research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL BIOLOGY
COMMUNICATIONS
ISSN: 2053-230X

Crystal structure of glutamyl-tRNA synthetase from Helicobacter pylori

crossmark logo

aDartmouth Cancer Center, One Medical Center Drive, Lebanon, NH 03756, USA, bCollege of Arts and Science, Dartmouth College, Hanover, NH 03755, USA, cCollege of Arts and Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA, dCenter for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue, North Suite 500, Seattle, WA 98109, USA, eSeattle Structural Genomics Center for Infectious Diseases, Seattle, Washington, USA, and fUCB BioSciences, Bainbridge Island, WA 98110, USA
*Correspondence e-mail: oluwatoyin.a.asojo@dartmouth.edu

Edited by J. Agirre, University of York, United Kingdom (Received 23 July 2024; accepted 14 November 2024; online 27 November 2024)

This article is part of a focused issue on empowering education through structural genomics.

Helicobacter pylori is one of the most common bacterial infections; over two-thirds of the world's population is infected by early childhood. Persistent H. pylori infection results in gastric ulcers and cancers. Due to drug resistance, there is a need to develop alternative treatments to clear H. pylori. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) conducts structure–function analysis of potential therapeutic targets from H. pylori. Glutamyl-tRNA synthetase (GluRS) is essential for tRNA aminoacylation and is under investigation as a bacterial drug target. The SSGCID produced, crystallized and determined the apo structure of H. pylori GluRS (HpGluRS). HpGluRS has the prototypical bacterial GluRS topology and has similar binding sites and tertiary structures to other bacterial GluRS that are promising drug targets. Residues involved in glutamate binding are well conserved in comparison with Pseudomonas aeruginosa GluRS (PaGluRS), which has been studied to develop promising new inhibitors for P. aeruginosa. These structural similarities can be exploited for drug discovery and repurposing to generate new antibacterials to clear persistent H. pylori infection and reduce gastric ulcers and cancer.

1. Introduction

Helicobacter pylori is a Gram-negative, flagellated and helical bacterium that was first discovered in 1982 in the guts of patients with gastric ulcers and gastritis, establishing the causative role of H. pylori in the development of stomach ulcers (Warren & Marshall, 1983[Warren, J. R. & Marshall, B. (1983). Lancet, 321, 1273-1275.]). According to the Centers for Disease Control, about two-thirds of the world's population is infected by H. pylori by early childhood, and transmission occurs through the fecal–oral, oral–oral or gastric–oral routes. The spiral-shaped H. pylori colonizes the gastric epithelium, and persistent H. pylori infection can lead to peptic ulcers, gastritis and gastric cancer (Malfertheiner et al., 2022[Malfertheiner, P., Megraud, F., Rokkas, T., Gisbert, J. P., Liou, J., Schulz, C., Gasbarrini, A., Hunt, R. H., Leja, M., O'Morain, C., Rugge, M., Suerbaum, S., Tilg, H., Sugano, K. & El-Omar, E. M. (2022). Gut, 71, 1724-1762.]). H. pylori causes peptic ulcers that involve the formation of sores in the stomach lining or part of the upper small intestine, while significantly increasing the risk of developing gastric cancer and gastric mucosa-associated lymphoid tissue (MALT) lymphoma (Crowe, 2019[Crowe, S. E. (2019). N. Engl. J. Med. 380, 1158-1165.]). The pathophysiology of H. pylori depends on environmental factors and the host immune system. Increasing antibiotic resistance of H. pylori is a global cause for concern, and H. pylori is currently treated with bismuth or non-bismuth quadruple therapy for 14 days as a first-line treatment in regions with high clarithromycin or metronidazole resistance (Boyanova et al., 2023[Boyanova, L., Hadzhiyski, P., Gergova, R. & Markovska, R. (2023). Antibiotics, 12, 332.]; Suzuki et al., 2019[Suzuki, S., Esaki, M., Kusano, C., Ikehara, H. & Gotoda, T. (2019). World J. Gastroenterol. 25, 1907-1912.]). H. pylori is one of the major priorities for structure-based drug discovery by the Seattle Structural Genomics Center for Infectious Disease (SSGCID). Towards these ends, the SSGCID selected glutamyl-tRNA synthetase (GluRS) from H. pylori (HpGluRS) as a drug-repurposing and drug-identification target. GluRS catalyzes tRNA aminoacylation: the covalent linkage of glutamate to tRNA. Aminoacyl-tRNA synthases (aaRSs) are enzymes that catalyze the attachment of amino acids to tRNA molecules during transcription (aminoacylation), which is a crucial step in protein synthesis. GluRS and other aminoacyl-tRNA synthetases are crucial for bacterial survival and are promising targets for drug discovery for infectious diseases (Kwon et al., 2019[Kwon, N. H., Fox, P. L. & Kim, S. (2019). Nat. Rev. Drug Discov. 18, 629-650.]; Lee et al., 2018[Lee, E. Y., Kim, S. & Kim, M. H. (2018). Biochem. Pharmacol. 154, 424-434.]; Moen et al., 2017[Moen, S. O., Edwards, T. E., Dranow, D. M., Clifton, M. C., Sankaran, B., Van Voorhis, W. C., Sharma, A., Manoil, C., Staker, B. L., Myler, P. J. & Lorimer, D. D. (2017). Sci. Rep. 7, 223.]; Narsimulu et al., 2024[Narsimulu, B., Jakkula, P., Qureshi, R., Nasim, F. & Qureshi, I. A. (2024). Int. J. Biol. Macromol. 254, 127756.]; Hu et al., 2018[Hu, Y., Palmer, S. O., Robles, S. T., Resto, T., Dean, F. B. & Bullard, J. M. (2018). SLAS Discov. 23, 65-75.]; Brooks et al., 2022[Brooks, L., Subramanian, S., Dranow, D. M., Mayclin, S. J., Myler, P. J. & Asojo, O. A. (2022). Acta Cryst. F78, 306-312.]). Here, we report the production, crystallization and 2.5 Å resolution structure of HpGluRS.

2. Materials and methods

2.1. Macromolecule production

HpGluRS was cloned, expressed and purified using established protocols (Stacy et al., 2011[Stacy, R., Begley, D. W., Phan, I., Staker, B. L., Van Voorhis, W. C., Varani, G., Buchko, G. W., Stewart, L. J. & Myler, P. J. (2011). Acta Cryst. F67, 979-984.]; Serbzhinskiy et al., 2015[Serbzhinskiy, D. A., Clifton, M. C., Sankaran, B., Staker, B. L., Edwards, T. E. & Myler, P. J. (2015). Acta Cryst. F71, 594-599.]; Rodríguez-Hernández et al., 2023[Rodríguez-Hernández, D., Vijayan, K., Zigweid, R., Fenwick, M. K., Sankaran, B., Roobsoong, W., Sattabongkot, J., Glennon, E. K. K., Myler, P. J., Sunnerhagen, P., Staker, B. L., Kaushansky, A. & Grøtli, M. (2023). Nat. Commun. 14, 5408.]). The gene for HpGluRS (UniProt B5Z6J9) encoding amino acids 1–463 was PCR-amplified from genomic DNA using the primers shown in Table 1[link]. The gene was ligated into the expression vector BG1861 to generate plasmid DNA. Chemically competent Escherichia coli BL21(DE3)R3 Rosetta cells were transformed with the plasmid DNA. The plasmid-containing His-HpGluRS cells were tested for expression, and 2 l of culture was grown using auto-induction medium (Studier, 2005[Studier, F. W. (2005). Protein Expr. Purif. 41, 207-234.]) in a LEX Bioreactor (Epiphyte Three) as described previously (Serbzhinskiy et al., 2015[Serbzhinskiy, D. A., Clifton, M. C., Sankaran, B., Staker, B. L., Edwards, T. E. & Myler, P. J. (2015). Acta Cryst. F71, 594-599.]). The expression clone can be requested online at https://www.ssgcid.org/available-materials/expression-clones/.

Table 1
Macromolecule-production information

Source organism Helicobacter pylori (strain G27)
DNA source Nina Salama, FHCRC
Forward primer 5′-CTCACCACCACCACCACCATATGAGTTTGATCGTTACGCGCTTC-3′
Reverse primer 5′-ATCCTATCTTACTCACTTAGTTTTTCAAAAAATTTTCTATTCTTTTGA-3′
Expression vector BG1861
Expression host Escherichia coli BL21(DE3)R3 Rosetta
Complete amino-acid sequence of the construct produced MAHHHHHHMSLIVTRFAPSPTGYLHIGGLRTAIFNYLFARANQGKFFLRIEDTDLSRNSIEAANAIIEAFKWVGLEYDGEILYQSKRFEIYKEYIQKLLDEDKAYYCYMSKDELDALREEQKARKETPRYDNRYRDFKGTPPKGIEPVVRIKVPQNEVIGFNDGVKGEVKVNTNELDDFIIARSDGTPTYNFVVIVDDALMGITDVIRGDDHLSNTPKQIVLYKALNFKIPNFFHVPMILNEEGQKLSKRHGATNVMDYQEMGYLKEALVNFLVRLGWSYQDKEIFMQELLECFDPKDLNSSPSCFSWHKLNWLNAHYLKNQSAQKLLELLKPFSFSDLSHLNPAQLDRLLDALKERSQTLKELALKIDEVLIAPVEYEEKVFKKLNQALIMPLLEKFKLELKEANFNDESALENAMHKIIEEEKIKAGSFMQPLRLALLGKGGGIGLKEALFILGKTESVKRIENFLKN

HpGluRS was purified in two steps: an immobilized metal (Ni2+) affinity chromatography (IMAC) step and size-exclusion chromatography (SEC) on an ÄKTApurifier 10 (GE Healthcare) using automated IMAC and SEC programs (Serb­zhinskiy et al., 2015[Serbzhinskiy, D. A., Clifton, M. C., Sankaran, B., Staker, B. L., Edwards, T. E. & Myler, P. J. (2015). Acta Cryst. F71, 594-599.]). Briefly, thawed bacterial pellets (25 g) were lysed by sonication in 200 ml lysis buffer [25 mM HEPES pH 7.0, 500 mM NaCl, 5%(v/v) glycerol, 0.5%(w/v) CHAPS, 30 mM imidazole, 10 mM MgCl2, 1 mM TCEP, 250 mg ml−1 AEBSF, 0.025%(w/v) sodium azide]. After sonication, the crude lysate was treated with 20 µl (25 units ml−1) of Benzonase and incubated while mixing at room temperature for 45 min. The lysate was clarified by centrifugation at 10 000g for 1 h using a Sorvall centrifuge (Thermo Scientific). The treated supernatant was then passed over an Ni–NTA HisTrap FF 5 ml column (GE Healthcare) which had been pre-equilibrated with loading buffer [25 mM HEPES pH 7.0, 500 mM NaCl, 5%(v/v) glycerol, 30 mM imidazole, 1 mM TCEP, 0.025%(w/v) sodium azide]. The column was washed with 20 column volumes (CV) of loading buffer and was eluted with elution buffer [25 mM HEPES pH 7.0, 500 mM NaCl, 5%(v/v) glycerol, 30 mM imidazole, 1 mM TCEP, 0.025%(w/v) sodium azide, 250 mM imidazole] over a 7 CV linear gradient. Peak fractions were pooled, concentrated to 5 ml and loaded onto a Superdex 75 column (GE Healthcare) equilibrated with running buffer [20 mM HEPES pH 7.0, 300 mM NaCl, 5%(v/v) glycerol, 1 mM TCEP]. The peak fractions were collected and analyzed using SDS–PAGE. HpGluRS eluted as a symmetrical monodisperse peak accounting for >90% of the protein product at a molecular mass of ∼50 kDa, suggesting purification as a monomer (the expected monomer molecular weight was 54 kDa). The peak fractions were pooled and concentrated to 62.8 mg ml−1 using an Amicon filtration system (Millipore). Aliquots of 110 µl were flash-frozen in liquid nitrogen and stored at −80°C until use. Purified HpGluRS can be requested online at https://www.ssgcid.org/available-materials/ssgcid-proteins/.

2.2. Crystallization

HpGluRS was crystallized at 290 K using sitting-drop vapor diffusion. Briefly, 20.6 mg ml−1 protein was mixed in a 1:1 ratio with the precipitant solution as described in Table 2[link]. Before data collection, the crystals were harvested and cryoprotected with 15%(v/v) ethylene glycol (Table 2[link]).

Table 2
Crystallization

Method Vapor diffusion, sitting drop
Plate type Tray 101-d6, 96-well plates
Temperature (K) 290
Protein concentration (mg ml−1) 20.6 
Buffer composition of protein solution 20 mM HEPES pH 7.0, 300 mM NaCl, 5% glycerol, 1 mM TCEP
Composition of reservoir solution 0.2 M ammonium citrate dibasic, 20%(w/v) PEG 3350
Volume and ratio of drop 0.4 µl, 1:1
Volume of reservoir (µl) 80
Composition of cryoprotectant solution 0.17 M ammonium citrate dibasic, 17%(w/v) PEG 3350, 15% ethylene glycol

2.3. Data collection and processing

Data were collected at 100 K on beamline 21-ID-G at the Advanced Photon Source (APS), Argonne National Laboratory (Table 3[link]). Data were integrated with XDS and reduced with XSCALE (Kabsch, 2010[Kabsch, W. (2010). Acta Cryst. D66, 125-132.]). Raw X-ray diffraction images have been stored at the Integrated Resource for Reproducibility in Macromolecular Crystallography at https://www.proteindiffraction.org.

Table 3
Data collection and processing

Values in parentheses are for the outer shell.

Diffraction source Beamline 21-ID-G, APS
Temperature (K) 100
Detector MAR Mosaic 300 mm CCD
Space group P212121
a, b, c (Å) 203.05, 44.60, 54.12
α, β, γ (°) 90, 90, 90
Resolution range (Å) 43.56–2.50 (2.56–2.50)
Total No. of reflections 103691
Completeness (%) 99.80 (100)
Multiplicity 5.84 (6.15)
I/σ(I)〉 15.19 (3.18)
Rr.i.m. 0.076 (0.58)
Overall B factor from Wilson plot (Å2) 50.48

2.4. Structure solution and refinement

The structure of HpGluRS was determined by molecular replacement with Phaser (McCoy et al., 2007[McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658-674. ]) from the CCP4 suite of programs (Collaborative Computational Project, Number 4, 1994[Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-763.]; Krissinel et al., 2004[Krissinel, E. B., Winn, M. D., Ballard, C. C., Ashton, A. W., Patel, P., Potterton, E. A., McNicholas, S. J., Cowtan, K. D. & Emsley, P. (2004). Acta Cryst. D60, 2250-2255.]; Winn et al., 2011[Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson, K. S. (2011). Acta Cryst. D67, 235-242.]; Agirre et al., 2023[Agirre, J., Atanasova, M., Bagdonas, H., Ballard, C. B., Baslé, A., Beilsten-Edmands, J., Borges, R. J., Brown, D. G., Burgos-Mármol, J. J., Berrisford, J. M., Bond, P. S., Caballero, I., Catapano, L., Chojnowski, G., Cook, A. G., Cowtan, K. D., Croll, T. I., Debreczeni, J. É., Devenish, N. E., Dodson, E. J., Drevon, T. R., Emsley, P., Evans, G., Evans, P. R., Fando, M., Foadi, J., Fuentes-Montero, L., Garman, E. F., Gerstel, M., Gildea, R. J., Hatti, K., Hekkelman, M. L., Heuser, P., Hoh, S. W., Hough, M. A., Jenkins, H. T., Jiménez, E., Joosten, R. P., Keegan, R. M., Keep, N., Krissinel, E. B., Kolenko, P., Kovalevskiy, O., Lamzin, V. S., Lawson, D. M., Lebedev, A. A., Leslie, A. G. W., Lohkamp, B., Long, F., Malý, M., McCoy, A. J., McNicholas, S. J., Medina, A., Millán, C., Murray, J. W., Murshudov, G. N., Nicholls, R. A., Noble, M. E. M., Oeffner, R., Pannu, N. S., Parkhurst, J. M., Pearce, N., Pereira, J., Perrakis, A., Powell, H. R., Read, R. J., Rigden, D. J., Rochira, W., Sammito, M., Sánchez Rodríguez, F., Sheldrick, G. M., Shelley, K. L., Simkovic, F., Simpkin, A. J., Skubak, P., Sobolev, E., Steiner, R. A., Stevenson, K., Tews, I., Thomas, J. M. H., Thorn, A., Valls, J. T., Uski, V., Usón, I., Vagin, A., Velankar, S., Vollmar, M., Walden, H., Waterman, D., Wilson, K. S., Winn, M. D., Winter, G., Wojdyr, M. & Yamashita, K. (2023). Acta Cryst. D79, 449-461.]) using PDB entry 2ja2 (G. P. Bourenkov, N. Strizhov, L. A. Shkolnaya, M. Bruning & H. D. Bartunik, unpublished work) as the search model. The structure was refined using Phenix (Liebschner et al., 2019[Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen, V. B., Croll, T. I., Hintze, B., Hung, L.-W., Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant, M. G., Read, R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev, O. V., Stockwell, D. H., Terwilliger, T. C., Urzhumtsev, A. G., Videau, L. L., Williams, C. J. & Adams, P. D. (2019). Acta Cryst. D75, 861-877.]). The structure quality was checked using MolProbity (Williams et al., 2018[Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S. & Richardson, J. S. (2018). Protein Sci. 27, 293-315.]). Data-reduction and refinement statistics are shown in Table 4[link]. Coordinate and structure factors have been deposited with the Worldwide PDB (wwPDB) as entry 6b1p. The accuracy of the ligands and waters was also checked with the CheckMyBlob server (Kowiel et al., 2019[Kowiel, M., Brzezinski, D., Porebski, P. J., Shabalin, I. G., Jaskolski, M. & Minor, W. (2019). Bioinformatics, 35, 452-461.]; https://checkmyblob.bioreproducibility.org/server/).

Table 4
Structure solution and refinement

Values in parentheses are for the outer shell.

Resolution range (Å) 43.56–2.50 (2.57–2.50)
Completeness (%) 97.0
No. of reflections, working set 17249 (1172)
No. of reflections, test set 1740 (135)
Final Rcryst 0.234 (0.313)
Final Rfree 0.281 (0.381)
No. of non-H atoms
 Protein 3215
 Ligand 4
 Solvent 27
 Total 3246
R.m.s. deviations
 Bond lengths (Å) 0.003
 Angles (°) 0.502
Average B factors (Å2)
 Protein 63.4
 Ligand 66.3
 Water 50.7
Ramachandran plot
 Most favored (%) 96.7
 Allowed (%) 3.3

3. Results and discussion

Size-exclusion chromatography data suggest that HpGluRS assembles as a monodisperse monomer in solution with a calculated molecular weight of ∼50 kDa, close to the theoretical mass of 54.3 kDa. One HpGluRS monomer is present in the asymmetric unit, which also appears to correspond to the biological unit (Fig. 1[link]a). HpGluRS has the prototypical bacterial GluRS topology containing N-terminal tRNA synthetase class I (E and Q) catalytic and C-terminal anticodon-binding domains. The only ligand in this structure is an ethylene glycol from the crystallization solution (Fig. 1[link]a).

[Figure 1]
Figure 1
Overall structure of HpGluRS. (a) The HpGluRS monomer in rainbow colors from blue at the N-terminus to red at the C-terminus. The glutamate-binding site is indicated in blue parentheses, while the tRNA-binding site is indicated in red parentheses. (b) Ribbon diagram calculated by ENDScript. The circumference of the ribbon (sausage) represents relative structural conservation compared with other GluRS structures (these structures are indicated in Supplementary Fig. S1). Thinner ribbons represent more highly conserved regions. In comparison, thicker ribbons represent less conserved regions, and the ribbon is colored by sequence conservation, with red indicating identical residues. (c) The solvent-accessible surface area of HpGluRS is colored by sequence conservation, with red indicating identical residues. (d) Superposed HpGluRS (gray) with Thermotoga maritima GluRS (TmGluRS; PDB entry 3afh, cyan; Ito et al., 2010[Ito, T., Kiyasu, N., Matsunaga, R., Takahashi, S. & Yokoyama, S. (2010). Acta Cryst. D66, 813-820.]) reveals a conserved prototypical GluRS topology; a glutamyl-AMP analog (magenta sticks) is sitting in the glutamate-binding site. An ethylene glycol molecule from the cryoprotectant is shown as yellow sticks. (a)–(d) are shown in the same orientation.

ENDScript (Gouet et al., 2003[Gouet, P., Robert, X. & Courcelle, E. (2003). Nucleic Acids Res. 31, 3320-3323.]; Robert & Gouet, 2014[Robert, X. & Gouet, P. (2014). Nucleic Acids Res. 42, W320-W324.]) analysis (Figs. 1[link]b and 1[link]c) reveals that HpGluRS is a prototypical bacterial GluRS. PDBeFold (https://www.ebi.ac.uk/msd-srv/ssm/) analysis (Krissinel & Henrick, 2004[Krissinel, E. & Henrick, K. (2004). Acta Cryst. D60, 2256-2268.]) using a default threshold of 70% validated the ENDScript analysis (Supplementary Fig. S2). ENDScript analysis confirms that HpGluRS shares significant secondary-structural similarity with other bacterial GluRS and other aminoacyl-tRNA synthetases, including some that have shown promise as drug targets (Supplementary Fig. S1). ENDScript analysis reveals the closest structural neighbors of HpGluRS to include Burkholderia thailandensis GluRS (BtGluRS; PDB entry 4g6z; Moen et al., 2017[Moen, S. O., Edwards, T. E., Dranow, D. M., Clifton, M. C., Sankaran, B., Van Voorhis, W. C., Sharma, A., Manoil, C., Staker, B. L., Myler, P. J. & Lorimer, D. D. (2017). Sci. Rep. 7, 223.]), which shares 42.5% sequence identity with HpGluRS, and Stenotrophomonas maltophilia GluRS (SmGluRS; PDB entry 7k86; Seattle Structural Genomics Center for Infectious Disease, unpublished work), with 41.7% sequence identity to HpGluRS (Supplementary Fig. S1). These are also revealed to be close structural neighbors by PDBeFold (Supplementary Table S1). The regions of most significant structural similarity are in the N-terminal domain (Fig. 2[link] and Supplementary Fig. S1), which is considerably thinner in the ENDScript sausage plot (Fig. 1[link]b). Additional structural comparisons and phylogenetic analysis are detailed in Supplementary Figs. S1–S4.

[Figure 2]
Figure 2
Primary-sequence alignment of HpGluRS (PDB entry 6b1p), SmGluRS, BtGluRS and PaGluRS (PDB entry 5tgt). Residues involved in glutamate binding are indicated by green asterisks. The secondary-structure elements are as follows: α-helices are shown as large coils, 310-helices are shown as small coils labeled η, β-strands are shown as arrows labeled β and β-turns are labeled TT. Identical residues are shown on a red background, with conserved residues in red and conserved regions in blue boxes. This figure was generated using ESPript 3.0 (Gouet et al., 1999[Gouet, P., Courcelle, E., Stuart, D. I. & Métoz, F. (1999). Bioinformatics, 15, 305-308.], 2003[Gouet, P., Robert, X. & Courcelle, E. (2003). Nucleic Acids Res. 31, 3320-3323.]). Additional structural details and alignments are shown in Supplementary Fig. S1.

The sizeable accessible glutamate-binding site in the N-terminal tRNA synthetase binding domain of HpGluRS is evident in the surface plot (Fig. 1[link]c). The glutamate-binding region is highly conserved, as indicated by a red color in the ribbon and surface plots (Figs. 1[link]c and 1[link]d). Bacterial GluRSs, like other aminoacyl-tRNA synthetases, are promising antimicrobial targets (Kwon et al., 2019[Kwon, N. H., Fox, P. L. & Kim, S. (2019). Nat. Rev. Drug Discov. 18, 629-650.]; Lee et al., 2018[Lee, E. Y., Kim, S. & Kim, M. H. (2018). Biochem. Pharmacol. 154, 424-434.]; Moen et al., 2017[Moen, S. O., Edwards, T. E., Dranow, D. M., Clifton, M. C., Sankaran, B., Van Voorhis, W. C., Sharma, A., Manoil, C., Staker, B. L., Myler, P. J. & Lorimer, D. D. (2017). Sci. Rep. 7, 223.]; Pang et al., 2021[Pang, L., Weeks, S. D. & Van Aerschot, A. (2021). Int. J. Mol. Sci. 22, 1750.]). Pseudomonas aeruginosa GluRS (PaGluRS; PDB entry 5tgt; Seattle Structural Genomics Center for Infectious Disease, unpublished work), the glutamate-binding cavity of which has been probed to develop promising inhibitors for P. aeruginosa (Escamilla et al., 2020[Escamilla, Y., Hughes, C. A., Abendroth, J., Dranow, D. M., Balboa, S., Dean, F. B. & Bullard, J. M. (2020). Protein Sci. 29, 905-918.]; Hu et al., 2015[Hu, Y., Guerrero, E., Keniry, M., Manrrique, J. & Bullard, J. M. (2015). SLAS Discov. 20, 1160-1170.], 2018[Hu, Y., Palmer, S. O., Robles, S. T., Resto, T., Dean, F. B. & Bullard, J. M. (2018). SLAS Discov. 23, 65-75.]), shares considerable structural similarity with HpGluRS despite having less than 33% sequence identity (Fig. 2[link]). More importantly, the amino acids involved in glutamate binding, indicated by green asterisks, are well conserved (Fig. 2[link]). These glutamate-binding pockets are also conserved in other bacterial GluRSs (Supplementary Fig. S1), suggesting that structure-based and rational inhibitor design for PaGluRS and other bacterial GluRSs may be a starting point for HpGluRS.

4. Conclusion

The production, crystallization and 2.5 Å resolution structure of H. pylori glutamyl-tRNA synthetase (HpGluRS) reveals a prototypical bacterial GluRS with well conserved glutamate-binding cavities. The structural similarity to the well studied P. aeruginosa GluRS and lessons learned from other bacterial GluRSs may accelerate the development of new inhibitors for H. pylori, a globally important bacterium that causes gastric ulcers and cancer.

Supporting information


Footnotes

Co-first authors.

Acknowledgements

This project is part of a continuing SSGCID collaboration training undergraduate students in structural science, rational structure-based drug discovery and scientific communication funded partly by the Dartmouth Cancer Center.

Biographical information

[link]

[Scheme 1]
Early career authors: Dylan E. Davis, Jesuferanmi P. Ayanlade and David T. Laseinde.

Funding information

This project has been funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. 75N93022C00036. DED is funded by NCI (grant No. R25CA250956).

References

First citationAgirre, J., Atanasova, M., Bagdonas, H., Ballard, C. B., Baslé, A., Beilsten-Edmands, J., Borges, R. J., Brown, D. G., Burgos-Mármol, J. J., Berrisford, J. M., Bond, P. S., Caballero, I., Catapano, L., Chojnowski, G., Cook, A. G., Cowtan, K. D., Croll, T. I., Debreczeni, J. É., Devenish, N. E., Dodson, E. J., Drevon, T. R., Emsley, P., Evans, G., Evans, P. R., Fando, M., Foadi, J., Fuentes-Montero, L., Garman, E. F., Gerstel, M., Gildea, R. J., Hatti, K., Hekkelman, M. L., Heuser, P., Hoh, S. W., Hough, M. A., Jenkins, H. T., Jiménez, E., Joosten, R. P., Keegan, R. M., Keep, N., Krissinel, E. B., Kolenko, P., Kovalevskiy, O., Lamzin, V. S., Lawson, D. M., Lebedev, A. A., Leslie, A. G. W., Lohkamp, B., Long, F., Malý, M., McCoy, A. J., McNicholas, S. J., Medina, A., Millán, C., Murray, J. W., Murshudov, G. N., Nicholls, R. A., Noble, M. E. M., Oeffner, R., Pannu, N. S., Parkhurst, J. M., Pearce, N., Pereira, J., Perrakis, A., Powell, H. R., Read, R. J., Rigden, D. J., Rochira, W., Sammito, M., Sánchez Rodríguez, F., Sheldrick, G. M., Shelley, K. L., Simkovic, F., Simpkin, A. J., Skubak, P., Sobolev, E., Steiner, R. A., Stevenson, K., Tews, I., Thomas, J. M. H., Thorn, A., Valls, J. T., Uski, V., Usón, I., Vagin, A., Velankar, S., Vollmar, M., Walden, H., Waterman, D., Wilson, K. S., Winn, M. D., Winter, G., Wojdyr, M. & Yamashita, K. (2023). Acta Cryst. D79, 449–461.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoyanova, L., Hadzhiyski, P., Gergova, R. & Markovska, R. (2023). Antibiotics, 12, 332.  CrossRef PubMed Google Scholar
First citationBrooks, L., Subramanian, S., Dranow, D. M., Mayclin, S. J., Myler, P. J. & Asojo, O. A. (2022). Acta Cryst. F78, 306–312.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCollaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760–763.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCrowe, S. E. (2019). N. Engl. J. Med. 380, 1158–1165.  CrossRef PubMed Google Scholar
First citationEscamilla, Y., Hughes, C. A., Abendroth, J., Dranow, D. M., Balboa, S., Dean, F. B. & Bullard, J. M. (2020). Protein Sci. 29, 905–918.  CrossRef CAS PubMed Google Scholar
First citationGouet, P., Courcelle, E., Stuart, D. I. & Métoz, F. (1999). Bioinformatics, 15, 305–308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGouet, P., Robert, X. & Courcelle, E. (2003). Nucleic Acids Res. 31, 3320–3323.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, Y., Guerrero, E., Keniry, M., Manrrique, J. & Bullard, J. M. (2015). SLAS Discov. 20, 1160–1170.  Web of Science CrossRef CAS Google Scholar
First citationHu, Y., Palmer, S. O., Robles, S. T., Resto, T., Dean, F. B. & Bullard, J. M. (2018). SLAS Discov. 23, 65–75.  CrossRef CAS PubMed Google Scholar
First citationIto, T., Kiyasu, N., Matsunaga, R., Takahashi, S. & Yokoyama, S. (2010). Acta Cryst. D66, 813–820.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKabsch, W. (2010). Acta Cryst. D66, 125–132.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKowiel, M., Brzezinski, D., Porebski, P. J., Shabalin, I. G., Jaskolski, M. & Minor, W. (2019). Bioinformatics, 35, 452–461.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrissinel, E. & Henrick, K. (2004). Acta Cryst. D60, 2256–2268.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrissinel, E. B., Winn, M. D., Ballard, C. C., Ashton, A. W., Patel, P., Potterton, E. A., McNicholas, S. J., Cowtan, K. D. & Emsley, P. (2004). Acta Cryst. D60, 2250–2255.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKwon, N. H., Fox, P. L. & Kim, S. (2019). Nat. Rev. Drug Discov. 18, 629–650.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLee, E. Y., Kim, S. & Kim, M. H. (2018). Biochem. Pharmacol. 154, 424–434.  CrossRef CAS PubMed Google Scholar
First citationLiebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen, V. B., Croll, T. I., Hintze, B., Hung, L.-W., Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant, M. G., Read, R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev, O. V., Stockwell, D. H., Terwilliger, T. C., Urzhumtsev, A. G., Videau, L. L., Williams, C. J. & Adams, P. D. (2019). Acta Cryst. D75, 861–877.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMalfertheiner, P., Megraud, F., Rokkas, T., Gisbert, J. P., Liou, J., Schulz, C., Gasbarrini, A., Hunt, R. H., Leja, M., O'Morain, C., Rugge, M., Suerbaum, S., Tilg, H., Sugano, K. & El-Omar, E. M. (2022). Gut, 71, 1724–1762.  CrossRef CAS Google Scholar
First citationMcCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658–674.   Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoen, S. O., Edwards, T. E., Dranow, D. M., Clifton, M. C., Sankaran, B., Van Voorhis, W. C., Sharma, A., Manoil, C., Staker, B. L., Myler, P. J. & Lorimer, D. D. (2017). Sci. Rep. 7, 223.  Web of Science CrossRef PubMed Google Scholar
First citationNarsimulu, B., Jakkula, P., Qureshi, R., Nasim, F. & Qureshi, I. A. (2024). Int. J. Biol. Macromol. 254, 127756.  CrossRef PubMed Google Scholar
First citationPang, L., Weeks, S. D. & Van Aerschot, A. (2021). Int. J. Mol. Sci. 22, 1750.  CrossRef PubMed Google Scholar
First citationRobert, X. & Gouet, P. (2014). Nucleic Acids Res. 42, W320–W324.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRodríguez-Hernández, D., Vijayan, K., Zigweid, R., Fenwick, M. K., Sankaran, B., Roobsoong, W., Sattabongkot, J., Glennon, E. K. K., Myler, P. J., Sunnerhagen, P., Staker, B. L., Kaushansky, A. & Grøtli, M. (2023). Nat. Commun. 14, 5408.  Web of Science PubMed Google Scholar
First citationSerbzhinskiy, D. A., Clifton, M. C., Sankaran, B., Staker, B. L., Edwards, T. E. & Myler, P. J. (2015). Acta Cryst. F71, 594–599.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStacy, R., Begley, D. W., Phan, I., Staker, B. L., Van Voorhis, W. C., Varani, G., Buchko, G. W., Stewart, L. J. & Myler, P. J. (2011). Acta Cryst. F67, 979–984.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStudier, F. W. (2005). Protein Expr. Purif. 41, 207–234.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuzuki, S., Esaki, M., Kusano, C., Ikehara, H. & Gotoda, T. (2019). World J. Gastroenterol. 25, 1907–1912.  CrossRef CAS PubMed Google Scholar
First citationWarren, J. R. & Marshall, B. (1983). Lancet, 321, 1273–1275.  Google Scholar
First citationWilliams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S. & Richardson, J. S. (2018). Protein Sci. 27, 293–315.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWinn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson, K. S. (2011). Acta Cryst. D67, 235–242.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL BIOLOGY
COMMUNICATIONS
ISSN: 2053-230X
Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds