Cl11⋯Cl11a 161.66 (9)
Cl3⋯Cl7a 3.1490 (18) x, 2 − y, 1 − z Au1—Cl3⋯Cl7a 154.91 (7), Cl3⋯Cl7a—Au2a 160.34 (7)
Cl16⋯Cl16a 3.516 (3) 1 − x, 2 − y, −z Au4—Cl16⋯Cl16a 148.13 (8)
Cl17⋯Cl17a 3.469 (3) 1 − x, 1 − y, −z Au5—Cl17⋯Cl17a 151.45 (8)
Cl20⋯Cl21 3.748 (2)   Au5—Cl20⋯Cl21 142.97 (6)
Note: (a) see column 3 for operators.
[Figure 17]
Figure 17
Compound 2, polymorph 2c: formation of one-dimensional hydrogen-bonded polymers containing the cations, the chlorides and one tetra­chlorido­aurate (centred on Au2). The inversion-related polymers are omitted for clarity. Dashed inter­actions indicate hydrogen bonds. The view direction is perpendicular to (101).
[Figure 18]
Figure 18
The tetra­chlorido­aurate/chloride substructure of compound 2, polymorph 2c, simplified view parallel to the a axis. Dashed lines indicate Au⋯Cl or Cl⋯Cl contacts. The atoms Au2, Cl5 and Cl7 are transformed by (−x, 1 − y, 1 − z) from the asymmetric unit.
[Figure 19]
Figure 19
The tetra­chlorido­aurate/chloride substructure of compound 2, polymorph 2c, viewed perpendicular to ([\overline{1}] 0 2). Dashed lines indicate Au⋯Cl or Cl⋯Cl contacts. In this view direction, the labelled free chlorides Cl22 (bridging Au4 and Au5) and Cl24 (bridging Au1 and Au3) exactly overlap in the centre of the diagram. Further out, towards the edges, they can be distinguished clearly. The atoms Au2, Cl5 and Cl7 are transformed by (−x, 1 − y, 1 − z) from the asymmetric unit.
[Figure 20]
Figure 20
A projection of the entire structure of compound 2, polymorph 2c, viewed parallel to the b axis. Dashed inter­actions indicate hydrogen bonds, Au⋯Cl and Cl⋯Cl contacts. The tetra­chlorido­aurate substructures run diagonally, top right to bottom left.

The packing of compound 3 also involves hydrogen bonds and a chloride/tetra­chlorido­aurate substructure. It is more convenient to begin with the latter, for which Au⋯Cl and Cl⋯Cl contacts are listed in Table 12[link]. The tetra­chlorido­aurate ions centred on Au1 and Au2 associate with the free chloride Cl9 to form a layer structure parallel to the ac plane (Fig. 21[link]), whereby Cl9 again features as part of a linear Au1⋯Cl9⋯Au1′ grouping, cross-linking the chains of tetra­chlorido­aurate ions running parallel to [102]. It is noteworthy that Cl8 participates in two Cl⋯Cl contacts, so that the angles Au1—Cl2⋯Cl(8,10′) are less linear. A projection parallel to the a axis (Fig. 22[link]) shows how the layers are linked via the third tetra­chloro­aurate and the di­chloro­iodate ions.

Table 12
Short Au⋯Cl and Cl⋯Cl contacts (Å, °) in the structure of 3

Contact Distance Operator Associated angles
Au1⋯Cl9 3.2909 (2)    
Au2⋯Cl3 3.6082 (9)   Au2⋯Cl3—Au1 171.71 (4)
Cl1⋯Cl1a 3.3258 (17) x, 1 − y, −z Au1—Cl1⋯Cl1a 160.62 (5)
Cl2⋯Cl8a 3.4819 (13) 1 − x, 1 − y, −z Au1—Cl2⋯Cl8a 144.06 (4), Cl2⋯Cl8a—Au3a 170.85 (4)
Cl2⋯Cl10 3.5880 (13)   Au1—Cl2⋯Cl10 133.20 (4), Cl2⋯Cl10—I1 168.62 (4)
Cl4⋯Cl7 3.4911 (13)   Au1—Cl4⋯Cl7 149.78 (4), Cl4⋯Cl7—Au3 143.72 (4)
Note: (a) see column 3 for operators.
[Figure 21]
Figure 21
The layer substructure of compound 3, which involves the two tetra­chlorido­aurate ions at Au1 and Au2 together with the free chloride Cl9, viewed parallel to the b axis in the region y ≃ 0.5. Dashed inter­actions indicate Cl⋯Cl and Au⋯Cl contacts. Contacts Au1⋯Cl6 (−1 + x, y, z) of 4.0588 (9) Å were considered too long for inclusion.
[Figure 22]
Figure 22
Packing of compound 3, projected parallel to the a axis, showing the linking of the layers of Fig. 19[link] by the third tetra­chlorido­aurate and the di­chloro­iodate ions. Dashed inter­actions indicate Cl⋯Cl and Au⋯Cl contacts.

In contrast to the other structures, compound 3 does not form an essentially independent cation/chloride substructure. Instead, the cations may be considered as inter­spersed in the spaces of the anionic substructure, forming hydrogen bonds to chlorine atoms of the anions (Fig. 23[link]). The hydrogen atoms at N21 are involved in a four-centre and a three-centre hydrogen bonding system, H03⋯(Cl3, Cl5, Cl6′) and H04⋯(Cl2, Cl10); several of the H⋯Cl distances (not only these) are quite long. The free chloride Cl9 accepts four hydrogen bonds and two coinage bonds.

[Figure 23]
Figure 23
Packing of compound 3, viewed perpendicular to the bc plane. Only the cations, the free chloride Cl9 and the tetra­chlorido­aurate at Au1 are included. Dashed lines indicate hydrogen bonds.

4. Database survey

This survey reports on the extent and types of inter­action between the anions of structures involving both halide and tetra­halogenidoaurate(III) ions; these can in principle involve any of the following contact types: Au—XX—Au; Au—XX; Au⋯X—Au and Au⋯X. The search employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2024.3.0 of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search for structures containing an NH+ function, an [AuX4] and an X ion was carried out; it was restricted to non-disordered and error-free structures. Our own previously published structures were excluded, whereafter 24 hits remained. The mere presence of both ion types in a structure is no guarantee of a substructure involving the anions; thus tris­(iso­propyl­ammonium) bis­(tetra­chlorido­aurate(III)) dichloride (refcode DIWYOA; Döring & Jones, 2018[Döring, C. & Jones, P. G. (2018). Z. Naturforsch. 73b, 43-74.]) involves no Cl⋯Cl or Au⋯Cl contacts. One would intuitively expect that the larger the cations, the less chance the anions have to approach each other closely enough to form substructures. Indeed, few of the 24 structures display an anionic framework in more than one dimension. Typical 1D-substructures, axially linked chains of the form ⋯Au⋯Cl⋯Au⋯Cl⋯ with Au⋯Cl = 3.670 or 3.640 Å and linear geometry at the bridging chloride, are seen in 1,2-bis­(4-pyridinium)ethane tetra­chlorido­aurate(III) chloride and the isotypic trans-1,2-bis­(4-pyridinium)ethene derivative (CITKIA & CITKOG, Bourne & Moitsheki, 2008[Bourne, S. A. & Moitsheki, L. J. (2008). Polyhedron 27, 263-267.]). 4,4′-bipyridinium tetra­chlorido­aurate(III) chloride, with Au⋯Cl 3.683 Å, is similar (NENNIE, Zhang et al., 2006[Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.]). In the following, we discuss some of these structures in more detail, giving additional Figures for those structures where the packing was not presented, or in some cases alternative views to those published. At the outset it should be stressed that classical hydrogen bonds, in which the free halide ions often participate, are ignored in this discussion.

In 4,4′-bis­(1H-pyrazol-2-ium) tetra­chlorido­aurate(III) chloride (GAZSEH; Domasevitch, 2012[Domasevitch, K. V. (2012). Acta Cryst. C68, m169-m172.]), the tetra­chlorido­aurate ions display the well-known `offset stacking' or `ladder' pattern, whereby one Au—Cl bond of each ion lies anti­parallel to an Au—Cl bond of each stack neighbour, thus enabling two Au⋯Cl coinage bonds to be formed between pairs of ions. This type of substructure has often been reported in neutral trihalogenidogold(III) species such as the four modifications of (tetra­hydro­thio­phene)AuCl3 (Upmann et al., 2017[Upmann, D., Näther, C., Jess, I. & Jones, P. G. (2017). Z. Anorg. Allg. Chem. 643, 311-316.]). The same pattern was reported for the tetra­bromido­aurate ions of p-phenyl­enedi­ammonium tetra­bromido­aurate(III) bromide (GEVHAR; Rajeswaran et al., 2007[Rajeswaran, M., Bringley, J. F. & Cleary, B. (2007). Acta Cryst. E63, m181-m183.]), but a closer inspection shows that the bromide ion also forms Br⋯Br contacts, leading to a three-dimensional packing, a section of which is shown in Fig. 24[link]. In bis­(ethane-1,2-di­ammonium) tetra­chlorido­aurate(III) trichloride (KIKYOU; Makotchenko et al., 2013[Makotchenko, E. V., Baidina, I. A. & Sheludyakova, L. A. (2013). J. Struct. Chem. 54, 206-212.]), layers of anions are formed that involve two axial inter­actions in an Au⋯Cl⋯Au grouping (distances of 3.190 and 3.230 Å) and a very short Cl⋯Cl contact of 3.045 Å between tetra­chlorido­aurate ions, leading to an approximately square network. In bis­(di­ethyl­enetri­ammonium) tris­[tetra­bromido­aurate(III)] tribromide (UYOLAX; Makotchenko et al., 2014[Makotchenko, E. V., Baidina, I. A. & Korol'kov, I. V. (2014). J. Struct. Chem. 55, 887-894.]), layers consisting solely of tetra­bromido­aurate ions (Fig. 25[link]) are formed, which contain pairs of offset-stacked ions involving Au1. These are linked in the third dimension by an inversion-symmetric Au—Br⋯Br⋯Br—Au grouping. The second free bromide is attached terminally to the layer, but these contacts are not shown here. The packing was discussed (and contact distances given) in the original paper, but we present it here in a slightly different way. For the structure of 6-amino-7H-purine-1,9-diium tetra­choridoaurate(III) chloride hydrate (ZUKTEH; Savchenkov et al., 2020[Savchenkov, A., Demina, L., Safonov, A., Grigoriev, M., Solovov, R. & Abkhalimov, E. (2020). Acta Cryst. C76, 139-147.]), the anion substructure was presented without contacts being explicitly drawn, and the contact distances were not complete. Fig. 26[link] shows linear chains of residues parallel to the a axis in the region z ≃ 0.75; further chains occupy the region z ≃ 0.25. The layer involves five short contacts: Au1⋯Cl5(−[{1\over 2}] + x, [{1\over 2}] − y, z) = 3.284, Au1⋯Cl10(1 − x, −y, [{1\over 2}] + z) =3.438, Au2⋯Cl1 = 3.507, Au2⋯Cl3([{1\over 2}] + x, [{1\over 2}] − y, z) = 3.315, and Cl7⋯Cl9([{1\over 2}] − x, [{1\over 2}] + y, −[{1\over 2}] + z) = 3.627 Å. The asymmetric unit forms an offset-stacked pair of tetra­chlorido­aurate ions. The layers are joined parallel to the c axis by the contact Cl2⋯Cl4(1 − x, −y, [{1\over 2}] + z) 3.635 Å. The free chloride ions Cl9 and Cl10 are terminally linked to the chains (i.e. they have no bridging function to other anions, although they play an important role in the hydrogen bonding). The compound bis­(cyclo­hexyl­ammonium) tetra­bromido­aurate(III) bromide is reported in a CSD Communication (ZUYLEM; Stender et al., 2016[Stender, M., Balch, A. L. & Olmstead, M. M. (2016). CSD Communication (refcode ZUYLEM) CCDC, Cambridge, England. https://doi.org/10.5517/cc1kj0kn.]). The tetra­bromido­aurate ions assemble via the contacts Au1⋯Br3(x, [{1\over 2}] + y, [{1\over 2}] − z) = 3.873 and Br1⋯Br1(1 − x, 1 − y, −z) = 3.431 Å to form layers parallel to the bc plane at x = 0, 0.5, 1, etc. (Fig. 27[link]); layers are linked in the third dimension by the free bromide Br4, with Br2⋯Br4([{1\over 2}] + x, [{1\over 2}] + y, z) = 3.787 Å.

[Figure 24]
Figure 24
A section of the three-dimensional packing of GEVHAR (Rajeswaran et al., 2007[Rajeswaran, M., Bringley, J. F. & Cleary, B. (2007). Acta Cryst. E63, m181-m183.]), drawn from the coordinates stored in the CSD. Dashed lines indicate Br⋯Br contacts. The space group is Pnma and the view direction is parallel to the b axis. Atoms Au1, Br1 and Br3 lie in the mirror planes at y = 0.25; Br4, the free bromide, lies in the mirror plane at y = 0.75. Further Br4⋯Br2 and Br4⋯Br3 contacts (3.588 and 3.818 Å respectively) connect the `ladder' substructures, extending the structure in the view direction.
[Figure 25]
Figure 25
A section of the three-dimensional packing of UYOLAX (Makotchenko et al., 2014[Makotchenko, E. V., Baidina, I. A. & Korol'kov, I. V. (2014). J. Struct. Chem. 55, 887-894.]), drawn from the coordinates stored in the CSD. Dashed lines indicate Au⋯Br and Br⋯Br contacts. The space group is P[\overline{1}] and the view direction is perpendicular to the ac plane. Atom Au1 lies on an inversion centre. Contacts Br3⋯Br⋯Br3, not shown here, involve a free bromide on an inversion centre, and link layers in the view direction.
[Figure 26]
Figure 26
A section of the three-dimensional packing of ZUKTEH (Savchenkov et al., 2020[Savchenkov, A., Demina, L., Safonov, A., Grigoriev, M., Solovov, R. & Abkhalimov, E. (2020). Acta Cryst. C76, 139-147.]), drawn from the coordinates stored in the CSD. Atoms Cl4 and Cl8 (both obscured) are not labelled. Dashed lines indicate Au⋯Cl and Cl⋯Cl contacts. The space group is Pna21 and the view direction is parallel to the c axis in the region z ≃ 0.75. Contacts Cl2⋯Cl4, not shown here, link chains in the view direction.
[Figure 27]
Figure 27
The layer structure of ZUYLEM (Stender et al., 2016[Stender, M., Balch, A. L. & Olmstead, M. M. (2016). CSD Communication (refcode ZUYLEM) CCDC, Cambridge, England. https://doi.org/10.5517/cc1kj0kn.]), drawn from the coordinates stored in the CSD. Dashed lines indicate Au⋯Br and Br⋯Br contacts. The space group is Cmce (formerly Cmca) and the view direction is parallel to the a axis in the region x ≃ 0.5. The atoms Au1, Br1 and Br3 lie in the mirror plane at x = 0.5. Br2 is the atom behind Au1. Contacts Br2⋯Br4 (the free bromide ion on a twofold axis 1/4, y, 1/4), not shown here, link layers in the view direction.

5. Synthesis and crystallization

More details are given in the PhD thesis of CD (Döring, 2016[Döring, C. (2016). Halogengold(I)-Aminkomplexe und ihre Oxidationsprodukte. Dissertation, Technical University of Braunschweig. Germany. ISBN: 978-3-8439-2639-3.]). Red needles of 1 were obtained from attempts to synthesize (4-Me-pip)AuBr3 by the oxidation of [(4-Me-pip)2Au][AuBr2] with bromine; the solvent system was di­chloro­methane/diisopropyl ether. Similar attempts to obtain (4-Me-pip)AuCl3 by the oxidation of [(4-Me-pip)2Au][AuCl2] with PhICl2 in various solvent systems led to (4-Me-pipH)[AuCl4] (Döring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930-936.]) and 2a (yellow plates) as a crystalline mixture from di­chloro­methane/diisopropyl ether; 2c (irregular orange blocks) from di­chloro­methane/diethyl ether; and 2b (yellow plates) from aceto­nitrile using a twofold excess of PhICl2 (by evaporation). Other solvent systems, in combination with stoichiometric or excess PhICl2, led either to 2c alone or to mixtures of these polymorphs. Finally, 3 (orange plates) was obtained by recrystallizing a sample of `(4-Me-pip)AuCl3' from a mixture of nitro­methane and pentane. Clearly a small amount of PhICl2 took part at some stage in a reaction other than simple chlorination of the gold(I) species. This was our only observation of this behaviour across a wide range of chlorination reactions.

6. Refinement

Details of the measurements and refinements are given in Table 13[link].

Table 13
Experimental details

  1 2a 2b 2c 3
Crystal data
Chemical formula (C6H14N)2[AuBr4]Br (C6H14N)2[AuCl4]Cl (C6H14N)2[AuCl4]Cl (C6H14N)2[AuCl4]Cl (C6H14N)6[AuCl4]4(Cl2I)Cl
Mr 796.88 574.58 574.58 574.58 2189.40
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/n Monoclinic, P2/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 100 100 100
a, b, c (Å) 12.6882 (8), 18.8530 (12), 9.3914 (6) 11.9196 (4), 8.5545 (3), 19.9052 (7) 18.7771 (8), 10.6891 (4), 20.5603 (9) 14.4553 (6), 15.1302 (5), 24.3885 (6) 9.5362 (5), 13.4772 (6), 13.7179 (7)
α, β, γ (°) 90, 102.806 (6), 90 90, 102.955 (4), 90 90, 99.284 (5), 90 90.797 (3), 98.137 (3), 106.407 (4) 98.422 (4), 108.961 (5), 96.954 (4)
V3) 2190.6 (2) 1977.99 (12) 4072.6 (3) 5057.2 (3) 1622.36 (15)
Z 4 4 8 10 1
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 15.83 8.11 7.87 7.93 10.31
Crystal size (mm) 0.3 × 0.04 × 0.04 0.20 × 0.18 × 0.02 0.15 × 0.10 × 0.03 0.2 × 0.1 × 0.08 0.1 × 0.1 × 0.04
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2013[Rigaku OD (2013). CrysAlis PRO. Rigaku Oxford Diffraction (formerly Oxford Diffraction and later Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2013[Rigaku OD (2013). CrysAlis PRO. Rigaku Oxford Diffraction (formerly Oxford Diffraction and later Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2013[Rigaku OD (2013). CrysAlis PRO. Rigaku Oxford Diffraction (formerly Oxford Diffraction and later Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2013[Rigaku OD (2013). CrysAlis PRO. Rigaku Oxford Diffraction (formerly Oxford Diffraction and later Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2013[Rigaku OD (2013). CrysAlis PRO. Rigaku Oxford Diffraction (formerly Oxford Diffraction and later Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.471, 1.000 0.611, 1.000 0.628, 1.000 0.683, 1.000 0.667, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 30092, 3172, 2592 109437, 5771, 4730 146147, 11802, 8670 316587, 29180, 22450 97738, 9693, 8260
Rint 0.078 0.093 0.115 0.098 0.072
θ values (°) θmax = 30.0, θmin = 2.2 θmax = 30.0, θmin = 2.2 θmax = 30.0, θmin = 2.2 θmax = 30.0, θmin = 2.3 θmax = 30.9, θmin = 2.3
(sin θ/λ)max−1) 0.704 0.704 0.704 0.704 0.722
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.053, 1.06 0.027, 0.051, 1.05 0.039, 0.065, 1.04 0.041, 0.084, 1.06 0.029, 0.046, 1.05
No. of reflections 3172 5771 11802 29180 9693
No. of parameters 102 196 385 967 331
No. of restraints 1 6 55 64 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.27, −0.88 1.36, −1.19 1.47, −1.52 2.67, −1.82 1.16, −0.96
Computer programs: CrysAlis PRO (Rigaku OD, 2013[Rigaku OD (2013). CrysAlis PRO. Rigaku Oxford Diffraction (formerly Oxford Diffraction and later Agilent Technologies), Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Bruker, 1998[Bruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structures were refined anisotropically on F2. Most hydrogen atoms of the NH2 groups were refined freely but with N—H distances restrained to be approximately equal (command `SADI'; for exceptions, see below). Methyl­ene and methine hydrogens were included at calculated positions and refined using a riding model with C—H = 0.99 or 1.00 Å, respectively. Methyl groups were included as idealized rigid groups with C—H = 0.98 Å and H—C—H = 109.5°, and were allowed to rotate but not tip (command `AFIX 137'). U values of the hydrogen atoms were fixed at 1.5 × Ueq of the parent carbon atoms for methyl groups and 1.2 × Ueq of the parent carbon atoms for other hydrogens. A small number of badly fitting reflections were omitted (2c, eight reflections with deviations > 7σ; 3, three reflections > 7σ).

Special features and exceptions: For 2c and 3, H⋯H distances across the NH2 groups were also restrained with SADI. For 2c, the hydrogen atoms at N6, N7 and N8 were located in difference maps but could not be refined freely, they were therefore placed at calculated positions (N—H = 0.91 Å) and refined using a riding model. For 2b, the cation at N4 is disordered over two positions with occupancies 0.538 (7) and 0.462 (7) Å. The two positions were refined isotropically, with hydrogen atoms of the NH2 groups included using a riding model (with N—H = 0.91 Å). Appropriate restraints were employed to improve refinement stability, but the dimensions of disordered groups should always be inter­preted with caution.

Supporting information


Computing details top

(1) top
Crystal data top
2(C6H14N)·AuBr4·BrF(000) = 1472
Mr = 796.88Dx = 2.416 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.6882 (8) ÅCell parameters from 4204 reflections
b = 18.8530 (12) Åθ = 2.7–29.3°
c = 9.3914 (6) ŵ = 15.83 mm1
β = 102.806 (6)°T = 100 K
V = 2190.6 (2) Å3Needle, red
Z = 40.3 × 0.04 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
3172 independent reflections
Radiation source: Enhance (Mo) X-ray Source2592 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.078
ω scanθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2013)
h = 1717
Tmin = 0.471, Tmax = 1.000k = 2626
30092 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0128P)2 + 4.1505P]
where P = (Fo2 + 2Fc2)/3
3172 reflections(Δ/σ)max = 0.001
102 parametersΔρmax = 1.27 e Å3
1 restraintΔρmin = 0.88 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.7500000.7500000.5000000.01472 (6)
Br10.64570 (3)0.64250 (2)0.43001 (5)0.02164 (10)
Br20.89211 (3)0.70305 (2)0.39160 (5)0.02257 (11)
Br30.5000000.48791 (3)0.2500000.01525 (12)
N110.6326 (3)0.4154 (2)0.5576 (4)0.0190 (8)
H010.589 (4)0.418 (3)0.628 (5)0.046 (16)*
H020.592 (4)0.441 (3)0.477 (4)0.042 (15)*
C120.6470 (4)0.3404 (2)0.5168 (5)0.0238 (10)
H12A0.5755640.3183250.4785570.029*
H12B0.6841890.3134330.6039130.029*
C130.7133 (4)0.3384 (2)0.4015 (5)0.0260 (11)
H13A0.6729140.3624510.3123480.031*
H13B0.7243530.2883750.3761370.031*
C140.8225 (4)0.3739 (3)0.4522 (5)0.0253 (11)
H140.8643050.3473370.5385530.030*
C150.8057 (4)0.4499 (3)0.4997 (5)0.0247 (10)
H15A0.8769430.4717260.5405130.030*
H15B0.7700850.4779100.4132540.030*
C160.7371 (4)0.4529 (2)0.6135 (5)0.0225 (10)
H16A0.7763540.4301930.7050260.027*
H16B0.7230220.5029500.6352200.027*
C170.8863 (4)0.3725 (3)0.3325 (5)0.0406 (14)
H17A0.8449290.3967120.2454740.061*
H17B0.8993080.3232360.3081130.061*
H17C0.9555810.3967630.3668540.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01436 (11)0.01629 (12)0.01283 (11)0.00014 (9)0.00160 (8)0.00163 (9)
Br10.0225 (2)0.0208 (2)0.0227 (2)0.00606 (18)0.00738 (18)0.00630 (18)
Br20.0175 (2)0.0269 (3)0.0239 (2)0.00131 (18)0.00587 (18)0.00617 (19)
Br30.0161 (3)0.0163 (3)0.0140 (3)0.0000.0048 (2)0.000
N110.020 (2)0.021 (2)0.0169 (19)0.0065 (16)0.0038 (16)0.0010 (16)
C120.021 (2)0.018 (2)0.030 (3)0.0035 (18)0.003 (2)0.004 (2)
C130.033 (3)0.027 (3)0.017 (2)0.018 (2)0.005 (2)0.001 (2)
C140.023 (2)0.041 (3)0.014 (2)0.015 (2)0.0089 (19)0.007 (2)
C150.022 (2)0.033 (3)0.019 (2)0.002 (2)0.0044 (19)0.002 (2)
C160.027 (3)0.022 (2)0.018 (2)0.0019 (19)0.0054 (19)0.0033 (19)
C170.032 (3)0.069 (4)0.025 (3)0.019 (3)0.015 (2)0.007 (3)
Geometric parameters (Å, º) top
Au1—Br2i2.4259 (4)C13—H13B0.9900
Au1—Br22.4259 (4)C14—C171.524 (6)
Au1—Br1i2.4301 (4)C14—C151.529 (6)
Au1—Br12.4301 (4)C14—H141.0000
N11—C121.486 (5)C15—C161.522 (5)
N11—C161.491 (6)C15—H15A0.9900
N11—H010.95 (3)C15—H15B0.9900
N11—H020.95 (3)C16—H16A0.9900
C12—C131.512 (6)C16—H16B0.9900
C12—H12A0.9900C17—H17A0.9800
C12—H12B0.9900C17—H17B0.9800
C13—C141.517 (6)C17—H17C0.9800
C13—H13A0.9900
Br2i—Au1—Br2180.0C13—C14—C17111.0 (4)
Br2i—Au1—Br1i89.602 (15)C13—C14—C15109.2 (4)
Br2—Au1—Br1i90.400 (15)C17—C14—C15111.3 (4)
Br2i—Au1—Br190.399 (15)C13—C14—H14108.4
Br2—Au1—Br189.599 (15)C17—C14—H14108.4
Br1i—Au1—Br1180.0C15—C14—H14108.4
C12—N11—C16113.0 (3)C16—C15—C14112.2 (4)
C12—N11—H01110 (3)C16—C15—H15A109.2
C16—N11—H01110 (3)C14—C15—H15A109.2
C12—N11—H02111 (3)C16—C15—H15B109.2
C16—N11—H02109 (3)C14—C15—H15B109.2
H01—N11—H02104 (4)H15A—C15—H15B107.9
N11—C12—C13109.2 (4)N11—C16—C15109.7 (3)
N11—C12—H12A109.8N11—C16—H16A109.7
C13—C12—H12A109.8C15—C16—H16A109.7
N11—C12—H12B109.8N11—C16—H16B109.7
C13—C12—H12B109.8C15—C16—H16B109.7
H12A—C12—H12B108.3H16A—C16—H16B108.2
C12—C13—C14112.2 (4)C14—C17—H17A109.5
C12—C13—H13A109.2C14—C17—H17B109.5
C14—C13—H13A109.2H17A—C17—H17B109.5
C12—C13—H13B109.2C14—C17—H17C109.5
C14—C13—H13B109.2H17A—C17—H17C109.5
H13A—C13—H13B107.9H17B—C17—H17C109.5
C16—N11—C12—C1358.3 (5)C13—C14—C15—C1654.1 (5)
N11—C12—C13—C1457.5 (5)C17—C14—C15—C16177.0 (4)
C12—C13—C14—C17178.7 (4)C12—N11—C16—C1557.1 (5)
C12—C13—C14—C1555.6 (5)C14—C15—C16—N1154.7 (5)
Symmetry code: (i) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H02···Br30.95 (3)2.36 (3)3.300 (4)169 (4)
N11—H01···Br3ii0.95 (3)2.52 (4)3.281 (4)137 (4)
Symmetry code: (ii) x+1, y+1, z+1.
Bis(4-methylpiperidinium) tetrabromidoaurate(III) bromide (2a) top
Crystal data top
(C6H14N)2[AuCl4]ClF(000) = 1112
Mr = 574.58Dx = 1.929 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.9196 (4) ÅCell parameters from 14350 reflections
b = 8.5545 (3) Åθ = 2.6–29.0°
c = 19.9052 (7) ŵ = 8.11 mm1
β = 102.955 (4)°T = 100 K
V = 1977.99 (12) Å3Plate, yellow
Z = 40.20 × 0.18 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5771 independent reflections
Radiation source: Enhance (Mo) X-ray Source4730 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.093
ω scanθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2013)
h = 1616
Tmin = 0.611, Tmax = 1.000k = 1112
109437 measured reflectionsl = 2728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0188P)2 + 0.4543P]
where P = (Fo2 + 2Fc2)/3
5771 reflections(Δ/σ)max = 0.002
196 parametersΔρmax = 1.36 e Å3
6 restraintsΔρmin = 1.19 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.12963 (2)0.57480 (2)0.30094 (2)0.01413 (4)
Cl10.00345 (7)0.73055 (10)0.33360 (4)0.02595 (19)
Cl20.02152 (7)0.57500 (10)0.19040 (4)0.02372 (18)
Cl30.25817 (7)0.40513 (9)0.27059 (4)0.02354 (18)
Cl40.24188 (7)0.58758 (9)0.40983 (4)0.02000 (17)
Cl50.51690 (7)0.73443 (9)0.50633 (4)0.02119 (17)
N110.6828 (3)1.0179 (3)0.52815 (17)0.0249 (7)
H010.635 (3)0.937 (3)0.520 (2)0.040 (6)*
H020.636 (3)1.096 (3)0.531 (2)0.040 (6)*
C120.7612 (3)0.9856 (4)0.59581 (18)0.0252 (8)
H12A0.7157450.9695300.6312180.030*
H12B0.8130851.0758550.6099230.030*
C130.8313 (3)0.8411 (4)0.59031 (17)0.0222 (8)
H13A0.7791650.7499550.5796640.027*
H13B0.8849690.8215180.6352210.027*
C140.8999 (3)0.8573 (4)0.53461 (18)0.0218 (7)
H140.9551070.9460810.5473160.026*
C150.8171 (3)0.8967 (4)0.46645 (17)0.0234 (8)
H15A0.8617080.9149510.4308110.028*
H15B0.7654870.8064490.4516070.028*
C160.7453 (3)1.0391 (4)0.47174 (19)0.0265 (8)
H16A0.7955941.1323480.4812860.032*
H16B0.6892711.0560200.4274670.032*
C170.9689 (3)0.7088 (4)0.5285 (2)0.0383 (10)
H17A0.9159640.6205020.5157750.057*
H17B1.0217960.6871460.5727490.057*
H17C1.0129570.7238010.4928920.057*
N210.5144 (3)0.5186 (3)0.37818 (15)0.0209 (6)
H030.478 (3)0.436 (3)0.3564 (19)0.040 (6)*
H040.488 (3)0.539 (4)0.4156 (15)0.040 (6)*
C220.6383 (3)0.4730 (4)0.39781 (19)0.0249 (8)
H22A0.6464420.3747220.4247040.030*
H22B0.6825880.5554560.4272490.030*
C230.6862 (3)0.4506 (4)0.3344 (2)0.0286 (8)
H23A0.6485220.3588720.3084430.034*
H23B0.7695930.4279750.3488590.034*
C240.6685 (3)0.5933 (4)0.28683 (18)0.0251 (8)
H240.7132180.6829510.3117470.030*
C250.5407 (3)0.6361 (4)0.26959 (17)0.0239 (8)
H25A0.5294060.7324630.2413500.029*
H25B0.4964730.5511340.2418380.029*
C260.4947 (3)0.6617 (4)0.33334 (18)0.0234 (8)
H26A0.5339840.7524020.3593410.028*
H26B0.4113260.6849070.3200020.028*
C270.7111 (4)0.5607 (5)0.2217 (2)0.0366 (10)
H27A0.6716250.4684780.1984150.055*
H27B0.7942610.5414980.2337750.055*
H27C0.6948750.6511690.1907960.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01380 (6)0.01309 (6)0.01494 (6)0.00028 (5)0.00206 (4)0.00053 (5)
Cl10.0203 (4)0.0283 (5)0.0282 (5)0.0069 (3)0.0032 (3)0.0063 (4)
Cl20.0197 (4)0.0313 (5)0.0175 (4)0.0013 (4)0.0014 (3)0.0023 (4)
Cl30.0216 (4)0.0251 (4)0.0231 (4)0.0062 (3)0.0033 (3)0.0067 (3)
Cl40.0217 (4)0.0194 (4)0.0168 (4)0.0027 (3)0.0002 (3)0.0010 (3)
Cl50.0214 (4)0.0167 (4)0.0232 (4)0.0015 (3)0.0003 (3)0.0011 (3)
N110.0186 (15)0.0162 (15)0.0405 (19)0.0002 (12)0.0081 (14)0.0022 (14)
C120.031 (2)0.0240 (19)0.0215 (18)0.0058 (16)0.0079 (15)0.0050 (15)
C130.0225 (18)0.0207 (18)0.0210 (18)0.0025 (14)0.0002 (14)0.0023 (14)
C140.0196 (17)0.0211 (18)0.0248 (19)0.0018 (14)0.0052 (14)0.0011 (14)
C150.0224 (17)0.0277 (19)0.0212 (18)0.0040 (14)0.0075 (14)0.0023 (14)
C160.0248 (18)0.0255 (19)0.0263 (19)0.0026 (15)0.0005 (15)0.0079 (15)
C170.027 (2)0.032 (2)0.059 (3)0.0072 (17)0.018 (2)0.008 (2)
N210.0192 (15)0.0213 (15)0.0218 (16)0.0022 (12)0.0036 (12)0.0054 (13)
C220.0206 (18)0.0210 (18)0.030 (2)0.0042 (14)0.0018 (15)0.0052 (15)
C230.0227 (18)0.023 (2)0.038 (2)0.0017 (15)0.0033 (16)0.0015 (16)
C240.0247 (18)0.0242 (19)0.0277 (19)0.0079 (15)0.0089 (15)0.0040 (15)
C250.0273 (19)0.0241 (18)0.0191 (17)0.0017 (15)0.0023 (15)0.0018 (14)
C260.0215 (17)0.0194 (18)0.0278 (19)0.0061 (14)0.0024 (15)0.0055 (15)
C270.038 (2)0.037 (2)0.040 (2)0.0165 (19)0.0203 (19)0.0084 (19)
Geometric parameters (Å, º) top
Au1—Cl12.2752 (8)C17—H17B0.9800
Au1—Cl42.2802 (7)C17—H17C0.9800
Au1—Cl22.2872 (8)N21—C221.493 (4)
Au1—Cl32.2879 (8)N21—C261.502 (4)
N11—C121.483 (4)N21—H030.89 (2)
N11—C161.491 (5)N21—H040.89 (2)
N11—H010.89 (2)C22—C231.509 (5)
N11—H020.88 (2)C22—H22A0.9900
C12—C131.510 (5)C22—H22B0.9900
C12—H12A0.9900C23—C241.530 (5)
C12—H12B0.9900C23—H23A0.9900
C13—C141.524 (5)C23—H23B0.9900
C13—H13A0.9900C24—C271.521 (5)
C13—H13B0.9900C24—C251.530 (5)
C14—C151.526 (4)C24—H241.0000
C14—C171.533 (5)C25—C261.507 (5)
C14—H141.0000C25—H25A0.9900
C15—C161.505 (5)C25—H25B0.9900
C15—H15A0.9900C26—H26A0.9900
C15—H15B0.9900C26—H26B0.9900
C16—H16A0.9900C27—H27A0.9800
C16—H16B0.9900C27—H27B0.9800
C17—H17A0.9800C27—H27C0.9800
Cl1—Au1—Cl489.91 (3)C14—C17—H17C109.5
Cl1—Au1—Cl289.77 (3)H17A—C17—H17C109.5
Cl4—Au1—Cl2176.77 (3)H17B—C17—H17C109.5
Cl1—Au1—Cl3176.43 (3)C22—N21—C26112.4 (3)
Cl4—Au1—Cl389.80 (3)C22—N21—H03105 (3)
Cl2—Au1—Cl390.72 (3)C26—N21—H03111 (3)
C12—N11—C16112.8 (3)C22—N21—H04110 (3)
C12—N11—H01105 (3)C26—N21—H04108 (3)
C16—N11—H01112 (3)H03—N21—H04110 (4)
C12—N11—H02111 (3)N21—C22—C23110.6 (3)
C16—N11—H02113 (3)N21—C22—H22A109.5
H01—N11—H02102 (4)C23—C22—H22A109.5
N11—C12—C13109.5 (3)N21—C22—H22B109.5
N11—C12—H12A109.8C23—C22—H22B109.5
C13—C12—H12A109.8H22A—C22—H22B108.1
N11—C12—H12B109.8C22—C23—C24113.0 (3)
C13—C12—H12B109.8C22—C23—H23A109.0
H12A—C12—H12B108.2C24—C23—H23A109.0
C12—C13—C14112.0 (3)C22—C23—H23B109.0
C12—C13—H13A109.2C24—C23—H23B109.0
C14—C13—H13A109.2H23A—C23—H23B107.8
C12—C13—H13B109.2C27—C24—C25111.0 (3)
C14—C13—H13B109.2C27—C24—C23110.8 (3)
H13A—C13—H13B107.9C25—C24—C23108.8 (3)
C13—C14—C15108.8 (3)C27—C24—H24108.7
C13—C14—C17111.6 (3)C25—C24—H24108.7
C15—C14—C17111.3 (3)C23—C24—H24108.7
C13—C14—H14108.4C26—C25—C24112.2 (3)
C15—C14—H14108.4C26—C25—H25A109.2
C17—C14—H14108.4C24—C25—H25A109.2
C16—C15—C14112.4 (3)C26—C25—H25B109.2
C16—C15—H15A109.1C24—C25—H25B109.2
C14—C15—H15A109.1H25A—C25—H25B107.9
C16—C15—H15B109.1N21—C26—C25110.1 (3)
C14—C15—H15B109.1N21—C26—H26A109.6
H15A—C15—H15B107.9C25—C26—H26A109.6
N11—C16—C15110.0 (3)N21—C26—H26B109.6
N11—C16—H16A109.7C25—C26—H26B109.6
C15—C16—H16A109.7H26A—C26—H26B108.1
N11—C16—H16B109.7C24—C27—H27A109.5
C15—C16—H16B109.7C24—C27—H27B109.5
H16A—C16—H16B108.2H27A—C27—H27B109.5
C14—C17—H17A109.5C24—C27—H27C109.5
C14—C17—H17B109.5H27A—C27—H27C109.5
H17A—C17—H17B109.5H27B—C27—H27C109.5
C16—N11—C12—C1357.9 (4)C26—N21—C22—C2355.6 (4)
N11—C12—C13—C1457.4 (4)N21—C22—C23—C2454.7 (4)
C12—C13—C14—C1555.7 (4)C22—C23—C24—C27176.3 (3)
C12—C13—C14—C17178.9 (3)C22—C23—C24—C2554.0 (4)
C13—C14—C15—C1654.7 (4)C27—C24—C25—C26177.4 (3)
C17—C14—C15—C16178.1 (3)C23—C24—C25—C2655.1 (4)
C12—N11—C16—C1557.0 (4)C22—N21—C26—C2556.9 (4)
C14—C15—C16—N1155.4 (4)C24—C25—C26—N2157.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H01···Cl50.89 (2)2.21 (2)3.098 (3)177 (4)
N11—H02···Cl5i0.88 (2)2.32 (3)3.145 (3)157 (4)
N21—H03···Cl30.89 (2)2.80 (3)3.453 (3)131 (3)
N21—H04···Cl40.89 (2)2.94 (4)3.494 (3)122 (3)
N21—H04···Cl50.89 (2)2.43 (3)3.144 (3)138 (3)
N21—H04···Cl5ii0.89 (2)2.81 (4)3.239 (3)111 (3)
C12—H12A···Cl2iii0.992.853.793 (4)160
C12—H12A···Cl3iii0.992.913.610 (4)128
C12—H12B···Cl1i0.992.833.794 (4)164
C12—H12B···Cl4i0.992.963.653 (4)128
C13—H13A···Cl4ii0.992.913.769 (3)146
C22—H22A···Cl5ii0.992.783.435 (4)124
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y+3/2, z+1/2.
Bis(4-methylpiperidinium) tetrachloridoaurate(III) chloride (2b) top
Crystal data top
(C6H14N)2[AuCl4]ClF(000) = 2224
Mr = 574.58Dx = 1.874 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 18.7771 (8) ÅCell parameters from 12440 reflections
b = 10.6891 (4) Åθ = 2.7–27.2°
c = 20.5603 (9) ŵ = 7.87 mm1
β = 99.284 (5)°T = 100 K
V = 4072.6 (3) Å3Plate, yellow
Z = 80.15 × 0.10 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
11802 independent reflections
Radiation source: Enhance (Mo) X-ray Source8670 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.115
ω scanθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2013)
h = 2626
Tmin = 0.628, Tmax = 1.000k = 1415
146147 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.015P)2 + 4.8198P]
where P = (Fo2 + 2Fc2)/3
11802 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 1.47 e Å3
55 restraintsΔρmin = 1.52 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.24529 (2)0.04755 (2)0.13021 (2)0.01701 (5)
Au20.25780 (2)0.49624 (2)0.38559 (2)0.01591 (4)
Cl10.12472 (6)0.02656 (11)0.13312 (6)0.0263 (3)
Cl20.26764 (6)0.13211 (11)0.18882 (6)0.0252 (3)
Cl30.36612 (6)0.07102 (11)0.12864 (6)0.0244 (3)
Cl40.22195 (6)0.22470 (11)0.06773 (6)0.0250 (3)
Cl50.13645 (6)0.49207 (12)0.38710 (6)0.0293 (3)
Cl60.24182 (6)0.65284 (11)0.30969 (6)0.0234 (3)
Cl70.37886 (6)0.50207 (11)0.38407 (6)0.0260 (3)
Cl80.27572 (6)0.34294 (11)0.46385 (6)0.0243 (3)
Cl90.25246 (6)0.25136 (11)0.25747 (6)0.0254 (3)
Cl100.0000000.20725 (15)0.2500000.0235 (4)
Cl110.5000000.31169 (15)0.2500000.0238 (4)
N110.3539 (2)0.3958 (4)0.1605 (2)0.0219 (9)
H010.395 (2)0.361 (6)0.183 (3)0.08 (2)*
H020.3172 (19)0.339 (4)0.160 (2)0.029 (14)*
C120.3367 (3)0.5092 (5)0.1970 (3)0.0295 (12)
H12A0.3336500.4866780.2431350.035*
H12B0.2892460.5429950.1764120.035*
C130.3945 (3)0.6082 (4)0.1958 (2)0.0266 (11)
H13A0.4407500.5772550.2205650.032*
H13B0.3809060.6846370.2181020.032*
C140.4044 (2)0.6404 (4)0.1256 (3)0.0241 (11)
H140.3581750.6767060.1022110.029*
C150.4204 (2)0.5213 (4)0.0899 (2)0.0238 (11)
H15A0.4240700.5416470.0436190.029*
H15B0.4673820.4869060.1110860.029*
C160.3620 (3)0.4232 (5)0.0912 (2)0.0250 (11)
H16A0.3157000.4540770.0665630.030*
H16B0.3752040.3456830.0695330.030*
C170.4636 (3)0.7368 (5)0.1254 (3)0.0398 (15)
H17A0.5087000.7048210.1505590.060*
H17B0.4500340.8144680.1455420.060*
H17C0.4703310.7532920.0798870.060*
N210.4060 (2)0.1773 (4)0.3427 (2)0.0314 (11)
H030.3593 (14)0.205 (4)0.336 (2)0.027 (14)*
H040.431 (3)0.227 (4)0.318 (2)0.051 (19)*
C220.4314 (3)0.1771 (5)0.4146 (2)0.0271 (12)
H22A0.4224420.2601370.4330060.033*
H22B0.4840360.1612130.4233670.033*
C230.3926 (3)0.0771 (4)0.4479 (2)0.0254 (11)
H23A0.3406850.0983690.4431020.030*
H23B0.4122650.0755040.4956010.030*
C240.4008 (2)0.0522 (4)0.4187 (2)0.0202 (10)
H240.4532430.0743250.4267650.024*
C250.3759 (3)0.0474 (5)0.3446 (2)0.0260 (11)
H25A0.3847210.1296380.3252530.031*
H25B0.3233610.0310680.3356360.031*
C260.4148 (3)0.0533 (5)0.3119 (3)0.0341 (13)
H26A0.4667150.0324530.3164990.041*
H26B0.3949320.0569670.2643290.041*
C270.3602 (3)0.1520 (5)0.4513 (2)0.0332 (13)
H27A0.3085020.1330340.4433230.050*
H27B0.3777690.1528290.4988620.050*
H27C0.3684280.2341120.4326640.050*
N310.1434 (2)0.0681 (4)0.3099 (2)0.0322 (11)
H050.0981 (16)0.092 (5)0.290 (2)0.045 (17)*
H060.178 (2)0.102 (5)0.289 (3)0.06 (2)*
C320.1549 (3)0.1151 (5)0.3785 (3)0.0385 (15)
H32A0.1481150.2069420.3782700.046*
H32B0.2050930.0969410.3995330.046*
C330.1030 (3)0.0546 (5)0.4178 (3)0.0313 (12)
H33A0.0533860.0829720.4004780.038*
H33B0.1147300.0820910.4642980.038*
C340.1056 (2)0.0880 (4)0.4152 (2)0.0221 (11)
H340.1550930.1151930.4357980.027*
C350.0935 (3)0.1296 (4)0.3437 (2)0.0231 (11)
H35A0.0978930.2218190.3418240.028*
H35B0.0439560.1067110.3229000.028*
C360.1470 (3)0.0705 (5)0.3057 (3)0.0334 (13)
H36A0.1963580.0990950.3238920.040*
H36B0.1362690.0967790.2589590.040*
C370.0521 (3)0.1471 (5)0.4535 (2)0.0316 (13)
H37A0.0031090.1216080.4341790.047*
H37B0.0624080.1195360.4994910.047*
H37C0.0561350.2383420.4515410.047*
N410.0992 (3)0.3477 (6)0.1633 (3)0.0130 (16)*0.538 (7)
H41A0.0831710.2911190.1907010.016*0.538 (7)
H41B0.1414190.3183290.1528940.016*0.538 (7)
C420.0459 (5)0.3571 (8)0.1026 (4)0.024 (2)*0.538 (7)
H42A0.0020650.3761600.1143110.029*0.538 (7)
H42B0.0424740.2754610.0795620.029*0.538 (7)
C430.0652 (6)0.4569 (8)0.0566 (5)0.036 (3)*0.538 (7)
H43A0.0252470.4654990.0190280.043*0.538 (7)
H43B0.1087740.4304560.0388080.043*0.538 (7)
C440.0793 (6)0.5828 (9)0.0900 (4)0.016 (3)*0.538 (7)
H440.0335370.6136150.1034150.020*0.538 (7)
C450.1355 (5)0.5663 (9)0.1513 (5)0.039 (3)*0.538 (7)
H45A0.1431300.6473000.1747210.047*0.538 (7)
H45B0.1819080.5411640.1380900.047*0.538 (7)
C460.1132 (6)0.4671 (9)0.1986 (5)0.040 (3)*0.538 (7)
H46A0.1521880.4561490.2367380.048*0.538 (7)
H46B0.0691820.4949240.2152440.048*0.538 (7)
C470.1044 (6)0.6775 (9)0.0434 (5)0.022 (2)*0.538 (7)
H47A0.1507170.6506960.0319620.034*0.538 (7)
H47B0.1101100.7595200.0649410.034*0.538 (7)
H47C0.0684960.6834850.0032310.034*0.538 (7)
N41'0.0955 (5)0.4055 (9)0.1972 (5)0.035 (3)*0.462 (7)
H41C0.0732850.3503020.2210410.042*0.462 (7)
H41D0.1438550.3998440.2112170.042*0.462 (7)
C42'0.0795 (7)0.3707 (10)0.1265 (5)0.036 (3)*0.462 (7)
H42C0.0265790.3659260.1125650.043*0.462 (7)
H42D0.1000020.2870570.1203140.043*0.462 (7)
C43'0.1110 (6)0.4657 (8)0.0837 (5)0.027 (3)*0.462 (7)
H43C0.1642830.4593460.0923990.032*0.462 (7)
H43D0.0946810.4448150.0367540.032*0.462 (7)
C44'0.0894 (7)0.5987 (9)0.0959 (5)0.016 (3)*0.462 (7)
H44'0.0361170.6057940.0811880.019*0.462 (7)
C45'0.1045 (5)0.6279 (9)0.1687 (4)0.021 (2)*0.462 (7)
H45C0.0851750.7119570.1761780.026*0.462 (7)
H45D0.1573110.6299400.1834540.026*0.462 (7)
C46'0.0713 (6)0.5332 (9)0.2096 (5)0.032 (3)*0.462 (7)
H46C0.0852050.5534990.2569620.038*0.462 (7)
H46D0.0180220.5376700.1986960.038*0.462 (7)
C47'0.1256 (6)0.6933 (10)0.0575 (5)0.020 (3)*0.462 (7)
H47D0.1778090.6921770.0730010.030*0.462 (7)
H47E0.1066300.7769040.0640980.030*0.462 (7)
H47F0.1160000.6720820.0105480.030*0.462 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01700 (8)0.01640 (9)0.01697 (9)0.00062 (7)0.00075 (6)0.00041 (7)
Au20.01534 (8)0.01526 (9)0.01698 (9)0.00069 (7)0.00214 (6)0.00016 (7)
Cl10.0164 (5)0.0262 (7)0.0345 (7)0.0040 (5)0.0016 (5)0.0062 (5)
Cl20.0267 (6)0.0203 (6)0.0286 (7)0.0041 (5)0.0047 (5)0.0049 (5)
Cl30.0178 (5)0.0336 (7)0.0222 (6)0.0026 (5)0.0044 (5)0.0038 (5)
Cl40.0209 (6)0.0234 (6)0.0284 (7)0.0046 (5)0.0025 (5)0.0085 (5)
Cl50.0165 (5)0.0401 (8)0.0324 (7)0.0047 (5)0.0069 (5)0.0091 (6)
Cl60.0258 (6)0.0199 (6)0.0248 (7)0.0040 (5)0.0049 (5)0.0049 (5)
Cl70.0159 (5)0.0233 (6)0.0385 (7)0.0003 (5)0.0032 (5)0.0059 (6)
Cl80.0222 (6)0.0255 (6)0.0241 (7)0.0009 (5)0.0003 (5)0.0078 (5)
Cl90.0253 (6)0.0281 (7)0.0239 (7)0.0107 (5)0.0077 (5)0.0019 (5)
Cl100.0184 (8)0.0246 (9)0.0274 (10)0.0000.0038 (7)0.000
Cl110.0262 (9)0.0193 (9)0.0258 (10)0.0000.0040 (7)0.000
N110.022 (2)0.016 (2)0.029 (3)0.0062 (17)0.0081 (19)0.0012 (18)
C120.039 (3)0.026 (3)0.028 (3)0.000 (2)0.017 (2)0.008 (2)
C130.030 (3)0.018 (3)0.032 (3)0.004 (2)0.005 (2)0.003 (2)
C140.017 (2)0.019 (3)0.035 (3)0.0001 (19)0.003 (2)0.004 (2)
C150.023 (2)0.029 (3)0.022 (3)0.002 (2)0.008 (2)0.008 (2)
C160.029 (3)0.026 (3)0.020 (3)0.003 (2)0.005 (2)0.004 (2)
C170.032 (3)0.024 (3)0.063 (4)0.007 (2)0.008 (3)0.012 (3)
N210.026 (2)0.033 (3)0.034 (3)0.003 (2)0.001 (2)0.017 (2)
C220.024 (3)0.023 (3)0.034 (3)0.002 (2)0.001 (2)0.003 (2)
C230.029 (3)0.020 (3)0.028 (3)0.003 (2)0.005 (2)0.003 (2)
C240.025 (2)0.019 (2)0.017 (2)0.003 (2)0.0037 (19)0.001 (2)
C250.033 (3)0.026 (3)0.019 (3)0.005 (2)0.005 (2)0.004 (2)
C260.037 (3)0.043 (3)0.023 (3)0.007 (3)0.007 (2)0.001 (3)
C270.056 (4)0.026 (3)0.019 (3)0.007 (3)0.010 (3)0.002 (2)
N310.016 (2)0.034 (3)0.048 (3)0.0022 (19)0.011 (2)0.019 (2)
C320.025 (3)0.019 (3)0.067 (4)0.005 (2)0.006 (3)0.003 (3)
C330.034 (3)0.028 (3)0.030 (3)0.006 (2)0.000 (2)0.008 (2)
C340.017 (2)0.021 (3)0.027 (3)0.0014 (19)0.001 (2)0.006 (2)
C350.026 (3)0.019 (3)0.026 (3)0.000 (2)0.007 (2)0.001 (2)
C360.037 (3)0.024 (3)0.043 (4)0.012 (2)0.017 (3)0.008 (2)
C370.025 (3)0.045 (4)0.024 (3)0.003 (2)0.003 (2)0.007 (2)
Geometric parameters (Å, º) top
Au1—Cl22.2701 (11)C33—C341.526 (7)
Au1—Cl12.2856 (11)C33—H33A0.9900
Au1—Cl32.2879 (11)C33—H33B0.9900
Au1—Cl42.2904 (11)C34—C371.510 (6)
Au2—Cl62.2751 (11)C34—C351.517 (6)
Au2—Cl72.2792 (11)C34—H341.0000
Au2—Cl82.2832 (11)C35—C361.509 (7)
Au2—Cl52.2842 (11)C35—H35A0.9900
N11—C161.487 (6)C35—H35B0.9900
N11—C121.489 (6)C36—H36A0.9900
N11—H010.91 (2)C36—H36B0.9900
N11—H020.92 (2)C37—H37A0.9800
C12—C131.518 (6)C37—H37B0.9800
C12—H12A0.9900C37—H37C0.9800
C12—H12B0.9900N41—C461.470 (10)
C13—C141.525 (7)N41—C421.473 (9)
C13—H13A0.9900N41—H41A0.9100
C13—H13B0.9900N41—H41B0.9100
C14—C171.516 (6)C42—C431.508 (10)
C14—C151.524 (6)C42—H42A0.9900
C14—H141.0000C42—H42B0.9900
C15—C161.520 (6)C43—C441.515 (11)
C15—H15A0.9900C43—H43A0.9900
C15—H15B0.9900C43—H43B0.9900
C16—H16A0.9900C44—C451.519 (10)
C16—H16B0.9900C44—C471.520 (10)
C17—H17A0.9800C44—H441.0000
C17—H17B0.9800C45—C461.541 (11)
C17—H17C0.9800C45—H45A0.9900
N21—C221.478 (6)C45—H45B0.9900
N21—C261.489 (7)C46—H46A0.9900
N21—H030.91 (2)C46—H46B0.9900
N21—H040.91 (2)C47—H47A0.9800
C22—C231.519 (7)C47—H47B0.9800
C22—H22A0.9900C47—H47C0.9800
C22—H22B0.9900N41'—C46'1.474 (11)
C23—C241.524 (6)N41'—C42'1.483 (11)
C23—H23A0.9900N41'—H41C0.9100
C23—H23B0.9900N41'—H41D0.9100
C24—C251.521 (6)C42'—C43'1.524 (11)
C24—C271.527 (6)C42'—H42C0.9900
C24—H241.0000C42'—H42D0.9900
C25—C261.517 (7)C43'—C44'1.511 (11)
C25—H25A0.9900C43'—H43C0.9900
C25—H25B0.9900C43'—H43D0.9900
C26—H26A0.9900C44'—C45'1.510 (11)
C26—H26B0.9900C44'—C47'1.511 (11)
C27—H27A0.9800C44'—H44'1.0000
C27—H27B0.9800C45'—C46'1.513 (11)
C27—H27C0.9800C45'—H45C0.9900
N31—C321.480 (7)C45'—H45D0.9900
N31—C361.486 (6)C46'—H46C0.9900
N31—H050.92 (2)C46'—H46D0.9900
N31—H060.91 (2)C47'—H47D0.9800
C32—C331.510 (7)C47'—H47E0.9800
C32—H32A0.9900C47'—H47F0.9800
C32—H32B0.9900
Cl2—Au1—Cl190.12 (4)C32—C33—H33B109.1
Cl2—Au1—Cl390.08 (4)C34—C33—H33B109.1
Cl1—Au1—Cl3179.05 (5)H33A—C33—H33B107.8
Cl2—Au1—Cl4177.98 (5)C37—C34—C35111.9 (4)
Cl1—Au1—Cl489.72 (4)C37—C34—C33111.8 (4)
Cl3—Au1—Cl490.11 (4)C35—C34—C33109.1 (4)
Cl6—Au2—Cl789.54 (4)C37—C34—H34108.0
Cl6—Au2—Cl8178.35 (4)C35—C34—H34108.0
Cl7—Au2—Cl889.74 (4)C33—C34—H34108.0
Cl6—Au2—Cl590.13 (4)C36—C35—C34111.8 (4)
Cl7—Au2—Cl5179.55 (5)C36—C35—H35A109.3
Cl8—Au2—Cl590.59 (4)C34—C35—H35A109.3
C16—N11—C12112.8 (4)C36—C35—H35B109.3
C16—N11—H01111 (4)C34—C35—H35B109.3
C12—N11—H01108 (4)H35A—C35—H35B107.9
C16—N11—H02108 (3)N31—C36—C35110.3 (4)
C12—N11—H02109 (3)N31—C36—H36A109.6
H01—N11—H02108 (5)C35—C36—H36A109.6
N11—C12—C13110.2 (4)N31—C36—H36B109.6
N11—C12—H12A109.6C35—C36—H36B109.6
C13—C12—H12A109.6H36A—C36—H36B108.1
N11—C12—H12B109.6C34—C37—H37A109.5
C13—C12—H12B109.6C34—C37—H37B109.5
H12A—C12—H12B108.1H37A—C37—H37B109.5
C12—C13—C14111.6 (4)C34—C37—H37C109.5
C12—C13—H13A109.3H37A—C37—H37C109.5
C14—C13—H13A109.3H37B—C37—H37C109.5
C12—C13—H13B109.3C46—N41—C42113.7 (7)
C14—C13—H13B109.3C46—N41—H41A108.8
H13A—C13—H13B108.0C42—N41—H41A108.8
C17—C14—C15111.4 (4)C46—N41—H41B108.8
C17—C14—C13111.0 (4)C42—N41—H41B108.8
C15—C14—C13109.3 (4)H41A—N41—H41B107.7
C17—C14—H14108.4N41—C42—C43112.4 (7)
C15—C14—H14108.4N41—C42—H42A109.1
C13—C14—H14108.4C43—C42—H42A109.1
C16—C15—C14111.7 (4)N41—C42—H42B109.1
C16—C15—H15A109.3C43—C42—H42B109.1
C14—C15—H15A109.3H42A—C42—H42B107.9
C16—C15—H15B109.3C42—C43—C44112.7 (8)
C14—C15—H15B109.3C42—C43—H43A109.0
H15A—C15—H15B107.9C44—C43—H43A109.0
N11—C16—C15109.7 (4)C42—C43—H43B109.0
N11—C16—H16A109.7C44—C43—H43B109.0
C15—C16—H16A109.7H43A—C43—H43B107.8
N11—C16—H16B109.7C43—C44—C45108.7 (8)
C15—C16—H16B109.7C43—C44—C47110.8 (8)
H16A—C16—H16B108.2C45—C44—C47110.9 (8)
C14—C17—H17A109.5C43—C44—H44108.8
C14—C17—H17B109.5C45—C44—H44108.8
H17A—C17—H17B109.5C47—C44—H44108.8
C14—C17—H17C109.5C44—C45—C46112.3 (8)
H17A—C17—H17C109.5C44—C45—H45A109.1
H17B—C17—H17C109.5C46—C45—H45A109.1
C22—N21—C26112.6 (4)C44—C45—H45B109.1
C22—N21—H03108 (3)C46—C45—H45B109.1
C26—N21—H03113 (3)H45A—C45—H45B107.9
C22—N21—H04116 (4)N41—C46—C45109.3 (8)
C26—N21—H04100 (4)N41—C46—H46A109.8
H03—N21—H04107 (4)C45—C46—H46A109.8
N21—C22—C23110.6 (4)N41—C46—H46B109.8
N21—C22—H22A109.5C45—C46—H46B109.8
C23—C22—H22A109.5H46A—C46—H46B108.3
N21—C22—H22B109.5C44—C47—H47A109.5
C23—C22—H22B109.5C44—C47—H47B109.5
H22A—C22—H22B108.1H47A—C47—H47B109.5
C22—C23—C24111.9 (4)C44—C47—H47C109.5
C22—C23—H23A109.2H47A—C47—H47C109.5
C24—C23—H23A109.2H47B—C47—H47C109.5
C22—C23—H23B109.2C46'—N41'—C42'112.5 (9)
C24—C23—H23B109.2C46'—N41'—H41C109.1
H23A—C23—H23B107.9C42'—N41'—H41C109.1
C25—C24—C23109.3 (4)C46'—N41'—H41D109.1
C25—C24—C27111.6 (4)C42'—N41'—H41D109.1
C23—C24—C27111.7 (4)H41C—N41'—H41D107.8
C25—C24—H24108.0N41'—C42'—C43'111.3 (9)
C23—C24—H24108.0N41'—C42'—H42C109.4
C27—C24—H24108.0C43'—C42'—H42C109.4
C26—C25—C24112.1 (4)N41'—C42'—H42D109.4
C26—C25—H25A109.2C43'—C42'—H42D109.4
C24—C25—H25A109.2H42C—C42'—H42D108.0
C26—C25—H25B109.2C44'—C43'—C42'113.0 (8)
C24—C25—H25B109.2C44'—C43'—H43C109.0
H25A—C25—H25B107.9C42'—C43'—H43C109.0
N21—C26—C25110.4 (4)C44'—C43'—H43D109.0
N21—C26—H26A109.6C42'—C43'—H43D109.0
C25—C26—H26A109.6H43C—C43'—H43D107.8
N21—C26—H26B109.6C45'—C44'—C43'110.3 (8)
C25—C26—H26B109.6C45'—C44'—C47'110.6 (9)
H26A—C26—H26B108.1C43'—C44'—C47'112.8 (9)
C24—C27—H27A109.5C45'—C44'—H44'107.7
C24—C27—H27B109.5C43'—C44'—H44'107.7
H27A—C27—H27B109.5C47'—C44'—H44'107.7
C24—C27—H27C109.5C44'—C45'—C46'112.6 (8)
H27A—C27—H27C109.5C44'—C45'—H45C109.1
H27B—C27—H27C109.5C46'—C45'—H45C109.1
C32—N31—C36113.1 (4)C44'—C45'—H45D109.1
C32—N31—H05108 (3)C46'—C45'—H45D109.1
C36—N31—H05108 (3)H45C—C45'—H45D107.8
C32—N31—H06108 (4)N41'—C46'—C45'110.9 (9)
C36—N31—H06109 (4)N41'—C46'—H46C109.5
H05—N31—H06112 (5)C45'—C46'—H46C109.5
N31—C32—C33110.9 (4)N41'—C46'—H46D109.5
N31—C32—H32A109.5C45'—C46'—H46D109.5
C33—C32—H32A109.5H46C—C46'—H46D108.0
N31—C32—H32B109.5C44'—C47'—H47D109.5
C33—C32—H32B109.5C44'—C47'—H47E109.5
H32A—C32—H32B108.0H47D—C47'—H47E109.5
C32—C33—C34112.5 (4)C44'—C47'—H47F109.5
C32—C33—H33A109.1H47D—C47'—H47F109.5
C34—C33—H33A109.1H47E—C47'—H47F109.5
C16—N11—C12—C1357.1 (5)C37—C34—C35—C36180.0 (4)
N11—C12—C13—C1455.8 (5)C33—C34—C35—C3655.8 (5)
C12—C13—C14—C17178.5 (4)C32—N31—C36—C3556.1 (6)
C12—C13—C14—C1555.3 (5)C34—C35—C36—N3156.9 (5)
C17—C14—C15—C16178.8 (4)C46—N41—C42—C4353.8 (10)
C13—C14—C15—C1655.8 (5)N41—C42—C43—C4452.7 (11)
C12—N11—C16—C1557.3 (5)C42—C43—C44—C4553.3 (11)
C14—C15—C16—N1156.6 (5)C42—C43—C44—C47175.4 (8)
C26—N21—C22—C2356.6 (5)C43—C44—C45—C4655.8 (12)
N21—C22—C23—C2455.8 (5)C47—C44—C45—C46177.9 (9)
C22—C23—C24—C2554.6 (5)C42—N41—C46—C4554.8 (10)
C22—C23—C24—C27178.7 (4)C44—C45—C46—N4156.7 (12)
C23—C24—C25—C2654.7 (5)C46'—N41'—C42'—C43'54.8 (13)
C27—C24—C25—C26178.8 (4)N41'—C42'—C43'—C44'52.4 (14)
C22—N21—C26—C2556.5 (5)C42'—C43'—C44'—C45'51.1 (13)
C24—C25—C26—N2155.7 (6)C42'—C43'—C44'—C47'175.3 (10)
C36—N31—C32—C3354.7 (6)C43'—C44'—C45'—C46'52.7 (13)
N31—C32—C33—C3453.9 (6)C47'—C44'—C45'—C46'178.1 (9)
C32—C33—C34—C37178.7 (4)C42'—N41'—C46'—C45'56.4 (12)
C32—C33—C34—C3554.4 (5)C44'—C45'—C46'—N41'55.6 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H02···Cl90.92 (2)2.67 (4)3.349 (4)131 (4)
N11—H02···Cl40.92 (2)2.68 (4)3.405 (4)136 (4)
N11—H01···Cl110.91 (2)2.28 (3)3.177 (4)169 (6)
N21—H03···Cl90.91 (2)2.41 (3)3.222 (4)148 (4)
N21—H04···Cl110.91 (2)2.24 (3)3.146 (5)169 (5)
N31—H05···Cl100.92 (2)2.26 (3)3.147 (4)163 (5)
N31—H06···Cl90.91 (2)2.28 (3)3.147 (4)158 (5)
N41—H41A···Cl100.912.313.158 (7)155
N41—H41B···Cl40.912.683.517 (7)152
N41—H41B···Cl90.912.833.360 (6)118
N41—H41C···Cl100.912.203.084 (10)163
N41—H41D···Cl90.912.643.430 (9)146
C36—H36B···Cl10.992.883.655 (6)136
C37—H37A···Cl1i0.983.023.966 (5)163
C37—H37B···Cl1ii0.982.983.942 (5)168
C42—H42D···Cl10.992.833.773 (11)160
C13—H13B···Cl2iii0.992.883.645 (5)135
C26—H26B···Cl30.992.763.736 (5)169
C27—H27B···Cl3ii0.982.853.732 (5)150
C42—H42D···Cl40.992.773.478 (12)129
C43—H43C···Cl40.992.813.362 (10)116
C42—H42A···Cl5i0.992.813.752 (9)160
C46—H46C···Cl50.992.773.683 (11)153
C12—H12A···Cl60.992.963.497 (5)115
C36—H36A···Cl6iv0.992.823.446 (5)122
C46—H46A···Cl60.992.953.635 (10)127
C45—H45D···Cl60.992.833.566 (9)132
C12—H12A···Cl70.992.893.801 (5)154
C15—H15B···Cl7v0.992.883.727 (5)144
C27—H27C···Cl7iv0.983.013.983 (5)173
C14—H14···Cl8vi1.003.023.787 (5)134
C23—H23A···Cl80.992.943.637 (5)128
C47—H47A···Cl8vi0.982.923.843 (10)157
C12—H12A···Cl90.992.983.504 (5)114
C46—H46A···Cl90.992.873.550 (11)126
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2; (iii) x, y+1, z; (iv) x, y1, z; (v) x+1, y, z+1/2; (vi) x, y+1, z1/2.
Bis(4-methylpiperidinium) tetrachloridoaurate(III) chloride (2c) top
Crystal data top
(C6H14N)2[AuCl4]ClZ = 10
Mr = 574.58F(000) = 2780
Triclinic, P1Dx = 1.887 Mg m3
a = 14.4553 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.1302 (5) ÅCell parameters from 31287 reflections
c = 24.3885 (6) Åθ = 2.4–29.3°
α = 90.797 (3)°µ = 7.93 mm1
β = 98.137 (3)°T = 100 K
γ = 106.407 (4)°Block, yellow
V = 5057.2 (3) Å30.2 × 0.1 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
29180 independent reflections
Radiation source: Enhance (Mo) X-ray Source22450 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.098
ω scanθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2013)
h = 2020
Tmin = 0.683, Tmax = 1.000k = 2121
316587 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0268P)2 + 13.6626P]
where P = (Fo2 + 2Fc2)/3
29180 reflections(Δ/σ)max = 0.002
967 parametersΔρmax = 2.67 e Å3
64 restraintsΔρmin = 1.82 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.11750 (2)0.63845 (2)0.26925 (2)0.01458 (4)
Cl10.10877 (10)0.48662 (9)0.27627 (6)0.0228 (3)
Cl20.23608 (10)0.65461 (9)0.21364 (6)0.0240 (3)
Cl30.12269 (11)0.78873 (9)0.26076 (6)0.0272 (3)
Cl40.00259 (10)0.62298 (9)0.32607 (6)0.0224 (3)
Au20.05782 (2)0.88299 (2)0.71855 (2)0.01638 (5)
Cl50.05144 (11)0.73445 (9)0.72336 (6)0.0248 (3)
Cl60.15343 (10)0.86170 (10)0.78731 (6)0.0248 (3)
Cl70.06299 (11)1.03123 (9)0.71577 (6)0.0286 (3)
Cl80.03434 (11)0.90231 (9)0.64835 (6)0.0250 (3)
Au30.50187 (2)0.75319 (2)0.49964 (2)0.01549 (4)
Cl90.51949 (11)0.90589 (9)0.49301 (6)0.0297 (3)
Cl100.60967 (10)0.76302 (9)0.43888 (6)0.0265 (3)
Cl110.49027 (11)0.60171 (9)0.50970 (7)0.0299 (3)
Cl120.39100 (12)0.74279 (10)0.55928 (6)0.0315 (3)
Au40.71049 (2)1.03097 (2)0.12450 (2)0.01662 (5)
Cl130.79786 (10)1.07813 (10)0.05394 (6)0.0261 (3)
Cl140.85352 (10)1.03877 (11)0.18181 (6)0.0272 (3)
Cl150.62278 (10)0.98439 (10)0.19570 (6)0.0243 (3)
Cl160.56937 (10)1.02724 (10)0.06646 (6)0.0244 (3)
Au50.72767 (2)0.55071 (2)0.11465 (2)0.01646 (5)
Cl170.58038 (10)0.53456 (10)0.06141 (6)0.0254 (3)
Cl180.64953 (12)0.49818 (12)0.18783 (6)0.0354 (4)
Cl190.87584 (10)0.56492 (10)0.16812 (6)0.0273 (3)
Cl200.80491 (10)0.60417 (10)0.04130 (5)0.0269 (3)
Cl210.89073 (10)0.81577 (9)0.03711 (5)0.0211 (3)
Cl220.69597 (9)0.80536 (9)0.10738 (5)0.0196 (3)
Cl230.51959 (10)0.72230 (10)0.25681 (6)0.0255 (3)
Cl240.29808 (10)0.70124 (9)0.38233 (6)0.0239 (3)
Cl250.08329 (10)0.67624 (10)0.52152 (6)0.0271 (3)
N110.9469 (4)0.7232 (3)0.13518 (19)0.0228 (10)
H010.934 (4)0.746 (4)0.1040 (14)0.028 (17)*
H020.952 (6)0.768 (4)0.159 (2)0.07 (3)*
C120.8550 (4)0.6481 (4)0.1547 (2)0.0232 (12)
H12A0.8570570.6243590.1924470.028*
H12B0.7984960.6733480.1567710.028*
C130.8424 (4)0.5700 (4)0.1158 (2)0.0222 (12)
H13A0.7838340.5192130.1311050.027*
H13B0.8318740.5920400.0794590.027*
C140.9317 (4)0.5333 (4)0.1077 (2)0.0230 (12)
H140.9396560.5095030.1446580.028*
C151.0217 (4)0.6126 (4)0.0870 (2)0.0248 (12)
H15A1.0155580.6369160.0502400.030*
H15B1.0799160.5896660.0825140.030*
C161.0358 (4)0.6898 (4)0.1265 (2)0.0256 (12)
H16A1.0934730.7413280.1111250.031*
H16B1.0474460.6673220.1625310.031*
C170.9187 (5)0.4541 (4)0.0691 (3)0.0334 (14)
H17A0.9781820.4343960.0634360.050*
H17B0.8635390.4022870.0857540.050*
H17C0.9058510.4745040.0333970.050*
N210.9236 (3)0.8811 (3)0.09055 (19)0.0230 (10)
H030.908 (3)0.854 (3)0.0560 (12)0.006 (13)*
H040.867 (2)0.890 (3)0.0969 (18)0.007 (13)*
C220.9501 (4)0.8124 (4)0.1287 (2)0.0246 (12)
H22A0.8949770.7552920.1257610.030*
H22B0.9640690.8380610.1675670.030*
C231.0396 (4)0.7905 (4)0.1130 (2)0.0235 (12)
H23A1.0240660.7616020.0748360.028*
H23B1.0580820.7458660.1384670.028*
C241.1252 (4)0.8777 (4)0.1159 (2)0.0206 (11)
H241.1420030.9043530.1550150.025*
C251.0951 (4)0.9477 (4)0.0791 (2)0.0222 (12)
H25A1.1493031.0056360.0830240.027*
H25B1.0829810.9239400.0399370.027*
C261.0046 (4)0.9683 (4)0.0931 (3)0.0240 (12)
H26A1.0183500.9985200.1308250.029*
H26B0.9852541.0110290.0665150.029*
C271.2136 (4)0.8539 (5)0.1000 (3)0.0341 (15)
H27A1.2288390.8068380.1239440.051*
H27B1.2695630.9093720.1045240.051*
H27C1.1993310.8300180.0612020.051*
N310.6735 (4)0.7700 (4)0.0214 (2)0.0324 (13)
H050.735 (2)0.773 (5)0.027 (2)0.05 (2)*
H060.675 (5)0.766 (5)0.0155 (11)0.05 (2)*
C320.6029 (4)0.6873 (4)0.0502 (2)0.0294 (13)
H32A0.5397500.6768990.0363300.035*
H32B0.6267370.6328340.0422320.035*
C330.5883 (4)0.6978 (4)0.1122 (2)0.0268 (13)
H33A0.6494830.6997970.1266200.032*
H33B0.5367830.6433530.1303930.032*
C340.5597 (4)0.7843 (4)0.1271 (2)0.0231 (12)
H340.4962650.7795750.1137990.028*
C350.6360 (5)0.8682 (4)0.0966 (3)0.0310 (14)
H35A0.6987130.8762020.1106380.037*
H35B0.6148520.9241270.1043450.037*
C360.6508 (5)0.8576 (4)0.0345 (3)0.0362 (16)
H36A0.7048960.9101360.0163600.043*
H36B0.5908550.8586920.0195240.043*
C370.5452 (5)0.7948 (5)0.1895 (2)0.0426 (18)
H37A0.5252200.8506820.1973150.064*
H37B0.4945020.7408940.2077750.064*
H37C0.6065180.7996800.2036700.064*
N410.7399 (3)0.8221 (3)0.24105 (19)0.0221 (10)
H070.677 (2)0.801 (4)0.245 (2)0.027 (17)*
H080.744 (5)0.857 (5)0.212 (2)0.07 (3)*
C420.7940 (5)0.8916 (4)0.2875 (2)0.0321 (14)
H42A0.7617170.9409890.2891600.038*
H42B0.8615880.9200470.2805770.038*
C430.7959 (5)0.8454 (4)0.3423 (2)0.0309 (14)
H43A0.7285160.8224750.3508610.037*
H43B0.8345780.8913100.3722620.037*
C440.8400 (4)0.7647 (4)0.3409 (2)0.0246 (12)
H440.9091220.7896040.3342690.029*
C450.7840 (4)0.6965 (4)0.2925 (2)0.0252 (12)
H45A0.8149480.6462500.2901060.030*
H45B0.7161720.6687960.2991680.030*
C460.7830 (5)0.7437 (4)0.2383 (2)0.0298 (14)
H46A0.8504300.7669370.2299670.036*
H46B0.7443110.6985320.2079010.036*
C470.8403 (5)0.7178 (5)0.3955 (2)0.0348 (15)
H47A0.7735410.6964100.4039340.052*
H47B0.8813760.7616660.4251940.052*
H47C0.8662270.6648820.3926090.052*
N510.4789 (4)0.7064 (4)0.1272 (2)0.0301 (12)
H090.537 (3)0.717 (5)0.113 (2)0.05 (2)*
H0100.501 (5)0.718 (6)0.1650 (11)0.08 (3)*
C520.4032 (4)0.6177 (4)0.1104 (2)0.0292 (13)
H52A0.3474090.6127420.1307370.035*
H52B0.4303130.5658230.1201340.035*
C530.3683 (4)0.6119 (4)0.0485 (2)0.0275 (13)
H53A0.3146190.5542210.0385500.033*
H53B0.4224320.6090720.0285030.033*
C540.3322 (4)0.6943 (4)0.0298 (2)0.0221 (12)
H540.2733910.6926190.0473970.027*
C550.4104 (4)0.7832 (4)0.0496 (2)0.0266 (13)
H55A0.3843640.8359310.0405110.032*
H55B0.4665470.7886420.0295360.032*
C560.4455 (5)0.7883 (4)0.1114 (3)0.0321 (14)
H56A0.4999610.8452760.1217940.038*
H56B0.3918090.7909640.1319100.038*
C570.3028 (4)0.6883 (4)0.0330 (2)0.0308 (14)
H57A0.2799250.7414530.0440320.046*
H57B0.2503070.6312170.0442140.046*
H57C0.3591930.6882970.0510310.046*
N610.4047 (5)0.8541 (4)0.2973 (2)0.0456 (16)
H61B0.4258980.8080240.2840010.055*
H61A0.3533600.8278020.3151170.055*
C620.4844 (7)0.9149 (6)0.3377 (3)0.054 (2)
H62A0.5428080.9393480.3195900.065*
H62B0.5019150.8787240.3690040.065*
C630.4525 (7)0.9952 (6)0.3598 (3)0.059 (2)
H63A0.4005730.9709570.3827300.071*
H63B0.5086231.0380750.3838400.071*
C640.4152 (5)1.0471 (4)0.3136 (2)0.0289 (13)
H640.4709281.0774950.2937940.035*
C650.3374 (5)0.9814 (5)0.2723 (3)0.0439 (18)
H65A0.3178481.0161490.2408320.053*
H65B0.2792400.9548600.2903540.053*
C660.3712 (5)0.9034 (5)0.2503 (3)0.0376 (16)
H66A0.3168660.8601900.2252400.045*
H66B0.4252260.9285870.2288300.045*
C670.3758 (6)1.1222 (5)0.3352 (3)0.0446 (18)
H67A0.3465601.1500810.3038110.067*
H67B0.4292491.1697060.3572110.067*
H67C0.3261581.0950270.3584680.067*
N710.3752 (4)0.5584 (4)0.3128 (2)0.0291 (11)
H71A0.4094810.6026720.2925620.035*
H71B0.3212840.5743270.3189970.035*
C720.3435 (5)0.4690 (4)0.2794 (3)0.0340 (15)
H72A0.3097760.4770730.2424070.041*
H72B0.2969480.4226530.2980410.041*
C730.4306 (5)0.4351 (5)0.2729 (3)0.0364 (15)
H73A0.4721320.4772870.2496020.044*
H73B0.4073670.3731980.2533570.044*
C740.4913 (5)0.4294 (5)0.3280 (2)0.0321 (14)
H740.4495330.3836930.3500910.039*
C750.5224 (4)0.5242 (4)0.3602 (2)0.0261 (13)
H75A0.5580100.5193340.3972850.031*
H75B0.5673280.5696150.3401330.031*
C760.4361 (5)0.5576 (5)0.3668 (3)0.0351 (15)
H76A0.3960980.5170800.3914220.042*
H76B0.4591840.6208100.3845860.042*
C770.5782 (5)0.3965 (6)0.3200 (3)0.0472 (19)
H77A0.5557260.3368020.2989730.071*
H77B0.6137350.3898930.3563250.071*
H77C0.6214620.4415950.2996250.071*
N810.1936 (4)0.8210 (4)0.4435 (2)0.0383 (15)
H81B0.1556110.7826200.4651340.046*
H81A0.2214980.7865220.4239380.046*
C820.2710 (5)0.8907 (6)0.4794 (3)0.051 (2)
H82A0.3176050.9277380.4565590.061*
H82B0.3071680.8594950.5064230.061*
C830.2296 (5)0.9530 (5)0.5099 (3)0.0432 (18)
H83A0.2834381.0007690.5323900.052*
H83B0.1880620.9167670.5354870.052*
C840.1695 (4)0.9993 (4)0.4706 (3)0.0302 (14)
H840.2127881.0359690.4453790.036*
C850.0898 (5)0.9251 (4)0.4357 (2)0.0297 (14)
H85A0.0508360.9543910.4090490.036*
H85B0.0458840.8883290.4599290.036*
C860.1307 (5)0.8616 (4)0.4039 (3)0.0306 (14)
H86A0.0765520.8116820.3832660.037*
H86B0.1694560.8967240.3768030.037*
C870.1292 (5)1.0648 (5)0.5011 (3)0.0419 (17)
H87A0.0845311.0299210.5250780.063*
H87B0.0938911.0957470.4741140.063*
H87C0.1830301.1110070.5237380.063*
N910.2027 (4)0.5556 (3)0.4758 (2)0.0269 (11)
H0170.254 (5)0.590 (5)0.459 (3)0.10 (3)*
H0180.179 (5)0.601 (4)0.490 (3)0.07 (3)*
C920.2369 (5)0.5005 (4)0.5205 (2)0.0302 (14)
H92A0.1833640.4734610.5419000.036*
H92B0.2920810.5412070.5462500.036*
C930.2688 (4)0.4248 (4)0.4954 (2)0.0264 (13)
H93A0.2896330.3879900.5254820.032*
H93B0.3259100.4526580.4768350.032*
C940.1894 (4)0.3611 (4)0.4539 (2)0.0265 (13)
H940.1339330.3302150.4736830.032*
C950.1529 (4)0.4198 (4)0.4097 (2)0.0244 (12)
H95A0.2053730.4459820.3874050.029*
H95B0.0966810.3795360.3844150.029*
C960.1225 (4)0.4975 (4)0.4339 (2)0.0271 (13)
H96A0.1053980.5360840.4039200.033*
H96B0.0638760.4717330.4517480.033*
C970.2236 (5)0.2872 (4)0.4275 (3)0.0369 (15)
H97A0.1688430.2456620.4027040.055*
H97B0.2481770.2518870.4566080.055*
H97C0.2757860.3160680.4062910.055*
N1010.1281 (4)0.7149 (3)0.6481 (2)0.0245 (10)
H0190.081 (4)0.741 (5)0.659 (2)0.06 (2)*
H0200.107 (4)0.704 (4)0.6100 (11)0.019 (15)*
C1020.1313 (4)0.6254 (4)0.6715 (2)0.0255 (12)
H10A0.1785340.6015330.6546760.031*
H10B0.0661730.5798310.6625410.031*
C1030.1615 (4)0.6384 (4)0.7345 (2)0.0268 (13)
H10C0.1092490.6540110.7513320.032*
H10D0.1682990.5794640.7490620.032*
C1040.2574 (4)0.7142 (4)0.7518 (2)0.0266 (13)
H10E0.3113410.6935460.7393190.032*
C1050.2529 (5)0.8032 (4)0.7233 (3)0.0309 (14)
H10F0.2053010.8285330.7387730.037*
H10G0.3176200.8496010.7314080.037*
C1060.2235 (5)0.7871 (4)0.6609 (2)0.0297 (14)
H10H0.2182850.8451970.6444220.036*
H10I0.2738360.7671890.6446750.036*
C1070.2789 (5)0.7311 (5)0.8141 (2)0.0347 (15)
H10J0.3402380.7802120.8242490.052*
H10K0.2846300.6743440.8313100.052*
H10L0.2257290.7496700.8271940.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01767 (10)0.01336 (9)0.01383 (9)0.00604 (7)0.00287 (7)0.00030 (7)
Cl10.0305 (7)0.0147 (6)0.0268 (7)0.0087 (5)0.0109 (6)0.0039 (5)
Cl20.0287 (7)0.0225 (7)0.0233 (7)0.0069 (6)0.0132 (6)0.0012 (5)
Cl30.0440 (9)0.0166 (6)0.0258 (7)0.0136 (6)0.0108 (6)0.0045 (5)
Cl40.0210 (7)0.0231 (7)0.0273 (7)0.0103 (5)0.0097 (5)0.0020 (5)
Au20.01852 (10)0.01361 (9)0.01754 (10)0.00654 (7)0.00062 (8)0.00070 (7)
Cl50.0409 (8)0.0156 (6)0.0221 (7)0.0113 (6)0.0118 (6)0.0030 (5)
Cl60.0298 (7)0.0251 (7)0.0242 (7)0.0126 (6)0.0093 (6)0.0038 (5)
Cl70.0339 (8)0.0179 (7)0.0412 (9)0.0157 (6)0.0119 (7)0.0073 (6)
Cl80.0314 (8)0.0219 (7)0.0250 (7)0.0098 (6)0.0102 (6)0.0050 (5)
Au30.01522 (10)0.01378 (9)0.01862 (10)0.00552 (7)0.00353 (8)0.00166 (7)
Cl90.0379 (8)0.0151 (6)0.0385 (8)0.0100 (6)0.0085 (7)0.0019 (6)
Cl100.0232 (7)0.0233 (7)0.0363 (8)0.0066 (6)0.0159 (6)0.0036 (6)
Cl110.0321 (8)0.0159 (6)0.0467 (9)0.0105 (6)0.0145 (7)0.0074 (6)
Cl120.0373 (9)0.0312 (8)0.0328 (8)0.0132 (7)0.0206 (7)0.0042 (6)
Au40.01613 (10)0.01694 (10)0.01605 (10)0.00409 (7)0.00157 (7)0.00141 (7)
Cl130.0282 (7)0.0275 (7)0.0212 (7)0.0038 (6)0.0077 (6)0.0025 (6)
Cl140.0186 (7)0.0412 (8)0.0208 (7)0.0076 (6)0.0020 (5)0.0015 (6)
Cl150.0219 (7)0.0279 (7)0.0217 (7)0.0032 (5)0.0066 (5)0.0031 (5)
Cl160.0166 (6)0.0261 (7)0.0275 (7)0.0050 (5)0.0044 (5)0.0038 (6)
Au50.01774 (10)0.01631 (10)0.01430 (10)0.00262 (7)0.00379 (7)0.00045 (7)
Cl170.0200 (7)0.0303 (7)0.0242 (7)0.0056 (6)0.0017 (5)0.0003 (6)
Cl180.0326 (8)0.0455 (9)0.0202 (7)0.0043 (7)0.0097 (6)0.0046 (6)
Cl190.0225 (7)0.0313 (8)0.0245 (7)0.0037 (6)0.0009 (6)0.0082 (6)
Cl200.0242 (7)0.0357 (8)0.0177 (7)0.0016 (6)0.0074 (5)0.0011 (6)
Cl210.0228 (7)0.0228 (6)0.0180 (6)0.0047 (5)0.0082 (5)0.0002 (5)
Cl220.0162 (6)0.0249 (7)0.0160 (6)0.0026 (5)0.0035 (5)0.0020 (5)
Cl230.0208 (7)0.0356 (8)0.0217 (7)0.0078 (6)0.0081 (5)0.0052 (6)
Cl240.0260 (7)0.0257 (7)0.0240 (7)0.0110 (6)0.0097 (6)0.0005 (5)
Cl250.0270 (7)0.0339 (8)0.0218 (7)0.0071 (6)0.0118 (6)0.0027 (6)
N110.033 (3)0.023 (2)0.014 (2)0.007 (2)0.010 (2)0.0019 (19)
C120.021 (3)0.029 (3)0.021 (3)0.010 (2)0.003 (2)0.000 (2)
C130.018 (3)0.028 (3)0.020 (3)0.005 (2)0.008 (2)0.004 (2)
C140.025 (3)0.022 (3)0.022 (3)0.005 (2)0.003 (2)0.000 (2)
C150.024 (3)0.027 (3)0.024 (3)0.010 (2)0.000 (2)0.004 (2)
C160.022 (3)0.028 (3)0.024 (3)0.000 (2)0.007 (2)0.002 (2)
C170.039 (4)0.028 (3)0.032 (3)0.008 (3)0.005 (3)0.011 (3)
N210.021 (2)0.030 (3)0.018 (2)0.005 (2)0.008 (2)0.003 (2)
C220.023 (3)0.027 (3)0.022 (3)0.002 (2)0.008 (2)0.005 (2)
C230.027 (3)0.018 (3)0.025 (3)0.005 (2)0.007 (2)0.006 (2)
C240.018 (3)0.019 (3)0.026 (3)0.006 (2)0.005 (2)0.001 (2)
C250.016 (3)0.021 (3)0.033 (3)0.007 (2)0.011 (2)0.008 (2)
C260.017 (3)0.021 (3)0.035 (3)0.005 (2)0.008 (2)0.004 (2)
C270.025 (3)0.036 (4)0.045 (4)0.014 (3)0.010 (3)0.011 (3)
N310.017 (3)0.058 (4)0.018 (3)0.002 (2)0.005 (2)0.001 (2)
C320.025 (3)0.038 (4)0.026 (3)0.007 (3)0.011 (3)0.009 (3)
C330.025 (3)0.028 (3)0.023 (3)0.000 (2)0.006 (2)0.004 (2)
C340.016 (3)0.030 (3)0.021 (3)0.002 (2)0.004 (2)0.002 (2)
C350.030 (3)0.026 (3)0.035 (4)0.000 (3)0.016 (3)0.002 (3)
C360.034 (4)0.034 (4)0.030 (3)0.009 (3)0.012 (3)0.018 (3)
C370.033 (4)0.067 (5)0.022 (3)0.004 (3)0.006 (3)0.015 (3)
N410.019 (2)0.029 (3)0.017 (2)0.004 (2)0.0044 (19)0.001 (2)
C420.036 (4)0.026 (3)0.027 (3)0.002 (3)0.000 (3)0.000 (3)
C430.047 (4)0.031 (3)0.016 (3)0.015 (3)0.000 (3)0.001 (2)
C440.023 (3)0.031 (3)0.022 (3)0.009 (2)0.009 (2)0.008 (2)
C450.019 (3)0.028 (3)0.031 (3)0.009 (2)0.004 (2)0.001 (2)
C460.037 (4)0.041 (4)0.019 (3)0.025 (3)0.002 (3)0.007 (3)
C470.045 (4)0.045 (4)0.025 (3)0.025 (3)0.014 (3)0.013 (3)
N510.019 (3)0.049 (3)0.016 (3)0.001 (2)0.002 (2)0.002 (2)
C520.024 (3)0.037 (4)0.029 (3)0.009 (3)0.013 (3)0.005 (3)
C530.028 (3)0.035 (3)0.020 (3)0.010 (3)0.006 (2)0.003 (2)
C540.011 (3)0.028 (3)0.027 (3)0.005 (2)0.003 (2)0.007 (2)
C550.018 (3)0.031 (3)0.027 (3)0.002 (2)0.002 (2)0.001 (2)
C560.025 (3)0.028 (3)0.035 (4)0.005 (3)0.004 (3)0.010 (3)
C570.025 (3)0.035 (4)0.031 (3)0.012 (3)0.007 (3)0.003 (3)
N610.069 (4)0.027 (3)0.047 (4)0.010 (3)0.039 (3)0.003 (3)
C620.091 (7)0.066 (6)0.021 (4)0.050 (5)0.005 (4)0.010 (3)
C630.110 (8)0.059 (5)0.024 (4)0.051 (5)0.010 (4)0.007 (3)
C640.038 (4)0.022 (3)0.021 (3)0.003 (3)0.000 (3)0.002 (2)
C650.033 (4)0.040 (4)0.055 (5)0.008 (3)0.005 (3)0.014 (3)
C660.026 (3)0.041 (4)0.045 (4)0.007 (3)0.010 (3)0.006 (3)
C670.064 (5)0.034 (4)0.037 (4)0.020 (4)0.001 (4)0.003 (3)
N710.027 (3)0.037 (3)0.028 (3)0.014 (2)0.009 (2)0.002 (2)
C720.033 (4)0.032 (4)0.039 (4)0.014 (3)0.001 (3)0.001 (3)
C730.044 (4)0.042 (4)0.028 (3)0.021 (3)0.004 (3)0.004 (3)
C740.039 (4)0.041 (4)0.027 (3)0.026 (3)0.009 (3)0.004 (3)
C750.025 (3)0.032 (3)0.023 (3)0.010 (3)0.005 (2)0.001 (2)
C760.032 (4)0.041 (4)0.035 (4)0.019 (3)0.002 (3)0.013 (3)
C770.051 (5)0.069 (5)0.036 (4)0.038 (4)0.011 (3)0.015 (4)
N810.052 (4)0.035 (3)0.048 (3)0.028 (3)0.038 (3)0.020 (3)
C820.032 (4)0.088 (6)0.046 (4)0.035 (4)0.012 (3)0.025 (4)
C830.027 (4)0.068 (5)0.033 (4)0.014 (3)0.003 (3)0.002 (3)
C840.027 (3)0.028 (3)0.033 (3)0.002 (3)0.010 (3)0.003 (3)
C850.035 (4)0.035 (3)0.024 (3)0.022 (3)0.001 (3)0.008 (3)
C860.032 (3)0.032 (3)0.031 (3)0.011 (3)0.010 (3)0.004 (3)
C870.043 (4)0.035 (4)0.044 (4)0.002 (3)0.018 (3)0.014 (3)
N910.024 (3)0.026 (3)0.028 (3)0.002 (2)0.005 (2)0.006 (2)
C920.029 (3)0.038 (4)0.024 (3)0.009 (3)0.004 (3)0.002 (3)
C930.023 (3)0.032 (3)0.023 (3)0.006 (2)0.000 (2)0.005 (2)
C940.023 (3)0.021 (3)0.030 (3)0.001 (2)0.000 (2)0.006 (2)
C950.022 (3)0.030 (3)0.019 (3)0.005 (2)0.004 (2)0.002 (2)
C960.029 (3)0.029 (3)0.024 (3)0.010 (3)0.000 (2)0.007 (2)
C970.034 (4)0.027 (3)0.045 (4)0.006 (3)0.003 (3)0.003 (3)
N1010.025 (3)0.026 (3)0.022 (3)0.006 (2)0.006 (2)0.001 (2)
C1020.026 (3)0.021 (3)0.028 (3)0.006 (2)0.004 (2)0.001 (2)
C1030.027 (3)0.025 (3)0.027 (3)0.005 (2)0.001 (2)0.000 (2)
C1040.019 (3)0.034 (3)0.026 (3)0.007 (2)0.003 (2)0.009 (3)
C1050.027 (3)0.029 (3)0.035 (4)0.003 (3)0.009 (3)0.007 (3)
C1060.034 (3)0.027 (3)0.027 (3)0.003 (3)0.013 (3)0.002 (3)
C1070.032 (4)0.048 (4)0.023 (3)0.014 (3)0.003 (3)0.006 (3)
Geometric parameters (Å, º) top
Au1—Cl32.2671 (13)C54—C571.523 (8)
Au1—Cl42.2749 (13)C54—H541.0000
Au1—Cl12.2750 (13)C55—C561.515 (8)
Au1—Cl22.2953 (13)C55—H55A0.9900
Au2—Cl72.2667 (13)C55—H55B0.9900
Au2—Cl52.2792 (13)C56—H56A0.9900
Au2—Cl82.2872 (13)C56—H56B0.9900
Au2—Cl62.2902 (13)C57—H57A0.9800
Au3—Cl92.2624 (13)C57—H57B0.9800
Au3—Cl112.2698 (13)C57—H57C0.9800
Au3—Cl102.2747 (13)N61—C661.475 (9)
Au3—Cl122.2875 (14)N61—C621.483 (10)
Au4—Cl132.2816 (13)N61—H61B0.9100
Au4—Cl152.2962 (13)N61—H61A0.9100
Au4—Cl142.2983 (14)C62—C631.531 (10)
Au4—Cl162.2985 (13)C62—H62A0.9900
Au5—Cl172.2788 (14)C62—H62B0.9900
Au5—Cl202.2794 (13)C63—C641.507 (9)
Au5—Cl182.2795 (14)C63—H63A0.9900
Au5—Cl192.2969 (14)C63—H63B0.9900
N11—C121.495 (7)C64—C651.513 (9)
N11—C161.498 (7)C64—C671.525 (8)
N11—H010.90 (2)C64—H641.0000
N11—H020.89 (2)C65—C661.518 (9)
C12—C131.513 (7)C65—H65A0.9900
C12—H12A0.9900C65—H65B0.9900
C12—H12B0.9900C66—H66A0.9900
C13—C141.534 (7)C66—H66B0.9900
C13—H13A0.9900C67—H67A0.9800
C13—H13B0.9900C67—H67B0.9800
C14—C151.518 (8)C67—H67C0.9800
C14—C171.519 (8)N71—C761.479 (8)
C14—H141.0000N71—C721.488 (8)
C15—C161.512 (8)N71—H71A0.9100
C15—H15A0.9900N71—H71B0.9100
C15—H15B0.9900C72—C731.515 (8)
C16—H16A0.9900C72—H72A0.9900
C16—H16B0.9900C72—H72B0.9900
C17—H17A0.9800C73—C741.516 (9)
C17—H17B0.9800C73—H73A0.9900
C17—H17C0.9800C73—H73B0.9900
N21—C261.490 (7)C74—C771.510 (8)
N21—C221.498 (7)C74—C751.542 (8)
N21—H030.90 (2)C74—H741.0000
N21—H040.90 (2)C75—C761.500 (8)
C22—C231.521 (8)C75—H75A0.9900
C22—H22A0.9900C75—H75B0.9900
C22—H22B0.9900C76—H76A0.9900
C23—C241.526 (7)C76—H76B0.9900
C23—H23A0.9900C77—H77A0.9800
C23—H23B0.9900C77—H77B0.9800
C24—C251.514 (7)C77—H77C0.9800
C24—C271.519 (7)N81—C821.471 (10)
C24—H241.0000N81—C861.490 (8)
C25—C261.509 (7)N81—H81B0.9100
C25—H25A0.9900N81—H81A0.9100
C25—H25B0.9900C82—C831.491 (10)
C26—H26A0.9900C82—H82A0.9900
C26—H26B0.9900C82—H82B0.9900
C27—H27A0.9800C83—C841.514 (9)
C27—H27B0.9800C83—H83A0.9900
C27—H27C0.9800C83—H83B0.9900
N31—C321.467 (8)C84—C851.509 (8)
N31—C361.481 (9)C84—C871.517 (8)
N31—H050.90 (2)C84—H841.0000
N31—H060.90 (2)C85—C861.518 (7)
C32—C331.515 (8)C85—H85A0.9900
C32—H32A0.9900C85—H85B0.9900
C32—H32B0.9900C86—H86A0.9900
C33—C341.513 (8)C86—H86B0.9900
C33—H33A0.9900C87—H87A0.9800
C33—H33B0.9900C87—H87B0.9800
C34—C371.524 (8)C87—H87C0.9800
C34—C351.527 (8)N91—C961.491 (8)
C34—H341.0000N91—C921.495 (8)
C35—C361.518 (8)N91—H0170.93 (3)
C35—H35A0.9900N91—H0180.93 (3)
C35—H35B0.9900C92—C931.503 (8)
C36—H36A0.9900C92—H92A0.9900
C36—H36B0.9900C92—H92B0.9900
C37—H37A0.9800C93—C941.514 (8)
C37—H37B0.9800C93—H93A0.9900
C37—H37C0.9800C93—H93B0.9900
N41—C461.492 (7)C94—C971.513 (8)
N41—C421.500 (7)C94—C951.535 (8)
N41—H070.89 (2)C94—H941.0000
N41—H080.89 (2)C95—C961.507 (8)
C42—C431.518 (8)C95—H95A0.9900
C42—H42A0.9900C95—H95B0.9900
C42—H42B0.9900C96—H96A0.9900
C43—C441.530 (8)C96—H96B0.9900
C43—H43A0.9900C97—H97A0.9800
C43—H43B0.9900C97—H97B0.9800
C44—C471.519 (8)C97—H97C0.9800
C44—C451.529 (8)N101—C1061.485 (8)
C44—H441.0000N101—C1021.486 (7)
C45—C461.511 (8)N101—H0190.93 (3)
C45—H45A0.9900N101—H0200.93 (3)
C45—H45B0.9900C102—C1031.531 (8)
C46—H46A0.9900C102—H10A0.9900
C46—H46B0.9900C102—H10B0.9900
C47—H47A0.9800C103—C1041.530 (8)
C47—H47B0.9800C103—H10C0.9900
C47—H47C0.9800C103—H10D0.9900
N51—C521.481 (8)C104—C1071.510 (8)
N51—C561.489 (8)C104—C1051.538 (9)
N51—H090.93 (3)C104—H10E1.0000
N51—H0100.93 (3)C105—C1061.517 (8)
C52—C531.515 (8)C105—H10F0.9900
C52—H52A0.9900C105—H10G0.9900
C52—H52B0.9900C106—H10H0.9900
C53—C541.533 (8)C106—H10I0.9900
C53—H53A0.9900C107—H10J0.9800
C53—H53B0.9900C107—H10K0.9800
C54—C551.513 (8)C107—H10L0.9800
Cl3—Au1—Cl489.77 (5)C54—C55—H55B109.0
Cl3—Au1—Cl1178.58 (6)C56—C55—H55B109.0
Cl4—Au1—Cl189.91 (5)H55A—C55—H55B107.8
Cl3—Au1—Cl290.35 (5)N51—C56—C55110.5 (5)
Cl4—Au1—Cl2178.72 (5)N51—C56—H56A109.6
Cl1—Au1—Cl289.99 (5)C55—C56—H56A109.6
Cl7—Au2—Cl5178.76 (6)N51—C56—H56B109.6
Cl7—Au2—Cl891.29 (5)C55—C56—H56B109.6
Cl5—Au2—Cl889.45 (5)H56A—C56—H56B108.1
Cl7—Au2—Cl689.04 (5)C54—C57—H57A109.5
Cl5—Au2—Cl690.24 (5)C54—C57—H57B109.5
Cl8—Au2—Cl6178.58 (5)H57A—C57—H57B109.5
Cl9—Au3—Cl11177.25 (6)C54—C57—H57C109.5
Cl9—Au3—Cl1089.01 (5)H57A—C57—H57C109.5
Cl11—Au3—Cl1090.97 (5)H57B—C57—H57C109.5
Cl9—Au3—Cl1290.95 (5)C66—N61—C62113.2 (5)
Cl11—Au3—Cl1289.13 (5)C66—N61—H61B108.9
Cl10—Au3—Cl12178.86 (6)C62—N61—H61B108.9
Cl13—Au4—Cl15179.66 (5)C66—N61—H61A108.9
Cl13—Au4—Cl1489.19 (5)C62—N61—H61A108.9
Cl15—Au4—Cl1490.76 (5)H61B—N61—H61A107.7
Cl13—Au4—Cl1689.79 (5)N61—C62—C63110.5 (7)
Cl15—Au4—Cl1690.25 (5)N61—C62—H62A109.6
Cl14—Au4—Cl16178.41 (5)C63—C62—H62A109.6
Cl17—Au5—Cl2090.16 (5)N61—C62—H62B109.6
Cl17—Au5—Cl1889.47 (5)C63—C62—H62B109.6
Cl20—Au5—Cl18179.45 (6)H62A—C62—H62B108.1
Cl17—Au5—Cl19179.24 (5)C64—C63—C62112.0 (5)
Cl20—Au5—Cl1989.98 (5)C64—C63—H63A109.2
Cl18—Au5—Cl1990.40 (5)C62—C63—H63A109.2
C12—N11—C16113.3 (4)C64—C63—H63B109.2
C12—N11—H01103 (4)C62—C63—H63B109.2
C16—N11—H01114 (4)H63A—C63—H63B107.9
C12—N11—H02109 (5)C63—C64—C65110.4 (6)
C16—N11—H02112 (5)C63—C64—C67112.2 (5)
H01—N11—H02105 (4)C65—C64—C67110.1 (6)
N11—C12—C13110.8 (4)C63—C64—H64108.0
N11—C12—H12A109.5C65—C64—H64108.0
C13—C12—H12A109.5C67—C64—H64108.0
N11—C12—H12B109.5C64—C65—C66112.8 (6)
C13—C12—H12B109.5C64—C65—H65A109.0
H12A—C12—H12B108.1C66—C65—H65A109.0
C12—C13—C14111.6 (4)C64—C65—H65B109.0
C12—C13—H13A109.3C66—C65—H65B109.0
C14—C13—H13A109.3H65A—C65—H65B107.8
C12—C13—H13B109.3N61—C66—C65109.1 (6)
C14—C13—H13B109.3N61—C66—H66A109.9
H13A—C13—H13B108.0C65—C66—H66A109.9
C15—C14—C17112.3 (5)N61—C66—H66B109.9
C15—C14—C13108.9 (5)C65—C66—H66B109.9
C17—C14—C13111.7 (5)H66A—C66—H66B108.3
C15—C14—H14108.0C64—C67—H67A109.5
C17—C14—H14108.0C64—C67—H67B109.5
C13—C14—H14108.0H67A—C67—H67B109.5
C16—C15—C14111.9 (5)C64—C67—H67C109.5
C16—C15—H15A109.2H67A—C67—H67C109.5
C14—C15—H15A109.2H67B—C67—H67C109.5
C16—C15—H15B109.2C76—N71—C72114.5 (5)
C14—C15—H15B109.2C76—N71—H71A108.6
H15A—C15—H15B107.9C72—N71—H71A108.6
N11—C16—C15109.8 (4)C76—N71—H71B108.6
N11—C16—H16A109.7C72—N71—H71B108.6
C15—C16—H16A109.7H71A—N71—H71B107.6
N11—C16—H16B109.7N71—C72—C73110.5 (5)
C15—C16—H16B109.7N71—C72—H72A109.6
H16A—C16—H16B108.2C73—C72—H72A109.6
C14—C17—H17A109.5N71—C72—H72B109.6
C14—C17—H17B109.5C73—C72—H72B109.6
H17A—C17—H17B109.5H72A—C72—H72B108.1
C14—C17—H17C109.5C72—C73—C74112.6 (5)
H17A—C17—H17C109.5C72—C73—H73A109.1
H17B—C17—H17C109.5C74—C73—H73A109.1
C26—N21—C22112.0 (4)C72—C73—H73B109.1
C26—N21—H03111 (3)C74—C73—H73B109.1
C22—N21—H03107 (3)H73A—C73—H73B107.8
C26—N21—H04113 (3)C77—C74—C73111.3 (5)
C22—N21—H04110 (3)C77—C74—C75111.8 (6)
H03—N21—H04103 (3)C73—C74—C75109.3 (5)
N21—C22—C23109.1 (4)C77—C74—H74108.1
N21—C22—H22A109.9C73—C74—H74108.1
C23—C22—H22A109.9C75—C74—H74108.1
N21—C22—H22B109.9C76—C75—C74111.6 (5)
C23—C22—H22B109.9C76—C75—H75A109.3
H22A—C22—H22B108.3C74—C75—H75A109.3
C22—C23—C24111.0 (5)C76—C75—H75B109.3
C22—C23—H23A109.4C74—C75—H75B109.3
C24—C23—H23A109.4H75A—C75—H75B108.0
C22—C23—H23B109.4N71—C76—C75111.6 (5)
C24—C23—H23B109.4N71—C76—H76A109.3
H23A—C23—H23B108.0C75—C76—H76A109.3
C25—C24—C27112.4 (5)N71—C76—H76B109.3
C25—C24—C23109.3 (5)C75—C76—H76B109.3
C27—C24—C23109.9 (5)H76A—C76—H76B108.0
C25—C24—H24108.4C74—C77—H77A109.5
C27—C24—H24108.4C74—C77—H77B109.5
C23—C24—H24108.4H77A—C77—H77B109.5
C26—C25—C24112.6 (4)C74—C77—H77C109.5
C26—C25—H25A109.1H77A—C77—H77C109.5
C24—C25—H25A109.1H77B—C77—H77C109.5
C26—C25—H25B109.1C82—N81—C86113.3 (5)
C24—C25—H25B109.1C82—N81—H81B108.9
H25A—C25—H25B107.8C86—N81—H81B108.9
N21—C26—C25109.9 (4)C82—N81—H81A108.9
N21—C26—H26A109.7C86—N81—H81A108.9
C25—C26—H26A109.7H81B—N81—H81A107.7
N21—C26—H26B109.7N81—C82—C83111.1 (5)
C25—C26—H26B109.7N81—C82—H82A109.4
H26A—C26—H26B108.2C83—C82—H82A109.4
C24—C27—H27A109.5N81—C82—H82B109.4
C24—C27—H27B109.5C83—C82—H82B109.4
H27A—C27—H27B109.5H82A—C82—H82B108.0
C24—C27—H27C109.5C82—C83—C84111.7 (6)
H27A—C27—H27C109.5C82—C83—H83A109.3
H27B—C27—H27C109.5C84—C83—H83A109.3
C32—N31—C36114.6 (5)C82—C83—H83B109.3
C32—N31—H05111 (5)C84—C83—H83B109.3
C36—N31—H05111 (5)H83A—C83—H83B107.9
C32—N31—H06109 (5)C85—C84—C83108.2 (5)
C36—N31—H06106 (5)C85—C84—C87112.1 (5)
H05—N31—H06104 (4)C83—C84—C87112.1 (6)
N31—C32—C33110.7 (5)C85—C84—H84108.1
N31—C32—H32A109.5C83—C84—H84108.1
C33—C32—H32A109.5C87—C84—H84108.1
N31—C32—H32B109.5C84—C85—C86111.9 (5)
C33—C32—H32B109.5C84—C85—H85A109.2
H32A—C32—H32B108.1C86—C85—H85A109.2
C34—C33—C32112.4 (5)C84—C85—H85B109.2
C34—C33—H33A109.1C86—C85—H85B109.2
C32—C33—H33A109.1H85A—C85—H85B107.9
C34—C33—H33B109.1N81—C86—C85109.5 (5)
C32—C33—H33B109.1N81—C86—H86A109.8
H33A—C33—H33B107.9C85—C86—H86A109.8
C33—C34—C37112.3 (5)N81—C86—H86B109.8
C33—C34—C35109.4 (5)C85—C86—H86B109.8
C37—C34—C35111.4 (5)H86A—C86—H86B108.2
C33—C34—H34107.8C84—C87—H87A109.5
C37—C34—H34107.8C84—C87—H87B109.5
C35—C34—H34107.8H87A—C87—H87B109.5
C36—C35—C34111.5 (5)C84—C87—H87C109.5
C36—C35—H35A109.3H87A—C87—H87C109.5
C34—C35—H35A109.3H87B—C87—H87C109.5
C36—C35—H35B109.3C96—N91—C92112.4 (5)
C34—C35—H35B109.3C96—N91—H017111 (6)
H35A—C35—H35B108.0C92—N91—H017112 (6)
N31—C36—C35111.1 (5)C96—N91—H018107 (5)
N31—C36—H36A109.4C92—N91—H018111 (5)
C35—C36—H36A109.4H017—N91—H018103 (4)
N31—C36—H36B109.4N91—C92—C93110.0 (5)
C35—C36—H36B109.4N91—C92—H92A109.7
H36A—C36—H36B108.0C93—C92—H92A109.7
C34—C37—H37A109.5N91—C92—H92B109.7
C34—C37—H37B109.5C93—C92—H92B109.7
H37A—C37—H37B109.5H92A—C92—H92B108.2
C34—C37—H37C109.5C92—C93—C94113.0 (5)
H37A—C37—H37C109.5C92—C93—H93A109.0
H37B—C37—H37C109.5C94—C93—H93A109.0
C46—N41—C42111.8 (5)C92—C93—H93B109.0
C46—N41—H07110 (4)C94—C93—H93B109.0
C42—N41—H07110 (4)H93A—C93—H93B107.8
C46—N41—H08115 (5)C97—C94—C93112.5 (5)
C42—N41—H08102 (5)C97—C94—C95111.1 (5)
H07—N41—H08108 (4)C93—C94—C95108.4 (5)
N41—C42—C43110.2 (5)C97—C94—H94108.3
N41—C42—H42A109.6C93—C94—H94108.3
C43—C42—H42A109.6C95—C94—H94108.3
N41—C42—H42B109.6C96—C95—C94113.2 (5)
C43—C42—H42B109.6C96—C95—H95A108.9
H42A—C42—H42B108.1C94—C95—H95A108.9
C42—C43—C44111.7 (5)C96—C95—H95B108.9
C42—C43—H43A109.3C94—C95—H95B108.9
C44—C43—H43A109.3H95A—C95—H95B107.8
C42—C43—H43B109.3N91—C96—C95110.7 (5)
C44—C43—H43B109.3N91—C96—H96A109.5
H43A—C43—H43B107.9C95—C96—H96A109.5
C47—C44—C45111.3 (5)N91—C96—H96B109.5
C47—C44—C43111.6 (5)C95—C96—H96B109.5
C45—C44—C43109.3 (5)H96A—C96—H96B108.1
C47—C44—H44108.2C94—C97—H97A109.5
C45—C44—H44108.2C94—C97—H97B109.5
C43—C44—H44108.2H97A—C97—H97B109.5
C46—C45—C44111.2 (5)C94—C97—H97C109.5
C46—C45—H45A109.4H97A—C97—H97C109.5
C44—C45—H45A109.4H97B—C97—H97C109.5
C46—C45—H45B109.4C106—N101—C102112.3 (5)
C44—C45—H45B109.4C106—N101—H019107 (5)
H45A—C45—H45B108.0C102—N101—H019117 (5)
N41—C46—C45110.8 (4)C106—N101—H020112 (4)
N41—C46—H46A109.5C102—N101—H020108 (3)
C45—C46—H46A109.5H019—N101—H020101 (4)
N41—C46—H46B109.5N101—C102—C103110.0 (5)
C45—C46—H46B109.5N101—C102—H10A109.7
H46A—C46—H46B108.1C103—C102—H10A109.7
C44—C47—H47A109.5N101—C102—H10B109.7
C44—C47—H47B109.5C103—C102—H10B109.7
H47A—C47—H47B109.5H10A—C102—H10B108.2
C44—C47—H47C109.5C104—C103—C102112.8 (5)
H47A—C47—H47C109.5C104—C103—H10C109.0
H47B—C47—H47C109.5C102—C103—H10C109.0
C52—N51—C56113.1 (5)C104—C103—H10D109.0
C52—N51—H09117 (4)C102—C103—H10D109.0
C56—N51—H09104 (4)H10C—C103—H10D107.8
C52—N51—H010116 (5)C107—C104—C103110.9 (5)
C56—N51—H010103 (5)C107—C104—C105110.9 (5)
H09—N51—H010101 (4)C103—C104—C105109.8 (5)
N51—C52—C53110.3 (5)C107—C104—H10E108.4
N51—C52—H52A109.6C103—C104—H10E108.4
C53—C52—H52A109.6C105—C104—H10E108.4
N51—C52—H52B109.6C106—C105—C104112.3 (5)
C53—C52—H52B109.6C106—C105—H10F109.2
H52A—C52—H52B108.1C104—C105—H10F109.2
C52—C53—C54112.5 (5)C106—C105—H10G109.2
C52—C53—H53A109.1C104—C105—H10G109.2
C54—C53—H53A109.1H10F—C105—H10G107.9
C52—C53—H53B109.1N101—C106—C105109.8 (5)
C54—C53—H53B109.1N101—C106—H10H109.7
H53A—C53—H53B107.8C105—C106—H10H109.7
C55—C54—C57111.6 (5)N101—C106—H10I109.7
C55—C54—C53109.5 (5)C105—C106—H10I109.7
C57—C54—C53110.9 (5)H10H—C106—H10I108.2
C55—C54—H54108.3C104—C107—H10J109.5
C57—C54—H54108.3C104—C107—H10K109.5
C53—C54—H54108.3H10J—C107—H10K109.5
C54—C55—C56112.7 (5)C104—C107—H10L109.5
C54—C55—H55A109.0H10J—C107—H10L109.5
C56—C55—H55A109.0H10K—C107—H10L109.5
C16—N11—C12—C1354.6 (6)C66—N61—C62—C6356.9 (8)
N11—C12—C13—C1454.7 (6)N61—C62—C63—C6453.4 (9)
C12—C13—C14—C1556.1 (6)C62—C63—C64—C6552.1 (9)
C12—C13—C14—C17179.3 (5)C62—C63—C64—C67175.4 (7)
C17—C14—C15—C16178.2 (5)C63—C64—C65—C6654.1 (8)
C13—C14—C15—C1657.6 (6)C67—C64—C65—C66178.5 (6)
C12—N11—C16—C1555.4 (6)C62—N61—C66—C6557.8 (7)
C14—C15—C16—N1157.1 (6)C64—C65—C66—N6156.1 (8)
C26—N21—C22—C2359.1 (6)C76—N71—C72—C7352.8 (7)
N21—C22—C23—C2458.2 (6)N71—C72—C73—C7454.0 (8)
C22—C23—C24—C2556.2 (6)C72—C73—C74—C77179.3 (6)
C22—C23—C24—C27180.0 (5)C72—C73—C74—C7555.3 (7)
C27—C24—C25—C26177.4 (5)C77—C74—C75—C76178.6 (5)
C23—C24—C25—C2655.1 (6)C73—C74—C75—C7654.9 (7)
C22—N21—C26—C2557.5 (6)C72—N71—C76—C7553.6 (7)
C24—C25—C26—N2155.6 (6)C74—C75—C76—N7154.0 (7)
C36—N31—C32—C3353.5 (6)C86—N81—C82—C8355.1 (7)
N31—C32—C33—C3454.5 (7)N81—C82—C83—C8456.5 (8)
C32—C33—C34—C37179.9 (5)C82—C83—C84—C8557.3 (7)
C32—C33—C34—C3555.6 (6)C82—C83—C84—C87178.5 (6)
C33—C34—C35—C3655.0 (6)C83—C84—C85—C8657.5 (7)
C37—C34—C35—C36179.8 (5)C87—C84—C85—C86178.3 (5)
C32—N31—C36—C3553.6 (7)C82—N81—C86—C8554.3 (7)
C34—C35—C36—N3153.7 (7)C84—C85—C86—N8156.0 (7)
C46—N41—C42—C4356.7 (7)C96—N91—C92—C9356.7 (6)
N41—C42—C43—C4456.1 (7)N91—C92—C93—C9457.3 (7)
C42—C43—C44—C47179.1 (5)C92—C93—C94—C97178.1 (5)
C42—C43—C44—C4555.6 (7)C92—C93—C94—C9554.9 (6)
C47—C44—C45—C46179.4 (5)C97—C94—C95—C96177.3 (5)
C43—C44—C45—C4655.7 (6)C93—C94—C95—C9653.2 (6)
C42—N41—C46—C4557.5 (7)C92—N91—C96—C9555.3 (6)
C44—C45—C46—N4157.1 (6)C94—C95—C96—N9154.1 (6)
C56—N51—C52—C5356.3 (6)C106—N101—C102—C10358.3 (6)
N51—C52—C53—C5455.0 (6)N101—C102—C103—C10454.3 (6)
C52—C53—C54—C5553.5 (6)C102—C103—C104—C107174.2 (5)
C52—C53—C54—C57177.1 (5)C102—C103—C104—C10551.4 (6)
C57—C54—C55—C56176.5 (5)C107—C104—C105—C106175.4 (5)
C53—C54—C55—C5653.3 (6)C103—C104—C105—C10652.6 (6)
C52—N51—C56—C5556.2 (6)C102—N101—C106—C10559.7 (6)
C54—C55—C56—N5154.8 (6)C104—C105—C106—N10156.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H01···Cl210.90 (2)2.18 (3)3.073 (5)171 (5)
N11—H02···Cl6i0.89 (2)2.60 (5)3.335 (5)140 (6)
N21—H03···Cl210.90 (2)2.30 (2)3.182 (5)167 (4)
N21—H04···Cl220.90 (2)2.50 (4)3.252 (5)142 (4)
N31—H05···Cl210.90 (2)2.22 (3)3.099 (5)167 (6)
N31—H06···Cl220.90 (2)2.27 (3)3.134 (5)162 (7)
N41—H07···Cl230.89 (2)2.32 (2)3.196 (5)171 (5)
N41—H08···Cl220.89 (2)2.59 (6)3.224 (5)129 (6)
N51—H09···Cl220.93 (3)2.33 (4)3.180 (5)151 (6)
N51—H010···Cl230.93 (3)2.22 (3)3.126 (5)166 (6)
N61—H61B···Cl230.912.283.161 (6)164
N61—H61A···Cl240.912.573.325 (5)141
N71—H71A···Cl230.912.323.216 (5)169
N71—H71B···Cl240.912.573.254 (5)132
N81—H81B···Cl250.912.263.157 (5)170
N81—H81A···Cl240.912.243.146 (5)175
N91—H017···Cl240.93 (3)2.56 (6)3.356 (5)144 (7)
N91—H018···Cl250.93 (3)2.23 (3)3.134 (5)163 (7)
N101—H019···Cl50.93 (3)2.64 (4)3.459 (5)147 (6)
N101—H019···Cl80.93 (3)2.72 (5)3.471 (5)138 (6)
N101—H020···Cl250.93 (3)2.15 (3)3.075 (5)170 (4)
C12—H12A···Cl1ii0.992.813.753 (6)159
C12—H12A···Cl5i0.992.893.553 (6)125
C16—H16A···Cl13iii0.992.953.886 (6)157
C22—H22A···Cl200.992.933.700 (6)135
C26—H26A···Cl6iv0.992.953.826 (6)148
C26—H26B···Cl21iii0.992.893.570 (6)127
C36—H36A···Cl130.992.923.847 (6)157
C42—H42B···Cl7iv0.992.783.744 (7)164
C43—H43A···Cl100.992.933.785 (7)145
C45—H45A···Cl4v0.992.853.629 (6)136
C46—H46B···Cl180.992.953.766 (7)140
C52—H52A···Cl20.992.923.863 (6)159
C52—H52B···Cl170.992.903.496 (6)119
C53—H53B···Cl170.992.843.554 (6)129
C56—H56A···Cl150.992.783.692 (6)154
C65—H65B···Cl30.992.873.581 (7)130
C66—H66A···Cl30.992.973.569 (7)120
C66—H66B···Cl150.992.973.923 (7)162
C75—H75A···Cl11vi0.992.973.724 (6)134
C76—H76B···Cl100.992.753.638 (7)149
C76—H76B···Cl240.992.913.389 (6)111
C82—H82B···Cl120.992.663.629 (7)166
C83—H83A···Cl9iv0.992.963.664 (7)129
C86—H86B···Cl7vii0.992.953.511 (6)117
C92—H92B···Cl120.992.973.740 (7)135
C93—H93B···Cl110.992.793.515 (6)131
C93—H93B···Cl11vi0.992.973.635 (6)125
C96—H96A···Cl40.992.813.773 (6)163
C96—H96B···Cl25viii0.992.783.676 (6)151
C102—H10B···Cl4viii0.992.983.716 (6)132
C103—H10C···Cl50.992.923.736 (6)141
C105—H10G···Cl15iv0.992.903.608 (6)129
C106—H10I···Cl120.992.953.877 (6)157
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y+1, z; (iii) x+2, y+2, z; (iv) x+1, y+2, z+1; (v) x+1, y, z; (vi) x+1, y+1, z+1; (vii) x, y+2, z+1; (viii) x, y+1, z+1.
Hexakis(4-methylpiperidinium) tetrakis{tetrachloridoaurate(III)} dichloroiodate(I) chloride (3) top
Crystal data top
(C6H14N)[AuCl4]4(Cl2I)ClZ = 1
Mr = 2189.40F(000) = 1034
Triclinic, P1Dx = 2.241 Mg m3
a = 9.5362 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.4772 (6) ÅCell parameters from 17356 reflections
c = 13.7179 (7) Åθ = 2.4–29.8°
α = 98.422 (4)°µ = 10.31 mm1
β = 108.961 (5)°T = 100 K
γ = 96.954 (4)°Irregular, orange
V = 1622.36 (15) Å30.1 × 0.1 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
9693 independent reflections
Radiation source: Enhance (Mo) X-ray Source8260 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.072
ω scanθmax = 30.9°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2013)
h = 1313
Tmin = 0.667, Tmax = 1.000k = 1919
97738 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0126P)2 + 0.4353P]
where P = (Fo2 + 2Fc2)/3
9693 reflections(Δ/σ)max = 0.003
331 parametersΔρmax = 1.16 e Å3
18 restraintsΔρmin = 0.96 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.39387 (2)0.50585 (2)0.20597 (2)0.01070 (3)
Au21.0000000.5000000.5000000.01058 (4)
Au30.5000000.0000000.0000000.01265 (4)
I11.0000001.0000000.5000000.01432 (7)
Cl10.15106 (9)0.50346 (7)0.10488 (7)0.01718 (18)
Cl20.44699 (10)0.67948 (7)0.22697 (7)0.01853 (19)
Cl30.63842 (9)0.50623 (7)0.30913 (7)0.01897 (19)
Cl40.34111 (10)0.33372 (6)0.19184 (7)0.01687 (18)
Cl51.01344 (10)0.67022 (6)0.50122 (7)0.01606 (18)
Cl61.13481 (9)0.48389 (6)0.38799 (7)0.01554 (17)
Cl70.37502 (11)0.08877 (7)0.08891 (8)0.0229 (2)
Cl80.49745 (10)0.12140 (7)0.10024 (7)0.01984 (19)
Cl90.5000000.5000000.0000000.0195 (3)
Cl100.78118 (10)0.86637 (7)0.36866 (7)0.02082 (19)
N110.7720 (3)0.6787 (2)0.1638 (3)0.0172 (7)
H010.691 (3)0.627 (2)0.136 (3)0.042 (14)*
H020.754 (4)0.722 (2)0.214 (2)0.013 (10)*
C120.7924 (4)0.7338 (3)0.0815 (3)0.0181 (8)
H12A0.6999770.7606420.0482540.022*
H12B0.8099010.6860930.0262380.022*
C130.9255 (4)0.8210 (3)0.1300 (3)0.0178 (8)
H13A0.9035110.8713190.1808470.021*
H13B0.9398250.8556290.0741700.021*
C141.0709 (4)0.7846 (3)0.1864 (3)0.0145 (7)
H141.0978380.7398440.1328140.017*
C151.0452 (4)0.7218 (3)0.2651 (3)0.0157 (7)
H15A1.1359400.6920690.2953250.019*
H15B1.0308500.7672570.3233390.019*
C160.9097 (4)0.6369 (3)0.2156 (3)0.0158 (8)
H16A0.9282440.5868280.1628290.019*
H16B0.8936170.6012650.2703260.019*
C171.2006 (4)0.8740 (3)0.2411 (3)0.0245 (9)
H17A1.2122380.9150990.1899520.037*
H17B1.2938680.8482930.2712880.037*
H17C1.1791380.9162040.2972060.037*
N210.6624 (3)0.6990 (2)0.4978 (2)0.0146 (6)
H030.724 (4)0.653 (2)0.497 (3)0.021 (11)*
H040.647 (4)0.724 (3)0.438 (2)0.035 (13)*
C220.7427 (4)0.7843 (3)0.5896 (3)0.0174 (8)
H22A0.8389900.8147680.5841690.021*
H22B0.7659340.7575790.6554770.021*
C230.6463 (4)0.8648 (3)0.5926 (3)0.0180 (8)
H23A0.6313180.8956910.5295860.022*
H23B0.6994290.9192970.6554240.022*
C240.4924 (4)0.8207 (3)0.5958 (3)0.0163 (8)
H240.5091810.7945550.6625500.020*
C250.4167 (4)0.7309 (3)0.5035 (3)0.0193 (8)
H25A0.3207030.6989640.5083150.023*
H25B0.3928250.7563640.4369010.023*
C260.5157 (4)0.6512 (3)0.5016 (3)0.0188 (8)
H26A0.5332350.6212310.5653490.023*
H26B0.4646680.5958590.4392930.023*
C270.3942 (5)0.9023 (3)0.5949 (3)0.0279 (10)
H27A0.3786520.9301490.5308970.042*
H27B0.4443110.9571060.6566940.042*
H27C0.2964600.8719100.5966280.042*
N310.6699 (3)0.3078 (3)0.1185 (3)0.0207 (7)
H050.618 (4)0.359 (2)0.124 (3)0.040 (13)*
H060.607 (3)0.2556 (19)0.068 (2)0.019 (11)*
C320.7237 (4)0.2736 (3)0.2207 (3)0.0253 (9)
H32A0.6366310.2516670.2415970.030*
H32B0.7916730.3310700.2758030.030*
C330.8070 (4)0.1859 (3)0.2112 (3)0.0177 (8)
H33A0.7354820.1261990.1616880.021*
H33B0.8467450.1667630.2806750.021*
C340.9367 (4)0.2125 (3)0.1726 (3)0.0159 (8)
H341.0150050.2664420.2279200.019*
C350.8813 (4)0.2549 (3)0.0717 (3)0.0192 (8)
H35A0.9689330.2796580.0525710.023*
H35B0.8145810.1992230.0137670.023*
C360.7967 (4)0.3407 (3)0.0831 (3)0.0235 (9)
H36A0.8661350.3999330.1348870.028*
H36B0.7569690.3620960.0147600.028*
C371.0079 (4)0.1189 (3)0.1546 (3)0.0257 (9)
H37A1.0320420.0886240.2175450.039*
H37B1.1004380.1392810.1404720.039*
H37C0.9368590.0687250.0944080.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01036 (6)0.01113 (6)0.01079 (7)0.00253 (5)0.00391 (5)0.00176 (5)
Au20.00919 (9)0.01244 (9)0.01023 (9)0.00297 (7)0.00296 (7)0.00280 (7)
Au30.01158 (9)0.01122 (9)0.01348 (10)0.00249 (7)0.00237 (7)0.00154 (7)
I10.01367 (15)0.01521 (16)0.01513 (16)0.00419 (12)0.00612 (13)0.00236 (13)
Cl10.0109 (4)0.0199 (5)0.0197 (5)0.0047 (3)0.0027 (3)0.0052 (4)
Cl20.0196 (4)0.0122 (4)0.0242 (5)0.0025 (3)0.0091 (4)0.0018 (4)
Cl30.0124 (4)0.0202 (5)0.0195 (5)0.0044 (3)0.0004 (3)0.0002 (4)
Cl40.0188 (4)0.0133 (4)0.0167 (4)0.0021 (3)0.0036 (4)0.0041 (3)
Cl50.0172 (4)0.0141 (4)0.0195 (4)0.0045 (3)0.0085 (4)0.0053 (4)
Cl60.0156 (4)0.0157 (4)0.0192 (4)0.0048 (3)0.0098 (3)0.0049 (4)
Cl70.0272 (5)0.0226 (5)0.0248 (5)0.0125 (4)0.0137 (4)0.0051 (4)
Cl80.0224 (5)0.0181 (5)0.0215 (5)0.0064 (4)0.0077 (4)0.0092 (4)
Cl90.0166 (6)0.0223 (7)0.0172 (6)0.0019 (5)0.0075 (5)0.0024 (5)
Cl100.0201 (5)0.0213 (5)0.0197 (5)0.0029 (4)0.0070 (4)0.0004 (4)
N110.0135 (16)0.0191 (17)0.0196 (17)0.0037 (13)0.0073 (13)0.0014 (14)
C120.0169 (18)0.022 (2)0.0154 (19)0.0087 (16)0.0014 (15)0.0101 (16)
C130.024 (2)0.0141 (18)0.019 (2)0.0083 (15)0.0088 (16)0.0079 (15)
C140.0170 (18)0.0135 (18)0.0169 (19)0.0044 (14)0.0099 (15)0.0044 (15)
C150.0140 (17)0.0161 (18)0.0149 (18)0.0022 (14)0.0021 (14)0.0038 (15)
C160.0137 (17)0.0177 (19)0.0150 (18)0.0035 (14)0.0012 (14)0.0084 (15)
C170.025 (2)0.017 (2)0.033 (2)0.0043 (16)0.0156 (18)0.0021 (18)
N210.0120 (15)0.0150 (16)0.0161 (16)0.0028 (12)0.0051 (13)0.0001 (13)
C220.0125 (17)0.0182 (19)0.0186 (19)0.0015 (15)0.0032 (15)0.0007 (15)
C230.0178 (19)0.0108 (17)0.025 (2)0.0011 (14)0.0084 (16)0.0019 (15)
C240.0196 (19)0.0165 (18)0.0180 (19)0.0076 (15)0.0110 (15)0.0055 (15)
C250.0110 (17)0.026 (2)0.021 (2)0.0011 (15)0.0079 (15)0.0025 (17)
C260.0152 (18)0.0168 (19)0.023 (2)0.0040 (15)0.0098 (16)0.0013 (16)
C270.028 (2)0.031 (2)0.038 (3)0.0194 (19)0.020 (2)0.015 (2)
N310.0156 (16)0.0180 (17)0.0274 (19)0.0083 (14)0.0055 (14)0.0012 (15)
C320.021 (2)0.036 (2)0.024 (2)0.0089 (18)0.0130 (17)0.0058 (19)
C330.0156 (18)0.020 (2)0.0158 (19)0.0003 (15)0.0033 (15)0.0064 (16)
C340.0110 (17)0.0158 (18)0.0170 (19)0.0018 (14)0.0014 (14)0.0005 (15)
C350.0182 (19)0.024 (2)0.0190 (19)0.0027 (16)0.0109 (16)0.0073 (16)
C360.019 (2)0.022 (2)0.032 (2)0.0027 (16)0.0071 (17)0.0152 (18)
C370.019 (2)0.023 (2)0.029 (2)0.0061 (17)0.0028 (17)0.0010 (18)
Geometric parameters (Å, º) top
Au1—Cl12.2733 (8)C22—C231.509 (5)
Au1—Cl42.2792 (9)C22—H22A0.9900
Au1—Cl22.2882 (9)C22—H22B0.9900
Au1—Cl32.3003 (8)C23—C241.533 (5)
Au2—Cl52.2794 (8)C23—H23A0.9900
Au2—Cl5i2.2794 (8)C23—H23B0.9900
Au2—Cl62.3052 (8)C24—C271.527 (5)
Au2—Cl6i2.3052 (8)C24—C251.528 (5)
Au3—Cl7ii2.2808 (9)C24—H241.0000
Au3—Cl72.2808 (9)C25—C261.516 (5)
Au3—Cl82.2837 (9)C25—H25A0.9900
Au3—Cl82.2837 (9)C25—H25B0.9900
I1—Cl102.5574 (9)C26—H26A0.9900
I1—Cl10iii2.5574 (10)C26—H26B0.9900
N11—C121.489 (5)C27—H27A0.9800
N11—C161.496 (4)C27—H27B0.9800
N11—H010.912 (19)C27—H27C0.9800
N11—H020.915 (19)N31—C361.487 (5)
C12—C131.515 (5)N31—C321.489 (5)
C12—H12A0.9900N31—H050.907 (19)
C12—H12B0.9900N31—H060.908 (19)
C13—C141.531 (5)C32—C331.514 (5)
C13—H13A0.9900C32—H32A0.9900
C13—H13B0.9900C32—H32B0.9900
C14—C171.521 (5)C33—C341.521 (5)
C14—C151.528 (5)C33—H33A0.9900
C14—H141.0000C33—H33B0.9900
C15—C161.511 (5)C34—C371.530 (5)
C15—H15A0.9900C34—C351.533 (5)
C15—H15B0.9900C34—H341.0000
C16—H16A0.9900C35—C361.506 (5)
C16—H16B0.9900C35—H35A0.9900
C17—H17A0.9800C35—H35B0.9900
C17—H17B0.9800C36—H36A0.9900
C17—H17C0.9800C36—H36B0.9900
N21—C261.488 (4)C37—H37A0.9800
N21—C221.493 (4)C37—H37B0.9800
N21—H030.909 (19)C37—H37C0.9800
N21—H040.910 (19)
Cl1—Au1—Cl489.87 (3)C22—C23—C24111.9 (3)
Cl1—Au1—Cl290.75 (3)C22—C23—H23A109.2
Cl4—Au1—Cl2177.70 (3)C24—C23—H23A109.2
Cl1—Au1—Cl3179.16 (3)C22—C23—H23B109.2
Cl4—Au1—Cl389.40 (3)C24—C23—H23B109.2
Cl2—Au1—Cl389.96 (3)H23A—C23—H23B107.9
Cl5—Au2—Cl5i180.0C27—C24—C25111.8 (3)
Cl5—Au2—Cl691.51 (3)C27—C24—C23111.3 (3)
Cl5i—Au2—Cl688.48 (3)C25—C24—C23108.9 (3)
Cl5—Au2—Cl6i88.49 (3)C27—C24—H24108.3
Cl5i—Au2—Cl6i91.52 (3)C25—C24—H24108.3
Cl6—Au2—Cl6i180.0C23—C24—H24108.3
Cl7ii—Au3—Cl7180.00 (4)C26—C25—C24112.2 (3)
Cl7ii—Au3—Cl8ii90.28 (3)C26—C25—H25A109.2
Cl7—Au3—Cl8ii89.72 (3)C24—C25—H25A109.2
Cl7ii—Au3—Cl889.72 (3)C26—C25—H25B109.2
Cl7—Au3—Cl890.28 (3)C24—C25—H25B109.2
Cl8ii—Au3—Cl8180.0H25A—C25—H25B107.9
Cl10—I1—Cl10iii180.0N21—C26—C25109.7 (3)
C12—N11—C16111.1 (3)N21—C26—H26A109.7
C12—N11—H01111 (3)C25—C26—H26A109.7
C16—N11—H01109 (3)N21—C26—H26B109.7
C12—N11—H02110 (2)C25—C26—H26B109.7
C16—N11—H02108 (2)H26A—C26—H26B108.2
H01—N11—H02107 (3)C24—C27—H27A109.5
N11—C12—C13110.0 (3)C24—C27—H27B109.5
N11—C12—H12A109.7H27A—C27—H27B109.5
C13—C12—H12A109.7C24—C27—H27C109.5
N11—C12—H12B109.7H27A—C27—H27C109.5
C13—C12—H12B109.7H27B—C27—H27C109.5
H12A—C12—H12B108.2C36—N31—C32111.7 (3)
C12—C13—C14112.1 (3)C36—N31—H05110 (3)
C12—C13—H13A109.2C32—N31—H05110 (3)
C14—C13—H13A109.2C36—N31—H06107 (2)
C12—C13—H13B109.2C32—N31—H06110 (2)
C14—C13—H13B109.2H05—N31—H06108 (3)
H13A—C13—H13B107.9N31—C32—C33110.3 (3)
C17—C14—C15110.7 (3)N31—C32—H32A109.6
C17—C14—C13111.2 (3)C33—C32—H32A109.6
C15—C14—C13109.7 (3)N31—C32—H32B109.6
C17—C14—H14108.4C33—C32—H32B109.6
C15—C14—H14108.4H32A—C32—H32B108.1
C13—C14—H14108.4C32—C33—C34112.3 (3)
C16—C15—C14112.5 (3)C32—C33—H33A109.1
C16—C15—H15A109.1C34—C33—H33A109.1
C14—C15—H15A109.1C32—C33—H33B109.1
C16—C15—H15B109.1C34—C33—H33B109.1
C14—C15—H15B109.1H33A—C33—H33B107.9
H15A—C15—H15B107.8C33—C34—C37110.3 (3)
N11—C16—C15110.5 (3)C33—C34—C35110.1 (3)
N11—C16—H16A109.6C37—C34—C35110.9 (3)
C15—C16—H16A109.6C33—C34—H34108.4
N11—C16—H16B109.6C37—C34—H34108.5
C15—C16—H16B109.6C35—C34—H34108.4
H16A—C16—H16B108.1C36—C35—C34112.6 (3)
C14—C17—H17A109.5C36—C35—H35A109.1
C14—C17—H17B109.5C34—C35—H35A109.1
H17A—C17—H17B109.5C36—C35—H35B109.1
C14—C17—H17C109.5C34—C35—H35B109.1
H17A—C17—H17C109.5H35A—C35—H35B107.8
H17B—C17—H17C109.5N31—C36—C35110.4 (3)
C26—N21—C22111.7 (3)N31—C36—H36A109.6
C26—N21—H03112 (2)C35—C36—H36A109.6
C22—N21—H03108 (2)N31—C36—H36B109.6
C26—N21—H04110 (3)C35—C36—H36B109.6
C22—N21—H04108 (3)H36A—C36—H36B108.1
H03—N21—H04107 (3)C34—C37—H37A109.5
N21—C22—C23110.3 (3)C34—C37—H37B109.5
N21—C22—H22A109.6H37A—C37—H37B109.5
C23—C22—H22A109.6C34—C37—H37C109.5
N21—C22—H22B109.6H37A—C37—H37C109.5
C23—C22—H22B109.6H37B—C37—H37C109.5
H22A—C22—H22B108.1
C16—N11—C12—C1359.4 (4)C27—C24—C25—C26178.0 (3)
N11—C12—C13—C1457.1 (4)C23—C24—C25—C2654.7 (4)
C12—C13—C14—C17176.0 (3)C22—N21—C26—C2558.5 (4)
C12—C13—C14—C1553.2 (4)C24—C25—C26—N2157.1 (4)
C17—C14—C15—C16175.6 (3)C36—N31—C32—C3358.8 (4)
C13—C14—C15—C1652.5 (4)N31—C32—C33—C3455.7 (4)
C12—N11—C16—C1558.7 (4)C32—C33—C34—C37174.8 (3)
C14—C15—C16—N1155.6 (4)C32—C33—C34—C3552.0 (4)
C26—N21—C22—C2358.6 (4)C33—C34—C35—C3651.9 (4)
N21—C22—C23—C2456.6 (4)C37—C34—C35—C36174.3 (3)
C22—C23—C24—C27178.0 (3)C32—N31—C36—C3558.6 (4)
C22—C23—C24—C2554.3 (4)C34—C35—C36—N3155.2 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H01···Cl90.91 (2)2.41 (2)3.270 (3)157 (3)
N11—H02···Cl20.92 (2)2.98 (3)3.479 (3)116 (2)
N11—H02···Cl100.92 (2)2.58 (2)3.465 (3)164 (3)
N21—H03···Cl30.91 (2)2.82 (3)3.317 (3)116 (3)
N21—H03···Cl50.91 (2)2.72 (3)3.402 (3)133 (3)
N21—H03···Cl6i0.91 (2)2.79 (2)3.547 (3)142 (3)
N21—H04···Cl20.91 (2)2.83 (3)3.566 (3)139 (3)
N21—H04···Cl100.91 (2)2.63 (3)3.371 (3)139 (3)
N31—H05···Cl30.91 (2)2.92 (3)3.569 (3)130 (3)
N31—H05···Cl90.91 (2)2.83 (3)3.538 (3)136 (3)
N31—H06···Cl80.91 (2)2.54 (2)3.406 (3)161 (3)
C12—H12A···Cl7iv0.992.963.724 (3)135
C12—H12A···Cl8iv0.992.803.625 (4)141
C12—H12B···Cl4iv0.992.823.482 (4)125
C15—H15B···Cl50.992.973.508 (4)115
C16—H16A···Cl1v0.992.803.649 (4)145
C16—H16B···Cl30.992.853.627 (4)136
C16—H16B···Cl50.992.953.659 (4)129
C22—H22A···I10.993.324.155 (4)144
C22—H22B···Cl4vi0.992.963.847 (4)149
C25—H25A···Cl5vii0.992.883.823 (4)160
C32—H32B···Cl30.992.983.480 (4)113
C35—H35B···Cl80.992.893.708 (4)140
C36—H36B···Cl1iv0.992.863.671 (4)140
Symmetry codes: (i) x+2, y+1, z+1; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x+1, y+1, z+1; (vii) x1, y, z.
Short Au···Cl and Cl···Cl contacts (Å, °) in the structure of 2c top
ContactDistanceOperatorAssociated angles
Au1···Cl19a3.8488 (14)-1 + x, y, zAu1···Cl19a—Au5a 167.56 (6)
Au1···Cl243.4365 (15)Au1···Cl24···Au3 174.92 (4)
Au2···Cl14a3.4556 (14)1 - x, 2 - y, 1 - zAu2···Cl14a—Au4a 161.47 (6)
Au3···Cl243.7048 (15)
Au4···Cl223.3764 (13)Au4···Cl22···Au5 167.40 (4)
Au5···Cl224.0102 (13)
Cl1···Cl5a3.2111 (18)-x, 1 - y, 1 - zAu1—Cl1···Cl5a 168.60 (7), Cl1···Cl5a—Au2a 163.62 (7)
Cl9···Cl9a3.079 (3)1 - x, 2 - y, 1 - zAu3—Cl9···Cl9a 159.28 (9)
Cl11···Cl11a3.204 (3)1 - x, 1 - y, 1 - zAu3—Cl11···Cl11a 161.66 (9)
Cl3···Cl7a3.1490 (18)-x, 2 - y, 1 - zAu1—Cl3···Cl7a 154.91 (7), Cl3···Cl7a—Au2a 160.34 (7)
Cl16···Cl16a3.516 (3)1 - x, 2 - y, -zAu4—Cl16···Cl16a 148.13 (8)
Cl17···Cl17a3.469 (3)1 - x, 1 - y, -zAu5—Cl17···Cl17a 151.45 (8)
Cl20···Cl213.748 (2)Au5—Cl20···Cl21 142.97 (6)
Note: (a) see column 3 for operators.
Short Au···Cl and Cl···Cl contacts (Å, °) in the structure of 3 top
ContactDistanceOperatorAssociated angles
Au1···Cl93.2909 (2)
Au2···Cl33.6082 (9)Au2···Cl3—Au1 171.71 (4)
Cl1···Cl1a3.3258 (17)-x, 1 - y, -zAu1—Cl1···Cl1a 160.62 (5)
Cl2···Cl8a3.4819 (13)1 - x, 1 - y, -zAu1—Cl2···Cl8a 144.06 (4), Cl2···Cl8a—Au3a 170.85 (4)
Cl2···Cl103.5880 (13)Au1—Cl2···Cl10 133.20 (4), Cl2···Cl10—I1 168.62 (4)
Cl4···Cl73.4911 (13)Au1—Cl4···Cl7 149.78 (4), Cl4···Cl7—Au3 143.72 (4)
Note: (a) see column 3 for operators.
 

Acknowledgements

We acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationBourne, S. A. & Moitsheki, L. J. (2008). Polyhedron 27, 263–267.  CSD CrossRef CAS Google Scholar
First citationBruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDaolio, D., Pizzi, A., Terraneo, G., Ursini, M., Frontera, A. & Resnati, G. (2021). Angew. Chem. Int. Ed. 60, 14385–14389.  CSD CrossRef CAS Google Scholar
First citationDomasevitch, K. V. (2012). Acta Cryst. C68, m169–m172.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDöring, C. (2016). Halogengold(I)-Aminkomplexe und ihre Oxidationsprodukte. Dissertation, Technical University of Braunschweig. Germany. ISBN: 978-3-8439-2639-3.  Google Scholar
First citationDöring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936.  Google Scholar
First citationDöring, C. & Jones, P. G. (2018). Z. Naturforsch. 73b, 43–74.  Google Scholar
First citationDöring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017–1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2024a). Acta Cryst. E80, 157–165.  CSD CrossRef IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2024b). Acta Cryst. E80, 476–480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2024c). Acta Cryst. E80, 894–909.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMakotchenko, E. V., Baidina, I. A. & Korol'kov, I. V. (2014). J. Struct. Chem. 55, 887–894.  CSD CrossRef CAS Google Scholar
First citationMakotchenko, E. V., Baidina, I. A. & Sheludyakova, L. A. (2013). J. Struct. Chem. 54, 206–212.  CrossRef CAS Google Scholar
First citationMetrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Web of Science CrossRef CAS Google Scholar
First citationPizzi, A., Calabrese, M., Daolio, A., Ursini, M., Frontera, A. & Resnati, G. (2022). CrystEngComm 24, 3846–3851.  CSD CrossRef CAS Google Scholar
First citationRajeswaran, M., Bringley, J. F. & Cleary, B. (2007). Acta Cryst. E63, m181–m183.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2013). CrysAlis PRO. Rigaku Oxford Diffraction (formerly Oxford Diffraction and later Agilent Technologies), Yarnton, England.  Google Scholar
First citationRudine, A. B., Walter, M. G. & Wamser, C. C. (2010). J. Org. Chem. 75, 4292–4295.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSavchenkov, A., Demina, L., Safonov, A., Grigoriev, M., Solovov, R. & Abkhalimov, E. (2020). Acta Cryst. C76, 139–147.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStender, M., Balch, A. L. & Olmstead, M. M. (2016). CSD Communication (refcode ZUYLEM) CCDC, Cambridge, England. https://doi.org/10.5517/cc1kj0kn.  Google Scholar
First citationUpmann, D., Näther, C., Jess, I. & Jones, P. G. (2017). Z. Anorg. Allg. Chem. 643, 311–316.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds