research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 3| Part 5| September 2016| Pages 341-353
ISSN: 2052-2525

An exceptional series of phase transitions in hydrophobic amino acids with linear side chains

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Oslo, N-0315 Oslo, Norway, and bInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

Edited by M. Eddaoudi, King Abdullah University, Saudi Arabia (Received 1 June 2016; accepted 28 June 2016; online 9 August 2016)

The solid-state phase transitions and intermediate structures of S-2-amino­butanoic acid (L-2-aminobutyric acid), S-2-aminopentanoic acid (L-norvaline), S-2-aminohexanoic acid (L-norleucine) and L-methionine between 100 and 470 K, identified by differential scanning calorimetry, have been characterized in a comprehensive single-crystal X-ray diffraction investigation. Unlike other enantiomeric amino acids investigated until now, this group featuring linear side chains displays up to five distinct phases. The multiple transitions between them involve a number of different processes: alteration of the hydrogen-bond pattern, to our knowledge the first example of this observed for an amino acid, sliding of molecular bilayers, seen previously only for racemates and quasiracemates, concerted side-chain rearrangements and abrupt as well as gradual modifications of the side-chain disorder. Ordering of L-norleucine upon cooling even proceeds via an incommensurately modulated structure. L-Methionine has previously been described as being fully ordered at room temperature. An accurate refinement now reveals extensive disorder for both molecules in the asymmetric unit, while two previously unknown phases occur above room temperature.

1. Introduction

The crystal structures of amino acids with hydrophobic side chains invariably incorporate molecular bilayers, each with a hydrogen-bonded core and two surfaces shaped by the amino acid side chains. A series of unique solid-state phase transitions, involving sliding along the hydrophobic interfaces between adjacent bilayers, have been observed for DL-methionine (Met; Mathieson, 1952[Mathieson, A. M. (1952). Acta Cryst. 5, 332-341.]; Taniguchi et al., 1980[Taniguchi, T., Takaki, Y. & Sakurai, K. (1980). Bull. Chem. Soc. Jpn, 53, 803-804.]; Alagar et al., 2005[Alagar, M., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2005). Acta Cryst. E61, o1165-o1167.]; Görbitz et al., 2014[Görbitz, C. H., Qi, L., Mai, N. T. K. & Kristiansen, H. (2014). Acta Cryst. E70, 337-340.], 2015[Görbitz, C. H., Paulsen, J. C. & Borgersen, J. (2015). Acta Cryst. E71, o398-o399.]; Görbitz, 2014[Görbitz, C. H. (2014). Acta Cryst. E70, 341-343.]), DL-2-aminobutyric acid (Abu; Görbitz et al., 2012[Görbitz, C. H., Alebachew, F. & Petříček, V. (2012). J. Phys. Chem. B, 116, 10715-10721.]; Nakata et al., 1980[Nakata, K., Takaki, Y. & Sakurai, K. (1980). Acta Cryst. B36, 504-506.]; Voogd & Derissen, 1980[Voogd, J. & Derissen, J. L. (1980). Acta Cryst. B36, 3175-3177.]; Akimoto & Iitaka, 1972[Akimoto, T. & Iitaka, Y. (1972). Acta Cryst. B28, 3106-3107.]; Ichikawa & Iitaka, 1968[Ichikawa, T. & Iitaka, Y. (1968). Acta Cryst. B24, 1488-1501.]), DL-norvaline (Nva; Görbitz, 2011[Görbitz, C. H. (2011). J. Phys. Chem. B, 115, 2447-2453.]) and DL-norleucine (Nle; Coles et al., 2009[Coles, S. J., Gelbrich, T., Griesser, U. J., Hursthouse, M. B., Pitak, M. & Threlfall, T. (2009). Cryst. Growth Des. 9, 4610-4612.]; Harding et al., 1995[Harding, M. M., Kariuki, B. M., Williams, L. & Anwar, J. (1995). Acta Cryst. B51, 1059-1062.]; Dalhus & Görbitz, 1996b[Dalhus, B. & Görbitz, C. H. (1996b). Acta Cryst. C52, 1761-1764.]; Smets et al., 2015[Smets, M. M. H., Brugman, S. J. T., van Eck, E. R. H., van den Ende, J. A., Meekes, H. & Cuppen, H. M. (2015). Cryst. Growth Des. 15, 5157-5167.]; van den Ende & Cuppen, 2014[Ende, J. A. van den & Cuppen, H. M. (2014). Cryst. Growth Des. 14, 3343-3351.]) as well as for the four quasiracemates L-Nva:D-Nle, L-Nva:D-Met, L-Nle:D-Met (Görbitz & Karen, 2015[Görbitz, C. H. & Karen, P. (2015). J. Phys. Chem. B, 119, 4975-4984.]) and L-Abu:D-Met (Görbitz et al., 2016[Görbitz, C. H., Wragg, D. S., Bakke, I. M. B., Fleischer, C., Grønnevik, G., Mykland, M., Park, Y., Trovik, K. W., Serigstad, H. & Sundsli, B. E. V. (2016). Acta Cryst. C72, 536-543.]). Little is known by comparison about the corresponding enantiomeric amino acids. Only one crystal form is known for L-Met, which has been studied at room temperature (Torii & Iitaka, 1973[Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799-2807.]), 150 K (Sadler et al., 2005[Sadler, P., Bihari, S., Parsons, S. & Messenger, D. (2005). Personal Communication (refcode LMETON11). CCDC, Cambridge, England.]) and 120 K (Dalhus & Görbitz, 1996a[Dalhus, B. & Görbitz, C. H. (1996a). Acta Chem. Scand. 50, 544-548.]). For L-Abu we previously found two forms at 110 K, both with four molecules in the asymmetric unit (Z′ = 4; Görbitz, 2010[Görbitz, C. H. (2010). Acta Cryst. B66, 253-259.]). Only a single structure (at room temperature) is available for L-Nle (Torii & Iitaka, 1973[Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799-2807.]). L-Nva has not been subject to X-ray diffraction investigations in the past.

[Scheme 1]

In the anticipation that temperature-induced phase transitions of the four amino acids with linear, hydrophobic side chains may not be limited to just the racemates, we have undertaken a systematic investigation of the enantiomeric substances in the temperature range between 100 and 470 K. We report here 18 single-crystal structures, refined from X-ray diffraction data collected at temperatures above and below transition temperatures recorded by differential scanning calorimetry (DSC).

2. Experimental

2.1. Materials

The amino acids L-Abu, L-Nva, L-Nle and L-Met were purchased from Sigma and used as received.

2.2. Crystal growth

For each amino acid approximately 0.3 mg was dissolved in 30 µL of water in a 30 × 6 mm test tube and sealed with parafilm. A small hole was then pricked in the parafilm and the tube placed inside a larger test tube filled with 2 ml of acetonitrile. The system was capped and left for 5 d at 20°C. Thin platelets crystallized as the organic solvent diffused into the aqueous solutions.

2.3. Differential Scanning Calorimetry (DSC) measurements

A liquid-nitrogen operated Perkin–Elmer Pyris 1 instrument was used to perform heating and cooling DSC cycles for ∼ 30 mg of the dried crystalline powders, sealed in aluminium pans of 30 µL volume, upon a decrease in scanning rate from 40 to 20 to 10 K min−1. The instrument was calibrated against the enthalpy and temperature standards of n-dodecane, m-nitrotoluene, p-nitrotoluene and indium of higher than 99.7% purity. Transition temperatures were evaluated by extrapolating peak-top temperatures to the zero scanning rate, transition enthalpies and entropies via integrating heat-flow peaks versus time as described by Karen (2003[Karen, P. (2003). J. Solid State Chem. 170, 9-23.]).

2.4. X-ray data collection and structure solution

Single-crystal X-ray data collections were carried out with APEX2 software (Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) on a D8 Venture single-crystal CCD diffractometer equipped with an Oxford Cryosystems Cryostream Plus cooling unit and Mo Kα radiation (λ = 0.71069 Å). Data sets were collected on cooling and heating from room temperature, except that data for L-Nle at 180 K were collected after first cooling the crystal to 100 K. Data integration and cell refinement were performed with SAINT-Plus (Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) with subsequent absorption correction by SADABS (Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and structure solution with SHELXLT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]). All structures are monoclinic and have a b-axis close to 5.2 Å. There is always a second axis of 9.5–9.6 Å in length, which, in order to facilitate comparison between the different structures, is here always taken to be the a-axis. The remaining c-axis is more variable (13–23 Å). Consequently, the unconventional space group I2 (rather than C2) is used for L-Nva at 220 K; analogous to the β form of L-Abu at 110 K (Görbitz, 2010[Görbitz, C. H. (2010). Acta Cryst. B66, 253-259.]).

2.5. Structure refinement

Least-squares refinements were carried out with SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) against F2. All structures except L-Nva at 100 and 190 K exhibit disorder, which becomes quite extensive above 300 K, making it tedious to match geometrically reasonable side-chain orientations with the electron density maps. Usually the whole molecule was regarded as disordered, but in some cases just one set of coordinates was used for the amino and carboxylate groups; for example, for conformations with very low occupancies (L-Nva at 220 K, L-Met at 293 and 320 K) or when the data-to-parameter ratio would otherwise be unduly compromised (L-Nle and L-Met at 405 K). C atoms with occupancy > 0.30 were refined anisotropically, with a single set of displacement parameters (through SHELX EADP commands) for positions of equivalent atoms closer than about 0.7 Å in order to avoid unwanted correlations. For the two 405 K structures, fixed isotropic U values of 0.30 Å2 were used for the terminal methyls. The covalent geometries of the independent disorder parts (up to four were observed) were generally linked by SHELXL SAME 0.004 0.006 commands to restrain bonds to be similar within an effective standard deviation of 0.004 Å and 1,3-distances [d(X1⋯X3) in the fragment X1—X2—X3, X = C/N/O] within 0.006 Å; effectively putting restraints on covalent angles. Furthermore, at 405 K the four atoms defining a trans torsion angle were restrained to be coplanar within a 0.05 Å or 0.07 Å standard deviation (SHELXL FLAT command) and 1,2-, 1,3- and 1,4-distances were restrained to preset values. Details are in the CIF files in the supporting information.

Crystal data and refinement results are listed in Tables 1–4[link][link][link][link], while a summary of the conformational disorder in terms of refined rotamers and their occupancies are given in Table 5[link]. Complete lists of torsions angles and hydrogen-bond geometries are provided as supporting information, Tables S1 and S2. Illustrations of molecules and their crystal packing arrangements were prepared by Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Table 1
Crystal data for L-Abu (C4H9NO2)

Temperature (K) 110 110 190 215 330 365
Space group I2 P21 I2 P21 P21 C2
a (Å) 9.646 (2) 9.614 (6) 9.6246 (7) 9.6176 (9) 9.6132 (6) 9.6233 (12)
b (Å) 5.2145 (12) 5.227 (3) 5.2079 (4) 5.2126 (5) 5.2239 (3) 5.2274 (6)
c (Å) 42.885 (10) 21.385 (13) 43.103 (3) 21.768 (2) 22.4134 (16) 22.877 (3)
β (°) 100.295 (3) 100.326 (7) 100.201 (2) 101.123 (3) 101.453 (2) 100.764 (4)
V3) 2122.5 (2) 1057.1 (11) 2126.4 (3) 1070.80 (17) 1103.15 (12) 1130.6 (2)
Z, Z 16, 4 8, 4 16, 4 8, 4 8, 4 8, 2
Nmeasured 14 739 13 667 11 282 3209
Nunique 5251 3914 3841 1787
Nobserved [F2 > 2σ(F2)] 4591 3293 2727 1322
npar 266 292 336 221
Rint 0.040 0.032 0.155 0.035
[R[F^2 \gt 2\sigma (F^2)]] 0.039 0.038 0.077 0.047
wR(F2) 0.105 0.092 0.189 0.103
S 1.065 1.075 1.082 1.167
CCDC# 775214 775213 1472679 1472688 1472689 1472690
†Görbitz (2010[Görbitz, C. H. (2010). Acta Cryst. B66, 253-259.]); CSD refcodes HUWSOI01 (I2) and HUWSOI (P21).

Table 2
Crystal data for L-Nva (C5H11NO2)

Temperature (K) 100 190 220 270 293
Space group P21 P21 I2 I2 C2
a (Å) 9.6123 (15) 9.604 (3) 9.5868 (8) 9.5855 (15) 9.589 (4)
b (Å) 5.1222 (9) 5.1222 (16) 5.1560 (4) 5.1752 (9) 5.2054 (19)
c (Å) 13.183 (2) 13.352 (4) 27.477 (1) 27.959 (5) 14.698 (7)
β (°) 98.609 (5) 97.137 (7) 93.203 (3) 92.057 (3) 104.770 (5)
V3) 641.78 (19) 651.7 (4) 1356.1 (2) 1386.1 (4) 709.4 (5)
Z, Z 4, 2 4, 2 8, 2 8, 2 4, 1
Nmeasured 5169 4679 2100 6794 1748
Nunique 2352 2424 1455 2397 1120
Nobserved [F2 > 2σ(F2)] 1990 1699 1204 1660 904
npar 147 147 259 259 156
Rint 0.041 0.051 0.018 0.057 0.016
R[F2 > 2σ(F2)] 0.051 0.052 0.044 0.052 0.039
wR(F2) 0.106 0.117 0.110 0.135 0.115
CCDC# 1472691 1472692 1472693 1472694 1472695

Table 3
Crystal data for L-Nle (C6H13NO2)

Temperature (K) 100 210 295 330 380 405
Space group C2 C2 C2 C2 C2 C2
a (Å) 28.516 (5) 9.5327 (7) 9.550 (5) 9.5633 (15) 9.6033 (15) 9.648 (9)
b (Å) 5.2346 (10) 5.2545 (4) 5.260 (5) 5.2287 (9) 5.2223 (8) 5.252 (5)
c (Å) 32.233 (6) 14.959 (1) 15.377 (5) 15.674 (3) 15.983 (3) 16.561 (16)
β (°) 116.25 (8) 97.628 (2) 95.60 (5) 93.695 (5) 90.916 (5) 103.11 (2)
V3) 12994.1 (16) 742.66 (9) 768.75 (3) 782.1 (2) 801.5 (2) 817.2 (13)
Z, Z 18, 18 4, 1 4, 1 4, 1 4, 1 4, 1
Nmeasured 33 113 6243 4947 3890 1901
Nunique 8552 1420 1389 1412 1283
Nobserved [F2 > 2σ(F2)] 3859 1217 929 708 533
npar 493 129 114 146 115
Rint 0.149 0.027 0.039 0.052 0.082
R[F2 > 2σ(F2)] 0.081 0.036 0.051 0.071 0.097
wR(F2) 0.219 0.079 0.129 0.189 0.205
CCDC# 1472680 1472681 1207985 1472682 1472683 1472684
†Refinement based on a. hkl file transformed from the supercell refinement.
‡Torii & Iitaka (1973[Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799-2807.]); CSD refcode LNLEUC10.

Table 4
Crystal data for L-Met (C5H11NO2S)

Temperature (K) 120 150 293 320 405
Space group P21 P21 P21 P21 P21
a (Å) 9.493 (2) 9.512 (1) 9.5118 (6) 9.5473 (6) 9.588 (4)
b (Å) 5.201 (2) 5.209 (1) 5.1936 (4) 5.1830 (3) 5.203 (2)
c (Å) 14.831 (3) 14.858 (1) 15.3419 (10) 15.5830 (10) 16.101 (7)
β (°) 99.84 (2) 99.70 (1) 97.635 (2) 94.980 (2) 99.869 (13)
V3) 721.5 (3) 725.69 751.18 (9) 768.19 (8) 791.3 (5)
Z, Z 4, 2 4, 2 4, 2 4, 2 4, 2
Nmeasured 15 609 7664 9797
Nunique 3308 2936 2638
Nobserved [F2 > 2σ(F2)] 2682 2082 1642
npar 231 248 279
Rint 0.038 0.046 0.057
R[F2 > 2σ(F2)] 0.047 0.066 0.117
wR(F2) 0.118 0.189 0.293
CCDC# 276855 1472685 1472686 1472687
†Dalhus & Görbtiz (1996a[Dalhus, B. & Görbitz, C. H. (1996a). Acta Chem. Scand. 50, 544-548.]); CSD refcode LMETON02.
‡Sadler et al. (2005[Sadler, P., Bihari, S., Parsons, S. & Messenger, D. (2005). Personal Communication (refcode LMETON11). CCDC, Cambridge, England.]); CSD refcode LMETON11.

Table 5
Occupancies for side-chain conformations as a function of temperature (K)

The torsion angles listed are N1—C2—C3—C4 (all), C2—C3—C4—C5 (Nva and Nle) or C2—C3—C4—S1 (Met), C3—C4—C5—C6 (Nle) or C3—C4—S1—C5 (Met). t = trans, g+ = gauche+, g- = gauche-.

L-Abu 110 (Görbitz, 2010[Görbitz, C. H. (2010). Acta Cryst. B66, 253-259.]) 190 215 330 365
Molecule A
g+ 0.000 0.000 0.000 0.23 (2) 0.563 (12)
t 1.000 1.000 1.000 0.77 (2) 0.260 (12)
g- 0.000 0.000 0.000 0.000 0.169 (11)
           
Molecule B
g+ 0.000 0.100 (6) 0.602 (7) 0.716 (13) 0.337 (11)
t 0.000 0.000 0.000 0.000 0.573 (13)
g- 1.000 0.900 (6) 0.398 (7) 0.284 (13) 0.098 (10)
           
Molecule C
g+ 1.000 1.000 1.000 0.69 (2)
t 0.000 0.000 0.000 0.31 (2)
g- 0.000 0.000 0.000 0.000
           
Molecule D
g+ 0.000 0.000 0.000 0.000
t 1.000 1.000 1.000 1.000
g- 0.000 0.000 0.000 0.000
L-Nva 100 and 190 220 270 293
Molecule A
g+, t 0.000 0.068 (3) 0.1174 (4) 0.250 (9)
t, g+ 0.000 0.131 (3) 0.1770 (4) 0.197 (13)
t,t 1.000 0.800 (3) 0.7056 (4) 0.369 (14)
g-, t 0.000 0.000 0.000 0.184 (9)
         
Molecule B
g+, t 0.000 0.116 (3) 0.1758 (4)
t,t 0.000 0.232 (3) 0.3058 (4)
g-, t 0.000 0.124 (3) 0.1301 (4)
g-, g- 1.000 0.528 (3) 0.3884 (4)
L-Nle 210 330 380 405
g+, t, g+ 0.000 0.000 0.000 0.287 (14)
g+, t, g- 0.000 0.000 0.275 (13) 0.000
t, g+, g+ 0.000 0.215 (13) 0.000 0.000
t, g+, t 0.300 (7) 0.000 0.000 0.000
t, t, g+ 0.000 0.000 0.000 0.367 (15)
t,t,t 0.700 (7) 0.785 (13) 0.527 (13) 0.156 (14)
g-, t, g+ 0.000 0.000 0.198 (12) 0.190 (12)
L-Met 120 and 150 293 320 405
Molecule A
g+, t, g+ 0.000 0.000 0.000 0.093 (13)
t,t,g+ 0.000 0.000 0.000 0.28 (2)
t,t,t 1.000 1.000 1.000 0.50 (2)
g-, t, g- 0.000 0.000 0.000 0.130 (13)
         
Molecule B
g+, t, g- 0.000 0.000 0.000 0.139 (12)
t, g+, g+ 1.000 0.694 (3) 0.406 (2) 0.098 (12)
t,t,g- 0.000 0.115 (2) 0.148 (2) 0.40 (2)§
g-, t, g+ 0.000 0.076 (2) 0.203 (2) 0.239 (13)
g-, g-, g- 0.000 0.114 (3) 0.241 (2) 0.153 (15)
†Two separate positions, 0.830 (4) and 0.170 (4).
‡Two separate positions, 0.313 (6) and 0.687 (6).
§Two separate positions, 0.174 (19) and 0.224 (17).

2.6. Refinement of modulated phases

Least-squares refinements for L-Nle were carried out with JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) against F2. For comparison, both incommensurate and commensurate refinements were performed on each modulated phase. A so-called rigid-body modulation approach was used to fix the molecular geometry of each conformer at all its positions and occupancies generated from their complementing modulation waves on the periodicity refined in the (3 + 1)-dimensional superspace with either harmonic (Fourier series) or crenel (Petříček et al., 1995[Petříček, V., van der Lee, A. & Evain, M. (1995). Acta Cryst. A51, 529-535.]) functions. Experimental and refinement details are provided in the supporting information, Tables S3 and S4.

3. Results and discussion

3.1. Phase transitions between 100 and 470 K from DSC

The results from the DSC analysis are summarized in Table 6[link] and Fig. 1[link], a schematic illustration is shown in the supporting information, Fig. S1. Upon warming, two reproducible endothermic events are recorded for L-Abu. The first is sharp, while the second develops gradually from 270 K to a peak at 356 K and ceases abruptly around 360 K. For L-Nva transition 1 is rather broad, while transition 3 is very weak. Regarding transition 2 at 273 K, repeated measurement with a carefully dried sample confirmed the absence of water. Four reproducible endothermic events take place for L-Nle. The first (observable only upon heating) and second events overlap. Finally, for L-Met, three endothermic events are recorded between 100 and 470 K. The first is broad and develops between 250 and 340 K.

Table 6
Characterization of the transitions by DSC

Transition Thermal barycenter (K) Peak-top temperature (K) Hysteresis (K) ΔS (J mol−1 K−1) Shape
L-Abu 1 210 207 6 1.58 Sharp
L-Abu 2 341 355 0 3.09 Broad
L-Nva 1 225 207 0 7.2 Very broad
L-Nva 2 274 273 1 0.21 Sharp
L-Nva 3 298 300 0 0.08 Broad
L-Nle 1 171 168 § 0.19 Sharp
L-Nle 2 191 199 0 2.56 Intermediate
L-Nle 3 323 337 2 6.3 Broad
L-Nle 4 391 396.5 4 0.3 Sharp
L-Met 1 300 309 2 4.66 Broad
L-Met 2 397 395 4 0.38 Intermediate
L-Met 3 424 424 0 0.10 Intermediate
†Upon heating at 20 K min−1.
‡Extrapolated to zero rate for the temperature change.
§Observed only upon heating.
[Figure 1]
Figure 1
Cyclic DSC scans for L-Abu, L-Nva, L-Nle and L-Met at 40, 20 and 10 K min−1. The transition temperatures refer to peak maxima extrapolated to zero scanning rate. Transitions are numbered according to the description in the text. Circles at the bottom axis indicate temperatures for the single-crystal data collections. A grey outline is used for previous investigations for L-Abu (Görbitz, 2010[Görbitz, C. H. (2010). Acta Cryst. B66, 253-259.]), L-Nle (Torii & Iitaka, 1973[Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799-2807.]) and L-Met (Torii & Iitaka, 1973[Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799-2807.]; Sadler et al., 2005[Sadler, P., Bihari, S., Parsons, S. & Messenger, D. (2005). Personal Communication (refcode LMETON11). CCDC, Cambridge, England.]; Dalhus & Görbitz, 1996a[Dalhus, B. & Görbitz, C. H. (1996a). Acta Chem. Scand. 50, 544-548.]).

3.2. L-Abu

A P21 α form and a I2 β form, both with Z′ = 4 (Fig. 2[link]a), were previously identified for L-Abu at 110 K (Görbitz, 2010[Görbitz, C. H. (2010). Acta Cryst. B66, 253-259.]). We have now heated and cooled a selected crystal a number of times across the transition temperature at ∼ 207 K. Unit-cell determinations at 190 K always reproduced the β form, while the α form prevailed at 215 K. Accordingly, transition 1 in Fig. 1[link] represents a full and reversible conversion between the two L-Abu polymorphs. From this we conclude that the α form is unstable below transition 1, and that the P21 crystal previously investigated at 110 K (Görbitz, 2010[Görbitz, C. H. (2010). Acta Cryst. B66, 253-259.]), the only one with this symmetry out of about ten tested, represented a freak occurrence of a specimen that failed to undergo the normal phase transition upon cooling.

[Figure 2]
Figure 2
Molecular structures of L-Abu at (a) 110 (Görbitz, 2010[Görbitz, C. H. (2010). Acta Cryst. B66, 253-259.]), (b) 215, (c) 330 and (d) 365 K. Individual molecules in the asymmetric unit are labelled in italics (A, B, …) with illustrative atomic numbering given for one molecule. Thermal displacement ellipsoids are shown at the 50% probability level. Atom color depths reflect the occupancy of each conformation as listed in Table 5[link]. The asymmetric unit of the P21 form of L-Abu at 110 K looks exactly as the I2 asymmetric unit shown in (a).

The packing diagrams in Fig. 3[link] show the typical construction of a crystal of a hydrophobic amino acid with stacking of molecular bilayers, each with two hydrogen-bonded sheets in its core. Four different types of sheets have been observed for enantiomeric amino acids (Görbitz et al., 2009[Görbitz, C. H., Vestli, K. & Orlando, R. (2009). Acta Cryst. B65, 393-400.]). The one observed here (Fig. 4[link]) is called Lx (see the supporting information for notation). Notably, all molecules of such a sheet take part in equivalent intermolecular interactions, even when Z′ > 1 (here Z′ = 4).

[Figure 3]
Figure 3
Crystal packing of L-Abu viewed along the b axis at (a) 110 K (Görbitz, 2010[Görbitz, C. H. (2010). Acta Cryst. B66, 253-259.]), (b) 215 K and (c) 365 K. In (a) and (b) C atoms of molecules A, B, C and D are colored in sky blue, yellow, pink and white, respectively. In (c) molecule A (average of A and B at lower temperatures) is olive green, while molecule B (average of C and D at lower temperatures) is light pink. Only the most populated side-chain conformation is shown for disordered molecules. Colored arrows in (a) highlight what may look like a slide at the center of the green bilayer and the full actual slide of the red bilayer, while large open arrows cover two antiparallel hydrogen-bonded sheets that constitute a hydrophilic layer at the core of the two molecular bilayers identified by red and green shades. Dashed ellipses show hydrogen-bonded amino acid dimers. Symmetry elements are included in (b) and (c), with yellow fill for pseudo-twofold rotation axes, see text for details.
[Figure 4]
Figure 4
Hydrogen-bonded sheet of type Lx (Görbitz et al., 2009[Görbitz, C. H., Vestli, K. & Orlando, R. (2009). Acta Cryst. B65, 393-400.]) of L-Abu at 215 K and L-Nva at 293 K (top) and type L2 of L-Nva at 100 and 220 K (bottom). Side chains are shown as small spheres. Hydrogen bonds accepted by syn and anti carboxylate lone pairs are marked 1 and 2, respectively; distances (in Å) for L-Abu are average values for four molecules. In the L2 sheet, the H1B of molecule B (light grey C atoms) is involved in a three-centered interaction to the carboxylate group of molecule A (dark grey C atoms), with H1B⋯O2A as the shorter contact, while H1A participates in a two-centered interaction to O1B (H1A⋯O2B in orange is > 2.8 Å). In the Lx sheet all syn (1) hydrogen bonds are similar, with H1⋯O1 as the shorter component of a three-centered interaction.

A special property of the I2 and the P21 L-Abu polymorphs, seen among previous amino acid structures only for form (I) (Ihlefeldt et al., 2014[Ihlefeldt, F. S., Pettersen, F. B., von Bonin, A., Zawadzka, M. & Görbitz, C. H. (2014). Angew. Chem. Int. Ed. 53, 13600-13604.]) and form (III) (Mossou et al., 2014[Mossou, E., Teixeira, S. C. M., Mitchell, E. P., Mason, S. A., Adler-Abramovich, L., Gazit, E. & Forsyth, V. T. (2014). Acta Cryst. C70, 326-331.]) of L-phenylalanine, is the presence of two distinct types of molecular bilayers, one constructed from A and B molecules and one from C and D molecules. The latter is unperturbed by the phase change (Figs. 3[link]a and b), but some subtle yet intriguing changes occur for the AB-bilayers as only A:::B heterodimers are present in the P21 structure, while the I2 structure has A:::A and B:::B homodimers. It would be unreasonable to assume that transitions between the two forms take place by sliding inside the hydrophilic layer (green arrow in Fig. 3[link]a), as this would require that all interactions were broken between the two Lx sheets (large open arrows) that constitute the Lx–Lx hydrogen-bonded layer. The mechanism must instead involve a combination of sliding every second molecular bilayer (observed previously for the intermediate phases of twin displacive transitions in some amino-acid quasiracemates; Görbitz & Karen, 2015[Görbitz, C. H. & Karen, P. (2015). J. Phys. Chem. B, 119, 4975-4984.]) with concerted conformational changes for all amino-acid side chains on one side of the sliding interface (Figs. S2 and S3).

Side-chain conformations are listed in Table 5[link]. At 215 K, molecule B is disordered over two gauche positions (Fig. 2[link]b), with gauche+ as the most populated conformation (Table 5[link]). Upon cooling to 190 K its occupancy is reduced from 0.602 (7) to 0.100 (6) (Fig. S4), and at 110 K only gauche− remains (Fig. 2[link]a). It follows from the previous data (Görbitz, 2010[Görbitz, C. H. (2010). Acta Cryst. B66, 253-259.]) that this ordering upon cooling occurs regardless of whether the phase transition 1 takes place or not (see above).

As the temperature increases between 209 and 355 K, there is a gradual introduction of disorder for molecules A, B and C, while molecule D remains fully ordered even at 330 K (Fig. 2[link]c). At transition 2 the disorder reaches a state where the distinction between A and B and between C and D is lost, leaving just two crystallographically independent molecules at 365 K (Fig. 2[link]d), each with its own distribution of side-chain rotamers, Table 5[link]. Symmetry consequently increases as the pseudo-twofold rotation axes of the P21 structure at 215 K in Fig. 3[link](b) become proper symmetry elements of a C2 unit cell at 365 K (Fig. 3[link]c).

3.3. L-Nva

The two molecules in the asymmetric unit of L-Nva at 100 K (Fig. 5[link]a) participate in L2-type hydrogen-bonded sheets (Fig. 4[link]), not Lx sheets as L-Abu, L-Nle and most other amino acids that do not branch at Cβ or Cγ (Görbitz et al., 2009[Görbitz, C. H., Vestli, K. & Orlando, R. (2009). Acta Cryst. B65, 393-400.]). At low temperatures, L-Nva is thus isostructural to its analog with an iso­propyl side chain, L-Val (Dalhus & Görbitz, 1996a[Dalhus, B. & Görbitz, C. H. (1996a). Acta Chem. Scand. 50, 544-548.]). There is no side-chain disorder below transition 1 (Fig. S5).

[Figure 5]
Figure 5
Molecular structure of L-Nva at (a) 100, (b) 220 and (c) 293 K with atomic coloring scheme as in Fig. 2[link]. Side-chain H atoms have been omitted for disordered structures, and only the most populated conformation is shown in ellipsoid representation; the side chains of minor orientations being shown in ball-and-stick style with spheres of arbitrary size (the polar heads are omitted due to extensive overlap).

Upon heating through transition 1 at 207 K (Fig. 1[link]), sliding of molecular bilayers occurs both along the monoclinic axis (Figs. 6[link]a and b) and the 9.6 Å a-axis (Fig. S6). These displacive changes, linked with a shift in space group from P21 to I2, are equivalent to those observed for the amino acid racemates and quasiracemates described above. Simultaneously, disorder is introduced for both side chains (Fig. 5[link]b).

[Figure 6]
Figure 6
Crystal packing of L-Nva at (a) 100 K, (b) 220 K and (c) 293 K and (d) of L-Val at 293 K (Torii & Iitaka, 1970[Torii, K. & Iitaka, Y. (1970). Acta Cryst. B26, 1317-1326.]), all viewed along the a-axis. At the two lowest temperatures, C atoms of molecule A are colored in dark grey, while those of molecule B are light grey. Similar sections of a molecular bilayer of L-Nva are highlighted by blue shading in (a) and (b) to highlight the sliding half a unit-cell length along the vertical 5.2 Å axis during transition 1. Red shades in (c) and (d) cover the hydrophobic regions at room temperature, of width 8.82 Å for L-Nva and 6.45 Å for L-Val (calculated as the distance between planes running through the centers of the Cα—Cβ bonds).

While all other amino acids investigated so far retain their basic hydrogen-bonding pattern during a phase transition, transition 2 of L-Nva at 273 K (Fig. 1[link]) concerns a shift from L2–L2 to Lx–Lx with Z′ being reduced from 2 (space group I2, Z = 8) to 1 (C2, Z = 4, Fig. 5[link]c). Major shifts in molecular positions upon the change of crystal symmetry are not required, but minor reorientations can be seen by comparing Figs. 6[link](b) and (c). This unprecedented transition appears sharp in DSC, but a plot of the positions of H atoms accepted by the carboxylate syn lone pairs (Fig. 7[link]) makes it evident that H1A and H1B atoms gradually migrate towards more centered positions between 100 and 270 K (i.e. through transition 1). An abrupt final shift results in a single three-centered interaction in an Lx sheet at 293 K (Fig. 4[link]).

[Figure 7]
Figure 7
Temperature-dependent positions of H atoms interacting with the syn lone pairs of the L-Nva carboxylate group. From their starting positions at 100 K (blue), both H1B and H1A move towards more central positions as the temperature increases through 220 K (green) to 270 K (orange). After transition 2 in Fig. 1[link], the distinction between molecule A and B (Fig. 5[link]) has disappeared, giving a single type of three-centered interaction (dashed lines) at 293 K (red).

The unit-cell volume and density of L-Nva are in Table 7[link] compared with corresponding values for L-Val. The large 15% difference at room temperature is associated with the inefficient stacking of the long L-Nva side chains compared with the isopropyl chain of L-Val (Figs. 6[link]c and d).

Table 7
Comparison between L-Val and L-Nva at low and ambient temperatures

Compound T (K) Space group V3) Change (%) Dx (g cm−3)
L-Val 120 P21 606.0 (1) 1.284
L-Nva 100 P21 641.78 (19) +5.9 1.212
L-Val 293 P21 617.1§ 1.261
L-Nva 293 C2 709.4 (5) +15.0 1.097
†Dalhus & Görbitz (1996a[Dalhus, B. & Görbitz, C. H. (1996a). Acta Chem. Scand. 50, 544-548.]).
‡Torii & Iitaka (1970[Torii, K. & Iitaka, Y. (1970). Acta Cryst. B26, 1317-1326.]).
§No s.u.s given.

Regarding transition 3 in Fig. 1[link] at 300 K, the β angle increases from 104.770 (5)° at 293 K to 112.2 (2)° at 320 K (Table S7). As the thermal effect is very weak, any significant change in disorder can be excluded, so this transition is probably associated with minor bilayer sliding and rearrangements of the side chains. As the structure at 293 K is already disordered over four positions, further efforts to resolve this matter were considered futile.

3.4. L-Nle

The room-temperature structure of L-Nle, refined to a reasonable R-factor of 0.057, was described by Torii & Iitaka (1973[Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799-2807.]) as fully ordered, but the non-uniform C—C bond lengths in the side chain, 1.487, 1.546, 1.426 and 1.552 Å (from Cα to C), made us suspect a residual disorder. We confirmed this at an even lower temperature, 210 K, for which refinement to an R-factor of 0.036 (Table 3[link]) revealed one major side-chain orientation of occupancy 0.700 (7), with N1—C2—C3—C4, C2—C3—C4—C5 and C3—C4—C5—C6 torsion angles all trans, and one minor orientation of occupancy 0.300 (7), with trans, gauche+, trans torsion angles (Fig. 8[link]a and Table 5[link]). Bond lengths in the side chain of the major conformation are now 1.525 (4), 1.530 (6), 1.518 (5) and 1.531 (8) Å from C2 to C6. The crystal packing, with an Lx–Lx hydrogen-bonding pattern (Fig. 9[link]a), resembles that observed for L-Nva at 293 K (Fig. 6[link]c) and L-Abu at all temperatures. Due to steric conflict, two neighboring molecules along the ab-diagonal cannot both have the minor side-chain conformation.

[Figure 8]
Figure 8
Evolution of the molecular structure of L-Nle upon heating from 210 K in (a) to 405 K in (d). Style as in Fig. 5[link] except that at 405 K all four side-chain conformations are shown in ball-and-stick style with spheres of arbitrary size. Atomic numbering is included for the most populated conformation at 210 K.
[Figure 9]
Figure 9
(a) Crystal packing of L-Nle at 210 K viewed along the a-axis. C atoms of the least populated side-chain conformation are shown in light grey color. (b) Crystal packing at 380 K viewed along the b-axis. Only the most populated side-chain conformation is included. (c) Equivalent to (b), but at 405 K. The narrow blue rectangular shade in (b) shows the 0.26 Å vertical `up' offset of the right molecule compared with the left as the result of the 90.916 (5)° β angle. In (c) the shift is `down' 3.76 Å [red shaded rectangle, β = 103.11 (2)°, note different origin] for a total slide of 4.01 Å along the vertical 9.6 Å a-axis.

Using the disordered, but well defined 210 K structure as a reference for L-Nle, increasing temperature brings about conformational rearrangements and increasing disorder, corresponding to the relatively high transition entropy of 6.3 J mol−1 K−1, Table 6[link]. This is labelled as transition 3 in Fig. 1[link]. Numerous ways to refine the side-chain disorder above room temperature were tested, and we settled for two positions at 330 K (Fig. 8[link]b) and three at 380 K (Fig. 8[link]c, Table 5[link]). The space group remains C2, but Table 3[link] reveals a decrease for the β-angle from 97.628 (2)° at 210 K to 90.916 (5)° at 380 K.

Transition 4 at 395 K in Fig. 1[link] concerns a 4.01 Å slide along the 9.6 Å a-axis (Figs. 9[link]b and c). The β-angle increases to 103.11 (2)° without changes to the space group or the hydrogen-bonding pattern. Unlike the displacive transition for L-Nva at 207 K described above, no concomitant slide along the b-axis is seen (Fig. S7). Sliding along a single axis also occurs for the quasiracemate L-Nle:D-Met (Görbitz & Karen, 2015[Görbitz, C. H. & Karen, P. (2015). J. Phys. Chem. B, 119, 4975-4984.]), but in a two-step manner.

Our first attempt to solve the 180 K structure was based on a monoclinic C2 unit cell with a = 28.579 (4), b = 5.2472 (8), c = 14.759 (2) Å and β = 97.983 (5)°, which can be derived from the unit cell at 210 K (Table 3[link]) by tripling the length of a. As Z′ is then increased from 1 to 3, we initially assumed that the 0.700 (7):0.300 (7) disorder between two side-chain conformations at 210 K had become crystallographically ordered 2:1 at 180 K. Subsequent structure refinement was, however, unsatisfactory, with R > 0.10 and unreasonable thermal displacement ellipsoids (Fig. S8). A closer look at the diffraction pattern (Fig. S9) immediately revealed something out of the ordinary, two types of reflections being identified: the strong ones indexed on the lattice of the 210 K structure and weak satellites defining a vector q = 0.6978a* − 0.1095c* of a modulated structure in the (3 + 1)-dimensional superspace introduced by de Wolff et al. (1981[Wolff, P. M. de, Janssen, T. & Janner, A. (1981). Acta Cryst. A37, 625-636.]). The new integration of frames was made by CrysAlis software (Agilent, 2014[Agilent (2014). CrysAlisPro. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), and the space-group test in JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) proved the superspace group C2(α,0,γ)0. With the 210 K structure as a starting model, molecular modulations as well as site occupancies were refined to an almost perfect spatial separation of the two conformers for either of the alternative modulation functions, harmonic or crenel (Table S3). The harmonic model, which needs just three additional parameters, gives a significantly better fit. The result shows that in the 180 K structure it is the `order' of the chains that is incommensurably modulated, yet it is an order as manifested by the relatively high entropy of 2.75 J mol K−1 for transition 2 in Fig. 1[link].

At 100 K yet another structure is obtained. This is also modulated, with vector q = 2/3a* − 1/6c*, i.e. commensurate within experimental accuracy. Hence it has a supercell of six bilayers (Fig. 10[link]b); a 3 × 1 × 6 multiple of the C2 unit cell at 210 K. The parameters of the modulated refinement are listed in the Table S4. The difference in refinement fits for the two modulation functions (harmonic and crenel) is not so pronounced as at 180 K. This means that in this commensurate 100 K phase both conformers are fully separated, as the tiny residual disorder of the incommensurate modulation has been removed (assuming that the same incommensurate phase is obtained on cooling as on heating, as indicated by two additional, partial data sets from a less favorable specimen). A comparison of distances, angles and torsion angles for the 210, 180 and 100 K phases with details of the refinement models is in Table S5.

[Figure 10]
Figure 10
(a) The C2 unit cell with two bilayers for L-Nle at 100 K. H atoms are omitted, hydrogen bonds are dotted. Molecules B (pink), C (light pink), E (light grey) and F (white) have the same side-chain conformation, but B and E are tilted slightly to relieve close contacts (double arrows) with A (purple) and D (blue). The two hydrophobic regions in the unit cell (grey shades) are related by the central twofold rotation axis. (b) Comparison of the 100 K cell (black edges) with the commensurate supercell (orange) and the unit cell at 210 K (purple). (c) The three possible types of bilayers with a 2:1 conformational distribution between trans, trans, trans (light molecules) and trans, gauche+, trans (dark molecules). Type 3 (grey and black molecules) has not been observed experimentally. Red and blue shadings in (b) highlight type 1 and type 2 bilayers and the 121–2 stacking sequence along the c-axis (arrows).

The solution of the 100 K phase provided an opportunity to study how the mutual molecular interactions affect the geometries of both conformers in their independent positions. The relatively large ratio of independent reflections to the number of refined parameters for the commensurate model with the crenel function (9704/186 ≃ 52) allows a refinement in which the condition of rigidity of molecules is suppressed. To keep the number of refined parameters low, we did constrain the anisotropic thermal-displacement parameters to be the same for the two conformers, and let the atomic coordinates be freely determined by the modulation function. The observed lowering of the R-factor indicates that both conformers are slightly but significantly affected by the interactions of their side chains, violating partially the rigid-body model. To model these interactions, the rigid-body condition was applied to three groups of molecules: the molecule pair A + D (the conformer trans, gauche+, trans) and to the molecule pairs B + E and C + F of the other conformer (trans, trans, trans). The result in Table S6 shows that the bond lengths are kept uniform, suggesting that the interactions affect mainly the torsion angles of the conformers.

The 100 K data set can also be refined on a regular 3 × 1 × 2 unit cell of two bilayers shown in Fig. 10[link](a). The space group is then C2 (Table 3[link]) with six molecules in the asymmetric unit (Fig. 11[link]). Further analysis shows that an L-Nle bilayer with a 2:1 distribution between side-chain conformations trans,trans,trans (4 molecules) and trans,gauche+,trans (2 molecules) could occur in three different types 1, 2 and 3 (Fig. 10[link]c). The observed stacking sequence along the c-axis is 1212 (Fig. 10[link]b), with no trace of type 3. Only four other amino-acid structures have two types of bilayers in the crystal: The I2 and P21 phases of L-Abu discussed above (Fig. 3[link]a and 3b) as well as form (I) (Ihlefeldt et al., 2014[Ihlefeldt, F. S., Pettersen, F. B., von Bonin, A., Zawadzka, M. & Görbitz, C. H. (2014). Angew. Chem. Int. Ed. 53, 13600-13604.]) and form (III) (Mossou et al., 2014[Mossou, E., Teixeira, S. C. M., Mitchell, E. P., Mason, S. A., Adler-Abramovich, L., Gazit, E. & Forsyth, V. T. (2014). Acta Cryst. C70, 326-331.]) of L-phenylalanine. These four structures have in common not only a Z′ value of 4, but also that adjacent bilayers are antiparallel. All other structures have identical, parallel bilayers. Considering that hydrogen-bonding patterns are unaffected by the side-chain conformations, it is indeed quite remarkable that L-Nle forms a modulated, but ordered crystalline 1212 arrangement at 100 K instead of any of the simpler 111, 222 or 333 alternatives.

[Figure 11]
Figure 11
The six molecules A to D in the asymmetric unit of the C2 unit cell of L-Nle at 100 K. Atomic numbers are given for molecule A.

Transition 1 is not seen in the DSC scan on cooling, but visible on heating (Fig. 1[link]). Our 180 K data set was collected after first cooling the structure to 100 K, but subsequent testing (with somewhat lower quality crystals) confirmed that both modulation and the apparent C2 unit cell with Z′ = 3 is observed at 180 K both on cooling and on heating, so the reason why we do not observe the weak transition 1 upon cooling is not clear. The details of the transitions to and between the modulated L-Nle phases will be subject to future, more comprehensive investigations, which will also include monitoring obvious crystal-to-crystal variation.

3.5. L-Met

No side-chain disorder was described for L-Met at 120 K (Dalhus & Görbitz, 1996a[Dalhus, B. & Görbitz, C. H. (1996a). Acta Chem. Scand. 50, 544-548.]), 150 K (Sadler et al., 2005[Sadler, P., Bihari, S., Parsons, S. & Messenger, D. (2005). Personal Communication (refcode LMETON11). CCDC, Cambridge, England.]) or at room temperature (Torii & Iitaka, 1973[Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799-2807.]). The present structure refinement reveals, on the other hand, two side-chain conformations for molecule A and four for molecule B at 293 K (Fig. 12[link]a). The two positions for the molecule A side chain both define the same formal trans, trans, trans orientation for N1A–C2A–C3A–C4A, C2A–C3A–C4A–S1A, C3A–C4A–S1A–C5, with small separations between the two alternative positions for each atom. Considering that short intermolecular distances (less than sum of van der Waals radii) to atoms in the side chain of molecule B should be avoided, the major orientation of A [occupancy 0.830 (4)] is associated with the trans, gauche+, gauche+ and trans, trans, gauche− conformations for B [combined occupancy 0.809 (3)]. Conversely, the A side chain adopts the minor orientation when the side chain of B is either gauche−, trans, gauche+ or gauche−, gauche−, gauche−, Table 5[link].

[Figure 12]
Figure 12
Molecular structures of L-Met at (a) 293 K, (b) 320 K and (c) 405 K; style as in Figs. 5[link] and 8[link] except that at 405 K side-chain conformations are colored in a rainbow sequence (red, orange, yellow, light green, light blue, light violet) from highest to lowest occupancy. Only a single set of coordinates was refined for O1, O2, N1 and C1 of each amino acid; these atoms thus occur in regular red, blue and black colors.

Fig. 1[link] shows two previously unknown transitions for L-Met above room temperature. Upon heating from room temperature only minor structural changes are apparent above transition 1, despite a rather high value for ΔS of 4.66 J mol−1 K−1, Table 6[link]. These are associated with increased populations for the minor side-chain conformations (Fig. 12[link]b and Table 5[link]) as well as a smaller value for the β angle and increased interlayer spacing (Table 4[link] and Figs. 13[link]a and 13b). By comparison, structural changes between the 320 and 405 K forms are much more evident, even though the P21 space group is retained. Molecular disorder is very complex for L-Met above transition 2; the high number of electrons for the side-chain sulfur atom allowing detection of atomic positions with low occupancy. The final refinement model displayed in Fig. 12[link](c) employed no less than four different side-chain positions for molecule A and six for molecule B, but the true number of conformations in the crystal may actually be even larger. More elaborate refinement models did not, however, result in a significant reduction of the R-factor. In addition to the development of multifold disorder above transition 2, there is also a slide along the 9.5 Å axis (Fig. 13[link]c) that closely mimics the slide at transition 4 of L-Nle taking place in the same temperature range. Sliding along the b-axis is similarly absent (Fig. S11).

[Figure 13]
Figure 13
Crystal packing of L-Met at (a) 293 K, (b) 320 K and (c) 405 K viewed along the b-axis with C atoms of molecule A colored in dark grey and those of molecule B in light grey. As in previous packing diagrams, only the most populated side-chain conformation is shown for each molecule. The length of the gray double arrow at 293 K represents the distance between the centers of neighboring molecular bilayers [calculated as c·sin(β)]. Arrows of the same length at 320 and 405 K illustrate the expansion perpendicular to the molecular bilayers as a function of temperature and phase transitions.

Cell parameters recorded at 430 K (Table S7) deviate primarily from those obtained at 405 K in terms of a smaller β angle, 94.13 (10)° versus 99.869 (13)°, and what appears to be a reduction in unit-cell volume from 791.3 (5) to 773 (7) Å3. Due to the complex disorder at 405 K, no full data collection was carried out to further investigate this matter.

It is noteworthy that the hydrogen-bonding patterns of L-Nle and L-Met are different at all temperatures, Lx–Lx versus L2–L2. The change triggered by the associated—CδH2— to —S— substitution suggests, like the temperature-induced transition 2 for L-Nva discussed above, that these patterns have quite similar energies. This is furthermore substantiated by L-Abu (Görbitz, 2010[Görbitz, C. H. (2010). Acta Cryst. B66, 253-259.]) and the monoclinic polymorph of L-Cys (Görbitz & Dalhus, 1996[Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1756-1759.]), for which the related CH3-to-SH substitution induces a shift from Lx–Lx to L2–L2 hydrogen bonding.

4. Conclusions

Prior to the present investigation, only a single temperature-induced phase transition was known for an enantiomeric amino acid, pertaining to orthorhombic L-Cys (Moggach et al., 2005[Moggach, S. A., Clark, S. J. & Parsons, S. (2005). Acta Cryst. E61, o2739-o2742.]), where a disordered thiol group becomes ordered at 30 K. This picture is changed dramatically by the results presented here for L-methionine (L-Met), L-aminobutyric acid (L-Abu), L-norvaline (L-Nva) and L-norleucine (L-Nle). Together, these four amino acids with linear, hydrophobic side chains display at least 12 phase transitions, which are associated with a surprising variety of physical processes in the crystal. These include concerted side-chain rearrangements (L-Abu), regular symmetry increase due to developing disorder (L-Abu), simultaneous sliding along two crystallographic axes (L-Nva), hydrogen-bond pattern rearrangement (L-Nva), more gradual introduction of complex disorder or change in rotamer composition (L-Nle, L-Met), displacive transition along a single axis (L-Nle, L-Met) and finally transitions to commensurate and incommensurately modulated structures (L-Nle), the first of their kind for amino acids. For the amino acid counterparts with branched side chains, such as L-Val, L-Ile and L-Leu, no comparable transitions have been found, highlighting the remarkable properties of the four compounds studied here.

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: APEX2 (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL (Sheldrick, 2015b).

(Abu190) S-2-aminobutanoic acid top
Crystal data top
C4H9NO2F(000) = 896
Mr = 103.12Dx = 1.288 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
a = 9.6246 (7) ÅCell parameters from 7523 reflections
b = 5.2079 (4) Åθ = 2.3–30.5°
c = 43.103 (3) ŵ = 0.10 mm1
β = 100.201 (2)°T = 190 K
V = 2126.4 (3) Å3Plate, colourless
Z = 160.85 × 0.78 × 0.06 mm
Data collection top
Bruker D8 Vantage single crystal CCD
diffractometer
5251 independent reflections
Radiation source: fine-focus sealed tube4591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.3 pixels mm-1θmax = 28.3°, θmin = 1.0°
Sets of exposures each taken over 0.5° ω rotation scansh = 1211
Absorption correction: multi-scan
SADABS (Bruker, 2014)
k = 66
Tmin = 0.705, Tmax = 1.000l = 5757
14739 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.6963P]
where P = (Fo2 + 2Fc2)/3
5251 reflections(Δ/σ)max = 0.008
266 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Disorder over a major and a minor positions for the side chain of molecule B.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.08739 (15)0.7771 (3)0.03202 (3)0.0226 (3)
O2A0.00259 (17)0.3883 (3)0.04250 (4)0.0333 (4)
N1A0.16464 (17)0.9821 (3)0.02784 (4)0.0210 (4)
H1A0.13250.94840.00710.031*
H2A0.25431.04400.03030.031*
H3A0.10781.10090.03470.031*
C1A0.0144 (2)0.6244 (4)0.03933 (5)0.0203 (4)
C2A0.1634 (2)0.7419 (4)0.04641 (5)0.0215 (4)
H21A0.23240.61750.04010.026*
C3A0.2065 (3)0.8043 (6)0.08127 (5)0.0328 (5)
H31A0.29580.90290.08440.039*
H32A0.13320.91510.08780.039*
C4A0.2264 (3)0.5697 (7)0.10213 (6)0.0522 (8)
H41A0.25400.62280.12420.078*
H42A0.30050.46090.09620.078*
H43A0.13780.47300.09960.078*
O1B0.40893 (14)0.2813 (3)0.02809 (3)0.0229 (3)
O2B0.50248 (18)0.0843 (3)0.04826 (5)0.0377 (4)
N1B0.66038 (17)0.5104 (3)0.03126 (4)0.0180 (3)
H1B0.63100.46910.01060.027*
H2B0.75090.56860.03410.027*
H3B0.60350.63510.03690.027*
C1B0.5107 (2)0.1457 (4)0.04109 (5)0.0198 (4)
C21B0.6533 (2)0.2787 (4)0.05114 (5)0.0225 (4)0.900 (6)
H21B0.73140.15780.04870.027*0.900 (6)
C31B0.6657 (3)0.3566 (7)0.08612 (7)0.0297 (7)0.900 (6)
H31B0.58260.46210.08850.036*0.900 (6)
H32B0.66330.19940.09890.036*0.900 (6)
C41B0.7989 (3)0.5065 (7)0.09907 (6)0.0381 (8)0.900 (6)
H41B0.79960.54900.12120.057*0.900 (6)
H42B0.80110.66510.08690.057*0.900 (6)
H43B0.88190.40200.09740.057*0.900 (6)
C22B0.6533 (2)0.2787 (4)0.05114 (5)0.0225 (4)0.100 (6)
H22B0.70870.16280.03940.027*0.100 (6)
C32B0.739 (3)0.262 (5)0.0789 (5)0.031 (6)*0.100 (6)
H33B0.83570.32040.07780.037*0.100 (6)
H34B0.74190.08610.08760.037*0.100 (6)
C42B0.667 (4)0.437 (7)0.0962 (8)0.049 (11)*0.100 (6)
H44B0.71790.44850.11800.074*0.100 (6)
H45B0.57080.37580.09620.074*0.100 (6)
H46B0.66340.60740.08640.074*0.100 (6)
O1C0.13674 (14)0.1460 (3)0.21912 (3)0.0213 (3)
O2C0.07453 (17)0.5180 (3)0.20097 (4)0.0338 (4)
N1C0.11304 (17)0.0753 (3)0.22038 (4)0.0189 (4)
H1C0.04250.18410.21190.028*
H2C0.11210.05490.24130.028*
H3C0.19760.14180.21780.028*
C1C0.0507 (2)0.2906 (4)0.20881 (5)0.0191 (4)
C2C0.0916 (2)0.1784 (4)0.20429 (5)0.0200 (4)
H21C0.16790.29690.21450.024*
C3C0.1013 (2)0.1563 (5)0.16955 (5)0.0326 (5)
H31C0.19370.07980.16780.039*
H32C0.09820.33100.16040.039*
C4C0.0150 (3)0.0043 (7)0.15021 (5)0.0449 (7)
H41C0.00150.00920.12820.067*
H42C0.10710.07210.15130.067*
H43C0.01140.17940.15870.067*
O1D0.36159 (14)0.6478 (3)0.21905 (3)0.0214 (3)
O2D0.43449 (17)1.0420 (3)0.21169 (5)0.0351 (4)
N1D0.62037 (17)0.4489 (3)0.22061 (4)0.0188 (4)
H1D0.55120.33190.21400.028*
H2D0.62680.47590.24170.028*
H3D0.70420.38840.21670.028*
C1D0.4510 (2)0.8060 (4)0.21241 (5)0.0186 (4)
C2D0.5857 (2)0.6948 (4)0.20344 (5)0.0182 (4)
H21D0.66500.81880.20970.022*
C3D0.5681 (2)0.6438 (5)0.16795 (5)0.0270 (5)
H31D0.65280.55280.16360.032*
H32D0.48570.52970.16150.032*
C4D0.5472 (3)0.8872 (6)0.14826 (6)0.0409 (6)
H41D0.53650.84270.12590.061*
H42D0.62930.99950.15410.061*
H43D0.46220.97650.15210.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0133 (7)0.0233 (8)0.0311 (8)0.0038 (6)0.0044 (6)0.0052 (7)
O2A0.0247 (8)0.0194 (8)0.0581 (11)0.0032 (7)0.0134 (8)0.0021 (8)
N1A0.0147 (8)0.0219 (9)0.0278 (9)0.0076 (7)0.0075 (6)0.0050 (7)
C1A0.0162 (9)0.0211 (10)0.0248 (10)0.0037 (8)0.0068 (8)0.0001 (8)
C2A0.0141 (9)0.0224 (11)0.0290 (10)0.0015 (8)0.0070 (8)0.0016 (8)
C3A0.0229 (11)0.0472 (15)0.0273 (11)0.0085 (11)0.0021 (9)0.0022 (11)
C4A0.0393 (15)0.072 (2)0.0398 (14)0.0116 (15)0.0071 (12)0.0198 (15)
O1B0.0133 (7)0.0236 (8)0.0312 (8)0.0045 (6)0.0026 (6)0.0042 (7)
O2B0.0255 (9)0.0162 (8)0.0753 (13)0.0023 (7)0.0195 (8)0.0068 (9)
N1B0.0116 (7)0.0185 (8)0.0239 (8)0.0046 (7)0.0035 (6)0.0002 (7)
C1B0.0155 (9)0.0156 (9)0.0303 (10)0.0029 (8)0.0100 (8)0.0010 (8)
C21B0.0145 (9)0.0197 (10)0.0328 (11)0.0020 (8)0.0028 (8)0.0074 (9)
C31B0.0258 (14)0.0397 (17)0.0244 (13)0.0053 (12)0.0062 (11)0.0034 (13)
C41B0.0327 (15)0.0584 (19)0.0222 (12)0.0138 (15)0.0022 (10)0.0048 (13)
C22B0.0145 (9)0.0197 (10)0.0328 (11)0.0020 (8)0.0028 (8)0.0074 (9)
O1C0.0149 (7)0.0221 (7)0.0287 (7)0.0034 (6)0.0085 (5)0.0024 (6)
O2C0.0236 (8)0.0174 (8)0.0600 (11)0.0058 (7)0.0060 (7)0.0080 (9)
N1C0.0137 (8)0.0190 (9)0.0252 (8)0.0047 (7)0.0064 (6)0.0010 (7)
C1C0.0150 (9)0.0175 (10)0.0248 (10)0.0024 (8)0.0031 (7)0.0019 (8)
C2C0.0129 (9)0.0170 (10)0.0309 (11)0.0006 (8)0.0063 (8)0.0009 (8)
C3C0.0281 (12)0.0385 (13)0.0353 (12)0.0058 (11)0.0175 (10)0.0077 (11)
C4C0.0590 (18)0.0530 (16)0.0236 (11)0.0037 (15)0.0094 (11)0.0018 (12)
O1D0.0137 (7)0.0185 (7)0.0339 (8)0.0029 (6)0.0095 (6)0.0037 (6)
O2D0.0245 (8)0.0151 (8)0.0687 (12)0.0041 (7)0.0163 (8)0.0039 (8)
N1D0.0137 (8)0.0193 (9)0.0240 (8)0.0047 (7)0.0046 (6)0.0038 (7)
C1D0.0137 (9)0.0162 (10)0.0261 (10)0.0032 (8)0.0043 (7)0.0002 (8)
C2D0.0131 (9)0.0162 (10)0.0264 (10)0.0000 (7)0.0064 (7)0.0008 (8)
C3D0.0277 (12)0.0293 (11)0.0255 (10)0.0013 (10)0.0087 (8)0.0026 (10)
C4D0.0487 (16)0.0424 (15)0.0330 (12)0.0027 (13)0.0109 (11)0.0100 (12)
Geometric parameters (Å, º) top
O1A—C1A1.258 (3)C42B—H44B0.9800
O2A—C1A1.245 (3)C42B—H45B0.9800
N1A—C2A1.486 (3)C42B—H46B0.9800
N1A—H1A0.9100O1C—C1C1.257 (2)
N1A—H2A0.9100O2C—C1C1.242 (3)
N1A—H3A0.9100N1C—C2C1.489 (3)
C1A—C2A1.539 (3)N1C—H1C0.9100
C2A—C3A1.521 (3)N1C—H2C0.9100
C2A—H21A1.0000N1C—H3C0.9100
C3A—C4A1.509 (4)C1C—C2C1.533 (3)
C3A—H31A0.9900C2C—C3C1.521 (3)
C3A—H32A0.9900C2C—H21C1.0000
C4A—H41A0.9800C3C—C4C1.522 (4)
C4A—H42A0.9800C3C—H31C0.9900
C4A—H43A0.9800C3C—H32C0.9900
O1B—C1B1.256 (3)C4C—H41C0.9800
O2B—C1B1.243 (3)C4C—H42C0.9800
N1B—C21B1.488 (3)C4C—H43C0.9800
N1B—H1B0.9100O1D—C1D1.260 (2)
N1B—H2B0.9100O2D—C1D1.239 (3)
N1B—H3B0.9100N1D—C2D1.487 (3)
C1B—C21B1.530 (3)N1D—H1D0.9100
C21B—C31B1.546 (4)N1D—H2D0.9100
C21B—H21B1.0000N1D—H3D0.9100
C31B—C41B1.520 (4)C1D—C2D1.530 (3)
C31B—H31B0.9900C2D—C3D1.532 (3)
C31B—H32B0.9900C2D—H21D1.0000
C41B—H41B0.9800C3D—C4D1.519 (3)
C41B—H42B0.9800C3D—H31D0.9900
C41B—H43B0.9800C3D—H32D0.9900
C32B—C42B1.43 (4)C4D—H41D0.9800
C32B—H33B0.9900C4D—H42D0.9800
C32B—H34B0.9900C4D—H43D0.9800
C2A—N1A—H1A109.5H44B—C42B—H45B109.5
C2A—N1A—H2A109.5C32B—C42B—H46B109.5
H1A—N1A—H2A109.5H44B—C42B—H46B109.5
C2A—N1A—H3A109.5H45B—C42B—H46B109.5
H1A—N1A—H3A109.5C2C—N1C—H1C109.5
H2A—N1A—H3A109.5C2C—N1C—H2C109.5
O2A—C1A—O1A124.8 (2)H1C—N1C—H2C109.5
O2A—C1A—C2A118.1 (2)C2C—N1C—H3C109.5
O1A—C1A—C2A117.08 (19)H1C—N1C—H3C109.5
N1A—C2A—C3A108.99 (18)H2C—N1C—H3C109.5
N1A—C2A—C1A108.90 (17)O2C—C1C—O1C124.47 (19)
C3A—C2A—C1A111.25 (17)O2C—C1C—C2C117.08 (19)
N1A—C2A—H21A109.2O1C—C1C—C2C118.40 (18)
C3A—C2A—H21A109.2N1C—C2C—C3C111.33 (18)
C1A—C2A—H21A109.2N1C—C2C—C1C109.41 (16)
C4A—C3A—C2A113.5 (2)C3C—C2C—C1C111.44 (17)
C4A—C3A—H31A108.9N1C—C2C—H21C108.2
C2A—C3A—H31A108.9C3C—C2C—H21C108.2
C4A—C3A—H32A108.9C1C—C2C—H21C108.2
C2A—C3A—H32A108.9C2C—C3C—C4C114.42 (19)
H31A—C3A—H32A107.7C2C—C3C—H31C108.7
C3A—C4A—H41A109.5C4C—C3C—H31C108.7
C3A—C4A—H42A109.5C2C—C3C—H32C108.7
H41A—C4A—H42A109.5C4C—C3C—H32C108.7
C3A—C4A—H43A109.5H31C—C3C—H32C107.6
H41A—C4A—H43A109.5C3C—C4C—H41C109.5
H42A—C4A—H43A109.5C3C—C4C—H42C109.5
C21B—N1B—H1B109.5H41C—C4C—H42C109.5
C21B—N1B—H2B109.5C3C—C4C—H43C109.5
H1B—N1B—H2B109.5H41C—C4C—H43C109.5
C21B—N1B—H3B109.5H42C—C4C—H43C109.5
H1B—N1B—H3B109.5C2D—N1D—H1D109.5
H2B—N1B—H3B109.5C2D—N1D—H2D109.5
O2B—C1B—O1B125.0 (2)H1D—N1D—H2D109.5
O2B—C1B—C21B117.4 (2)C2D—N1D—H3D109.5
O1B—C1B—C21B117.48 (19)H1D—N1D—H3D109.5
N1B—C21B—C1B109.53 (16)H2D—N1D—H3D109.5
N1B—C21B—C31B110.21 (19)O2D—C1D—O1D124.33 (19)
C1B—C21B—C31B107.78 (18)O2D—C1D—C2D118.67 (18)
N1B—C21B—H21B109.8O1D—C1D—C2D116.95 (17)
C1B—C21B—H21B109.8N1D—C2D—C1D108.99 (15)
C31B—C21B—H21B109.8N1D—C2D—C3D108.85 (17)
C41B—C31B—C21B114.0 (2)C1D—C2D—C3D111.63 (17)
C41B—C31B—H31B108.7N1D—C2D—H21D109.1
C21B—C31B—H31B108.7C1D—C2D—H21D109.1
C41B—C31B—H32B108.7C3D—C2D—H21D109.1
C21B—C31B—H32B108.7C4D—C3D—C2D113.18 (19)
H31B—C31B—H32B107.6C4D—C3D—H31D108.9
C31B—C41B—H41B109.5C2D—C3D—H31D108.9
C31B—C41B—H42B109.5C4D—C3D—H32D108.9
H41B—C41B—H42B109.5C2D—C3D—H32D108.9
C31B—C41B—H43B109.5H31D—C3D—H32D107.8
H41B—C41B—H43B109.5C3D—C4D—H41D109.5
H42B—C41B—H43B109.5C3D—C4D—H42D109.5
C42B—C32B—H33B112.0H41D—C4D—H42D109.5
C42B—C32B—H34B112.0C3D—C4D—H43D109.5
H33B—C32B—H34B109.7H41D—C4D—H43D109.5
C32B—C42B—H44B109.5H42D—C4D—H43D109.5
C32B—C42B—H45B109.5
O2A—C1A—C2A—N1A153.61 (19)O2C—C1C—C2C—N1C169.27 (18)
O1A—C1A—C2A—N1A29.4 (2)O1C—C1C—C2C—N1C13.0 (2)
O2A—C1A—C2A—C3A86.2 (3)O2C—C1C—C2C—C3C67.2 (3)
O1A—C1A—C2A—C3A90.8 (2)O1C—C1C—C2C—C3C110.6 (2)
N1A—C2A—C3A—C4A172.8 (2)N1C—C2C—C3C—C4C65.2 (3)
C1A—C2A—C3A—C4A67.1 (3)C1C—C2C—C3C—C4C57.2 (3)
O2B—C1B—C21B—N1B159.12 (19)O2D—C1D—C2D—N1D151.2 (2)
O1B—C1B—C21B—N1B25.4 (3)O1D—C1D—C2D—N1D31.2 (2)
O2B—C1B—C21B—C31B81.0 (3)O2D—C1D—C2D—C3D88.5 (2)
O1B—C1B—C21B—C31B94.5 (2)O1D—C1D—C2D—C3D89.1 (2)
N1B—C21B—C31B—C41B57.0 (3)N1D—C2D—C3D—C4D174.11 (18)
C1B—C21B—C31B—C41B176.5 (2)C1D—C2D—C3D—C4D65.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1Ai0.911.892.770 (2)162
N1A—H2A···O1Bii0.911.952.819 (2)159
N1A—H2A···O2Bii0.912.473.233 (2)142
N1A—H3A···O2Aii0.911.872.767 (2)168
N1B—H1B···O1Biii0.911.912.794 (2)162
N1B—H2B···O1Aiv0.911.912.792 (2)162
N1B—H2B···O2Aiv0.912.563.305 (2)139
N1B—H3B···O2Bii0.911.872.775 (2)174
N1C—H1C···O2Cv0.911.932.812 (2)164
N1C—H2C···O1Dvi0.911.992.829 (2)153
N1C—H3C···O1Dv0.911.912.802 (2)165
N1C—H3C···O2Dv0.912.533.240 (2)135
N1D—H1D···O2Dv0.911.872.756 (2)163
N1D—H2D···O1Cvii0.911.902.772 (2)161
N1D—H3D···O1Civ0.911.972.830 (2)157
N1D—H3D···O2Civ0.912.443.217 (2)143
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x, y1, z; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2.
(Abu215) S-2-aminobutanoic acid top
Crystal data top
C4H9NO2F(000) = 448
Mr = 103.12Dx = 1.279 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.6176 (9) ÅCell parameters from 7687 reflections
b = 5.2126 (5) Åθ = 2.6–25.4°
c = 21.768 (2) ŵ = 0.10 mm1
β = 101.123 (3)°T = 215 K
V = 1070.80 (17) Å3Plate, colourless
Z = 80.67 × 0.63 × 0.10 mm
Data collection top
Bruker D8 Vantage single crystal CCD
diffractometer
3914 independent reflections
Radiation source: fine-focus sealed tube3293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.3 pixels mm-1θmax = 25.4°, θmin = 2.2°
Sets of exposures each taken over 0.5° ω rotation scansh = 1111
Absorption correction: multi-scan
SADABS (Bruker, 2014)
k = 66
Tmin = 0.932, Tmax = 1.000l = 2625
13667 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.1762P]
where P = (Fo2 + 2Fc2)/3
3914 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.13 e Å3
14 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Whole molecule disorder over two positions for molecule B.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.16357 (17)0.7287 (4)0.06006 (8)0.0304 (4)
O2A0.2493 (2)0.3351 (4)0.07530 (11)0.0439 (6)
N1A0.4203 (2)0.9280 (4)0.05846 (10)0.0275 (5)
H1A0.39000.89970.01730.041*
H2A0.51030.98460.06530.041*
H3A0.36481.04670.07170.041*
C1A0.2635 (3)0.5725 (5)0.07388 (12)0.0263 (6)
C2A0.4131 (3)0.6846 (5)0.09349 (12)0.0271 (6)
H21A0.48280.56150.08250.032*
C3A0.4489 (3)0.7391 (7)0.16310 (13)0.0440 (8)
H31A0.53770.83660.17230.053*
H32A0.37420.84690.17440.053*
C4A0.4647 (4)0.5011 (8)0.20334 (16)0.0700 (12)
H41A0.48750.54990.24710.105*
H42A0.37660.40540.19540.105*
H43A0.54020.39510.19330.105*
O11B0.6644 (11)0.255 (4)0.0640 (13)0.024 (2)0.602 (7)
O21B0.754 (2)0.123 (5)0.098 (3)0.0403 (17)0.602 (7)
N11B0.913 (2)0.462 (3)0.0564 (4)0.0235 (14)0.602 (7)
H1B0.86830.44580.01620.035*0.602 (7)
H2B1.00190.51890.05760.035*0.602 (7)
H3B0.86590.57380.07620.035*0.602 (7)
C11B0.7662 (13)0.106 (3)0.0833 (6)0.0272 (8)0.602 (7)
C21B0.9185 (9)0.2071 (19)0.0879 (3)0.0223 (13)0.602 (7)
H21B0.97120.08600.06590.027*0.602 (7)
C31B0.9942 (5)0.2261 (10)0.1559 (2)0.0351 (14)0.602 (7)
H31B1.00340.05320.17400.042*0.602 (7)
H32B1.09010.29210.15710.042*0.602 (7)
C41B0.9214 (9)0.3958 (17)0.1967 (3)0.060 (3)0.602 (7)
H41B0.97630.39740.23910.089*0.602 (7)
H42B0.91420.56900.18010.089*0.602 (7)
H43B0.82730.32960.19700.089*0.602 (7)
O12B0.6598 (17)0.212 (6)0.058 (2)0.024 (2)0.398 (7)
O22B0.766 (4)0.137 (7)0.102 (4)0.0403 (17)0.398 (7)
N12B0.907 (3)0.467 (5)0.0637 (7)0.0235 (14)0.398 (7)
H4B0.88310.41860.02330.035*0.398 (7)
H5B0.99380.53820.07070.035*0.398 (7)
H6B0.84360.58210.07230.035*0.398 (7)
C12B0.768 (2)0.090 (4)0.0841 (9)0.0272 (8)0.398 (7)
C22B0.9075 (15)0.238 (3)0.1048 (4)0.0223 (13)0.398 (7)
H22B0.98730.12530.09970.027*0.398 (7)
C32B0.9268 (8)0.316 (2)0.1733 (4)0.037 (3)0.398 (7)
H33B0.84670.42500.17850.044*0.398 (7)
H34B0.92370.16150.19850.044*0.398 (7)
C42B1.0631 (7)0.4590 (18)0.1985 (3)0.051 (3)0.398 (7)
H44B1.06690.50140.24220.077*0.398 (7)
H45B1.14340.35150.19480.077*0.398 (7)
H46B1.06630.61550.17470.077*0.398 (7)
O1C0.10902 (17)0.0917 (4)0.43909 (8)0.0307 (5)
O2C0.1695 (2)0.4590 (4)0.40110 (11)0.0470 (6)
N1C0.3583 (2)0.1327 (4)0.44202 (9)0.0268 (5)
H1C0.44170.19900.43690.040*
H2C0.28770.24080.42580.040*
H3C0.35920.11070.48310.040*
C1C0.1941 (3)0.2327 (6)0.41784 (13)0.0287 (6)
C2C0.3353 (3)0.1188 (5)0.40946 (13)0.0304 (6)
H21C0.41150.23640.42950.036*
C3C0.3442 (3)0.0948 (7)0.34062 (14)0.0515 (9)
H31C0.34290.26720.32250.062*
H32C0.43510.01550.33760.062*
C4C0.2256 (4)0.0618 (9)0.30203 (14)0.0664 (11)
H41C0.23830.06860.25890.100*
H42C0.22750.23450.31880.100*
H43C0.13520.01750.30370.100*
O1D0.61015 (18)0.6143 (4)0.43843 (9)0.0311 (5)
O2D0.6826 (2)1.0125 (4)0.42745 (11)0.0443 (6)
N1D0.8699 (2)0.4216 (4)0.43941 (10)0.0287 (5)
H1D0.95210.36430.43050.043*
H2D0.80110.30580.42650.043*
H3D0.87980.44460.48100.043*
C1D0.6983 (3)0.7750 (5)0.42628 (12)0.0270 (6)
C2D0.8314 (3)0.6702 (5)0.40668 (12)0.0271 (6)
H21D0.90990.79350.41950.032*
C3D0.8101 (3)0.6276 (6)0.33632 (13)0.0389 (7)
H31D0.89400.54150.32680.047*
H32D0.72870.51350.32330.047*
C4D0.7852 (4)0.8737 (7)0.29867 (14)0.0561 (9)
H41D0.77240.83410.25440.084*
H42D0.70090.95830.30700.084*
H43D0.86630.98630.31050.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0155 (9)0.0244 (10)0.0510 (11)0.0022 (8)0.0058 (8)0.0060 (9)
O2A0.0274 (12)0.0218 (11)0.0831 (15)0.0033 (9)0.0122 (11)0.0013 (11)
N1A0.0168 (11)0.0285 (13)0.0385 (12)0.0083 (10)0.0091 (9)0.0054 (10)
C1A0.0186 (15)0.0250 (16)0.0367 (15)0.0040 (12)0.0087 (12)0.0002 (12)
C2A0.0156 (13)0.0251 (15)0.0414 (16)0.0008 (11)0.0073 (11)0.0028 (12)
C3A0.0336 (17)0.055 (2)0.0411 (17)0.0109 (16)0.0013 (13)0.0021 (16)
C4A0.069 (3)0.082 (3)0.051 (2)0.016 (2)0.0083 (18)0.022 (2)
O11B0.0162 (11)0.018 (6)0.037 (5)0.0054 (18)0.0036 (12)0.004 (4)
O21B0.029 (4)0.020 (2)0.075 (7)0.000 (3)0.018 (4)0.010 (2)
N11B0.0146 (16)0.0251 (13)0.032 (2)0.0048 (12)0.007 (2)0.001 (2)
C11B0.0207 (15)0.024 (2)0.0390 (15)0.0024 (15)0.0114 (12)0.0003 (15)
C21B0.0178 (19)0.019 (3)0.032 (3)0.0002 (19)0.009 (3)0.001 (3)
C31B0.029 (3)0.038 (3)0.037 (3)0.005 (3)0.004 (2)0.005 (2)
C41B0.086 (6)0.054 (5)0.039 (5)0.013 (4)0.012 (4)0.004 (4)
O12B0.0162 (11)0.018 (6)0.037 (5)0.0054 (18)0.0036 (12)0.004 (4)
O22B0.029 (4)0.020 (2)0.075 (7)0.000 (3)0.018 (4)0.010 (2)
N12B0.0146 (16)0.0251 (13)0.032 (2)0.0048 (12)0.007 (2)0.001 (2)
C12B0.0207 (15)0.024 (2)0.0390 (15)0.0024 (15)0.0114 (12)0.0003 (15)
C22B0.0178 (19)0.019 (3)0.032 (3)0.0002 (19)0.009 (3)0.001 (3)
C32B0.023 (5)0.046 (8)0.043 (8)0.003 (5)0.006 (5)0.007 (5)
C42B0.037 (5)0.073 (6)0.040 (4)0.018 (5)0.000 (3)0.004 (4)
O1C0.0176 (9)0.0331 (11)0.0426 (11)0.0033 (9)0.0089 (8)0.0003 (9)
O2C0.0302 (11)0.0245 (11)0.0839 (16)0.0063 (10)0.0050 (10)0.0072 (11)
N1C0.0168 (11)0.0277 (13)0.0370 (12)0.0065 (10)0.0075 (9)0.0003 (10)
C1C0.0183 (14)0.0249 (15)0.0414 (15)0.0027 (13)0.0016 (12)0.0055 (13)
C2C0.0191 (14)0.0243 (15)0.0487 (17)0.0028 (12)0.0094 (12)0.0044 (13)
C3C0.0399 (18)0.067 (2)0.0543 (19)0.0223 (19)0.0251 (16)0.0210 (19)
C4C0.084 (3)0.080 (3)0.0364 (17)0.020 (3)0.0131 (18)0.0035 (19)
O1D0.0183 (9)0.0258 (10)0.0518 (12)0.0029 (9)0.0131 (8)0.0051 (9)
O2D0.0324 (12)0.0215 (12)0.0825 (16)0.0044 (9)0.0198 (11)0.0005 (10)
N1D0.0176 (11)0.0294 (13)0.0394 (12)0.0060 (10)0.0060 (9)0.0050 (10)
C1D0.0215 (15)0.0222 (16)0.0371 (15)0.0016 (12)0.0055 (12)0.0007 (12)
C2D0.0168 (13)0.0237 (15)0.0415 (16)0.0021 (11)0.0077 (12)0.0034 (12)
C3D0.0359 (16)0.0427 (18)0.0388 (16)0.0000 (15)0.0089 (13)0.0028 (14)
C4D0.062 (2)0.058 (2)0.0492 (19)0.005 (2)0.0135 (17)0.0097 (18)
Geometric parameters (Å, º) top
O1A—C1A1.251 (3)C22B—H22B0.9900
O2A—C1A1.246 (3)C32B—C42B1.516 (7)
N1A—C2A1.488 (3)C32B—H33B0.9800
N1A—H1A0.9000C32B—H34B0.9800
N1A—H2A0.9000C42B—H44B0.9700
N1A—H3A0.9000C42B—H45B0.9700
C1A—C2A1.535 (4)C42B—H46B0.9700
C2A—C3A1.515 (4)O1C—C1C1.253 (3)
C2A—H21A0.9900O2C—C1C1.244 (3)
C3A—C4A1.509 (5)N1C—C2C1.487 (3)
C3A—H31A0.9800N1C—H1C0.9000
C3A—H32A0.9800N1C—H2C0.9000
C4A—H41A0.9700N1C—H3C0.9000
C4A—H42A0.9700C1C—C2C1.525 (4)
C4A—H43A0.9700C2C—C3C1.523 (4)
O11B—C11B1.255 (5)C2C—H21C0.9900
O21B—C11B1.249 (4)C3C—C4C1.518 (5)
N11B—C21B1.490 (5)C3C—H31C0.9800
N11B—H1B0.9000C3C—H32C0.9800
N11B—H2B0.9000C4C—H41C0.9700
N11B—H3B0.9000C4C—H42C0.9700
C11B—C21B1.541 (5)C4C—H43C0.9700
C21B—C31B1.522 (7)O1D—C1D1.256 (3)
C21B—H21B0.9900O2D—C1D1.248 (3)
C31B—C41B1.517 (6)N1D—C2D1.491 (3)
C31B—H31B0.9800N1D—H1D0.9000
C31B—H32B0.9800N1D—H2D0.9000
C41B—H41B0.9700N1D—H3D0.9000
C41B—H42B0.9700C1D—C2D1.526 (4)
C41B—H43B0.9700C2D—C3D1.522 (4)
O12B—C12B1.256 (5)C2D—H21D0.9900
O22B—C12B1.250 (5)C3D—C4D1.516 (4)
N12B—C22B1.491 (5)C3D—H31D0.9800
N12B—H4B0.9000C3D—H32D0.9800
N12B—H5B0.9000C4D—H41D0.9700
N12B—H6B0.9000C4D—H42D0.9700
C12B—C22B1.543 (5)C4D—H43D0.9700
C22B—C32B1.521 (7)
C2A—N1A—H1A109.5C12B—C22B—H22B108.7
C2A—N1A—H2A109.5C42B—C32B—C22B114.8 (7)
H1A—N1A—H2A109.5C42B—C32B—H33B108.6
C2A—N1A—H3A109.5C22B—C32B—H33B108.6
H1A—N1A—H3A109.5C42B—C32B—H34B108.6
H2A—N1A—H3A109.5C22B—C32B—H34B108.6
O2A—C1A—O1A124.7 (3)H33B—C32B—H34B107.5
O2A—C1A—C2A118.2 (3)C32B—C42B—H44B109.5
O1A—C1A—C2A117.0 (2)C32B—C42B—H45B109.5
N1A—C2A—C3A109.2 (2)H44B—C42B—H45B109.5
N1A—C2A—C1A108.4 (2)C32B—C42B—H46B109.5
C3A—C2A—C1A111.7 (2)H44B—C42B—H46B109.5
N1A—C2A—H21A109.2H45B—C42B—H46B109.5
C3A—C2A—H21A109.2C2C—N1C—H1C109.5
C1A—C2A—H21A109.2C2C—N1C—H2C109.5
C4A—C3A—C2A113.9 (3)H1C—N1C—H2C109.5
C4A—C3A—H31A108.8C2C—N1C—H3C109.5
C2A—C3A—H31A108.8H1C—N1C—H3C109.5
C4A—C3A—H32A108.8H2C—N1C—H3C109.5
C2A—C3A—H32A108.8O2C—C1C—O1C124.3 (3)
H31A—C3A—H32A107.7O2C—C1C—C2C117.2 (3)
C3A—C4A—H41A109.5O1C—C1C—C2C118.4 (3)
C3A—C4A—H42A109.5N1C—C2C—C3C111.4 (2)
H41A—C4A—H42A109.5N1C—C2C—C1C109.9 (2)
C3A—C4A—H43A109.5C3C—C2C—C1C111.7 (2)
H41A—C4A—H43A109.5N1C—C2C—H21C107.9
H42A—C4A—H43A109.5C3C—C2C—H21C107.9
C21B—N11B—H1B109.5C1C—C2C—H21C107.9
C21B—N11B—H2B109.5C4C—C3C—C2C114.2 (3)
H1B—N11B—H2B109.5C4C—C3C—H31C108.7
C21B—N11B—H3B109.5C2C—C3C—H31C108.7
H1B—N11B—H3B109.5C4C—C3C—H32C108.7
H2B—N11B—H3B109.5C2C—C3C—H32C108.7
O21B—C11B—O11B124.8 (6)H31C—C3C—H32C107.6
O21B—C11B—C21B116.5 (7)C3C—C4C—H41C109.5
O11B—C11B—C21B118.8 (4)C3C—C4C—H42C109.5
N11B—C21B—C31B111.0 (4)H41C—C4C—H42C109.5
N11B—C21B—C11B109.0 (4)C3C—C4C—H43C109.5
C31B—C21B—C11B110.9 (4)H41C—C4C—H43C109.5
N11B—C21B—H21B108.6H42C—C4C—H43C109.5
C31B—C21B—H21B108.6C2D—N1D—H1D109.5
C11B—C21B—H21B108.6C2D—N1D—H2D109.5
C41B—C31B—C21B114.8 (5)H1D—N1D—H2D109.5
C41B—C31B—H31B108.6C2D—N1D—H3D109.5
C21B—C31B—H31B108.6H1D—N1D—H3D109.5
C41B—C31B—H32B108.6H2D—N1D—H3D109.5
C21B—C31B—H32B108.6O2D—C1D—O1D124.6 (3)
H31B—C31B—H32B107.6O2D—C1D—C2D118.2 (2)
C31B—C41B—H41B109.5O1D—C1D—C2D117.2 (2)
C31B—C41B—H42B109.5N1D—C2D—C3D109.1 (2)
H41B—C41B—H42B109.5N1D—C2D—C1D108.8 (2)
C31B—C41B—H43B109.5C3D—C2D—C1D112.1 (2)
H41B—C41B—H43B109.5N1D—C2D—H21D108.9
H42B—C41B—H43B109.5C3D—C2D—H21D108.9
C22B—N12B—H4B109.5C1D—C2D—H21D108.9
C22B—N12B—H5B109.5C4D—C3D—C2D113.4 (3)
H4B—N12B—H5B109.5C4D—C3D—H31D108.9
C22B—N12B—H6B109.5C2D—C3D—H31D108.9
H4B—N12B—H6B109.5C4D—C3D—H32D108.9
H5B—N12B—H6B109.5C2D—C3D—H32D108.9
O22B—C12B—O12B124.6 (5)H31D—C3D—H32D107.7
O22B—C12B—C22B116.3 (9)C3D—C4D—H41D109.5
O12B—C12B—C22B118.5 (6)C3D—C4D—H42D109.5
N12B—C22B—C32B111.1 (6)H41D—C4D—H42D109.5
N12B—C22B—C12B108.9 (5)C3D—C4D—H43D109.5
C32B—C22B—C12B110.8 (5)H41D—C4D—H43D109.5
N12B—C22B—H22B108.7H42D—C4D—H43D109.5
C32B—C22B—H22B108.7
O2A—C1A—C2A—N1A150.2 (3)O12B—C12B—C22B—C32B95 (3)
O1A—C1A—C2A—N1A32.7 (3)N12B—C22B—C32B—C42B60.0 (14)
O2A—C1A—C2A—C3A89.4 (3)C12B—C22B—C32B—C42B178.8 (11)
O1A—C1A—C2A—C3A87.7 (3)O2C—C1C—C2C—N1C169.8 (2)
N1A—C2A—C3A—C4A172.1 (3)O1C—C1C—C2C—N1C12.4 (3)
C1A—C2A—C3A—C4A68.1 (3)O2C—C1C—C2C—C3C66.0 (4)
O21B—C11B—C21B—N11B168 (4)O1C—C1C—C2C—C3C111.8 (3)
O11B—C11B—C21B—N11B10.2 (19)N1C—C2C—C3C—C4C66.9 (3)
O21B—C11B—C21B—C31B69 (4)C1C—C2C—C3C—C4C56.5 (4)
O11B—C11B—C21B—C31B112.2 (17)O2D—C1D—C2D—N1D149.7 (3)
N11B—C21B—C31B—C41B63.5 (11)O1D—C1D—C2D—N1D32.3 (3)
C11B—C21B—C31B—C41B57.8 (10)O2D—C1D—C2D—C3D89.6 (3)
O22B—C12B—C22B—N12B162 (5)O1D—C1D—C2D—C3D88.5 (3)
O12B—C12B—C22B—N12B27 (3)N1D—C2D—C3D—C4D174.1 (2)
O22B—C12B—C22B—C32B76 (5)C1D—C2D—C3D—C4D65.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O11Bi0.901.902.78 (3)166
N1A—H2A···O11Bii0.902.052.884 (16)154
N1A—H2A···O21Bii0.902.383.17 (2)146
N1A—H3A···O2Aii0.901.882.752 (3)163
N11B—H1B···O1Aiii0.901.982.778 (14)146
N11B—H2B···O1Aiv0.901.892.770 (15)164
N11B—H2B···O2Aiv0.902.533.25 (2)138
N11B—H3B···O21Bii0.902.022.90 (6)164
N1C—H1C···O1Dv0.901.882.773 (3)169
N1C—H1C···O2Dv0.902.613.284 (3)132
N1C—H2C···O2Cv0.901.952.827 (3)165
N1C—H3C···O1Dvi0.902.052.867 (3)151
N1D—H1D···O1Civ0.902.062.873 (3)150
N1D—H1D···O2Civ0.902.353.156 (3)148
N1D—H2D···O2Dv0.901.912.771 (3)160
N1D—H3D···O1Cvii0.901.892.760 (3)164
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1, z; (iii) x+1, y1/2, z; (iv) x+1, y, z; (v) x, y1, z; (vi) x+1, y1/2, z+1; (vii) x+1, y+1/2, z+1.
(Abu330) S-2-aminobutanoic acid top
Crystal data top
C4H9NO2F(000) = 448
Mr = 103.12Dx = 1.242 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.6132 (6) ÅCell parameters from 3670 reflections
b = 5.2239 (3) Åθ = 2.6–23.9°
c = 22.4134 (16) ŵ = 0.10 mm1
β = 101.453 (2)°T = 330 K
V = 1103.15 (12) Å3Plate, colourless
Z = 80.47 × 0.41 × 0.10 mm
Data collection top
Bruker Apex II CCD
diffractometer
3841 independent reflections
Radiation source: fine-focus sealed tube2727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.155
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 2.2°
Sets of exposures each taken over 0.5° ω rotation scansh = 1110
Absorption correction: multi-scan
SADABS (Bruker, 2014)
k = 66
Tmin = 0.911, Tmax = 1.000l = 2626
11282 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.054P)2 + 0.6414P]
where P = (Fo2 + 2Fc2)/3
3841 reflections(Δ/σ)max < 0.001
336 parametersΔρmax = 0.25 e Å3
46 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Whole molecule disorder over two positions for molecules A, B and C.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11A0.1635 (11)0.716 (2)0.0593 (7)0.042 (2)0.77 (2)
O21A0.2445 (13)0.324 (2)0.0754 (11)0.064 (3)0.77 (2)
N11A0.4262 (18)0.903 (4)0.0590 (8)0.048 (3)0.77 (2)
H1A0.39310.87360.01960.073*0.77 (2)
H2A0.51730.94670.06470.073*0.77 (2)
H3A0.37691.02880.07160.073*0.77 (2)
C11A0.2612 (12)0.559 (2)0.0733 (8)0.040 (2)0.77 (2)
C21A0.4114 (12)0.665 (3)0.0946 (6)0.047 (2)0.77 (2)
H21A0.47970.53720.08600.057*0.77 (2)
C31A0.4440 (15)0.725 (3)0.1623 (5)0.078 (4)0.77 (2)
H31A0.36890.83200.17180.093*0.77 (2)
H32A0.53170.82190.17180.093*0.77 (2)
C41A0.4583 (15)0.487 (3)0.2025 (6)0.129 (7)0.77 (2)
H41A0.48040.53650.24450.194*0.77 (2)
H42A0.53300.38020.19350.194*0.77 (2)
H43A0.37060.39320.19460.194*0.77 (2)
O12A0.172 (4)0.661 (7)0.051 (3)0.042 (2)0.23 (2)
O22A0.267 (5)0.281 (6)0.072 (4)0.064 (3)0.23 (2)
N12A0.411 (7)0.911 (12)0.065 (3)0.048 (3)0.23 (2)
H4A0.37460.91170.02510.073*0.23 (2)
H5A0.49700.98020.07160.073*0.23 (2)
H6A0.35491.00040.08430.073*0.23 (2)
C12A0.273 (4)0.518 (6)0.071 (3)0.040 (2)0.23 (2)
C22A0.421 (4)0.640 (9)0.0877 (17)0.047 (2)0.23 (2)
H22A0.48590.54550.06730.057*0.23 (2)
C32A0.479 (4)0.638 (11)0.1559 (19)0.078 (4)0.23 (2)
H33A0.57160.71950.16390.093*0.23 (2)
H34A0.49170.46190.16960.093*0.23 (2)
C42A0.383 (5)0.775 (10)0.1925 (19)0.13 (2)*0.23 (2)
H44A0.43230.79180.23410.188*0.23 (2)
H45A0.29820.67680.19110.188*0.23 (2)
H46A0.35940.94130.17550.188*0.23 (2)
O11B0.6584 (15)0.248 (4)0.0612 (9)0.042 (3)0.716 (13)
O21B0.748 (3)0.125 (5)0.095 (2)0.067 (3)0.716 (13)
N11B0.907 (3)0.458 (6)0.0549 (6)0.0429 (19)0.716 (13)
H1B0.86300.43720.01630.064*0.716 (13)
H2B0.99470.51400.05620.064*0.716 (13)
H3B0.85940.57080.07290.064*0.716 (13)
C11B0.7596 (18)0.104 (3)0.0810 (9)0.042 (2)0.716 (13)
C21B0.9121 (15)0.208 (4)0.0873 (5)0.041 (2)0.716 (13)
H21B0.96650.08720.06750.049*0.716 (13)
C31B0.9854 (9)0.232 (2)0.1544 (4)0.062 (3)0.716 (13)
H31B0.99760.06130.17190.074*0.716 (13)
H32B1.07920.30390.15640.074*0.716 (13)
C41B0.9076 (15)0.393 (3)0.1926 (6)0.099 (5)0.716 (13)
H41B0.95990.39630.23380.148*0.716 (13)
H42B0.81510.32200.19160.148*0.716 (13)
H43B0.89820.56440.17670.148*0.716 (13)
O12B0.666 (4)0.207 (10)0.052 (3)0.042 (3)0.284 (13)
O22B0.770 (8)0.132 (11)0.099 (6)0.067 (3)0.284 (13)
N12B0.911 (8)0.469 (15)0.0613 (16)0.0429 (19)0.284 (13)
H4B0.88440.42140.02260.064*0.284 (13)
H5B0.99850.53380.06720.064*0.284 (13)
H6B0.85150.58610.07020.064*0.284 (13)
C12B0.772 (5)0.089 (7)0.079 (2)0.042 (2)0.284 (13)
C22B0.911 (4)0.242 (9)0.1014 (12)0.041 (2)0.284 (13)
H22B0.99100.13200.09770.049*0.284 (13)
C32B0.925 (2)0.319 (7)0.1684 (11)0.062 (3)0.284 (13)
H33B0.84350.42020.17260.074*0.284 (13)
H34B0.92430.16460.19250.074*0.284 (13)
C42B1.057 (2)0.468 (7)0.1943 (13)0.105 (12)0.284 (13)
H44B1.05850.50660.23620.157*0.284 (13)
H45B1.05800.62430.17190.157*0.284 (13)
H46B1.13940.36810.19120.157*0.284 (13)
O11C0.111 (3)0.111 (6)0.443 (3)0.048 (4)0.69 (2)
O21C0.161 (2)0.474 (4)0.4011 (10)0.060 (4)0.69 (2)
N11C0.356 (3)0.114 (5)0.4396 (8)0.037 (3)0.69 (2)
H1C0.43750.17820.43290.055*0.69 (2)
H2C0.28530.21890.42460.055*0.69 (2)
H3C0.36180.09550.47950.055*0.69 (2)
C11C0.193 (2)0.252 (4)0.4211 (12)0.0442 (17)0.69 (2)
C21C0.3308 (19)0.140 (3)0.4096 (7)0.046 (2)0.69 (2)
H21C0.40800.25380.42840.055*0.69 (2)
C31C0.334 (3)0.120 (3)0.3416 (7)0.073 (5)0.69 (2)
H31C0.32810.29070.32430.088*0.69 (2)
H32C0.42390.04620.33710.088*0.69 (2)
C41C0.2163 (15)0.039 (3)0.3071 (6)0.102 (6)0.69 (2)
H41C0.22510.04920.26530.153*0.69 (2)
H42C0.12690.03830.30960.153*0.69 (2)
H43C0.22090.20760.32430.153*0.69 (2)
O12C0.098 (7)0.109 (13)0.438 (6)0.048 (4)0.31 (2)
O22C0.186 (5)0.482 (8)0.417 (3)0.060 (4)0.31 (2)
N12C0.357 (7)0.107 (11)0.4545 (18)0.037 (3)0.31 (2)
H4C0.43780.18140.45010.055*0.31 (2)
H5C0.28640.22020.44590.055*0.31 (2)
H6C0.36480.05380.49270.055*0.31 (2)
C12C0.189 (5)0.242 (8)0.420 (3)0.0442 (17)0.31 (2)
C22C0.327 (4)0.114 (7)0.4125 (14)0.046 (2)0.31 (2)
H22C0.40360.23840.42420.055*0.31 (2)
C32C0.325 (7)0.032 (6)0.3467 (16)0.073 (5)0.31 (2)
H33C0.41050.06570.34550.088*0.31 (2)
H34C0.24440.07930.33300.088*0.31 (2)
C42C0.317 (6)0.253 (8)0.3041 (19)0.20 (3)0.31 (2)
H44C0.32490.19190.26450.301*0.31 (2)
H45C0.39380.36910.31880.301*0.31 (2)
H46C0.22840.33940.30170.301*0.31 (2)
O1D0.6106 (4)0.6422 (10)0.4405 (2)0.0502 (12)
O2D0.6807 (5)1.0354 (10)0.4257 (3)0.0688 (14)
N1D0.8677 (4)0.4477 (11)0.4390 (2)0.0493 (14)
H1D0.94830.39040.43010.074*
H2D0.79910.33340.42710.074*
H3D0.87930.47190.47900.074*
C1D0.6960 (6)0.8003 (12)0.4266 (3)0.0411 (14)
C2D0.8284 (5)0.6916 (13)0.4072 (3)0.0452 (15)
H21D0.90680.81310.41880.054*
C3D0.8037 (8)0.6473 (16)0.3386 (3)0.067 (2)
H31D0.88520.55750.32940.081*
H32D0.72190.53630.32700.081*
C4D0.7799 (11)0.882 (2)0.3005 (4)0.112 (3)
H41D0.76820.83630.25840.168*
H42D0.86020.99410.31140.168*
H43D0.69610.96800.30730.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O11A0.026 (2)0.030 (5)0.073 (5)0.002 (3)0.016 (3)0.002 (4)
O21A0.039 (5)0.031 (4)0.126 (5)0.002 (3)0.027 (5)0.002 (5)
N11A0.027 (5)0.055 (4)0.069 (5)0.016 (4)0.023 (4)0.018 (4)
C11A0.031 (4)0.029 (4)0.062 (4)0.002 (3)0.018 (3)0.005 (4)
C21A0.031 (3)0.047 (5)0.065 (5)0.000 (3)0.012 (3)0.008 (4)
C31A0.061 (8)0.089 (12)0.076 (6)0.006 (6)0.002 (6)0.003 (7)
C41A0.150 (13)0.139 (13)0.089 (10)0.017 (10)0.003 (9)0.041 (9)
O12A0.026 (2)0.030 (5)0.073 (5)0.002 (3)0.016 (3)0.002 (4)
O22A0.039 (5)0.031 (4)0.126 (5)0.002 (3)0.027 (5)0.002 (5)
N12A0.027 (5)0.055 (4)0.069 (5)0.016 (4)0.023 (4)0.018 (4)
C12A0.031 (4)0.029 (4)0.062 (4)0.002 (3)0.018 (3)0.005 (4)
C22A0.031 (3)0.047 (5)0.065 (5)0.000 (3)0.012 (3)0.008 (4)
C32A0.061 (8)0.089 (12)0.076 (6)0.006 (6)0.002 (6)0.003 (7)
O11B0.029 (3)0.041 (7)0.060 (7)0.002 (3)0.017 (3)0.008 (4)
O21B0.045 (9)0.044 (3)0.118 (10)0.006 (4)0.029 (8)0.012 (3)
N11B0.026 (3)0.045 (4)0.060 (4)0.012 (2)0.014 (3)0.004 (4)
C11B0.030 (4)0.034 (4)0.065 (4)0.006 (3)0.020 (3)0.004 (3)
C21B0.028 (3)0.041 (6)0.053 (7)0.007 (3)0.007 (4)0.003 (5)
C31B0.038 (6)0.078 (7)0.069 (7)0.007 (5)0.008 (5)0.008 (5)
C41B0.133 (12)0.101 (10)0.064 (8)0.021 (9)0.026 (7)0.007 (7)
O12B0.029 (3)0.041 (7)0.060 (7)0.002 (3)0.017 (3)0.008 (4)
O22B0.045 (9)0.044 (3)0.118 (10)0.006 (4)0.029 (8)0.012 (3)
N12B0.026 (3)0.045 (4)0.060 (4)0.012 (2)0.014 (3)0.004 (4)
C12B0.030 (4)0.034 (4)0.065 (4)0.006 (3)0.020 (3)0.004 (3)
C22B0.028 (3)0.041 (6)0.053 (7)0.007 (3)0.007 (4)0.003 (5)
C32B0.038 (6)0.078 (7)0.069 (7)0.007 (5)0.008 (5)0.008 (5)
C42B0.053 (17)0.16 (3)0.10 (2)0.02 (2)0.004 (15)0.01 (2)
O11C0.026 (6)0.053 (3)0.067 (10)0.004 (3)0.013 (8)0.001 (3)
O21C0.039 (7)0.044 (3)0.092 (13)0.010 (4)0.000 (6)0.008 (5)
N11C0.029 (2)0.043 (3)0.041 (9)0.010 (2)0.013 (7)0.006 (6)
C11C0.029 (3)0.037 (4)0.064 (4)0.004 (3)0.004 (3)0.004 (3)
C21C0.037 (3)0.041 (4)0.062 (4)0.003 (3)0.017 (3)0.004 (3)
C31C0.078 (7)0.077 (12)0.072 (6)0.029 (12)0.034 (5)0.033 (9)
C41C0.106 (11)0.135 (14)0.064 (8)0.019 (10)0.014 (7)0.007 (8)
O12C0.026 (6)0.053 (3)0.067 (10)0.004 (3)0.013 (8)0.001 (3)
O22C0.039 (7)0.044 (3)0.092 (13)0.010 (4)0.000 (6)0.008 (5)
N12C0.029 (2)0.043 (3)0.041 (9)0.010 (2)0.013 (7)0.006 (6)
C12C0.029 (3)0.037 (4)0.064 (4)0.004 (3)0.004 (3)0.004 (3)
C22C0.037 (3)0.041 (4)0.062 (4)0.003 (3)0.017 (3)0.004 (3)
C32C0.078 (7)0.077 (12)0.072 (6)0.029 (12)0.034 (5)0.033 (9)
C42C0.28 (7)0.15 (4)0.19 (5)0.10 (5)0.10 (5)0.07 (4)
O1D0.032 (2)0.046 (3)0.079 (3)0.0061 (17)0.026 (2)0.007 (2)
O2D0.056 (3)0.038 (3)0.118 (4)0.008 (2)0.032 (3)0.002 (3)
N1D0.031 (2)0.049 (3)0.069 (3)0.014 (2)0.011 (2)0.013 (3)
C1D0.034 (3)0.038 (3)0.053 (4)0.000 (2)0.010 (3)0.002 (3)
C2D0.031 (3)0.043 (3)0.065 (4)0.004 (2)0.019 (3)0.009 (3)
C3D0.070 (4)0.076 (5)0.060 (5)0.001 (4)0.024 (4)0.004 (4)
C4D0.139 (9)0.117 (8)0.084 (7)0.013 (7)0.034 (6)0.013 (6)
Geometric parameters (Å, º) top
O11A—C11A1.239 (7)C22B—H22B0.9800
O21A—C11A1.241 (7)C32B—C42B1.502 (15)
N11A—C21A1.498 (9)C32B—H33B0.9700
N11A—H1A0.8900C32B—H34B0.9700
N11A—H2A0.8900C42B—H44B0.9600
N11A—H3A0.8900C42B—H45B0.9600
C11A—C21A1.530 (8)C42B—H46B0.9600
C21A—C31A1.522 (11)O11C—C11C1.245 (8)
C21A—H21A0.9800O21C—C11C1.258 (10)
C31A—C41A1.527 (17)N11C—C21C1.482 (8)
C31A—H31A0.9700N11C—H1C0.8900
C31A—H32A0.9700N11C—H2C0.8900
C41A—H41A0.9600N11C—H3C0.8900
C41A—H42A0.9600C11C—C21C1.521 (8)
C41A—H43A0.9600C21C—C31C1.533 (10)
O12A—C12A1.240 (8)C21C—H21C0.9800
O22A—C12A1.242 (9)C31C—C41C1.49 (2)
N12A—C22A1.498 (10)C31C—H31C0.9700
N12A—H4A0.8900C31C—H32C0.9700
N12A—H5A0.8900C41C—H41C0.9600
N12A—H6A0.8900C41C—H42C0.9600
C12A—C22A1.530 (9)C41C—H43C0.9600
C22A—C32A1.522 (12)O12C—C12C1.246 (8)
C22A—H22A0.9800O22C—C12C1.259 (12)
C32A—C42A1.526 (18)N12C—C22C1.483 (9)
C32A—H33A0.9700N12C—H4C0.8900
C32A—H34A0.9700N12C—H5C0.8900
C42A—H44A0.9600N12C—H6C0.8900
C42A—H45A0.9600C12C—C22C1.522 (9)
C42A—H46A0.9600C22C—C32C1.534 (11)
O11B—C11B1.241 (7)C22C—H22C0.9800
O21B—C11B1.243 (8)C32C—C42C1.49 (2)
N11B—C21B1.488 (9)C32C—H33C0.9700
N11B—H1B0.8900C32C—H34C0.9700
N11B—H2B0.8900C42C—H44C0.9600
N11B—H3B0.8900C42C—H45C0.9600
C11B—C21B1.544 (8)C42C—H46C0.9600
C21B—C31B1.533 (13)O1D—C1D1.247 (7)
C21B—H21B0.9800O2D—C1D1.237 (7)
C31B—C41B1.503 (15)N1D—C2D1.471 (8)
C31B—H31B0.9700N1D—H1D0.8900
C31B—H32B0.9700N1D—H2D0.8900
C41B—H41B0.9600N1D—H3D0.8900
C41B—H42B0.9600C1D—C2D1.533 (7)
C41B—H43B0.9600C2D—C3D1.528 (9)
O12B—C12B1.242 (8)C2D—H21D0.9800
O22B—C12B1.244 (10)C3D—C4D1.485 (12)
N12B—C22B1.488 (10)C3D—H31D0.9700
N12B—H4B0.8900C3D—H32D0.9700
N12B—H5B0.8900C4D—H41D0.9600
N12B—H6B0.8900C4D—H42D0.9600
C12B—C22B1.546 (9)C4D—H43D0.9600
C22B—C32B1.533 (14)
C21A—N11A—H1A109.5C12B—C22B—H22B108.4
C21A—N11A—H2A109.5C42B—C32B—C22B114.9 (11)
H1A—N11A—H2A109.5C42B—C32B—H33B108.5
C21A—N11A—H3A109.5C22B—C32B—H33B108.5
H1A—N11A—H3A109.5C42B—C32B—H34B108.5
H2A—N11A—H3A109.5C22B—C32B—H34B108.5
O11A—C11A—O21A124.5 (6)H33B—C32B—H34B107.5
O11A—C11A—C21A117.5 (5)C32B—C42B—H44B109.5
O21A—C11A—C21A117.7 (6)C32B—C42B—H45B109.5
N11A—C21A—C31A109.6 (6)H44B—C42B—H45B109.5
N11A—C21A—C11A108.4 (5)C32B—C42B—H46B109.5
C31A—C21A—C11A112.4 (6)H44B—C42B—H46B109.5
N11A—C21A—H21A108.8H45B—C42B—H46B109.5
C31A—C21A—H21A108.8C21C—N11C—H1C109.5
C11A—C21A—H21A108.8C21C—N11C—H2C109.5
C21A—C31A—C41A113.3 (10)H1C—N11C—H2C109.5
C21A—C31A—H31A108.9C21C—N11C—H3C109.5
C41A—C31A—H31A108.9H1C—N11C—H3C109.5
C21A—C31A—H32A108.9H2C—N11C—H3C109.5
C41A—C31A—H32A108.9O11C—C11C—O21C124.2 (8)
H31A—C31A—H32A107.7O11C—C11C—C21C118.5 (6)
C31A—C41A—H41A109.5O21C—C11C—C21C116.8 (7)
C31A—C41A—H42A109.5N11C—C21C—C11C109.9 (5)
H41A—C41A—H42A109.5N11C—C21C—C31C110.9 (6)
C31A—C41A—H43A109.5C11C—C21C—C31C112.7 (6)
H41A—C41A—H43A109.5N11C—C21C—H21C107.7
H42A—C41A—H43A109.5C11C—C21C—H21C107.7
C22A—N12A—H4A109.5C31C—C21C—H21C107.7
C22A—N12A—H5A109.5C41C—C31C—C21C112.9 (12)
H4A—N12A—H5A109.5C41C—C31C—H31C109.0
C22A—N12A—H6A109.5C21C—C31C—H31C109.0
H4A—N12A—H6A109.5C41C—C31C—H32C109.0
H5A—N12A—H6A109.5C21C—C31C—H32C109.0
O12A—C12A—O22A124.4 (10)H31C—C31C—H32C107.8
O12A—C12A—C22A117.6 (8)C31C—C41C—H41C109.5
O22A—C12A—C22A117.6 (9)C31C—C41C—H42C109.5
N12A—C22A—C32A109.6 (8)H41C—C41C—H42C109.5
N12A—C22A—C12A108.5 (8)C31C—C41C—H43C109.5
C32A—C22A—C12A112.4 (8)H41C—C41C—H43C109.5
N12A—C22A—H22A108.7H42C—C41C—H43C109.5
C32A—C22A—H22A108.7C22C—N12C—H4C109.5
C12A—C22A—H22A108.7C22C—N12C—H5C109.5
C22A—C32A—C42A113.3 (12)H4C—N12C—H5C109.5
C22A—C32A—H33A108.9C22C—N12C—H6C109.5
C42A—C32A—H33A108.9H4C—N12C—H6C109.5
C22A—C32A—H34A108.9H5C—N12C—H6C109.5
C42A—C32A—H34A108.9O12C—C12C—O22C124.0 (13)
H33A—C32A—H34A107.7O12C—C12C—C22C118.3 (8)
C32A—C42A—H44A109.5O22C—C12C—C22C116.6 (10)
C32A—C42A—H45A109.5N12C—C22C—C12C109.8 (7)
H44A—C42A—H45A109.5N12C—C22C—C32C110.9 (8)
C32A—C42A—H46A109.5C12C—C22C—C32C112.6 (8)
H44A—C42A—H46A109.5N12C—C22C—H22C107.8
H45A—C42A—H46A109.5C12C—C22C—H22C107.8
C21B—N11B—H1B109.5C32C—C22C—H22C107.8
C21B—N11B—H2B109.5C42C—C32C—C22C112.9 (14)
H1B—N11B—H2B109.5C42C—C32C—H33C109.0
C21B—N11B—H3B109.5C22C—C32C—H33C109.0
H1B—N11B—H3B109.5C42C—C32C—H34C109.0
H2B—N11B—H3B109.5C22C—C32C—H34C109.0
O11B—C11B—O21B124.9 (7)H33C—C32C—H34C107.8
O11B—C11B—C21B118.8 (6)C32C—C42C—H44C109.5
O21B—C11B—C21B116.3 (8)C32C—C42C—H45C109.5
N11B—C21B—C31B111.9 (6)H44C—C42C—H45C109.5
N11B—C21B—C11B108.9 (6)C32C—C42C—H46C109.5
C31B—C21B—C11B111.2 (6)H44C—C42C—H46C109.5
N11B—C21B—H21B108.3H45C—C42C—H46C109.5
C31B—C21B—H21B108.3C2D—N1D—H1D109.5
C11B—C21B—H21B108.3C2D—N1D—H2D109.5
C41B—C31B—C21B114.9 (9)H1D—N1D—H2D109.5
C41B—C31B—H31B108.6C2D—N1D—H3D109.5
C21B—C31B—H31B108.6H1D—N1D—H3D109.5
C41B—C31B—H32B108.6H2D—N1D—H3D109.5
C21B—C31B—H32B108.6O2D—C1D—O1D125.4 (5)
H31B—C31B—H32B107.5O2D—C1D—C2D117.8 (5)
C31B—C41B—H41B109.5O1D—C1D—C2D116.8 (5)
C31B—C41B—H42B109.5N1D—C2D—C3D109.3 (5)
H41B—C41B—H42B109.5N1D—C2D—C1D109.3 (5)
C31B—C41B—H43B109.5C3D—C2D—C1D111.6 (5)
H41B—C41B—H43B109.5N1D—C2D—H21D108.8
H42B—C41B—H43B109.5C3D—C2D—H21D108.8
C22B—N12B—H4B109.5C1D—C2D—H21D108.8
C22B—N12B—H5B109.5C4D—C3D—C2D115.4 (7)
H4B—N12B—H5B109.5C4D—C3D—H31D108.4
C22B—N12B—H6B109.5C2D—C3D—H31D108.4
H4B—N12B—H6B109.5C4D—C3D—H32D108.4
H5B—N12B—H6B109.5C2D—C3D—H32D108.4
O12B—C12B—O22B124.5 (8)H31D—C3D—H32D107.5
O12B—C12B—C22B118.4 (9)C3D—C4D—H41D109.5
O22B—C12B—C22B116.0 (12)C3D—C4D—H42D109.5
N12B—C22B—C32B111.8 (9)H41D—C4D—H42D109.5
N12B—C22B—C12B108.8 (7)C3D—C4D—H43D109.5
C32B—C22B—C12B111.0 (8)H41D—C4D—H43D109.5
N12B—C22B—H22B108.4H42D—C4D—H43D109.5
C32B—C22B—H22B108.4
O11A—C11A—C21A—N11A35.9 (16)O22B—C12B—C22B—C32B71 (8)
O21A—C11A—C21A—N11A149 (2)N12B—C22B—C32B—C42B58 (3)
O11A—C11A—C21A—C31A85.4 (16)C12B—C22B—C32B—C42B180 (3)
O21A—C11A—C21A—C31A89 (2)O11C—C11C—C21C—N11C12 (4)
N11A—C21A—C31A—C41A169.4 (12)O21C—C11C—C21C—N11C176 (2)
C11A—C21A—C31A—C41A70.0 (14)O11C—C11C—C21C—C31C112 (4)
O12A—C12A—C22A—N12A10 (5)O21C—C11C—C21C—C31C60 (2)
O22A—C12A—C22A—N12A162 (7)N11C—C21C—C31C—C41C65.3 (15)
O12A—C12A—C22A—C32A111 (5)C11C—C21C—C31C—C41C58.3 (18)
O22A—C12A—C22A—C32A76 (8)O12C—C12C—C22C—N12C27 (8)
N12A—C22A—C32A—C42A63 (5)O22C—C12C—C22C—N12C141 (5)
C12A—C22A—C32A—C42A58 (5)O12C—C12C—C22C—C32C97 (8)
O11B—C11B—C21B—N11B12 (2)O22C—C12C—C22C—C32C95 (5)
O21B—C11B—C21B—N11B166 (3)N12C—C22C—C32C—C42C171 (5)
O11B—C11B—C21B—C31B111.8 (18)C12C—C22C—C32C—C42C65 (5)
O21B—C11B—C21B—C31B71 (3)O2D—C1D—C2D—N1D151.1 (6)
N11B—C21B—C31B—C41B65.9 (18)O1D—C1D—C2D—N1D30.5 (7)
C11B—C21B—C31B—C41B56.1 (15)O2D—C1D—C2D—C3D87.8 (7)
O12B—C12B—C22B—N12B27 (5)O1D—C1D—C2D—C3D90.6 (7)
O22B—C12B—C22B—N12B165 (8)N1D—C2D—C3D—C4D173.0 (7)
O12B—C12B—C22B—C32B97 (5)C1D—C2D—C3D—C4D65.9 (8)
(Abu365) S-2-aminobutanoic acid top
Crystal data top
C4H9NO2F(000) = 448
Mr = 103.12Dx = 1.212 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 9.6233 (12) ÅCell parameters from 1307 reflections
b = 5.2274 (6) Åθ = 3.6–23.9°
c = 22.877 (3) ŵ = 0.10 mm1
β = 100.764 (4)°T = 365 K
V = 1130.6 (2) Å3Plate, colourless
Z = 80.67 × 0.63 × 0.10 mm
Data collection top
Bruker D8 Vantage single crystal CCD
diffractometer
1787 independent reflections
Radiation source: fine-focus sealed tube1322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 2.7°
Sets of exposures each taken over 0.5° ω rotation scansh = 1011
Absorption correction: multi-scan
SADABS (Bruker, 2014)
k = 66
Tmin = 0.896, Tmax = 1.000l = 2627
3209 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.5022P]
where P = (Fo2 + 2Fc2)/3
1787 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.11 e Å3
1163 restraintsΔρmin = 0.12 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Whole molecule disorder over three positions for both molecules.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11A1.0853 (14)0.251 (4)0.9408 (11)0.052 (3)0.563 (12)
O21A1.0012 (18)0.139 (3)0.9163 (8)0.076 (5)0.563 (12)
N11A0.8356 (19)0.457 (4)0.9414 (7)0.052 (3)0.563 (12)
H1A0.86630.44230.98050.079*0.563 (12)
H2A0.74820.52050.93470.079*0.563 (12)
H3A0.89250.56160.92620.079*0.563 (12)
C11A0.9857 (13)0.095 (3)0.9244 (5)0.0549 (13)0.563 (12)
C21A0.8351 (12)0.201 (3)0.9130 (4)0.054 (2)0.563 (12)
H21A0.77540.08560.93150.065*0.563 (12)
C31A0.7748 (10)0.218 (3)0.8467 (4)0.073 (3)0.563 (12)
H31A0.76280.04590.83050.087*0.563 (12)
H32A0.68200.29640.84130.087*0.563 (12)
C41A0.8663 (12)0.370 (3)0.8115 (5)0.124 (5)0.563 (12)
H41A0.81970.38010.77070.185*0.563 (12)
H42A0.95590.28570.81390.185*0.563 (12)
H43A0.88100.53880.82780.185*0.563 (12)
O12A1.092 (3)0.231 (8)0.9539 (18)0.052 (3)0.260 (12)
O22A0.997 (5)0.110 (6)0.903 (2)0.076 (5)0.260 (12)
N12A0.852 (5)0.476 (9)0.9481 (15)0.052 (3)0.260 (12)
H4A0.88470.43240.98570.079*0.260 (12)
H5A0.76480.54010.94500.079*0.260 (12)
H6A0.90810.59360.93670.079*0.260 (12)
C12A0.990 (3)0.111 (6)0.9232 (12)0.0549 (13)0.260 (12)
C22A0.847 (3)0.246 (6)0.9094 (9)0.054 (2)0.260 (12)
H22A0.77440.12960.91840.065*0.260 (12)
C32A0.809 (3)0.322 (5)0.8440 (10)0.073 (3)0.260 (12)
H33A0.72540.42820.83810.087*0.260 (12)
H34A0.88600.42350.83390.087*0.260 (12)
C42A0.783 (3)0.094 (6)0.8017 (11)0.141 (9)*0.260 (12)
H44A0.74500.15400.76220.211*0.260 (12)
H45A0.71640.01970.81460.211*0.260 (12)
H46A0.87010.00580.80170.211*0.260 (12)
O13A1.095 (4)0.239 (10)0.938 (4)0.052 (3)0.169 (11)
O23A0.999 (6)0.150 (7)0.932 (2)0.076 (5)0.169 (11)
N13A0.819 (6)0.418 (9)0.9386 (16)0.052 (3)0.169 (11)
H7A0.85230.37890.97650.079*0.169 (11)
H8A0.72640.44570.93350.079*0.169 (11)
H9A0.86200.55870.92900.079*0.169 (11)
C13A0.992 (4)0.088 (7)0.9253 (17)0.0549 (13)0.169 (11)
C23A0.847 (3)0.203 (6)0.8999 (13)0.054 (2)0.169 (11)
H23A0.77470.07120.90020.065*0.169 (11)
C33A0.840 (3)0.294 (9)0.8361 (13)0.073 (3)0.169 (11)
H35A0.92210.39910.83450.087*0.169 (11)
H36A0.84370.14660.81080.087*0.169 (11)
C43A0.707 (4)0.448 (8)0.8116 (15)0.141 (9)*0.169 (11)
H47A0.68620.43260.76900.211*0.169 (11)
H48A0.72240.62420.82240.211*0.169 (11)
H49A0.62910.38270.82790.211*0.169 (11)
O11B0.638 (2)0.213 (4)0.5525 (12)0.053 (3)0.573 (13)
O21B0.577 (2)0.577 (3)0.5918 (9)0.072 (4)0.573 (13)
N11B0.391 (3)0.012 (5)0.5525 (7)0.052 (2)0.573 (13)
H1B0.30750.07480.55640.079*0.573 (13)
H2B0.45790.12930.56370.079*0.573 (13)
H3B0.38930.02970.51460.079*0.573 (13)
C11B0.5564 (16)0.347 (3)0.5771 (5)0.0526 (15)0.573 (13)
C21B0.4231 (15)0.220 (3)0.5904 (5)0.0539 (17)0.573 (13)
H21B0.34400.33960.58030.065*0.573 (13)
C31B0.4396 (15)0.149 (2)0.6560 (5)0.077 (3)0.573 (13)
H31B0.36060.04250.66140.092*0.573 (13)
H32B0.52540.04990.66750.092*0.573 (13)
C41B0.4462 (17)0.380 (3)0.6972 (5)0.152 (6)0.573 (13)
H41B0.45350.32320.73750.228*0.573 (13)
H42B0.36200.48100.68600.228*0.573 (13)
H43B0.52730.48250.69390.228*0.573 (13)
O12B0.635 (4)0.178 (6)0.564 (2)0.053 (3)0.337 (11)
O22B0.561 (3)0.579 (5)0.5701 (13)0.072 (4)0.337 (11)
N12B0.379 (5)0.020 (7)0.5617 (13)0.052 (2)0.337 (11)
H4B0.29440.07270.56710.079*0.337 (11)
H5B0.44520.12640.57990.079*0.337 (11)
H6B0.38080.01610.52290.079*0.337 (11)
C12B0.545 (3)0.341 (4)0.5724 (9)0.0526 (15)0.337 (11)
C22B0.407 (2)0.241 (5)0.5870 (7)0.0539 (17)0.337 (11)
H22B0.32980.35420.56810.065*0.337 (11)
C32B0.409 (2)0.241 (5)0.6538 (8)0.077 (3)0.337 (11)
H33B0.32240.16390.66110.092*0.337 (11)
H34B0.41180.41610.66770.092*0.337 (11)
C42B0.534 (2)0.097 (4)0.6898 (9)0.138 (8)*0.337 (11)
H44B0.52130.08020.73020.206*0.337 (11)
H45B0.62000.18910.68880.206*0.337 (11)
H46B0.54030.07050.67300.206*0.337 (11)
O13B0.653 (6)0.220 (12)0.565 (4)0.053 (3)0.098 (10)
O23B0.588 (8)0.623 (9)0.579 (4)0.072 (4)0.098 (10)
N13B0.384 (5)0.060 (9)0.570 (2)0.052 (2)0.098 (10)
H7B0.29980.02310.57780.079*0.098 (10)
H8B0.44220.07210.57920.079*0.098 (10)
H9B0.37600.09380.53100.079*0.098 (10)
C13B0.572 (4)0.385 (8)0.5810 (18)0.0526 (15)0.098 (10)
C23B0.443 (3)0.288 (7)0.6047 (15)0.0539 (17)0.098 (10)
H23B0.37100.42270.59940.065*0.098 (10)
C33B0.481 (5)0.223 (14)0.6707 (14)0.077 (3)0.098 (10)
H35B0.57000.12960.67790.092*0.098 (10)
H36B0.49640.38150.69320.092*0.098 (10)
C43B0.370 (6)0.066 (14)0.694 (2)0.138 (8)*0.098 (10)
H47B0.39280.05750.73640.206*0.098 (10)
H48B0.36780.10400.67770.206*0.098 (10)
H49B0.27900.14450.68180.206*0.098 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O11A0.0310 (18)0.053 (3)0.073 (7)0.0072 (18)0.011 (3)0.001 (4)
O21A0.063 (2)0.046 (3)0.126 (14)0.005 (3)0.035 (7)0.007 (6)
N11A0.030 (6)0.053 (5)0.076 (4)0.009 (5)0.013 (3)0.007 (3)
C11A0.038 (2)0.053 (3)0.078 (3)0.006 (2)0.023 (2)0.001 (3)
C21A0.033 (3)0.056 (5)0.076 (4)0.002 (3)0.018 (2)0.002 (3)
C31A0.050 (6)0.084 (8)0.082 (4)0.006 (5)0.007 (4)0.004 (5)
C41A0.130 (10)0.155 (12)0.091 (8)0.019 (8)0.034 (7)0.024 (8)
O12A0.0310 (18)0.053 (3)0.073 (7)0.0072 (18)0.011 (3)0.001 (4)
O22A0.063 (2)0.046 (3)0.126 (14)0.005 (3)0.035 (7)0.007 (6)
N12A0.030 (6)0.053 (5)0.076 (4)0.009 (5)0.013 (3)0.007 (3)
C12A0.038 (2)0.053 (3)0.078 (3)0.006 (2)0.023 (2)0.001 (3)
C22A0.033 (3)0.056 (5)0.076 (4)0.002 (3)0.018 (2)0.002 (3)
C32A0.050 (6)0.084 (8)0.082 (4)0.006 (5)0.007 (4)0.004 (5)
O13A0.0310 (18)0.053 (3)0.073 (7)0.0072 (18)0.011 (3)0.001 (4)
O23A0.063 (2)0.046 (3)0.126 (14)0.005 (3)0.035 (7)0.007 (6)
N13A0.030 (6)0.053 (5)0.076 (4)0.009 (5)0.013 (3)0.007 (3)
C13A0.038 (2)0.053 (3)0.078 (3)0.006 (2)0.023 (2)0.001 (3)
C23A0.033 (3)0.056 (5)0.076 (4)0.002 (3)0.018 (2)0.002 (3)
C33A0.050 (6)0.084 (8)0.082 (4)0.006 (5)0.007 (4)0.004 (5)
O11B0.036 (2)0.050 (4)0.077 (9)0.013 (3)0.022 (4)0.003 (5)
O21B0.058 (4)0.051 (3)0.108 (12)0.013 (3)0.014 (7)0.015 (5)
N11B0.032 (4)0.059 (3)0.070 (5)0.019 (3)0.019 (3)0.010 (4)
C11B0.028 (3)0.049 (3)0.079 (4)0.008 (2)0.004 (3)0.002 (3)
C21B0.032 (3)0.054 (4)0.076 (3)0.005 (3)0.010 (2)0.003 (3)
C31B0.062 (6)0.087 (9)0.085 (4)0.000 (6)0.024 (4)0.003 (5)
C41B0.218 (15)0.146 (12)0.095 (9)0.016 (11)0.037 (9)0.029 (8)
O12B0.036 (2)0.050 (4)0.077 (9)0.013 (3)0.022 (4)0.003 (5)
O22B0.058 (4)0.051 (3)0.108 (12)0.013 (3)0.014 (7)0.015 (5)
N12B0.032 (4)0.059 (3)0.070 (5)0.019 (3)0.019 (3)0.010 (4)
C12B0.028 (3)0.049 (3)0.079 (4)0.008 (2)0.004 (3)0.002 (3)
C22B0.032 (3)0.054 (4)0.076 (3)0.005 (3)0.010 (2)0.003 (3)
C32B0.062 (6)0.087 (9)0.085 (4)0.000 (6)0.024 (4)0.003 (5)
O13B0.036 (2)0.050 (4)0.077 (9)0.013 (3)0.022 (4)0.003 (5)
O23B0.058 (4)0.051 (3)0.108 (12)0.013 (3)0.014 (7)0.015 (5)
N13B0.032 (4)0.059 (3)0.070 (5)0.019 (3)0.019 (3)0.010 (4)
C13B0.028 (3)0.049 (3)0.079 (4)0.008 (2)0.004 (3)0.002 (3)
C23B0.032 (3)0.054 (4)0.076 (3)0.005 (3)0.010 (2)0.003 (3)
C33B0.062 (6)0.087 (9)0.085 (4)0.000 (6)0.024 (4)0.003 (5)
Geometric parameters (Å, º) top
O11A—C11A1.260 (5)O11B—C11B1.260 (5)
O21A—C11A1.253 (5)O21B—C11B1.253 (5)
N11A—C21A1.489 (5)N11B—C21B1.487 (5)
N11A—H1A0.8900N11B—H1B0.8900
N11A—H2A0.8900N11B—H2B0.8900
N11A—H3A0.8900N11B—H3B0.8900
C11A—C21A1.527 (5)C11B—C21B1.526 (5)
C21A—C31A1.523 (6)C21B—C31B1.525 (6)
C21A—H21A0.9800C21B—H21B0.9800
C31A—C41A1.522 (10)C31B—C41B1.524 (10)
C31A—H31A0.9700C31B—H31B0.9700
C31A—H32A0.9700C31B—H32B0.9700
C41A—H41A0.9600C41B—H41B0.9600
C41A—H42A0.9600C41B—H42B0.9600
C41A—H43A0.9600C41B—H43B0.9600
O12A—C12A1.260 (6)O12B—C12B1.261 (5)
O22A—C12A1.254 (5)O22B—C12B1.252 (5)
N12A—C22A1.488 (6)N12B—C22B1.487 (5)
N12A—H4A0.8900N12B—H4B0.8900
N12A—H5A0.8900N12B—H5B0.8900
N12A—H6A0.8900N12B—H6B0.8900
C12A—C22A1.527 (5)C12B—C22B1.526 (5)
C22A—C32A1.525 (7)C22B—C32B1.523 (6)
C22A—H22A0.9800C22B—H22B0.9800
C32A—C42A1.523 (10)C32B—C42B1.524 (10)
C32A—H33A0.9700C32B—H33B0.9700
C32A—H34A0.9700C32B—H34B0.9700
C42A—H44A0.9600C42B—H44B0.9600
C42A—H45A0.9600C42B—H45B0.9600
C42A—H46A0.9600C42B—H46B0.9600
O13A—C13A1.260 (6)O13B—C13B1.260 (6)
O23A—C13A1.253 (6)O23B—C13B1.253 (6)
N13A—C23A1.488 (6)N13B—C23B1.487 (6)
N13A—H7A0.8900N13B—H7B0.8900
N13A—H8A0.8900N13B—H8B0.8900
N13A—H9A0.8900N13B—H9B0.8900
C13A—C23A1.527 (6)C13B—C23B1.527 (6)
C23A—C33A1.525 (7)C23B—C33B1.524 (7)
C23A—H23A0.9800C23B—H23B0.9800
C33A—C43A1.523 (10)C33B—C43B1.523 (11)
C33A—H35A0.9700C33B—H35B0.9700
C33A—H36A0.9700C33B—H36B0.9700
C43A—H47A0.9600C43B—H47B0.9600
C43A—H48A0.9600C43B—H48B0.9600
C43A—H49A0.9600C43B—H49B0.9600
C21A—N11A—H1A109.5C21B—N11B—H1B109.5
C21A—N11A—H2A109.5C21B—N11B—H2B109.5
H1A—N11A—H2A109.5H1B—N11B—H2B109.5
C21A—N11A—H3A109.5C21B—N11B—H3B109.5
H1A—N11A—H3A109.5H1B—N11B—H3B109.5
H2A—N11A—H3A109.5H2B—N11B—H3B109.5
O21A—C11A—O11A124.8 (5)O21B—C11B—O11B125.1 (5)
O21A—C11A—C21A117.6 (4)O21B—C11B—C21B117.4 (4)
O11A—C11A—C21A117.6 (4)O11B—C11B—C21B117.5 (4)
N11A—C21A—C31A110.6 (4)N11B—C21B—C31B110.6 (5)
N11A—C21A—C11A109.0 (4)N11B—C21B—C11B109.2 (4)
C31A—C21A—C11A111.3 (4)C31B—C21B—C11B111.4 (4)
N11A—C21A—H21A108.6N11B—C21B—H21B108.5
C31A—C21A—H21A108.6C31B—C21B—H21B108.5
C11A—C21A—H21A108.6C11B—C21B—H21B108.5
C41A—C31A—C21A114.0 (7)C41B—C31B—C21B113.7 (7)
C41A—C31A—H31A108.8C41B—C31B—H31B108.8
C21A—C31A—H31A108.8C21B—C31B—H31B108.8
C41A—C31A—H32A108.8C41B—C31B—H32B108.8
C21A—C31A—H32A108.8C21B—C31B—H32B108.8
H31A—C31A—H32A107.7H31B—C31B—H32B107.7
C31A—C41A—H41A109.5C31B—C41B—H41B109.5
C31A—C41A—H42A109.5C31B—C41B—H42B109.5
H41A—C41A—H42A109.5H41B—C41B—H42B109.5
C31A—C41A—H43A109.5C31B—C41B—H43B109.5
H41A—C41A—H43A109.5H41B—C41B—H43B109.5
H42A—C41A—H43A109.5H42B—C41B—H43B109.5
C22A—N12A—H4A109.5C22B—N12B—H4B109.5
C22A—N12A—H5A109.5C22B—N12B—H5B109.5
H4A—N12A—H5A109.5H4B—N12B—H5B109.5
C22A—N12A—H6A109.5C22B—N12B—H6B109.5
H4A—N12A—H6A109.5H4B—N12B—H6B109.5
H5A—N12A—H6A109.5H5B—N12B—H6B109.5
O22A—C12A—O12A125.0 (6)O22B—C12B—O12B125.1 (6)
O22A—C12A—C22A117.6 (6)O22B—C12B—C22B117.6 (5)
O12A—C12A—C22A117.5 (5)O12B—C12B—C22B117.4 (5)
N12A—C22A—C32A110.5 (6)N12B—C22B—C32B110.9 (5)
N12A—C22A—C12A109.0 (5)N12B—C22B—C12B109.1 (5)
C32A—C22A—C12A111.3 (5)C32B—C22B—C12B111.6 (5)
N12A—C22A—H22A108.6N12B—C22B—H22B108.4
C32A—C22A—H22A108.6C32B—C22B—H22B108.4
C12A—C22A—H22A108.6C12B—C22B—H22B108.4
C42A—C32A—C22A113.7 (8)C22B—C32B—C42B114.1 (8)
C42A—C32A—H33A108.8C22B—C32B—H33B108.7
C22A—C32A—H33A108.8C42B—C32B—H33B108.7
C42A—C32A—H34A108.8C22B—C32B—H34B108.7
C22A—C32A—H34A108.8C42B—C32B—H34B108.7
H33A—C32A—H34A107.7H33B—C32B—H34B107.6
C32A—C42A—H44A109.5C32B—C42B—H44B109.5
C32A—C42A—H45A109.5C32B—C42B—H45B109.5
H44A—C42A—H45A109.5H44B—C42B—H45B109.5
C32A—C42A—H46A109.5C32B—C42B—H46B109.5
H44A—C42A—H46A109.5H44B—C42B—H46B109.5
H45A—C42A—H46A109.5H45B—C42B—H46B109.5
C23A—N13A—H7A109.5C23B—N13B—H7B109.5
C23A—N13A—H8A109.5C23B—N13B—H8B109.5
H7A—N13A—H8A109.5H7B—N13B—H8B109.5
C23A—N13A—H9A109.5C23B—N13B—H9B109.5
H7A—N13A—H9A109.5H7B—N13B—H9B109.5
H8A—N13A—H9A109.5H8B—N13B—H9B109.5
O23A—C13A—O13A125.0 (6)O23B—C13B—O13B125.1 (6)
O23A—C13A—C23A117.6 (6)O23B—C13B—C23B117.6 (6)
O13A—C13A—C23A117.4 (5)O13B—C13B—C23B117.3 (6)
N13A—C23A—C33A110.6 (6)N13B—C23B—C33B110.7 (6)
N13A—C23A—C13A109.0 (5)N13B—C23B—C13B109.1 (6)
C33A—C23A—C13A111.4 (6)C33B—C23B—C13B111.3 (6)
N13A—C23A—H23A108.6N13B—C23B—H23B108.5
C33A—C23A—H23A108.6C33B—C23B—H23B108.5
C13A—C23A—H23A108.6C13B—C23B—H23B108.5
C43A—C33A—C23A113.8 (8)C43B—C33B—C23B114.0 (8)
C43A—C33A—H35A108.8C43B—C33B—H35B108.7
C23A—C33A—H35A108.8C23B—C33B—H35B108.7
C43A—C33A—H36A108.8C43B—C33B—H36B108.7
C23A—C33A—H36A108.8C23B—C33B—H36B108.7
H35A—C33A—H36A107.7H35B—C33B—H36B107.6
C33A—C43A—H47A109.5C33B—C43B—H47B109.5
C33A—C43A—H48A109.5C33B—C43B—H48B109.5
H47A—C43A—H48A109.5H47B—C43B—H48B109.5
C33A—C43A—H49A109.5C33B—C43B—H49B109.5
H47A—C43A—H49A109.5H47B—C43B—H49B109.5
H48A—C43A—H49A109.5H48B—C43B—H49B109.5
O21A—C11A—C21A—N11A163.5 (12)O21B—C11B—C21B—N11B160.6 (12)
O11A—C11A—C21A—N11A16.9 (12)O11B—C11B—C21B—N11B19.9 (12)
O21A—C11A—C21A—C31A74.3 (11)O21B—C11B—C21B—C31B77.0 (12)
O11A—C11A—C21A—C31A105.4 (11)O11B—C11B—C21B—C31B102.5 (12)
N11A—C21A—C31A—C41A66.8 (13)N11B—C21B—C31B—C41B169.7 (14)
C11A—C21A—C31A—C41A54.5 (12)C11B—C21B—C31B—C41B68.7 (14)
O22A—C12A—C22A—N12A167 (2)O22B—C12B—C22B—N12B155 (2)
O12A—C12A—C22A—N12A13 (2)O12B—C12B—C22B—N12B26 (2)
O22A—C12A—C22A—C32A71 (2)O22B—C12B—C22B—C32B83 (2)
O12A—C12A—C22A—C32A109 (2)O12B—C12B—C22B—C32B97 (2)
N12A—C22A—C32A—C42A172 (3)N12B—C22B—C32B—C42B68 (2)
C12A—C22A—C32A—C42A67 (3)C12B—C22B—C32B—C42B54 (2)
O23A—C13A—C23A—N13A130 (4)O23B—C13B—C23B—N13B142 (5)
O13A—C13A—C23A—N13A50 (4)O13B—C13B—C23B—N13B38 (5)
O23A—C13A—C23A—C33A108 (4)O23B—C13B—C23B—C33B96 (5)
O13A—C13A—C23A—C33A72 (4)O13B—C13B—C23B—C33B84 (5)
N13A—C23A—C33A—C43A50 (3)N13B—C23B—C33B—C43B44 (5)
C13A—C23A—C33A—C43A171 (3)C13B—C23B—C33B—C43B166 (5)
(Nva100) S-2-aminopentanoic acid top
Crystal data top
C5H11NO2F(000) = 256
Mr = 117.15Dx = 1.212 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.6123 (15) ÅCell parameters from 2984 reflections
b = 5.1222 (9) Åθ = 2.6–26.4°
c = 13.183 (2) ŵ = 0.09 mm1
β = 98.609 (5)°T = 100 K
V = 641.78 (19) Å3Plate, colourless
Z = 40.52 × 0.48 × 0.09 mm
Data collection top
Bruker Apex II CCD
diffractometer
2352 independent reflections
Graphite monochromator1990 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.041
Sets of exposures each taken over 0.5° ω rotation scansθmax = 25.7°, θmin = 2.1°
Absorption correction: multi-scan
SADABS (Bruker, 2014)
h = 1111
Tmin = 0.802, Tmax = 1.000k = 66
5169 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.3485P]
where P = (Fo2 + 2Fc2)/3
2352 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. No disorder.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.1057 (2)0.6158 (5)0.40669 (17)0.0191 (6)
O2A0.1679 (2)1.0000 (5)0.34813 (19)0.0211 (6)
N1A0.3585 (3)0.4064 (6)0.4195 (2)0.0178 (7)
H1A0.44490.34100.41330.027*
H2A0.29110.28930.39400.027*
H3A0.35350.43640.48690.027*
C1A0.1917 (3)0.7648 (7)0.3739 (3)0.0166 (8)
C2A0.3359 (3)0.6556 (6)0.3613 (3)0.0172 (8)
H21A0.40910.78310.39200.021*
C3A0.3545 (4)0.6111 (7)0.2499 (3)0.0217 (8)
H31A0.27310.51050.21520.026*
H32A0.44020.50490.24800.026*
C4A0.3671 (5)0.8642 (8)0.1913 (3)0.0329 (10)
H41A0.27550.95600.18240.039*
H42A0.43750.97860.23210.039*
C5A0.4105 (5)0.8171 (10)0.0870 (3)0.0470 (13)
H51A0.41710.98450.05210.070*
H52A0.34020.70660.04590.070*
H53A0.50220.72960.09550.070*
O1B0.6280 (2)0.2425 (5)0.40951 (19)0.0200 (6)
O2B0.6886 (2)0.6462 (4)0.36785 (19)0.0234 (6)
N1B0.8855 (3)0.0583 (5)0.3813 (2)0.0173 (7)
H1B0.89280.09300.44960.026*
H2B0.97240.02360.36510.026*
H3B0.82870.08260.36570.026*
C1B0.7049 (3)0.4041 (7)0.3720 (3)0.0173 (8)
C2B0.8245 (4)0.2890 (7)0.3216 (3)0.0176 (8)
H21B0.89940.42410.32070.021*
C3B0.7697 (4)0.2067 (8)0.2119 (3)0.0232 (9)
H31B0.72080.35730.17540.028*
H32B0.69930.06650.21380.028*
C4B0.8824 (4)0.1094 (9)0.1503 (3)0.0309 (10)
H41B0.93850.02850.19000.037*
H42B0.83550.03010.08560.037*
C5B0.9799 (4)0.3213 (10)0.1251 (3)0.0468 (13)
H51B1.04960.24700.08610.070*
H52B1.02810.39870.18880.070*
H53B0.92560.45630.08390.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0097 (12)0.0195 (14)0.0283 (14)0.0016 (11)0.0034 (10)0.0004 (12)
O2A0.0138 (12)0.0151 (14)0.0349 (15)0.0035 (11)0.0058 (11)0.0006 (11)
N1A0.0093 (14)0.0160 (15)0.0282 (16)0.0026 (12)0.0031 (12)0.0005 (13)
C1A0.0103 (17)0.0171 (19)0.0212 (19)0.0021 (16)0.0016 (14)0.0044 (16)
C2A0.0120 (17)0.0117 (18)0.0278 (19)0.0005 (15)0.0022 (15)0.0013 (16)
C3A0.0169 (18)0.022 (2)0.027 (2)0.0008 (16)0.0050 (15)0.0013 (17)
C4A0.034 (2)0.031 (2)0.034 (2)0.007 (2)0.0100 (18)0.005 (2)
C5A0.051 (3)0.058 (3)0.033 (2)0.004 (3)0.011 (2)0.007 (2)
O1B0.0120 (12)0.0183 (13)0.0308 (14)0.0013 (11)0.0064 (11)0.0039 (11)
O2B0.0167 (13)0.0145 (14)0.0399 (15)0.0026 (11)0.0075 (11)0.0000 (12)
N1B0.0087 (14)0.0173 (17)0.0262 (16)0.0025 (13)0.0040 (12)0.0007 (13)
C1B0.0087 (17)0.0187 (19)0.0231 (19)0.0012 (16)0.0020 (14)0.0017 (16)
C2B0.0138 (17)0.0129 (18)0.0263 (19)0.0034 (15)0.0043 (14)0.0021 (16)
C3B0.0161 (18)0.025 (2)0.028 (2)0.0011 (16)0.0021 (16)0.0008 (16)
C4B0.025 (2)0.042 (3)0.024 (2)0.009 (2)0.0003 (16)0.007 (2)
C5B0.032 (3)0.071 (4)0.041 (3)0.008 (3)0.020 (2)0.006 (3)
Geometric parameters (Å, º) top
O1A—C1A1.249 (4)O1B—C1B1.259 (4)
O2A—C1A1.263 (4)O2B—C1B1.250 (4)
N1A—C2A1.489 (4)N1B—C2B1.491 (4)
N1A—H1A0.9100N1B—H1B0.9100
N1A—H2A0.9100N1B—H2B0.9100
N1A—H3A0.9100N1B—H3B0.9100
C1A—C2A1.527 (5)C1B—C2B1.529 (5)
C2A—C3A1.522 (5)C2B—C3B1.523 (5)
C2A—H21A1.0000C2B—H21B1.0000
C3A—C4A1.523 (5)C3B—C4B1.531 (5)
C3A—H31A0.9900C3B—H31B0.9900
C3A—H32A0.9900C3B—H32B0.9900
C4A—C5A1.515 (5)C4B—C5B1.503 (6)
C4A—H41A0.9900C4B—H41B0.9900
C4A—H42A0.9900C4B—H42B0.9900
C5A—H51A0.9800C5B—H51B0.9800
C5A—H52A0.9800C5B—H52B0.9800
C5A—H53A0.9800C5B—H53B0.9800
C2A—N1A—H1A109.5C2B—N1B—H1B109.5
C2A—N1A—H2A109.5C2B—N1B—H2B109.5
H1A—N1A—H2A109.5H1B—N1B—H2B109.5
C2A—N1A—H3A109.5C2B—N1B—H3B109.5
H1A—N1A—H3A109.5H1B—N1B—H3B109.5
H2A—N1A—H3A109.5H2B—N1B—H3B109.5
O1A—C1A—O2A125.0 (3)O2B—C1B—O1B126.3 (3)
O1A—C1A—C2A118.2 (3)O2B—C1B—C2B117.4 (3)
O2A—C1A—C2A116.8 (3)O1B—C1B—C2B116.2 (3)
N1A—C2A—C3A109.9 (3)N1B—C2B—C3B109.6 (3)
N1A—C2A—C1A108.9 (3)N1B—C2B—C1B109.8 (3)
C3A—C2A—C1A113.5 (3)C3B—C2B—C1B110.1 (3)
N1A—C2A—H21A108.1N1B—C2B—H21B109.1
C3A—C2A—H21A108.2C3B—C2B—H21B109.1
C1A—C2A—H21A108.1C1B—C2B—H21B109.1
C2A—C3A—C4A113.0 (3)C2B—C3B—C4B115.0 (3)
C2A—C3A—H31A109.0C2B—C3B—H31B108.5
C4A—C3A—H31A109.0C4B—C3B—H31B108.5
C2A—C3A—H32A109.0C2B—C3B—H32B108.5
C4A—C3A—H32A109.0C4B—C3B—H32B108.5
H31A—C3A—H32A107.8H31B—C3B—H32B107.5
C5A—C4A—C3A112.2 (4)C5B—C4B—C3B113.3 (4)
C5A—C4A—H41A109.2C5B—C4B—H41B108.9
C3A—C4A—H41A109.2C3B—C4B—H41B108.9
C5A—C4A—H42A109.2C5B—C4B—H42B108.9
C3A—C4A—H42A109.2C3B—C4B—H42B108.9
H41A—C4A—H42A107.9H41B—C4B—H42B107.7
C4A—C5A—H51A109.5C4B—C5B—H51B109.5
C4A—C5A—H52A109.5C4B—C5B—H52B109.5
H51A—C5A—H52A109.5H51B—C5B—H52B109.5
C4A—C5A—H53A109.5C4B—C5B—H53B109.5
H51A—C5A—H53A109.5H51B—C5B—H53B109.5
H52A—C5A—H53A109.5H52B—C5B—H53B109.5
O1A—C1A—C2A—N1A15.9 (4)O2B—C1B—C2B—N1B145.8 (3)
O2A—C1A—C2A—N1A165.4 (3)O1B—C1B—C2B—N1B37.6 (4)
O1A—C1A—C2A—C3A106.8 (3)O2B—C1B—C2B—C3B93.5 (4)
O2A—C1A—C2A—C3A71.9 (4)O1B—C1B—C2B—C3B83.1 (4)
N1A—C2A—C3A—C4A166.6 (3)N1B—C2B—C3B—C4B64.1 (4)
C1A—C2A—C3A—C4A71.3 (4)C1B—C2B—C3B—C4B175.1 (3)
C2A—C3A—C4A—C5A170.1 (3)C2B—C3B—C4B—C5B69.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1B0.911.842.744 (4)173
N1A—H2A···O2Ai0.911.942.839 (4)171
N1A—H3A···O1Bii0.912.072.824 (4)140
N1B—H1B···O1Aiii0.911.902.799 (4)171
N1B—H2B···O2Aiv0.911.932.829 (3)170
N1B—H2B···O1Aiv0.912.473.085 (3)125
N1B—H3B···O2Bi0.911.942.823 (4)164
C2B—H21B···O1Av1.002.353.234 (4)147
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x+1, y1, z; (v) x+1, y, z.
(Nva190) S-2-aminopentanoic acid top
Crystal data top
C5H11NO2F(000) = 256
Mr = 117.15Dx = 1.194 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.604 (3) ÅCell parameters from 2883 reflections
b = 5.1222 (16) Åθ = 3.0–25.7°
c = 13.352 (4) ŵ = 0.09 mm1
β = 97.137 (7)°T = 190 K
V = 651.7 (4) Å3Plate, colourless
Z = 40.90 × 0.41 × 0.04 mm
Data collection top
Bruker Apex II CCD
diffractometer
2424 independent reflections
Graphite monochromator1699 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.051
Sets of exposures each taken over 0.5° ω rotation scansθmax = 25.7°, θmin = 2.1°
Absorption correction: multi-scan
SADABS (Bruker, 2014)
h = 1111
Tmin = 0.802, Tmax = 1.000k = 66
4679 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.0987P]
where P = (Fo2 + 2Fc2)/3
2424 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. No disorder.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.1076 (2)0.6199 (5)0.4093 (2)0.0273 (7)
O2A0.1736 (3)1.0000 (6)0.3492 (2)0.0318 (8)
N1A0.3606 (3)0.4083 (7)0.4215 (2)0.0244 (8)
H1A0.44960.34940.41960.037*
H2A0.29840.28470.39530.037*
H3A0.34720.44170.48660.037*
C1A0.1943 (3)0.7671 (8)0.3748 (3)0.0213 (9)
C2A0.3388 (4)0.6505 (8)0.3614 (3)0.0218 (10)
H21A0.41270.77890.38810.026*
C3A0.3560 (4)0.5930 (9)0.2521 (3)0.0320 (11)
H31A0.44250.48900.25010.038*
H32A0.27580.48550.22220.038*
C4A0.3644 (6)0.8352 (11)0.1883 (4)0.0584 (16)
H41A0.27230.92450.18090.070*
H42A0.43460.95600.22350.070*
C5A0.4038 (7)0.7765 (15)0.0856 (4)0.103 (3)
H51A0.41140.94010.04860.155*
H52A0.33170.66570.04870.155*
H53A0.49420.68540.09240.155*
O1B0.6315 (2)0.2485 (6)0.4120 (2)0.0294 (8)
O2B0.6918 (3)0.6480 (5)0.3691 (2)0.0346 (8)
N1B0.8878 (3)0.0614 (6)0.3820 (2)0.0267 (9)
H1B0.89410.09500.44930.040*
H2B0.97460.02450.36510.040*
H3B0.83010.07770.36670.040*
C1B0.7089 (4)0.4079 (9)0.3737 (3)0.0226 (9)
C2B0.8301 (4)0.2934 (8)0.3246 (3)0.0239 (10)
H21B0.90550.42790.32380.029*
C3B0.7768 (4)0.2132 (10)0.2161 (3)0.0404 (13)
H31B0.72830.36420.18110.048*
H32B0.70670.07200.21810.048*
C4B0.8919 (5)0.1183 (13)0.1542 (4)0.0593 (16)
H41B0.95040.01330.19410.071*
H42B0.84700.03170.09220.071*
C5B0.9838 (5)0.3313 (15)0.1254 (5)0.094 (3)
H51B1.05430.25870.08610.141*
H52B1.03070.41510.18640.141*
H53B0.92690.46070.08460.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0129 (13)0.0279 (19)0.0417 (17)0.0010 (12)0.0064 (12)0.0010 (16)
O2A0.0160 (14)0.025 (2)0.055 (2)0.0074 (14)0.0050 (14)0.0035 (15)
N1A0.0099 (15)0.023 (2)0.040 (2)0.0021 (14)0.0032 (14)0.0014 (18)
C1A0.0118 (18)0.025 (3)0.026 (2)0.0010 (19)0.0005 (16)0.003 (2)
C2A0.0095 (18)0.018 (2)0.038 (2)0.0015 (17)0.0018 (17)0.001 (2)
C3A0.023 (2)0.038 (3)0.036 (2)0.008 (2)0.0056 (19)0.000 (2)
C4A0.064 (3)0.063 (4)0.052 (3)0.021 (3)0.023 (3)0.013 (3)
C5A0.128 (6)0.132 (7)0.057 (4)0.029 (6)0.040 (4)0.026 (4)
O1B0.0145 (13)0.0265 (18)0.0493 (19)0.0038 (13)0.0123 (13)0.0082 (14)
O2B0.0191 (15)0.020 (2)0.066 (2)0.0034 (13)0.0085 (14)0.0017 (17)
N1B0.0128 (15)0.030 (3)0.037 (2)0.0068 (16)0.0041 (15)0.0035 (18)
C1B0.0113 (18)0.025 (3)0.031 (2)0.0035 (19)0.0009 (17)0.000 (2)
C2B0.0125 (18)0.019 (3)0.041 (3)0.0017 (17)0.0045 (18)0.002 (2)
C3B0.033 (2)0.049 (3)0.040 (3)0.011 (2)0.005 (2)0.000 (2)
C4B0.051 (3)0.083 (5)0.042 (3)0.023 (3)0.000 (2)0.017 (3)
C5B0.058 (4)0.141 (8)0.089 (5)0.019 (4)0.040 (4)0.013 (5)
Geometric parameters (Å, º) top
O1A—C1A1.253 (4)O1B—C1B1.255 (5)
O2A—C1A1.250 (5)O2B—C1B1.241 (5)
N1A—C2A1.478 (5)N1B—C2B1.484 (5)
N1A—H1A0.9100N1B—H1B0.9100
N1A—H2A0.9100N1B—H2B0.9100
N1A—H3A0.9100N1B—H3B0.9100
C1A—C2A1.541 (5)C1B—C2B1.523 (5)
C2A—C3A1.518 (5)C2B—C3B1.531 (6)
C2A—H21A1.0000C2B—H21B1.0000
C3A—C4A1.513 (6)C3B—C4B1.539 (6)
C3A—H31A0.9900C3B—H31B0.9900
C3A—H32A0.9900C3B—H32B0.9900
C4A—C5A1.497 (7)C4B—C5B1.484 (8)
C4A—H41A0.9900C4B—H41B0.9900
C4A—H42A0.9900C4B—H42B0.9900
C5A—H51A0.9800C5B—H51B0.9800
C5A—H52A0.9800C5B—H52B0.9800
C5A—H53A0.9800C5B—H53B0.9800
C2A—N1A—H1A109.5C2B—N1B—H1B109.5
C2A—N1A—H2A109.5C2B—N1B—H2B109.5
H1A—N1A—H2A109.5H1B—N1B—H2B109.5
C2A—N1A—H3A109.5C2B—N1B—H3B109.5
H1A—N1A—H3A109.5H1B—N1B—H3B109.5
H2A—N1A—H3A109.5H2B—N1B—H3B109.5
O2A—C1A—O1A125.8 (3)O2B—C1B—O1B125.7 (4)
O2A—C1A—C2A116.9 (3)O2B—C1B—C2B117.6 (3)
O1A—C1A—C2A117.3 (4)O1B—C1B—C2B116.6 (4)
N1A—C2A—C3A109.5 (3)N1B—C2B—C1B110.0 (3)
N1A—C2A—C1A109.3 (3)N1B—C2B—C3B109.4 (3)
C3A—C2A—C1A113.2 (3)C1B—C2B—C3B109.1 (3)
N1A—C2A—H21A108.2N1B—C2B—H21B109.4
C3A—C2A—H21A108.2C1B—C2B—H21B109.4
C1A—C2A—H21A108.2C3B—C2B—H21B109.4
C4A—C3A—C2A113.7 (4)C2B—C3B—C4B114.5 (4)
C4A—C3A—H31A108.8C2B—C3B—H31B108.6
C2A—C3A—H31A108.8C4B—C3B—H31B108.6
C4A—C3A—H32A108.8C2B—C3B—H32B108.6
C2A—C3A—H32A108.8C4B—C3B—H32B108.6
H31A—C3A—H32A107.7H31B—C3B—H32B107.6
C5A—C4A—C3A112.8 (5)C5B—C4B—C3B113.4 (5)
C5A—C4A—H41A109.0C5B—C4B—H41B108.9
C3A—C4A—H41A109.0C3B—C4B—H41B108.9
C5A—C4A—H42A109.0C5B—C4B—H42B108.9
C3A—C4A—H42A109.0C3B—C4B—H42B108.9
H41A—C4A—H42A107.8H41B—C4B—H42B107.7
C4A—C5A—H51A109.5C4B—C5B—H51B109.5
C4A—C5A—H52A109.5C4B—C5B—H52B109.5
H51A—C5A—H52A109.5H51B—C5B—H52B109.5
C4A—C5A—H53A109.5C4B—C5B—H53B109.5
H51A—C5A—H53A109.5H51B—C5B—H53B109.5
H52A—C5A—H53A109.5H52B—C5B—H53B109.5
O2A—C1A—C2A—N1A163.5 (3)O2B—C1B—C2B—N1B147.1 (4)
O1A—C1A—C2A—N1A17.4 (5)O1B—C1B—C2B—N1B35.6 (5)
O2A—C1A—C2A—C3A74.1 (5)O2B—C1B—C2B—C3B92.8 (5)
O1A—C1A—C2A—C3A105.1 (4)O1B—C1B—C2B—C3B84.5 (4)
N1A—C2A—C3A—C4A168.5 (3)N1B—C2B—C3B—C4B65.2 (5)
C1A—C2A—C3A—C4A69.2 (5)C1B—C2B—C3B—C4B174.4 (4)
C2A—C3A—C4A—C5A171.0 (4)C2B—C3B—C4B—C5B72.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1B0.911.842.745 (4)177
N1A—H2A···O2Ai0.911.942.846 (4)175
N1A—H3A···O1Bii0.912.072.818 (4)139
N1B—H1B···O1Aiii0.911.892.798 (4)172
N1B—H2B···O2Aiv0.911.952.850 (4)168
N1B—H2B···O1Aiv0.912.473.084 (4)125
N1B—H3B···O2Bi0.911.942.825 (4)165
C2B—H21B···O1Av1.002.343.229 (5)147
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x+1, y1, z; (v) x+1, y, z.
(Nva220) S-2-aminopentanoic acid top
Crystal data top
C5H11NO2F(000) = 512
Mr = 117.15Dx = 1.148 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
a = 9.5868 (8) ÅCell parameters from 1800 reflections
b = 5.1560 (4) Åθ = 2.5–25.0°
c = 27.477 (3) ŵ = 0.09 mm1
β = 93.203 (3)°T = 220 K
V = 1356.1 (2) Å3Plate, colourless
Z = 80.52 × 0.48 × 0.09 mm
Data collection top
Bruker Apex II CCD
diffractometer
1455 independent reflections
Graphite monochromator1204 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.018
Sets of exposures each taken over 0.5° ω rotation scansθmax = 25.7°, θmin = 2.2°
Absorption correction: multi-scan
SADABS (Bruker, 2014)
h = 1111
Tmin = 0.850, Tmax = 1.000k = 06
2100 measured reflectionsl = 033
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.048P)2 + 0.7927P]
where P = (Fo2 + 2Fc2)/3
1455 reflections(Δ/σ)max = 0.002
259 parametersΔρmax = 0.15 e Å3
1276 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Side chain disorder over three positions for molecule A, whole molecule disorder over four positions for molecule B.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A1.13098 (18)0.6276 (10)0.29420 (8)0.0428 (6)
O2A1.05906 (19)1.0003 (11)0.32363 (9)0.0468 (6)
N1A0.8805 (2)0.4123 (11)0.28969 (9)0.0369 (6)
H1A0.79650.34060.29400.055*
H2A0.94840.30040.29950.055*
H3A0.88770.44900.25790.055*
C1A1.0408 (3)0.7703 (11)0.31141 (11)0.0347 (7)
C21A0.8951 (19)0.653 (2)0.3185 (2)0.0326 (13)0.800 (3)
H21A0.82290.77810.30630.039*0.800 (3)
C31A0.8727 (7)0.5930 (15)0.3717 (2)0.0480 (16)0.800 (3)
H31A0.78880.48550.37330.058*0.800 (3)
H32A0.95210.49060.38500.058*0.800 (3)
C41A0.8569 (7)0.8264 (16)0.40340 (19)0.0804 (18)0.800 (3)
H41A0.78590.94150.38810.097*0.800 (3)
H42A0.94550.92150.40590.097*0.800 (3)
C51A0.8150 (9)0.755 (2)0.4543 (2)0.134 (4)0.800 (3)
H51A0.80070.91140.47290.202*0.800 (3)
H52A0.88850.65190.47050.202*0.800 (3)
H53A0.72920.65470.45190.202*0.800 (3)
C22A0.929 (6)0.672 (16)0.3182 (13)0.0326 (13)0.068 (3)
H22A0.86370.80180.30330.039*0.068 (3)
C32A0.877 (6)0.650 (19)0.3694 (15)0.0480 (16)0.068 (3)
H33A0.86230.82450.38200.058*0.068 (3)
H34A0.78700.56060.36740.058*0.068 (3)
C42A0.974 (5)0.507 (12)0.4049 (13)0.066 (10)*0.068 (3)
H43A1.06720.58450.40470.080*0.068 (3)
H44A0.98090.32620.39460.080*0.068 (3)
C52A0.924 (6)0.516 (15)0.4565 (12)0.080 (17)*0.068 (3)
H54A0.99460.44000.47880.120*0.068 (3)
H55A0.83780.41850.45790.120*0.068 (3)
H56A0.90800.69460.46570.120*0.068 (3)
C23A0.900 (12)0.625 (12)0.3246 (11)0.0326 (13)0.131 (3)
H23A0.82110.74750.31980.039*0.131 (3)
C33A0.904 (4)0.524 (6)0.3767 (13)0.0480 (16)0.131 (3)
H35A0.81970.41960.38070.058*0.131 (3)
H36A0.98470.40870.38180.058*0.131 (3)
C43A0.912 (3)0.729 (9)0.4152 (14)0.100*0.131 (3)
H45A0.98250.85760.40720.120*0.131 (3)
H46A0.94140.65060.44660.120*0.131 (3)
C53A0.773 (4)0.866 (9)0.4200 (18)0.116 (14)*0.131 (3)
H57A0.78571.01480.44140.173*0.131 (3)
H58A0.70660.74710.43350.173*0.131 (3)
H59A0.73660.92380.38810.173*0.131 (3)
O11B0.6115 (16)0.225 (3)0.2933 (8)0.035 (3)0.528 (3)
O21B0.5450 (16)0.629 (3)0.3113 (8)0.038 (4)0.528 (3)
N11B0.350 (2)0.046 (4)0.3081 (4)0.0318 (15)0.528 (3)
H1B0.26050.01740.31490.048*0.528 (3)
H2B0.40170.09470.31650.048*0.528 (3)
H3B0.35470.07600.27600.048*0.528 (3)
C11B0.5309 (15)0.387 (3)0.3109 (5)0.0354 (10)0.528 (3)
C21B0.4049 (11)0.276 (3)0.3362 (3)0.0371 (12)0.528 (3)
H21B0.33090.40970.33650.045*0.528 (3)
C31B0.4473 (8)0.200 (3)0.3887 (3)0.051 (2)0.528 (3)
H31B0.51650.06010.38830.061*0.528 (3)
H32B0.49190.34910.40520.061*0.528 (3)
C41B0.3258 (8)0.111 (2)0.4176 (2)0.070 (2)0.528 (3)
H41B0.27200.01980.39870.084*0.528 (3)
H42B0.36230.02860.44790.084*0.528 (3)
C51B0.2307 (9)0.330 (3)0.4299 (4)0.121 (5)0.528 (3)
H51B0.15270.26230.44700.182*0.528 (3)
H52B0.19600.41460.40010.182*0.528 (3)
H53B0.28200.45400.45050.182*0.528 (3)
O12B0.609 (4)0.252 (7)0.290 (3)0.035 (3)0.232 (3)
O22B0.551 (4)0.626 (5)0.3251 (15)0.038 (4)0.232 (3)
N12B0.360 (3)0.037 (6)0.2958 (6)0.0318 (15)0.232 (3)
H4B0.28310.04180.30590.048*0.232 (3)
H5B0.43290.07270.29860.048*0.232 (3)
H6B0.34540.08530.26440.048*0.232 (3)
C12B0.526 (3)0.398 (5)0.3106 (10)0.0354 (10)0.232 (3)
C22B0.391 (2)0.272 (4)0.3265 (5)0.0371 (12)0.232 (3)
H22B0.31330.39730.32130.045*0.232 (3)
C32B0.405 (3)0.200 (3)0.3805 (5)0.051 (2)0.232 (3)
H33B0.32230.10170.38880.061*0.232 (3)
H34B0.48660.08600.38600.061*0.232 (3)
C42B0.422 (2)0.433 (3)0.4141 (5)0.072 (5)*0.232 (3)
H43B0.50420.53200.40560.086*0.232 (3)
H44B0.34000.54530.40900.086*0.232 (3)
C52B0.438 (3)0.357 (6)0.4668 (5)0.131 (10)*0.232 (3)
H54B0.45220.51070.48670.196*0.232 (3)
H55B0.51700.24130.47190.196*0.232 (3)
H56B0.35350.26860.47600.196*0.232 (3)
O13B0.625 (4)0.221 (9)0.302 (2)0.035 (3)0.124 (3)
O23B0.540 (6)0.627 (7)0.298 (2)0.038 (4)0.124 (3)
N13B0.353 (8)0.046 (13)0.3080 (18)0.0318 (15)0.124 (3)
H7B0.27590.01130.32180.048*0.124 (3)
H8B0.42160.07320.31230.048*0.124 (3)
H9B0.33410.07040.27590.048*0.124 (3)
C13B0.533 (5)0.389 (7)0.3078 (16)0.0354 (10)0.124 (3)
C23B0.400 (4)0.296 (8)0.3311 (9)0.0371 (12)0.124 (3)
H23B0.32510.42680.32510.045*0.124 (3)
C33B0.427 (3)0.262 (12)0.3861 (10)0.051 (2)0.124 (3)
H35B0.48120.10300.39210.061*0.124 (3)
H36B0.48340.40800.39870.061*0.124 (3)
C43B0.294 (3)0.247 (8)0.4137 (9)0.062 (7)*0.124 (3)
H45B0.24240.40940.40930.074*0.124 (3)
H46B0.23550.10620.40010.074*0.124 (3)
C53B0.324 (4)0.199 (11)0.4673 (9)0.116 (14)*0.124 (3)
H57B0.23890.14430.48180.175*0.124 (3)
H58B0.35760.35830.48280.175*0.124 (3)
H59B0.39440.06530.47180.175*0.124 (3)
O14B0.621 (4)0.186 (8)0.299 (4)0.035 (3)0.116 (3)
O24B0.559 (6)0.600 (6)0.311 (4)0.038 (4)0.116 (3)
N14B0.372 (4)0.008 (6)0.3058 (13)0.0318 (15)0.116 (3)
H10B0.29630.07590.31910.048*0.116 (3)
H11B0.44830.09850.31580.048*0.116 (3)
H12B0.36050.01520.27310.048*0.116 (3)
C14B0.538 (4)0.359 (6)0.3115 (14)0.0354 (10)0.116 (3)
C24B0.389 (3)0.269 (5)0.3214 (7)0.0371 (12)0.116 (3)
H24B0.32080.37670.30210.045*0.116 (3)
C34B0.362 (3)0.298 (6)0.3754 (8)0.051 (6)*0.116 (3)
H37B0.36930.48230.38420.061*0.116 (3)
H38B0.26690.24140.38080.061*0.116 (3)
C44B0.463 (3)0.145 (8)0.4088 (8)0.075 (9)*0.116 (3)
H47B0.46080.03750.39900.090*0.116 (3)
H48B0.55840.20960.40520.090*0.116 (3)
C54B0.430 (5)0.165 (10)0.4614 (7)0.115 (15)*0.116 (3)
H60B0.49540.06130.48120.172*0.116 (3)
H61B0.33560.10130.46520.172*0.116 (3)
H62B0.43580.34450.47180.172*0.116 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0176 (9)0.0377 (13)0.0737 (15)0.0032 (9)0.0073 (9)0.0040 (12)
O2A0.0272 (10)0.0300 (13)0.0835 (16)0.0098 (10)0.0046 (10)0.0038 (12)
N1A0.0189 (10)0.0296 (13)0.0621 (15)0.0058 (10)0.0017 (10)0.0024 (12)
C1A0.0190 (13)0.0304 (17)0.0542 (18)0.0045 (12)0.0021 (12)0.0046 (14)
C21A0.015 (3)0.026 (3)0.057 (2)0.004 (3)0.003 (3)0.0021 (19)
C31A0.036 (3)0.049 (4)0.060 (2)0.009 (2)0.0060 (18)0.005 (2)
C41A0.090 (4)0.080 (4)0.074 (3)0.022 (3)0.032 (3)0.021 (3)
C51A0.166 (7)0.177 (9)0.065 (4)0.047 (7)0.042 (4)0.028 (5)
C22A0.015 (3)0.026 (3)0.057 (2)0.004 (3)0.003 (3)0.0021 (19)
C32A0.036 (3)0.049 (4)0.060 (2)0.009 (2)0.0060 (18)0.005 (2)
C23A0.015 (3)0.026 (3)0.057 (2)0.004 (3)0.003 (3)0.0021 (19)
C33A0.036 (3)0.049 (4)0.060 (2)0.009 (2)0.0060 (18)0.005 (2)
O11B0.0185 (18)0.027 (4)0.059 (7)0.006 (2)0.007 (3)0.002 (5)
O21B0.034 (3)0.0263 (17)0.054 (12)0.0017 (17)0.003 (7)0.001 (4)
N11B0.016 (2)0.032 (3)0.048 (3)0.0045 (18)0.009 (3)0.008 (3)
C11B0.0193 (16)0.031 (2)0.056 (2)0.0007 (16)0.0036 (14)0.0022 (18)
C21B0.0224 (19)0.035 (2)0.055 (3)0.0008 (16)0.005 (2)0.001 (2)
C31B0.039 (4)0.059 (5)0.056 (3)0.001 (3)0.000 (3)0.006 (3)
C41B0.065 (5)0.091 (6)0.053 (4)0.010 (4)0.003 (3)0.016 (4)
C51B0.079 (6)0.184 (13)0.105 (7)0.039 (8)0.039 (5)0.002 (9)
O12B0.0185 (18)0.027 (4)0.059 (7)0.006 (2)0.007 (3)0.002 (5)
O22B0.034 (3)0.0263 (17)0.054 (12)0.0017 (17)0.003 (7)0.001 (4)
N12B0.016 (2)0.032 (3)0.048 (3)0.0045 (18)0.009 (3)0.008 (3)
C12B0.0193 (16)0.031 (2)0.056 (2)0.0007 (16)0.0036 (14)0.0022 (18)
C22B0.0224 (19)0.035 (2)0.055 (3)0.0008 (16)0.005 (2)0.001 (2)
C32B0.039 (4)0.059 (5)0.056 (3)0.001 (3)0.000 (3)0.006 (3)
O13B0.0185 (18)0.027 (4)0.059 (7)0.006 (2)0.007 (3)0.002 (5)
O23B0.034 (3)0.0263 (17)0.054 (12)0.0017 (17)0.003 (7)0.001 (4)
N13B0.016 (2)0.032 (3)0.048 (3)0.0045 (18)0.009 (3)0.008 (3)
C13B0.0193 (16)0.031 (2)0.056 (2)0.0007 (16)0.0036 (14)0.0022 (18)
C23B0.0224 (19)0.035 (2)0.055 (3)0.0008 (16)0.005 (2)0.001 (2)
C33B0.039 (4)0.059 (5)0.056 (3)0.001 (3)0.000 (3)0.006 (3)
O14B0.0185 (18)0.027 (4)0.059 (7)0.006 (2)0.007 (3)0.002 (5)
O24B0.034 (3)0.0263 (17)0.054 (12)0.0017 (17)0.003 (7)0.001 (4)
N14B0.016 (2)0.032 (3)0.048 (3)0.0045 (18)0.009 (3)0.008 (3)
C14B0.0193 (16)0.031 (2)0.056 (2)0.0007 (16)0.0036 (14)0.0022 (18)
C24B0.0224 (19)0.035 (2)0.055 (3)0.0008 (16)0.005 (2)0.001 (2)
Geometric parameters (Å, º) top
O1A—C1A1.248 (3)C41B—H42B0.9800
O2A—C1A1.242 (4)C51B—H51B0.9700
N1A—C23A1.46 (5)C51B—H52B0.9700
N1A—C21A1.475 (10)C51B—H53B0.9700
N1A—C22A1.61 (8)O12B—C12B1.255 (5)
N1A—H1A0.9000O22B—C12B1.259 (8)
N1A—H2A0.9000N12B—C22B1.495 (6)
N1A—H3A0.9000N12B—H4B0.9000
C1A—C22A1.21 (6)N12B—H5B0.9000
C1A—C21A1.544 (17)N12B—H6B0.9000
C1A—C23A1.60 (10)C12B—C22B1.538 (5)
C21A—C31A1.523 (6)C22B—C32B1.528 (7)
C21A—H21A0.9900C22B—H22B0.9900
C31A—C41A1.498 (8)C32B—C42B1.519 (9)
C31A—H31A0.9800C32B—H33B0.9800
C31A—H32A0.9800C32B—H34B0.9800
C41A—C51A1.522 (7)C42B—C52B1.501 (12)
C41A—H41A0.9800C42B—H43B0.9800
C41A—H42A0.9800C42B—H44B0.9800
C51A—H51A0.9700C52B—H54B0.9700
C51A—H52A0.9700C52B—H55B0.9700
C51A—H53A0.9700C52B—H56B0.9700
C22A—C32A1.522 (7)O13B—C13B1.254 (6)
C22A—H22A0.9900O23B—C13B1.258 (7)
C32A—C42A1.498 (9)N13B—C23B1.495 (6)
C32A—H33A0.9800N13B—H7B0.9000
C32A—H34A0.9800N13B—H8B0.9000
C42A—C52A1.522 (8)N13B—H9B0.9000
C42A—H43A0.9800C13B—C23B1.537 (5)
C42A—H44A0.9800C23B—C33B1.528 (7)
C52A—H54A0.9700C23B—H23B0.9900
C52A—H55A0.9700C33B—C43B1.518 (9)
C52A—H56A0.9700C33B—H35B0.9800
C23A—C33A1.522 (7)C33B—H36B0.9800
C23A—H23A0.9900C43B—C53B1.501 (12)
C33A—C43A1.498 (9)C43B—H45B0.9800
C33A—H35A0.9800C43B—H46B0.9800
C33A—H36A0.9800C53B—H57B0.9700
C43A—C53A1.522 (8)C53B—H58B0.9700
C43A—H45A0.9800C53B—H59B0.9700
C43A—H46A0.9800O14B—C14B1.255 (6)
C53A—H57A0.9700O24B—C14B1.259 (7)
C53A—H58A0.9700N14B—C24B1.495 (6)
C53A—H59A0.9700N14B—H10B0.9000
O11B—C11B1.254 (5)N14B—H11B0.9000
O21B—C11B1.258 (7)N14B—H12B0.9000
N11B—C21B1.495 (5)C14B—C24B1.537 (5)
N11B—H1B0.9000C24B—C34B1.527 (7)
N11B—H2B0.9000C24B—H24B0.9900
N11B—H3B0.9000C34B—C44B1.518 (9)
C11B—C21B1.537 (4)C34B—H37B0.9800
C21B—C31B1.527 (6)C34B—H38B0.9800
C21B—H21B0.9900C44B—C54B1.502 (12)
C31B—C41B1.517 (9)C44B—H47B0.9800
C31B—H31B0.9800C44B—H48B0.9800
C31B—H32B0.9800C54B—H60B0.9700
C41B—C51B1.502 (11)C54B—H61B0.9700
C41B—H41B0.9800C54B—H62B0.9700
C21A—N1A—H1A109.5C51B—C41B—H42B109.1
C21A—N1A—H2A109.5C31B—C41B—H42B109.1
H1A—N1A—H2A109.5H41B—C41B—H42B107.8
C21A—N1A—H3A109.5C41B—C51B—H51B109.5
H1A—N1A—H3A109.5C41B—C51B—H52B109.5
H2A—N1A—H3A109.5H51B—C51B—H52B109.5
C22A—C1A—O2A118 (4)C41B—C51B—H53B109.5
C22A—C1A—O1A117 (4)H51B—C51B—H53B109.5
O2A—C1A—O1A125.1 (3)H52B—C51B—H53B109.5
O2A—C1A—C21A117.0 (5)C22B—N12B—H4B109.5
O1A—C1A—C21A117.9 (5)C22B—N12B—H5B109.5
O2A—C1A—C23A120 (2)H4B—N12B—H5B109.5
O1A—C1A—C23A115 (3)C22B—N12B—H6B109.5
N1A—C21A—C31A109.2 (6)H4B—N12B—H6B109.5
N1A—C21A—C1A108.7 (9)H5B—N12B—H6B109.5
C31A—C21A—C1A112.2 (8)O12B—C12B—O22B126.5 (7)
N1A—C21A—H21A108.9O12B—C12B—C22B116.1 (5)
C31A—C21A—H21A108.9O22B—C12B—C22B116.8 (5)
C1A—C21A—H21A108.9N12B—C22B—C32B110.8 (5)
C41A—C31A—C21A114.7 (5)N12B—C22B—C12B109.0 (5)
C41A—C31A—H31A108.6C32B—C22B—C12B110.3 (5)
C21A—C31A—H31A108.6N12B—C22B—H22B108.9
C41A—C31A—H32A108.6C32B—C22B—H22B108.9
C21A—C31A—H32A108.6C12B—C22B—H22B108.9
H31A—C31A—H32A107.6C42B—C32B—C22B113.5 (7)
C31A—C41A—C51A112.2 (6)C42B—C32B—H33B108.9
C31A—C41A—H41A109.2C22B—C32B—H33B108.9
C51A—C41A—H41A109.2C42B—C32B—H34B108.9
C31A—C41A—H42A109.2C22B—C32B—H34B108.9
C51A—C41A—H42A109.2H33B—C32B—H34B107.7
H41A—C41A—H42A107.9C52B—C42B—C32B112.5 (8)
C41A—C51A—H51A109.5C52B—C42B—H43B109.1
C41A—C51A—H52A109.5C32B—C42B—H43B109.1
H51A—C51A—H52A109.5C52B—C42B—H44B109.1
C41A—C51A—H53A109.5C32B—C42B—H44B109.1
H51A—C51A—H53A109.5H43B—C42B—H44B107.8
H52A—C51A—H53A109.5C42B—C52B—H54B109.5
C1A—C22A—C32A121 (5)C42B—C52B—H55B109.5
C1A—C22A—N1A121 (5)H54B—C52B—H55B109.5
C32A—C22A—N1A107 (5)C42B—C52B—H56B109.5
C1A—C22A—H22A101.6H54B—C52B—H56B109.5
C32A—C22A—H22A101.6H55B—C52B—H56B109.5
N1A—C22A—H22A101.6C23B—N13B—H7B109.5
C42A—C32A—C22A114.8 (8)C23B—N13B—H8B109.5
C42A—C32A—H33A108.6H7B—N13B—H8B109.5
C22A—C32A—H33A108.6C23B—N13B—H9B109.5
C42A—C32A—H34A108.6H7B—N13B—H9B109.5
C22A—C32A—H34A108.6H8B—N13B—H9B109.5
H33A—C32A—H34A107.6O13B—C13B—O23B126.7 (6)
C32A—C42A—C52A112.3 (8)O13B—C13B—C23B116.3 (6)
C32A—C42A—H43A109.1O23B—C13B—C23B116.9 (5)
C52A—C42A—H43A109.1N13B—C23B—C33B110.7 (5)
C32A—C42A—H44A109.1N13B—C23B—C13B109.1 (5)
C52A—C42A—H44A109.1C33B—C23B—C13B110.4 (5)
H43A—C42A—H44A107.9N13B—C23B—H23B108.9
C42A—C52A—H54A109.5C33B—C23B—H23B108.9
C42A—C52A—H55A109.5C13B—C23B—H23B108.9
H54A—C52A—H55A109.5C43B—C33B—C23B113.5 (7)
C42A—C52A—H56A109.5C43B—C33B—H35B108.9
H54A—C52A—H56A109.5C23B—C33B—H35B108.9
H55A—C52A—H56A109.5C43B—C33B—H36B108.9
N1A—C23A—C33A111 (4)C23B—C33B—H36B108.9
N1A—C23A—C1A106 (5)H35B—C33B—H36B107.7
C33A—C23A—C1A113 (6)C53B—C43B—C33B112.5 (9)
N1A—C23A—H23A108.7C53B—C43B—H45B109.1
C33A—C23A—H23A108.7C33B—C43B—H45B109.1
C1A—C23A—H23A108.7C53B—C43B—H46B109.1
C43A—C33A—C23A114.8 (7)C33B—C43B—H46B109.1
C43A—C33A—H35A108.6H45B—C43B—H46B107.8
C23A—C33A—H35A108.6C43B—C53B—H57B109.5
C43A—C33A—H36A108.6C43B—C53B—H58B109.5
C23A—C33A—H36A108.6H57B—C53B—H58B109.5
H35A—C33A—H36A107.6C43B—C53B—H59B109.5
C33A—C43A—C53A112.2 (8)H57B—C53B—H59B109.5
C33A—C43A—H45A109.2H58B—C53B—H59B109.5
C53A—C43A—H45A109.2C24B—N14B—H10B109.5
C33A—C43A—H46A109.2C24B—N14B—H11B109.5
C53A—C43A—H46A109.2H10B—N14B—H11B109.5
H45A—C43A—H46A107.9C24B—N14B—H12B109.5
C43A—C53A—H57A109.5H10B—N14B—H12B109.5
C43A—C53A—H58A109.5H11B—N14B—H12B109.5
H57A—C53A—H58A109.5O14B—C14B—O24B126.6 (7)
C43A—C53A—H59A109.5O14B—C14B—C24B116.1 (6)
H57A—C53A—H59A109.5O24B—C14B—C24B116.8 (6)
H58A—C53A—H59A109.5N14B—C24B—C34B110.7 (5)
C21B—N11B—H1B109.5N14B—C24B—C14B109.0 (5)
C21B—N11B—H2B109.5C34B—C24B—C14B110.4 (5)
H1B—N11B—H2B109.5N14B—C24B—H24B108.9
C21B—N11B—H3B109.5C34B—C24B—H24B108.9
H1B—N11B—H3B109.5C14B—C24B—H24B108.9
H2B—N11B—H3B109.5C44B—C34B—C24B113.6 (7)
O11B—C11B—O21B126.7 (4)C44B—C34B—H37B108.9
O11B—C11B—C21B116.3 (4)C24B—C34B—H37B108.9
O21B—C11B—C21B117.0 (4)C44B—C34B—H38B108.9
N11B—C21B—C31B110.6 (4)C24B—C34B—H38B108.9
N11B—C21B—C11B109.0 (3)H37B—C34B—H38B107.7
C31B—C21B—C11B110.4 (4)C54B—C44B—C34B112.4 (9)
N11B—C21B—H21B109.0C54B—C44B—H47B109.1
C31B—C21B—H21B109.0C34B—C44B—H47B109.1
C11B—C21B—H21B109.0C54B—C44B—H48B109.1
C41B—C31B—C21B113.6 (5)C34B—C44B—H48B109.1
C41B—C31B—H31B108.8H47B—C44B—H48B107.8
C21B—C31B—H31B108.8C44B—C54B—H60B109.5
C41B—C31B—H32B108.8C44B—C54B—H61B109.5
C21B—C31B—H32B108.8H60B—C54B—H61B109.5
H31B—C31B—H32B107.7C44B—C54B—H62B109.5
C51B—C41B—C31B112.5 (7)H60B—C54B—H62B109.5
C51B—C41B—H41B109.1H61B—C54B—H62B109.5
C31B—C41B—H41B109.1
O2A—C1A—C21A—N1A163.9 (4)N11B—C21B—C31B—C41B64.5 (8)
O1A—C1A—C21A—N1A16.5 (7)C11B—C21B—C31B—C41B174.8 (8)
O2A—C1A—C21A—C31A75.1 (8)C21B—C31B—C41B—C51B71.6 (11)
O1A—C1A—C21A—C31A104.5 (7)O12B—C12B—C22B—N12B24 (4)
N1A—C21A—C31A—C41A168.6 (8)O22B—C12B—C22B—N12B165 (3)
C1A—C21A—C31A—C41A70.7 (10)O12B—C12B—C22B—C32B98 (4)
C21A—C31A—C41A—C51A172.1 (9)O22B—C12B—C22B—C32B73 (3)
O2A—C1A—C22A—C32A61 (6)N12B—C22B—C32B—C42B174.0 (19)
O1A—C1A—C22A—C32A117 (5)C12B—C22B—C32B—C42B65.1 (19)
O2A—C1A—C22A—N1A162 (3)C22B—C32B—C42B—C52B179.3 (18)
O1A—C1A—C22A—N1A21 (4)O13B—C13B—C23B—N13B45 (5)
N1A—C22A—C32A—C42A86 (7)O23B—C13B—C23B—N13B137 (6)
C1A—C22A—C32A—C42A57 (10)O13B—C13B—C23B—C33B77 (5)
C22A—C32A—C42A—C52A174 (7)O23B—C13B—C23B—C33B101 (6)
O2A—C1A—C23A—N1A157 (3)N13B—C23B—C33B—C43B76 (4)
O1A—C1A—C23A—N1A32 (5)C13B—C23B—C33B—C43B163 (4)
O2A—C1A—C23A—C33A81 (5)C23B—C33B—C43B—C53B177 (4)
O1A—C1A—C23A—C33A90 (3)O14B—C14B—C24B—N14B9 (6)
N1A—C23A—C33A—C43A175 (5)O24B—C14B—C24B—N14B163 (6)
C1A—C23A—C33A—C43A65 (6)O14B—C14B—C24B—C34B112 (5)
C23A—C33A—C43A—C53A76 (7)O24B—C14B—C24B—C34B75 (6)
O11B—C11B—C21B—N11B38.3 (17)N14B—C24B—C34B—C44B62 (3)
O21B—C11B—C21B—N11B143.8 (17)C14B—C24B—C34B—C44B59 (3)
O11B—C11B—C21B—C31B83.3 (16)C24B—C34B—C44B—C54B176.5 (19)
O21B—C11B—C21B—C31B94.6 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O11B0.901.872.761 (15)170
N1A—H2A···O2Ai0.901.972.852 (3)166
N1A—H3A···O11Bii0.902.002.797 (18)147
N11B—H1B···O2Aiii0.901.962.855 (19)172
N11B—H1B···O1Aiii0.902.413.019 (12)125
N11B—H2B···O21Bi0.901.992.84 (3)158
N11B—H3B···O1Aiv0.901.962.858 (13)178
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x1, y1, z; (iv) x+3/2, y1/2, z+1/2.
(Nva270) S-2-aminopentanoic acid top
Crystal data top
C5H11NO2F(000) = 512
Mr = 117.15Dx = 1.123 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
a = 9.5855 (15) ÅCell parameters from 2831 reflections
b = 5.1752 (9) Åθ = 2.9–24.3°
c = 27.959 (5) ŵ = 0.09 mm1
β = 92.057 (5)°T = 270 K
V = 1386.1 (4) Å3Plate, colourless
Z = 80.85 × 0.78 × 0.08 mm
Data collection top
Bruker D8 Advance single crystal CCD
diffractometer
2397 independent reflections
Radiation source: fine-focus sealed tube1660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 8.3 pixels mm-1θmax = 25.1°, θmin = 2.2°
Sets of exposures each taken over 0.5° ω rotation scansh = 1111
Absorption correction: multi-scan
SADABS (Bruker, 2014)
k = 66
Tmin = 0.716, Tmax = 1.000l = 3333
6794 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.2303P]
where P = (Fo2 + 2Fc2)/3
2397 reflections(Δ/σ)max = 0.005
259 parametersΔρmax = 0.14 e Å3
1292 restraintsΔρmin = 0.13 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Side chain disorder over three positions for molecule A, whole molecule disorder over four positions for molecule B.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A1.1259 (2)0.6509 (5)0.29415 (9)0.0548 (8)
O2A1.0507 (2)1.0235 (5)0.32126 (11)0.0619 (8)
N1A0.8758 (2)0.4358 (6)0.29018 (11)0.0463 (8)
H1A0.88660.47200.25940.069*
H2A0.79140.36890.29390.069*
H3A0.94050.32240.30000.069*
C1A1.0343 (3)0.7945 (7)0.31068 (14)0.0455 (10)
C21A0.8903 (7)0.6683 (15)0.31788 (16)0.0417 (12)0.7056 (4)
H21A0.81730.79000.30720.050*0.7056 (4)
C31A0.8719 (6)0.6082 (11)0.37044 (17)0.0602 (15)0.7056 (4)
H31A0.79100.49690.37300.072*0.7056 (4)
H32A0.95270.51150.38220.072*0.7056 (4)
C41A0.8537 (9)0.8363 (14)0.4023 (2)0.106 (3)0.7056 (4)
H41A0.77870.94410.38940.127*0.7056 (4)
H42A0.93870.93810.40340.127*0.7056 (4)
C51A0.8198 (12)0.752 (2)0.4533 (2)0.186 (6)0.7056 (4)
H51A0.80900.90150.47310.279*0.7056 (4)
H52A0.89450.64660.46630.279*0.7056 (4)
H53A0.73470.65360.45240.279*0.7056 (4)
C22A0.877 (3)0.693 (8)0.3182 (3)0.0417 (12)0.1174 (4)
H22A0.81070.81310.30270.050*0.1174 (4)
C32A0.8453 (16)0.669 (5)0.3708 (3)0.0602 (15)0.1174 (4)
H33A0.82730.84000.38320.072*0.1174 (4)
H34A0.76030.56880.37340.072*0.1174 (4)
C42A0.9566 (15)0.546 (5)0.4019 (4)0.083 (10)*0.1174 (4)
H43A1.03740.65850.40410.099*0.1174 (4)
H44A0.98510.38420.38760.099*0.1174 (4)
C52A0.904 (3)0.494 (6)0.4523 (4)0.133 (19)*0.1174 (4)
H54A0.97810.41800.47180.199*0.1174 (4)
H55A0.82650.37700.45030.199*0.1174 (4)
H56A0.87580.65330.46640.199*0.1174 (4)
C23A0.912 (3)0.666 (4)0.3251 (3)0.0417 (12)0.1770 (4)
H23A0.83500.79050.32170.050*0.1770 (4)
C33A0.905 (2)0.553 (2)0.3751 (3)0.0602 (15)0.1770 (4)
H35A0.82240.44610.37650.072*0.1770 (4)
H36A0.98550.44080.38050.072*0.1770 (4)
C43A0.9030 (12)0.744 (3)0.4151 (4)0.100*0.1770 (4)
H45A0.96510.88650.40840.120*0.1770 (4)
H46A0.93650.66230.44460.120*0.1770 (4)
C53A0.7547 (13)0.848 (4)0.4216 (9)0.137 (13)*0.1770 (4)
H57A0.75580.96910.44770.205*0.1770 (4)
H58A0.69330.70750.42840.205*0.1770 (4)
H59A0.72240.93340.39280.205*0.1770 (4)
O11B0.6185 (6)0.2249 (13)0.2954 (3)0.0380 (12)0.3884 (4)
O21B0.5468 (9)0.6271 (10)0.3086 (5)0.0542 (15)0.3884 (4)
N11B0.3505 (8)0.0534 (14)0.3069 (3)0.0411 (11)0.3884 (4)
H1B0.26110.02800.31300.062*0.3884 (4)
H2B0.39980.08580.31550.062*0.3884 (4)
H3B0.35880.08170.27570.062*0.3884 (4)
C11B0.5330 (6)0.3875 (11)0.3105 (3)0.0447 (10)0.3884 (4)
C21B0.4038 (6)0.2812 (13)0.3343 (2)0.0470 (12)0.3884 (4)
H21B0.33150.41510.33340.056*0.3884 (4)
C31B0.4363 (7)0.209 (2)0.3865 (2)0.071 (2)0.3884 (4)
H31B0.50320.06820.38730.086*0.3884 (4)
H32B0.48030.35570.40240.086*0.3884 (4)
C41B0.3113 (9)0.1286 (19)0.4144 (3)0.101 (4)0.3884 (4)
H41B0.25080.02080.39430.121*0.3884 (4)
H42B0.34290.02600.44170.121*0.3884 (4)
C51B0.2302 (11)0.353 (2)0.4315 (5)0.173 (8)0.3884 (4)
H51B0.15230.29190.44890.260*0.3884 (4)
H52B0.19690.45290.40450.260*0.3884 (4)
H53B0.28900.45820.45200.260*0.3884 (4)
O12B0.6106 (7)0.2364 (16)0.2914 (4)0.0380 (12)0.3058 (4)
O22B0.5370 (10)0.6057 (12)0.3224 (5)0.0542 (15)0.3058 (4)
N12B0.3649 (11)0.0026 (15)0.2949 (3)0.0411 (11)0.3058 (4)
H4B0.36360.04060.26390.062*0.3058 (4)
H5B0.28450.07160.30210.062*0.3058 (4)
H6B0.43500.10550.30180.062*0.3058 (4)
C12B0.5185 (7)0.3776 (12)0.3090 (4)0.0447 (10)0.3058 (4)
C22B0.3841 (7)0.2435 (13)0.3233 (2)0.0470 (12)0.3058 (4)
H22B0.30530.35900.31590.056*0.3058 (4)
C32B0.3869 (15)0.1846 (17)0.3769 (2)0.071 (2)0.3058 (4)
H33B0.30120.09580.38430.086*0.3058 (4)
H34B0.46370.06730.38420.086*0.3058 (4)
C42B0.402 (2)0.418 (2)0.4092 (3)0.111 (6)*0.3058 (4)
H43B0.49100.50160.40360.133*0.3058 (4)
H44B0.32870.54090.40090.133*0.3058 (4)
C52B0.396 (3)0.352 (4)0.4606 (3)0.209 (13)*0.3058 (4)
H54B0.40620.50650.47950.314*0.3058 (4)
H55B0.46970.23370.46920.314*0.3058 (4)
H56B0.30740.27340.46650.314*0.3058 (4)
O13B0.5947 (12)0.2041 (19)0.2851 (6)0.0380 (12)0.1301 (4)
O23B0.5385 (18)0.6111 (13)0.3013 (10)0.0542 (15)0.1301 (4)
N13B0.3498 (15)0.0206 (19)0.3082 (5)0.0411 (11)0.1301 (4)
H7B0.33860.03190.27650.062*0.1301 (4)
H8B0.27030.03140.32060.062*0.1301 (4)
H9B0.41700.09280.31550.062*0.1301 (4)
C13B0.5215 (10)0.3726 (13)0.3047 (4)0.0447 (10)0.1301 (4)
C23B0.3890 (8)0.2780 (17)0.3281 (2)0.0470 (12)0.1301 (4)
H23B0.31330.39980.32020.056*0.1301 (4)
C33B0.4089 (10)0.265 (4)0.3825 (2)0.071 (2)0.1301 (4)
H35B0.45990.10800.39070.086*0.1301 (4)
H36B0.46620.40990.39310.086*0.1301 (4)
C43B0.2754 (12)0.268 (6)0.4098 (3)0.091 (10)*0.1301 (4)
H45B0.23920.44300.41030.109*0.1301 (4)
H46B0.20650.16020.39320.109*0.1301 (4)
C53B0.296 (2)0.174 (6)0.4597 (4)0.099 (12)*0.1301 (4)
H57B0.20910.18030.47550.149*0.1301 (4)
H58B0.36310.28260.47640.149*0.1301 (4)
H59B0.33000.00020.45940.149*0.1301 (4)
O14B0.6170 (9)0.2272 (17)0.3069 (8)0.0380 (12)0.1757 (4)
O24B0.5481 (13)0.6358 (13)0.3138 (10)0.0542 (15)0.1757 (4)
N14B0.3546 (14)0.0474 (18)0.2995 (4)0.0411 (11)0.1757 (4)
H10B0.36830.05800.26830.062*0.1757 (4)
H11B0.26750.00360.30420.062*0.1757 (4)
H12B0.41410.06640.31270.062*0.1757 (4)
C14B0.5253 (8)0.3984 (13)0.3116 (5)0.0447 (10)0.1757 (4)
C24B0.3781 (7)0.3049 (15)0.3220 (2)0.0470 (12)0.1757 (4)
H24B0.31070.42700.30750.056*0.1757 (4)
C34B0.3555 (12)0.293 (3)0.3757 (3)0.073 (7)*0.1757 (4)
H37B0.35990.46750.38840.087*0.1757 (4)
H38B0.26220.22790.38060.087*0.1757 (4)
C44B0.4586 (15)0.127 (3)0.4040 (3)0.097 (9)*0.1757 (4)
H47B0.45790.04580.39060.117*0.1757 (4)
H48B0.55170.19750.40100.117*0.1757 (4)
C54B0.427 (3)0.112 (5)0.4555 (3)0.162 (16)*0.1757 (4)
H60B0.49540.00440.47180.243*0.1757 (4)
H61B0.33600.03870.45890.243*0.1757 (4)
H62B0.42980.28180.46920.243*0.1757 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0205 (11)0.0439 (17)0.100 (2)0.0033 (10)0.0074 (12)0.0014 (15)
O2A0.0340 (13)0.0361 (17)0.116 (2)0.0131 (12)0.0016 (14)0.0085 (15)
N1A0.0202 (12)0.0369 (17)0.082 (2)0.0077 (12)0.0020 (13)0.0037 (16)
C1A0.0207 (15)0.038 (2)0.077 (3)0.0062 (15)0.0015 (16)0.007 (2)
C21A0.015 (2)0.035 (2)0.075 (3)0.0053 (18)0.0024 (18)0.003 (2)
C31A0.040 (3)0.062 (4)0.079 (3)0.002 (2)0.010 (2)0.007 (3)
C41A0.118 (6)0.105 (6)0.096 (5)0.020 (5)0.035 (4)0.016 (5)
C51A0.265 (13)0.223 (15)0.074 (6)0.031 (12)0.054 (7)0.023 (7)
C22A0.015 (2)0.035 (2)0.075 (3)0.0053 (18)0.0024 (18)0.003 (2)
C32A0.040 (3)0.062 (4)0.079 (3)0.002 (2)0.010 (2)0.007 (3)
C23A0.015 (2)0.035 (2)0.075 (3)0.0053 (18)0.0024 (18)0.003 (2)
C33A0.040 (3)0.062 (4)0.079 (3)0.002 (2)0.010 (2)0.007 (3)
O11B0.0176 (11)0.0375 (16)0.059 (3)0.0105 (11)0.0041 (14)0.0109 (15)
O21B0.0403 (15)0.0320 (17)0.091 (4)0.0066 (12)0.010 (2)0.0032 (19)
N11B0.0178 (14)0.040 (2)0.066 (3)0.0061 (17)0.0083 (17)0.0043 (19)
C11B0.0234 (17)0.036 (2)0.075 (3)0.0060 (16)0.0013 (17)0.005 (2)
C21B0.0231 (18)0.035 (2)0.083 (3)0.0015 (17)0.008 (2)0.001 (2)
C31B0.057 (5)0.076 (5)0.082 (4)0.006 (4)0.010 (4)0.001 (4)
C41B0.098 (8)0.125 (11)0.082 (8)0.010 (8)0.020 (6)0.016 (8)
C51B0.112 (11)0.232 (19)0.180 (17)0.057 (13)0.063 (11)0.026 (17)
O12B0.0176 (11)0.0375 (16)0.059 (3)0.0105 (11)0.0041 (14)0.0109 (15)
O22B0.0403 (15)0.0320 (17)0.091 (4)0.0066 (12)0.010 (2)0.0032 (19)
N12B0.0178 (14)0.040 (2)0.066 (3)0.0061 (17)0.0083 (17)0.0043 (19)
C12B0.0234 (17)0.036 (2)0.075 (3)0.0060 (16)0.0013 (17)0.005 (2)
C22B0.0231 (18)0.035 (2)0.083 (3)0.0015 (17)0.008 (2)0.001 (2)
C32B0.057 (5)0.076 (5)0.082 (4)0.006 (4)0.010 (4)0.001 (4)
O13B0.0176 (11)0.0375 (16)0.059 (3)0.0105 (11)0.0041 (14)0.0109 (15)
O23B0.0403 (15)0.0320 (17)0.091 (4)0.0066 (12)0.010 (2)0.0032 (19)
N13B0.0178 (14)0.040 (2)0.066 (3)0.0061 (17)0.0083 (17)0.0043 (19)
C13B0.0234 (17)0.036 (2)0.075 (3)0.0060 (16)0.0013 (17)0.005 (2)
C23B0.0231 (18)0.035 (2)0.083 (3)0.0015 (17)0.008 (2)0.001 (2)
C33B0.057 (5)0.076 (5)0.082 (4)0.006 (4)0.010 (4)0.001 (4)
O14B0.0176 (11)0.0375 (16)0.059 (3)0.0105 (11)0.0041 (14)0.0109 (15)
O24B0.0403 (15)0.0320 (17)0.091 (4)0.0066 (12)0.010 (2)0.0032 (19)
N14B0.0178 (14)0.040 (2)0.066 (3)0.0061 (17)0.0083 (17)0.0043 (19)
C14B0.0234 (17)0.036 (2)0.075 (3)0.0060 (16)0.0013 (17)0.005 (2)
C24B0.0231 (18)0.035 (2)0.083 (3)0.0015 (17)0.008 (2)0.001 (2)
Geometric parameters (Å, º) top
O1A—C1A1.251 (4)C41B—H42B0.9700
O2A—C1A1.230 (4)C51B—H51B0.9600
N1A—C21A1.435 (8)C51B—H52B0.9600
N1A—C22A1.54 (4)C51B—H53B0.9600
N1A—C23A1.571 (19)O12B—C12B1.259 (5)
N1A—H1A0.8900O22B—C12B1.250 (5)
N1A—H2A0.8900N12B—C22B1.487 (6)
N1A—H3A0.8900N12B—H4B0.8900
C1A—C23A1.42 (2)N12B—H5B0.8900
C1A—C21A1.547 (8)N12B—H6B0.8900
C1A—C22A1.62 (3)C12B—C22B1.530 (5)
C21A—C31A1.519 (5)C22B—C32B1.528 (6)
C21A—H21A0.9800C22B—H22B0.9800
C31A—C41A1.493 (7)C32B—C42B1.513 (8)
C31A—H31A0.9700C32B—H33B0.9700
C31A—H32A0.9700C32B—H34B0.9700
C41A—C51A1.537 (8)C42B—C52B1.482 (9)
C41A—H41A0.9700C42B—H43B0.9700
C41A—H42A0.9700C42B—H44B0.9700
C51A—H51A0.9600C52B—H54B0.9600
C51A—H52A0.9600C52B—H55B0.9600
C51A—H53A0.9600C52B—H56B0.9600
C22A—C32A1.519 (7)O13B—C13B1.258 (5)
C22A—H22A0.9800O23B—C13B1.249 (5)
C32A—C42A1.494 (9)N13B—C23B1.486 (6)
C32A—H33A0.9700N13B—H7B0.8900
C32A—H34A0.9700N13B—H8B0.8900
C42A—C52A1.538 (9)N13B—H9B0.8900
C42A—H43A0.9700C13B—C23B1.529 (5)
C42A—H44A0.9700C23B—C33B1.528 (6)
C52A—H54A0.9600C23B—H23B0.9800
C52A—H55A0.9600C33B—C43B1.513 (8)
C52A—H56A0.9600C33B—H35B0.9700
C23A—C33A1.519 (7)C33B—H36B0.9700
C23A—H23A0.9800C43B—C53B1.484 (9)
C33A—C43A1.494 (8)C43B—H45B0.9700
C33A—H35A0.9700C43B—H46B0.9700
C33A—H36A0.9700C53B—H57B0.9600
C43A—C53A1.537 (9)C53B—H58B0.9600
C43A—H45A0.9700C53B—H59B0.9600
C43A—H46A0.9700O14B—C14B1.258 (5)
C53A—H57A0.9600O24B—C14B1.249 (5)
C53A—H58A0.9600N14B—C24B1.486 (6)
C53A—H59A0.9600N14B—H10B0.8900
O11B—C11B1.257 (5)N14B—H11B0.8900
O21B—C11B1.248 (5)N14B—H12B0.8900
N11B—C21B1.487 (5)C14B—C24B1.529 (5)
N11B—H1B0.8900C24B—C34B1.527 (6)
N11B—H2B0.8900C24B—H24B0.9800
N11B—H3B0.8900C34B—C44B1.512 (9)
C11B—C21B1.528 (5)C34B—H37B0.9700
C21B—C31B1.528 (6)C34B—H38B0.9700
C21B—H21B0.9800C44B—C54B1.484 (9)
C31B—C41B1.512 (8)C44B—H47B0.9700
C31B—H31B0.9700C44B—H48B0.9700
C31B—H32B0.9700C54B—H60B0.9600
C41B—C51B1.484 (9)C54B—H61B0.9600
C41B—H41B0.9700C54B—H62B0.9600
C21A—N1A—H1A109.5C51B—C41B—H42B109.1
C21A—N1A—H2A109.5C31B—C41B—H42B109.1
H1A—N1A—H2A109.5H41B—C41B—H42B107.8
C21A—N1A—H3A109.5C41B—C51B—H51B109.5
H1A—N1A—H3A109.5C41B—C51B—H52B109.5
H2A—N1A—H3A109.5H51B—C51B—H52B109.5
O2A—C1A—O1A125.1 (3)C41B—C51B—H53B109.5
O2A—C1A—C23A118.8 (9)H51B—C51B—H53B109.5
O1A—C1A—C23A115.2 (10)H52B—C51B—H53B109.5
O2A—C1A—C21A118.9 (4)C22B—N12B—H4B109.5
O1A—C1A—C21A116.0 (4)C22B—N12B—H5B109.5
O2A—C1A—C22A113.2 (14)H4B—N12B—H5B109.5
O1A—C1A—C22A121.6 (14)C22B—N12B—H6B109.5
N1A—C21A—C31A109.8 (5)H4B—N12B—H6B109.5
N1A—C21A—C1A110.7 (4)H5B—N12B—H6B109.5
C31A—C21A—C1A110.4 (4)O22B—C12B—O12B124.9 (5)
N1A—C21A—H21A108.7O22B—C12B—C22B117.4 (5)
C31A—C21A—H21A108.7O12B—C12B—C22B116.6 (4)
C1A—C21A—H21A108.7N12B—C22B—C32B110.7 (5)
C41A—C31A—C21A115.8 (5)N12B—C22B—C12B109.3 (4)
C41A—C31A—H31A108.3C32B—C22B—C12B111.3 (5)
C21A—C31A—H31A108.3N12B—C22B—H22B108.5
C41A—C31A—H32A108.3C32B—C22B—H22B108.5
C21A—C31A—H32A108.3C12B—C22B—H22B108.5
H31A—C31A—H32A107.4C42B—C32B—C22B115.0 (5)
C31A—C41A—C51A111.2 (6)C42B—C32B—H33B108.5
C31A—C41A—H41A109.4C22B—C32B—H33B108.5
C51A—C41A—H41A109.4C42B—C32B—H34B108.5
C31A—C41A—H42A109.4C22B—C32B—H34B108.5
C51A—C41A—H42A109.4H33B—C32B—H34B107.5
H41A—C41A—H42A108.0C52B—C42B—C32B112.7 (8)
C41A—C51A—H51A109.5C52B—C42B—H43B109.0
C41A—C51A—H52A109.5C32B—C42B—H43B109.0
H51A—C51A—H52A109.5C52B—C42B—H44B109.0
C41A—C51A—H53A109.5C32B—C42B—H44B109.0
H51A—C51A—H53A109.5H43B—C42B—H44B107.8
H52A—C51A—H53A109.5C42B—C52B—H54B109.5
C32A—C22A—N1A115 (2)C42B—C52B—H55B109.5
C32A—C22A—C1A111.9 (16)H54B—C52B—H55B109.5
N1A—C22A—C1A101.9 (14)C42B—C52B—H56B109.5
C32A—C22A—H22A109.3H54B—C52B—H56B109.5
N1A—C22A—H22A109.3H55B—C52B—H56B109.5
C1A—C22A—H22A109.3C23B—N13B—H7B109.5
C42A—C32A—C22A115.8 (8)C23B—N13B—H8B109.5
C42A—C32A—H33A108.3H7B—N13B—H8B109.5
C22A—C32A—H33A108.3C23B—N13B—H9B109.5
C42A—C32A—H34A108.3H7B—N13B—H9B109.5
C22A—C32A—H34A108.3H8B—N13B—H9B109.5
H33A—C32A—H34A107.4O23B—C13B—O13B125.1 (7)
C32A—C42A—C52A111.0 (8)O23B—C13B—C23B117.5 (6)
C32A—C42A—H43A109.4O13B—C13B—C23B116.7 (5)
C52A—C42A—H43A109.4N13B—C23B—C33B110.7 (6)
C32A—C42A—H44A109.4N13B—C23B—C13B109.2 (5)
C52A—C42A—H44A109.4C33B—C23B—C13B111.3 (5)
H43A—C42A—H44A108.0N13B—C23B—H23B108.5
C42A—C52A—H54A109.5C33B—C23B—H23B108.5
C42A—C52A—H55A109.5C13B—C23B—H23B108.5
H54A—C52A—H55A109.5C43B—C33B—C23B115.0 (6)
C42A—C52A—H56A109.5C43B—C33B—H35B108.5
H54A—C52A—H56A109.5C23B—C33B—H35B108.5
H55A—C52A—H56A109.5C43B—C33B—H36B108.5
C1A—C23A—C33A120.2 (17)C23B—C33B—H36B108.5
C1A—C23A—N1A110.0 (11)H35B—C33B—H36B107.5
C33A—C23A—N1A105.4 (12)C53B—C43B—C33B112.5 (8)
C1A—C23A—H23A106.8C53B—C43B—H45B109.1
C33A—C23A—H23A106.8C33B—C43B—H45B109.1
N1A—C23A—H23A106.8C53B—C43B—H46B109.1
C43A—C33A—C23A115.8 (7)C33B—C43B—H46B109.1
C43A—C33A—H35A108.3H45B—C43B—H46B107.8
C23A—C33A—H35A108.3C43B—C53B—H57B109.5
C43A—C33A—H36A108.3C43B—C53B—H58B109.5
C23A—C33A—H36A108.3H57B—C53B—H58B109.5
H35A—C33A—H36A107.4C43B—C53B—H59B109.5
C33A—C43A—C53A111.1 (8)H57B—C53B—H59B109.5
C33A—C43A—H45A109.4H58B—C53B—H59B109.5
C53A—C43A—H45A109.4C24B—N14B—H10B109.5
C33A—C43A—H46A109.4C24B—N14B—H11B109.5
C53A—C43A—H46A109.4H10B—N14B—H11B109.5
H45A—C43A—H46A108.0C24B—N14B—H12B109.5
C43A—C53A—H57A109.5H10B—N14B—H12B109.5
C43A—C53A—H58A109.5H11B—N14B—H12B109.5
H57A—C53A—H58A109.5O24B—C14B—O14B125.2 (6)
C43A—C53A—H59A109.5O24B—C14B—C24B117.6 (5)
H57A—C53A—H59A109.5O14B—C14B—C24B116.7 (5)
H58A—C53A—H59A109.5N14B—C24B—C34B110.7 (5)
C21B—N11B—H1B109.5N14B—C24B—C14B109.3 (5)
C21B—N11B—H2B109.5C34B—C24B—C14B111.4 (5)
H1B—N11B—H2B109.5N14B—C24B—H24B108.5
C21B—N11B—H3B109.5C34B—C24B—H24B108.5
H1B—N11B—H3B109.5C14B—C24B—H24B108.5
H2B—N11B—H3B109.5C44B—C34B—C24B115.1 (6)
O21B—C11B—O11B125.4 (5)C44B—C34B—H37B108.5
O21B—C11B—C21B117.7 (5)C24B—C34B—H37B108.5
O11B—C11B—C21B116.9 (4)C44B—C34B—H38B108.5
N11B—C21B—C31B110.6 (5)C24B—C34B—H38B108.5
N11B—C21B—C11B109.3 (4)H37B—C34B—H38B107.5
C31B—C21B—C11B111.3 (4)C54B—C44B—C34B112.8 (8)
N11B—C21B—H21B108.5C54B—C44B—H47B109.0
C31B—C21B—H21B108.5C34B—C44B—H47B109.0
C11B—C21B—H21B108.5C54B—C44B—H48B109.0
C41B—C31B—C21B115.0 (5)C34B—C44B—H48B109.0
C41B—C31B—H31B108.5H47B—C44B—H48B107.8
C21B—C31B—H31B108.5C44B—C54B—H60B109.5
C41B—C31B—H32B108.5C44B—C54B—H61B109.5
C21B—C31B—H32B108.5H60B—C54B—H61B109.5
H31B—C31B—H32B107.5C44B—C54B—H62B109.5
C51B—C41B—C31B112.7 (7)H60B—C54B—H62B109.5
C51B—C41B—H41B109.1H61B—C54B—H62B109.5
C31B—C41B—H41B109.1
C22A—N1A—C21A—C31A104 (10)C22A—C1A—C23A—N1A85 (6)
C23A—N1A—C21A—C31A58 (5)C21A—N1A—C23A—C1A103 (5)
C22A—N1A—C21A—C1A134 (10)C22A—N1A—C23A—C1A109 (5)
C23A—N1A—C21A—C1A64 (5)C21A—N1A—C23A—C33A126 (6)
O2A—C1A—C21A—N1A161.3 (4)C22A—N1A—C23A—C33A120 (5)
O1A—C1A—C21A—N1A18.6 (5)C1A—C23A—C33A—C43A69 (2)
C23A—C1A—C21A—N1A106 (6)N1A—C23A—C33A—C43A166.4 (13)
C22A—C1A—C21A—N1A141 (5)C23A—C33A—C43A—C53A82 (2)
O2A—C1A—C21A—C31A77.0 (6)O21B—C11B—C21B—N11B140.7 (10)
O1A—C1A—C21A—C31A103.1 (5)O11B—C11B—C21B—N11B40.9 (9)
C23A—C1A—C21A—C31A16 (6)O21B—C11B—C21B—C31B96.8 (11)
C22A—C1A—C21A—C31A98 (5)O11B—C11B—C21B—C31B81.6 (9)
N1A—C21A—C31A—C41A167.4 (5)N11B—C21B—C31B—C41B64.5 (9)
C1A—C21A—C31A—C41A70.3 (7)C11B—C21B—C31B—C41B173.8 (7)
C21A—C31A—C41A—C51A173.7 (7)C21B—C31B—C41B—C51B80.5 (12)
C21A—N1A—C22A—C32A80 (9)O22B—C12B—C22B—N12B166.5 (11)
C23A—N1A—C22A—C32A68 (4)O12B—C12B—C22B—N12B24.5 (11)
C21A—N1A—C22A—C1A41 (10)O22B—C12B—C22B—C32B70.9 (11)
C23A—N1A—C22A—C1A53 (4)O12B—C12B—C22B—C32B98.0 (11)
O2A—C1A—C22A—C32A71 (2)N12B—C22B—C32B—C42B178.5 (12)
O1A—C1A—C22A—C32A111 (2)C12B—C22B—C32B—C42B59.8 (13)
C23A—C1A—C22A—C32A46 (5)C22B—C32B—C42B—C52B176.5 (15)
C21A—C1A—C22A—C32A89 (4)O23B—C13B—C23B—N13B151.6 (19)
O2A—C1A—C22A—N1A165.3 (7)O13B—C13B—C23B—N13B19.5 (15)
O1A—C1A—C22A—N1A12.4 (11)O23B—C13B—C23B—C33B86 (2)
C23A—C1A—C22A—N1A77 (7)O13B—C13B—C23B—C33B103.1 (14)
C21A—C1A—C22A—N1A34 (5)N13B—C23B—C33B—C43B79.3 (19)
N1A—C22A—C32A—C42A71 (3)C13B—C23B—C33B—C43B159.0 (17)
C1A—C22A—C32A—C42A44 (3)C23B—C33B—C43B—C53B162.2 (18)
C22A—C32A—C42A—C52A171 (3)O24B—C14B—C24B—N14B157.7 (18)
O2A—C1A—C23A—C33A83.7 (17)O14B—C14B—C24B—N14B30.3 (16)
O1A—C1A—C23A—C33A86.2 (14)O24B—C14B—C24B—C34B79.6 (19)
C21A—C1A—C23A—C33A176 (7)O14B—C14B—C24B—C34B92.4 (15)
C22A—C1A—C23A—C33A152 (7)N14B—C24B—C34B—C44B65.4 (14)
O2A—C1A—C23A—N1A153.7 (9)C14B—C24B—C34B—C44B56.5 (13)
O1A—C1A—C23A—N1A36.4 (14)C24B—C34B—C44B—C54B177.0 (15)
C21A—C1A—C23A—N1A61 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H2A···O11B0.891.822.706 (7)175
N1A—H3A···O2Ai0.891.952.831 (4)168
N1A—H1A···O11Bii0.892.022.825 (9)151
N11B—H1B···O2Aiii0.892.042.920 (8)171
N11B—H1B···O1Aiii0.892.393.008 (6)127
N11B—H2B···O21Bi0.892.062.899 (12)156
N11B—H3B···O1Aiv0.892.002.886 (8)179
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x1, y1, z; (iv) x+3/2, y1/2, z+1/2.
(Nva293) S-2-aminopentanoic acid top
Crystal data top
C5H11NO2F(000) = 256
Mr = 117.15Dx = 1.097 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 9.589 (4) ÅCell parameters from 1201 reflections
b = 5.2054 (19) Åθ = 2.6–24.9°
c = 14.698 (7) ŵ = 0.08 mm1
β = 104.770 (5)°T = 293 K
V = 709.4 (5) Å3Plate, colourless
Z = 40.73 × 0.65 × 0.14 mm
Data collection top
Bruker Apex II CCD
diffractometer
1120 independent reflections
Graphite monochromator904 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.016
Sets of exposures each taken over 0.5° ω rotation scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
SADABS (Bruker, 2014)
h = 711
Tmin = 0.856, Tmax = 1.000k = 66
1748 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.1166P]
where P = (Fo2 + 2Fc2)/3
1120 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.12 e Å3
1165 restraintsΔρmin = 0.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Whole molecule disorder over four positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O110.577 (2)0.333 (5)0.422 (3)0.054 (4)0.369 (14)
O210.479 (3)0.022 (3)0.3471 (14)0.062 (3)0.369 (14)
N110.333 (4)0.564 (6)0.4210 (14)0.0597 (17)0.369 (14)
H10.24530.62760.41620.090*0.369 (14)
H20.38660.68090.40140.090*0.369 (14)
H30.37390.52420.48070.090*0.369 (14)
C110.470 (2)0.198 (4)0.3827 (17)0.0550 (13)0.369 (14)
C210.322 (2)0.330 (4)0.3620 (9)0.0596 (17)0.369 (14)
H210.25310.21210.37910.072*0.369 (14)
C310.2666 (17)0.398 (3)0.2584 (8)0.079 (2)0.369 (14)
H310.18210.50680.25010.095*0.369 (14)
H320.34000.49500.23850.095*0.369 (14)
C410.228 (2)0.162 (3)0.1967 (10)0.118 (4)0.369 (14)
H410.16400.05210.22110.141*0.369 (14)
H420.31420.06560.19680.141*0.369 (14)
C510.152 (3)0.247 (4)0.0950 (11)0.186 (10)0.369 (14)
H510.14050.10090.05380.279*0.369 (14)
H520.20930.37470.07460.279*0.369 (14)
H530.05880.31710.09370.279*0.369 (14)
O120.580 (3)0.356 (8)0.406 (9)0.054 (4)0.250 (9)
O220.498 (4)0.043 (5)0.372 (4)0.062 (3)0.250 (9)
N120.329 (5)0.563 (8)0.405 (2)0.0597 (17)0.250 (9)
H40.24010.62530.39400.090*0.250 (9)
H50.38180.66250.37740.090*0.250 (9)
H60.36890.56180.46710.090*0.250 (9)
C120.480 (2)0.194 (5)0.387 (2)0.0550 (13)0.250 (9)
C220.325 (3)0.298 (5)0.3680 (9)0.0596 (17)0.250 (9)
H220.27170.19000.40190.072*0.250 (9)
C320.2479 (17)0.292 (4)0.2640 (10)0.079 (2)0.250 (9)
H330.23690.11490.24290.095*0.250 (9)
H340.15230.36470.25530.095*0.250 (9)
C420.328 (2)0.440 (5)0.2041 (12)0.108 (6)*0.250 (9)
H430.42170.36280.20960.129*0.250 (9)
H440.34200.61600.22580.129*0.250 (9)
C520.239 (3)0.434 (8)0.1000 (12)0.174 (12)*0.250 (9)
H540.28890.52900.06210.261*0.250 (9)
H550.14600.50990.09500.261*0.250 (9)
H560.22680.25920.07850.261*0.250 (9)
O130.581 (3)0.339 (6)0.409 (11)0.054 (4)0.184 (9)
O230.491 (4)0.058 (4)0.3986 (18)0.062 (3)0.184 (9)
N130.312 (5)0.533 (8)0.3946 (18)0.0597 (17)0.184 (9)
H70.33020.49860.45580.090*0.184 (9)
H80.22180.59100.37440.090*0.184 (9)
H90.37290.65180.38480.090*0.184 (9)
C130.479 (3)0.183 (4)0.384 (3)0.0550 (13)0.184 (9)
C230.328 (3)0.296 (5)0.3427 (15)0.0596 (17)0.184 (9)
H230.25670.17050.35150.072*0.184 (9)
C330.301 (2)0.350 (7)0.2380 (14)0.079 (2)0.184 (9)
H350.37660.46230.22770.095*0.184 (9)
H360.30660.18990.20510.095*0.184 (9)
C430.156 (2)0.474 (6)0.1972 (15)0.113 (6)*0.184 (9)
H450.15270.64080.22590.135*0.184 (9)
H460.08040.36790.21060.135*0.184 (9)
C530.131 (4)0.504 (10)0.0895 (15)0.179 (16)*0.184 (9)
H570.03890.58190.06360.269*0.184 (9)
H580.13420.33850.06140.269*0.184 (9)
H590.20550.61130.07660.269*0.184 (9)
O140.577 (3)0.348 (9)0.394 (4)0.054 (4)0.197 (13)
O240.472 (4)0.036 (6)0.372 (5)0.062 (3)0.197 (13)
N140.324 (6)0.552 (9)0.4113 (19)0.0597 (17)0.197 (13)
H100.23770.62670.39930.090*0.197 (13)
H110.39020.66730.40710.090*0.197 (13)
H120.34510.48610.46920.090*0.197 (13)
C140.469 (3)0.207 (6)0.366 (2)0.0550 (13)0.197 (13)
C240.321 (3)0.343 (6)0.3422 (16)0.0596 (17)0.197 (13)
H240.24760.21790.34760.072*0.197 (13)
C340.283 (3)0.450 (4)0.2426 (16)0.079 (2)0.197 (13)
H370.19600.55300.23340.095*0.197 (13)
H380.36000.56100.23470.095*0.197 (13)
C440.258 (3)0.240 (5)0.1687 (19)0.106 (7)*0.197 (13)
H470.33580.11580.18470.127*0.197 (13)
H480.25750.31430.10800.127*0.197 (13)
C540.112 (3)0.106 (7)0.163 (3)0.165 (13)*0.197 (13)
H600.04440.15140.10530.248*0.197 (13)
H610.07580.16030.21530.248*0.197 (13)
H620.12580.07670.16590.248*0.197 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0299 (9)0.054 (2)0.083 (10)0.0089 (11)0.022 (2)0.001 (4)
O210.051 (5)0.052 (2)0.092 (9)0.008 (2)0.036 (5)0.002 (4)
N110.034 (3)0.059 (3)0.091 (4)0.020 (3)0.024 (3)0.012 (3)
C110.0337 (18)0.0530 (19)0.082 (4)0.0085 (13)0.0216 (18)0.003 (2)
C210.0326 (13)0.061 (3)0.087 (3)0.0083 (18)0.018 (2)0.007 (3)
C310.060 (3)0.089 (5)0.088 (3)0.012 (3)0.018 (3)0.013 (3)
C410.109 (8)0.133 (8)0.103 (6)0.010 (7)0.012 (6)0.017 (6)
C510.216 (18)0.190 (18)0.114 (8)0.015 (15)0.029 (12)0.009 (9)
O120.0299 (9)0.054 (2)0.083 (10)0.0089 (11)0.022 (2)0.001 (4)
O220.051 (5)0.052 (2)0.092 (9)0.008 (2)0.036 (5)0.002 (4)
N120.034 (3)0.059 (3)0.091 (4)0.020 (3)0.024 (3)0.012 (3)
C120.0337 (18)0.0530 (19)0.082 (4)0.0085 (13)0.0216 (18)0.003 (2)
C220.0326 (13)0.061 (3)0.087 (3)0.0083 (18)0.018 (2)0.007 (3)
C320.060 (3)0.089 (5)0.088 (3)0.012 (3)0.018 (3)0.013 (3)
O130.0299 (9)0.054 (2)0.083 (10)0.0089 (11)0.022 (2)0.001 (4)
O230.051 (5)0.052 (2)0.092 (9)0.008 (2)0.036 (5)0.002 (4)
N130.034 (3)0.059 (3)0.091 (4)0.020 (3)0.024 (3)0.012 (3)
C130.0337 (18)0.0530 (19)0.082 (4)0.0085 (13)0.0216 (18)0.003 (2)
C230.0326 (13)0.061 (3)0.087 (3)0.0083 (18)0.018 (2)0.007 (3)
C330.060 (3)0.089 (5)0.088 (3)0.012 (3)0.018 (3)0.013 (3)
O140.0299 (9)0.054 (2)0.083 (10)0.0089 (11)0.022 (2)0.001 (4)
O240.051 (5)0.052 (2)0.092 (9)0.008 (2)0.036 (5)0.002 (4)
N140.034 (3)0.059 (3)0.091 (4)0.020 (3)0.024 (3)0.012 (3)
C140.0337 (18)0.0530 (19)0.082 (4)0.0085 (13)0.0216 (18)0.003 (2)
C240.0326 (13)0.061 (3)0.087 (3)0.0083 (18)0.018 (2)0.007 (3)
C340.060 (3)0.089 (5)0.088 (3)0.012 (3)0.018 (3)0.013 (3)
Geometric parameters (Å, º) top
O11—C111.251 (6)O13—C131.251 (7)
O21—C111.271 (8)O23—C131.270 (9)
N11—C211.483 (7)N13—C231.482 (7)
N11—H10.8900N13—H70.8900
N11—H20.8900N13—H80.8900
N11—H30.8900N13—H90.8900
C11—C211.540 (5)C13—C231.538 (5)
C21—C311.521 (8)C23—C331.520 (9)
C21—H210.9800C23—H230.9800
C31—C411.516 (12)C33—C431.515 (12)
C31—H310.9700C33—H350.9700
C31—H320.9700C33—H360.9700
C41—C511.550 (15)C43—C531.549 (15)
C41—H410.9700C43—H450.9700
C41—H420.9700C43—H460.9700
C51—H510.9600C53—H570.9600
C51—H520.9600C53—H580.9600
C51—H530.9600C53—H590.9600
O12—C121.251 (6)O14—C141.252 (6)
O22—C121.271 (8)O24—C141.272 (9)
N12—C221.483 (7)N14—C241.484 (7)
N12—H40.8900N14—H100.8900
N12—H50.8900N14—H110.8900
N12—H60.8900N14—H120.8900
C12—C221.539 (5)C14—C241.540 (5)
C22—C321.519 (9)C24—C341.520 (9)
C22—H220.9800C24—H240.9800
C32—C421.514 (12)C34—C441.515 (12)
C32—H330.9700C34—H370.9700
C32—H340.9700C34—H380.9700
C42—C521.550 (15)C44—C541.549 (15)
C42—H430.9700C44—H470.9700
C42—H440.9700C44—H480.9700
C52—H540.9600C54—H600.9600
C52—H550.9600C54—H610.9600
C52—H560.9600C54—H620.9600
C21—N11—H1109.5C23—N13—H7109.5
C21—N11—H2109.5C23—N13—H8109.5
H1—N11—H2109.5H7—N13—H8109.5
C21—N11—H3109.5C23—N13—H9109.5
H1—N11—H3109.5H7—N13—H9109.5
H2—N11—H3109.5H8—N13—H9109.5
O11—C11—O21124.2 (10)O13—C13—O23124.4 (12)
O11—C11—C21116.5 (6)O13—C13—C23116.7 (6)
O21—C11—C21118.4 (5)O23—C13—C23118.5 (6)
N11—C21—C31110.4 (5)N13—C23—C33110.8 (6)
N11—C21—C11109.0 (4)N13—C23—C13109.2 (5)
C31—C21—C11111.8 (5)C33—C23—C13111.8 (6)
N11—C21—H21108.5N13—C23—H23108.3
C31—C21—H21108.5C33—C23—H23108.3
C11—C21—H21108.5C13—C23—H23108.3
C41—C31—C21112.3 (8)C43—C33—C23112.4 (9)
C41—C31—H31109.1C43—C33—H35109.1
C21—C31—H31109.1C23—C33—H35109.1
C41—C31—H32109.1C43—C33—H36109.1
C21—C31—H32109.1C23—C33—H36109.1
H31—C31—H32107.9H35—C33—H36107.9
C31—C41—C51109.3 (9)C33—C43—C53109.5 (10)
C31—C41—H41109.8C33—C43—H45109.8
C51—C41—H41109.8C53—C43—H45109.8
C31—C41—H42109.8C33—C43—H46109.8
C51—C41—H42109.8C53—C43—H46109.8
H41—C41—H42108.3H45—C43—H46108.2
C41—C51—H51109.5C43—C53—H57109.5
C41—C51—H52109.5C43—C53—H58109.5
H51—C51—H52109.5H57—C53—H58109.5
C41—C51—H53109.5C43—C53—H59109.5
H51—C51—H53109.5H57—C53—H59109.5
H52—C51—H53109.5H58—C53—H59109.5
C22—N12—H4109.5C24—N14—H10109.5
C22—N12—H5109.5C24—N14—H11109.5
H4—N12—H5109.5H10—N14—H11109.5
C22—N12—H6109.5C24—N14—H12109.5
H4—N12—H6109.5H10—N14—H12109.5
H5—N12—H6109.5H11—N14—H12109.5
O12—C12—O22124.3 (11)O14—C14—O24124.1 (12)
O12—C12—C22116.7 (7)O14—C14—C24116.4 (7)
O22—C12—C22118.6 (5)O24—C14—C24118.3 (7)
N12—C22—C32110.7 (6)N14—C24—C34110.4 (6)
N12—C22—C12109.2 (5)N14—C24—C14109.0 (5)
C32—C22—C12111.8 (5)C34—C24—C14111.9 (6)
N12—C22—H22108.4N14—C24—H24108.5
C32—C22—H22108.4C34—C24—H24108.5
C12—C22—H22108.4C14—C24—H24108.5
C42—C32—C22112.6 (9)C44—C34—C24112.5 (9)
C42—C32—H33109.1C44—C34—H37109.1
C22—C32—H33109.1C24—C34—H37109.1
C42—C32—H34109.1C44—C34—H38109.1
C22—C32—H34109.1C24—C34—H38109.1
H33—C32—H34107.8H37—C34—H38107.8
C32—C42—C52109.4 (10)C34—C44—C54109.6 (10)
C32—C42—H43109.8C34—C44—H47109.8
C52—C42—H43109.8C54—C44—H47109.8
C32—C42—H44109.8C34—C44—H48109.8
C52—C42—H44109.8C54—C44—H48109.8
H43—C42—H44108.2H47—C44—H48108.2
C42—C52—H54109.5C44—C54—H60109.5
C42—C52—H55109.5C44—C54—H61109.5
H54—C52—H55109.5H60—C54—H61109.5
C42—C52—H56109.5C44—C54—H62109.5
H54—C52—H56109.5H60—C54—H62109.5
H55—C52—H56109.5H61—C54—H62109.5
O11—C11—C21—N1119 (3)O13—C13—C23—N1338 (9)
O21—C11—C21—N11172 (2)O23—C13—C23—N13136 (3)
O11—C11—C21—C31104 (3)O13—C13—C23—C3385 (9)
O21—C11—C21—C3166 (2)O23—C13—C23—C33101 (3)
N11—C21—C31—C41169.7 (17)N13—C23—C33—C4355 (3)
C11—C21—C31—C4168.8 (17)C13—C23—C33—C43177 (2)
C21—C31—C41—C51171.8 (18)C23—C33—C43—C53176 (3)
O12—C12—C22—N1217 (7)O14—C14—C24—N1438 (4)
O22—C12—C22—N12170 (4)O24—C14—C24—N14130 (4)
O12—C12—C22—C32106 (7)O14—C14—C24—C3484 (4)
O22—C12—C22—C3267 (4)O24—C14—C24—C34108 (4)
N12—C22—C32—C4265 (2)N14—C24—C34—C44172 (3)
C12—C22—C32—C4257 (2)C14—C24—C34—C4466 (3)
C22—C32—C42—C52178 (2)C24—C34—C44—C5473 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H1···O11i0.891.952.828 (19)167
N11—H1···O21i0.892.623.32 (5)137
N11—H2···O21ii0.892.042.92 (5)171
N11—H3···O11iii0.891.712.56 (4)157
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y+1, z; (iii) x+1, y, z+1.
(Nle100super) S-2-aminohexanoic acid top
Crystal data top
C6H13NO2F(000) = 1728
Mr = 131.17Dx = 1.211 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 28.516 (5) ÅCell parameters from 3481 reflections
b = 5.2346 (10) Åθ = 2.8–28.2°
c = 32.233 (6) ŵ = 0.09 mm1
β = 116.25°T = 100 K
V = 4315.1 (14) Å3Plate, colourless
Z = 240.68 × 0.58 × 0.16 mm
Data collection top
Bruker D8 Vantage single crystal CCD
diffractometer
8552 independent reflections
Graphite monochromator3859 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.141
Sets of exposures each taken over 0.5° ω rotation scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
SADABS (Bruker, 2014)
h = 3035
Tmin = 0.585, Tmax = 1.000k = 66
33113 measured reflectionsl = 4037
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.219 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8552 reflectionsΔρmax = 0.53 e Å3
493 parametersΔρmin = 0.44 e Å3
Special details top

Experimental. hkl file transformed from a commensurate supercell refinement, see paper for details.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Six ordered molecules in the asymmetric unit

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.27353 (15)0.0594 (8)0.95506 (13)0.0201 (11)
O2A0.28820 (16)0.4189 (9)0.92597 (15)0.0252 (12)
N1A0.35814 (17)0.1724 (10)0.95802 (16)0.0174 (13)
H1A0.36760.12340.98780.026*
H2A0.38640.23820.95560.026*
H3A0.33260.29320.94970.026*
C1A0.2974 (2)0.1917 (14)0.9370 (2)0.0203 (16)
C2A0.3381 (2)0.0533 (13)0.9268 (2)0.0173 (16)
H21A0.36780.17240.93280.021*
C3A0.3154 (2)0.0392 (14)0.87635 (19)0.0234 (18)
H31A0.34040.16140.87360.028*
H32A0.28260.13340.86920.028*
C4A0.3038 (2)0.1684 (15)0.8402 (2)0.0255 (18)
H41A0.28180.09550.80920.031*
H42A0.28350.30560.84590.031*
C5A0.3523 (2)0.2835 (15)0.8400 (2)0.0306 (19)
H51A0.37410.14430.83700.037*
H52A0.37280.36890.87010.037*
C6A0.3409 (3)0.4767 (15)0.8012 (2)0.035 (2)
H61A0.37390.53770.80230.052*
H62A0.32140.62150.80510.052*
H63A0.32000.39490.77130.052*
O1B0.43974 (14)0.5545 (9)0.95405 (13)0.0191 (11)
O2B0.45629 (16)0.9383 (9)0.93383 (15)0.0251 (12)
N1B0.52617 (17)0.3432 (10)0.95879 (15)0.0145 (13)
H1B0.53490.36820.98930.022*
H2B0.55410.27790.95580.022*
H3B0.49890.23190.94660.022*
C1B0.4655 (2)0.7059 (13)0.9415 (2)0.0186 (16)
C2B0.5108 (2)0.5911 (12)0.93381 (19)0.0164 (16)
H21B0.54130.70990.94770.020*
C3B0.4976 (2)0.5549 (13)0.88238 (19)0.0184 (16)
H31B0.52430.44300.88010.022*
H32B0.46340.46750.86660.022*
C4B0.4953 (2)0.8057 (14)0.8574 (2)0.0236 (17)
H41B0.46510.90730.85560.028*
H42B0.52750.90490.87560.028*
C5B0.4899 (3)0.7641 (14)0.8089 (2)0.0311 (19)
H51B0.45690.67180.79030.037*
H52B0.51920.65580.81060.037*
C6B0.4901 (3)1.0142 (16)0.7849 (2)0.044 (2)
H61B0.52431.09720.80120.066*
H62B0.46281.12700.78510.066*
H63B0.48340.97950.75280.066*
O1C0.60974 (15)0.0794 (8)0.95692 (13)0.0189 (11)
O2C0.62714 (16)0.4723 (9)0.94163 (15)0.0257 (12)
N1C0.69431 (17)0.1225 (10)0.95643 (16)0.0164 (13)
H1C0.70510.10150.98730.025*
H2C0.72130.18300.95140.025*
H3C0.66730.23580.94510.025*
C1C0.6352 (2)0.2387 (14)0.9452 (2)0.0206 (17)
C2C0.6768 (2)0.1257 (13)0.9327 (2)0.0212 (17)
H21C0.70750.24410.94470.025*
C3C0.6577 (2)0.0967 (14)0.8801 (2)0.0235 (18)
H31C0.68320.00840.87450.028*
H32C0.62390.00470.86690.028*
C4C0.6508 (3)0.3537 (15)0.8551 (2)0.0303 (19)
H41C0.62150.44790.85660.036*
H42C0.68290.45690.87130.036*
C5C0.6401 (3)0.3228 (15)0.8053 (2)0.036 (2)
H51C0.60670.22950.78860.043*
H52C0.66820.21890.80370.043*
C6C0.6367 (3)0.5798 (16)0.7814 (2)0.044 (2)
H61C0.67090.66410.79550.065*
H62C0.61070.68840.78490.065*
H63C0.62640.55110.74840.065*
O1D0.55812 (14)0.0746 (8)0.54403 (13)0.0188 (11)
O2D0.54419 (16)0.4436 (9)0.57111 (15)0.0265 (12)
N1D0.47490 (17)0.1488 (11)0.54422 (16)0.0181 (13)
H1D0.44800.21630.54850.027*
H2D0.50090.26660.55210.027*
H3D0.46340.10460.51400.027*
C1D0.5351 (2)0.2125 (14)0.5616 (2)0.0162 (15)
C2D0.4951 (2)0.0808 (13)0.57365 (19)0.0198 (17)
H21D0.46560.20060.56820.024*
C3D0.5196 (2)0.0118 (14)0.6239 (2)0.0253 (18)
H31D0.55270.10110.63030.030*
H32D0.49570.13800.62740.030*
C4D0.5311 (2)0.1990 (15)0.6603 (2)0.0278 (18)
H41D0.55350.12750.69130.033*
H42D0.55090.33760.65430.033*
C5D0.4825 (2)0.3108 (15)0.6607 (2)0.0293 (19)
H51D0.46110.17010.66390.035*
H52D0.46160.39560.63070.035*
C6D0.4937 (3)0.5047 (15)0.6997 (2)0.035 (2)
H61D0.51480.42330.72960.053*
H62D0.46070.56430.69870.053*
H63D0.51290.65040.69570.053*
O1E0.39468 (14)0.5513 (9)0.54693 (13)0.0179 (11)
O2E0.37938 (16)0.9268 (9)0.57105 (15)0.0235 (12)
N1E0.30886 (17)0.3314 (11)0.54176 (16)0.0192 (14)
H1E0.28060.26530.54410.029*
H2E0.33610.21980.55420.029*
H3E0.30070.35810.51140.029*
C1E0.3690 (2)0.6985 (14)0.5611 (2)0.0160 (16)
C2E0.3238 (2)0.5775 (13)0.56716 (19)0.0180 (17)
H21E0.29310.69550.55350.022*
C3E0.3357 (2)0.5304 (14)0.61732 (19)0.0230 (17)
H31E0.37020.44570.63320.028*
H32E0.30910.41350.61850.028*
C4E0.3363 (3)0.7779 (14)0.6429 (2)0.0287 (18)
H41E0.30350.87280.62480.034*
H42E0.36580.88570.64490.034*
C5E0.3418 (3)0.7332 (15)0.6920 (2)0.0326 (19)
H51E0.31380.61660.69040.039*
H52E0.37580.64960.71100.039*
C6E0.3386 (3)0.9817 (15)0.7150 (2)0.039 (2)
H61E0.34450.94700.74680.058*
H62E0.30391.05790.69770.058*
H63E0.36541.10040.71540.058*
O1F0.22482 (14)0.0795 (8)0.54471 (13)0.0189 (11)
O2F0.20622 (16)0.4776 (9)0.55736 (15)0.0258 (12)
N1F0.13930 (18)0.1176 (11)0.54389 (16)0.0218 (15)
H1F0.11280.17960.54940.033*
H2F0.16680.22760.55560.033*
H3F0.12820.10090.51290.033*
C1F0.1984 (2)0.2428 (14)0.5549 (2)0.0146 (15)
C2F0.1558 (2)0.1354 (13)0.5664 (2)0.0175 (16)
H21F0.12510.25360.55390.021*
C3F0.1742 (2)0.1064 (14)0.6181 (2)0.0230 (18)
H31F0.14840.00290.62350.028*
H32F0.20780.01190.63130.028*
C4F0.1818 (2)0.3580 (14)0.6434 (2)0.0247 (17)
H41F0.15000.46340.62730.030*
H42F0.21130.45080.64200.030*
C5F0.1928 (3)0.3273 (15)0.6943 (2)0.033 (2)
H51F0.16410.22820.69600.040*
H52F0.22560.22960.71090.040*
C6F0.1978 (3)0.5853 (16)0.7184 (2)0.045 (2)
H61F0.20150.55710.74970.067*
H62F0.16640.68780.70080.067*
H63F0.22860.67590.72000.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.020 (2)0.024 (3)0.021 (3)0.001 (2)0.013 (2)0.000 (2)
O2A0.021 (2)0.023 (3)0.030 (3)0.008 (2)0.010 (2)0.003 (2)
N1A0.018 (3)0.016 (3)0.019 (3)0.004 (3)0.008 (2)0.002 (3)
C1A0.013 (4)0.019 (4)0.021 (4)0.002 (3)0.001 (3)0.004 (3)
C2A0.013 (3)0.019 (4)0.022 (4)0.002 (3)0.010 (3)0.000 (3)
C3A0.026 (4)0.030 (5)0.015 (3)0.002 (4)0.009 (3)0.001 (3)
C4A0.027 (4)0.033 (5)0.014 (4)0.005 (4)0.008 (3)0.001 (3)
C5A0.036 (4)0.038 (5)0.015 (4)0.000 (4)0.008 (3)0.008 (4)
C6A0.042 (4)0.037 (5)0.029 (4)0.001 (4)0.020 (4)0.007 (4)
O1B0.020 (2)0.022 (3)0.016 (2)0.003 (2)0.009 (2)0.001 (2)
O2B0.024 (2)0.022 (3)0.033 (3)0.003 (2)0.015 (2)0.003 (2)
N1B0.015 (3)0.018 (3)0.010 (3)0.005 (3)0.005 (2)0.001 (3)
C1B0.016 (4)0.012 (4)0.021 (4)0.002 (3)0.003 (3)0.005 (3)
C2B0.017 (3)0.015 (4)0.017 (4)0.002 (3)0.006 (3)0.003 (3)
C3B0.018 (3)0.024 (4)0.016 (4)0.003 (3)0.010 (3)0.002 (3)
C4B0.025 (4)0.032 (5)0.016 (4)0.006 (4)0.010 (3)0.002 (3)
C5B0.036 (4)0.035 (5)0.020 (4)0.013 (4)0.011 (3)0.001 (4)
C6B0.072 (6)0.042 (6)0.016 (4)0.008 (5)0.018 (4)0.000 (4)
O1C0.021 (2)0.020 (3)0.016 (2)0.000 (2)0.008 (2)0.001 (2)
O2C0.024 (2)0.016 (3)0.040 (3)0.002 (2)0.017 (2)0.004 (3)
N1C0.016 (3)0.018 (3)0.016 (3)0.003 (3)0.008 (2)0.000 (3)
C1C0.019 (4)0.024 (5)0.017 (4)0.001 (3)0.006 (3)0.001 (3)
C2C0.017 (3)0.021 (4)0.029 (4)0.002 (3)0.013 (3)0.005 (3)
C3C0.022 (4)0.031 (5)0.021 (4)0.002 (4)0.012 (3)0.001 (3)
C4C0.032 (4)0.035 (5)0.021 (4)0.002 (4)0.009 (3)0.006 (4)
C5C0.051 (5)0.032 (5)0.032 (4)0.002 (4)0.025 (4)0.001 (4)
C6C0.065 (5)0.042 (6)0.029 (4)0.006 (5)0.026 (4)0.006 (4)
O1D0.015 (2)0.021 (3)0.025 (3)0.000 (2)0.014 (2)0.000 (2)
O2D0.027 (3)0.022 (3)0.033 (3)0.003 (2)0.015 (2)0.000 (2)
N1D0.012 (3)0.025 (4)0.018 (3)0.003 (3)0.006 (2)0.004 (3)
C1D0.010 (3)0.022 (4)0.015 (4)0.006 (3)0.004 (3)0.001 (3)
C2D0.025 (4)0.021 (4)0.012 (4)0.002 (3)0.007 (3)0.001 (3)
C3D0.029 (4)0.028 (5)0.021 (4)0.000 (4)0.013 (3)0.001 (4)
C4D0.028 (4)0.037 (5)0.017 (4)0.004 (4)0.009 (3)0.003 (4)
C5D0.026 (4)0.043 (5)0.019 (4)0.004 (4)0.010 (3)0.002 (4)
C6D0.048 (5)0.036 (5)0.020 (4)0.003 (4)0.014 (4)0.001 (4)
O1E0.012 (2)0.025 (3)0.019 (2)0.002 (2)0.009 (2)0.004 (2)
O2E0.021 (2)0.019 (3)0.030 (3)0.003 (2)0.012 (2)0.000 (2)
N1E0.012 (3)0.028 (4)0.016 (3)0.002 (3)0.006 (2)0.003 (3)
C1E0.013 (3)0.026 (5)0.010 (3)0.007 (3)0.006 (3)0.008 (3)
C2E0.018 (3)0.025 (5)0.011 (3)0.002 (3)0.006 (3)0.002 (3)
C3E0.024 (4)0.026 (5)0.018 (4)0.008 (4)0.008 (3)0.001 (3)
C4E0.038 (4)0.026 (5)0.019 (4)0.001 (4)0.010 (3)0.003 (4)
C5E0.042 (4)0.034 (5)0.027 (4)0.009 (4)0.019 (4)0.002 (4)
C6E0.061 (5)0.030 (5)0.037 (5)0.005 (4)0.032 (4)0.001 (4)
O1F0.015 (2)0.027 (3)0.018 (3)0.001 (2)0.011 (2)0.003 (2)
O2F0.024 (2)0.023 (3)0.032 (3)0.005 (2)0.013 (2)0.001 (3)
N1F0.016 (3)0.033 (4)0.018 (3)0.001 (3)0.009 (3)0.003 (3)
C1F0.008 (3)0.029 (5)0.010 (3)0.001 (3)0.007 (3)0.001 (3)
C2F0.019 (4)0.016 (4)0.016 (3)0.001 (3)0.007 (3)0.001 (3)
C3F0.025 (4)0.028 (5)0.019 (4)0.002 (4)0.013 (3)0.005 (3)
C4F0.030 (4)0.028 (5)0.022 (4)0.003 (4)0.016 (3)0.003 (3)
C5F0.037 (4)0.039 (5)0.024 (4)0.002 (4)0.013 (3)0.006 (4)
C6F0.054 (5)0.052 (6)0.024 (4)0.011 (5)0.013 (4)0.000 (4)
Geometric parameters (Å, º) top
O1A—C1A1.279 (8)O1D—C1D1.265 (7)
O2A—C1A1.236 (8)O2D—C1D1.247 (8)
N1A—C2A1.492 (8)N1D—C2D1.481 (8)
N1A—H1A0.9100N1D—H1D0.9100
N1A—H2A0.9100N1D—H2D0.9100
N1A—H3A0.9100N1D—H3D0.9100
C1A—C2A1.520 (8)C1D—C2D1.523 (8)
C2A—C3A1.539 (8)C2D—C3D1.530 (8)
C2A—H21A1.0000C2D—H21D1.0000
C3A—C4A1.519 (9)C3D—C4D1.538 (9)
C3A—H31A0.9900C3D—H31D0.9900
C3A—H32A0.9900C3D—H32D0.9900
C4A—C5A1.510 (9)C4D—C5D1.509 (8)
C4A—H41A0.9900C4D—H41D0.9900
C4A—H42A0.9900C4D—H42D0.9900
C5A—C6A1.528 (9)C5D—C6D1.534 (9)
C5A—H51A0.9900C5D—H51D0.9900
C5A—H52A0.9900C5D—H52D0.9900
C6A—H61A0.9800C6D—H61D0.9800
C6A—H62A0.9800C6D—H62D0.9800
C6A—H63A0.9800C6D—H63D0.9800
O1B—C1B1.262 (7)O1E—C1E1.278 (7)
O2B—C1B1.246 (8)O2E—C1E1.239 (8)
N1B—C2B1.487 (8)N1E—C2E1.484 (8)
N1B—H1B0.9100N1E—H1E0.9100
N1B—H2B0.9100N1E—H2E0.9100
N1B—H3B0.9100N1E—H3E0.9100
C1B—C2B1.541 (8)C1E—C2E1.524 (9)
C2B—C3B1.541 (8)C2E—C3E1.518 (8)
C2B—H21B1.0000C2E—H21E1.0000
C3B—C4B1.526 (9)C3E—C4E1.532 (9)
C3B—H31B0.9900C3E—H31E0.9900
C3B—H32B0.9900C3E—H32E0.9900
C4B—C5B1.519 (8)C4E—C5E1.536 (8)
C4B—H41B0.9900C4E—H41E0.9900
C4B—H42B0.9900C4E—H42E0.9900
C5B—C6B1.523 (10)C5E—C6E1.521 (10)
C5B—H51B0.9900C5E—H51E0.9900
C5B—H52B0.9900C5E—H52E0.9900
C6B—H61B0.9800C6E—H61E0.9800
C6B—H62B0.9800C6E—H62E0.9800
C6B—H63B0.9800C6E—H63E0.9800
O1C—C1C1.267 (8)O1F—C1F1.273 (7)
O2C—C1C1.240 (8)O2F—C1F1.246 (8)
N1C—C2C1.478 (8)N1F—C2F1.484 (8)
N1C—H1C0.9100N1F—H1F0.9100
N1C—H2C0.9100N1F—H2F0.9100
N1C—H3C0.9100N1F—H3F0.9100
C1C—C2C1.532 (9)C1F—C2F1.529 (8)
C2C—C3C1.542 (8)C2F—C3F1.516 (8)
C2C—H21C1.0000C2F—H21F1.0000
C3C—C4C1.536 (10)C3F—C4F1.513 (10)
C3C—H31C0.9900C3F—H31F0.9900
C3C—H32C0.9900C3F—H32F0.9900
C4C—C5C1.503 (8)C4F—C5F1.537 (8)
C4C—H41C0.9900C4F—H41F0.9900
C4C—H42C0.9900C4F—H42F0.9900
C5C—C6C1.533 (10)C5F—C6F1.532 (10)
C5C—H51C0.9900C5F—H51F0.9900
C5C—H52C0.9900C5F—H52F0.9900
C6C—H61C0.9800C6F—H61F0.9800
C6C—H62C0.9800C6F—H62F0.9800
C6C—H63C0.9800C6F—H63F0.9800
C2A—N1A—H1A109.5C2D—N1D—H1D109.5
C2A—N1A—H2A109.5C2D—N1D—H2D109.5
H1A—N1A—H2A109.5H1D—N1D—H2D109.5
C2A—N1A—H3A109.5C2D—N1D—H3D109.5
H1A—N1A—H3A109.5H1D—N1D—H3D109.5
H2A—N1A—H3A109.5H2D—N1D—H3D109.5
O2A—C1A—O1A124.3 (6)O2D—C1D—O1D124.8 (6)
O2A—C1A—C2A118.9 (6)O2D—C1D—C2D118.3 (6)
O1A—C1A—C2A116.8 (6)O1D—C1D—C2D116.8 (6)
N1A—C2A—C1A109.5 (5)N1D—C2D—C1D109.1 (5)
N1A—C2A—C3A108.7 (5)N1D—C2D—C3D106.6 (5)
C1A—C2A—C3A111.9 (5)C1D—C2D—C3D111.8 (5)
N1A—C2A—H21A108.9N1D—C2D—H21D109.8
C1A—C2A—H21A108.9C1D—C2D—H21D109.8
C3A—C2A—H21A108.9C3D—C2D—H21D109.8
C4A—C3A—C2A115.7 (6)C2D—C3D—C4D115.1 (6)
C4A—C3A—H31A108.4C2D—C3D—H31D108.5
C2A—C3A—H31A108.4C4D—C3D—H31D108.5
C4A—C3A—H32A108.4C2D—C3D—H32D108.5
C2A—C3A—H32A108.4C4D—C3D—H32D108.5
H31A—C3A—H32A107.4H31D—C3D—H32D107.5
C5A—C4A—C3A113.5 (5)C5D—C4D—C3D113.5 (5)
C5A—C4A—H41A108.9C5D—C4D—H41D108.9
C3A—C4A—H41A108.9C3D—C4D—H41D108.9
C5A—C4A—H42A108.9C5D—C4D—H42D108.9
C3A—C4A—H42A108.9C3D—C4D—H42D108.9
H41A—C4A—H42A107.7H41D—C4D—H42D107.7
C4A—C5A—C6A113.8 (5)C4D—C5D—C6D113.8 (5)
C4A—C5A—H51A108.8C4D—C5D—H51D108.8
C6A—C5A—H51A108.8C6D—C5D—H51D108.8
C4A—C5A—H52A108.8C4D—C5D—H52D108.8
C6A—C5A—H52A108.8C6D—C5D—H52D108.8
H51A—C5A—H52A107.7H51D—C5D—H52D107.7
C5A—C6A—H61A109.5C5D—C6D—H61D109.5
C5A—C6A—H62A109.5C5D—C6D—H62D109.5
H61A—C6A—H62A109.5H61D—C6D—H62D109.5
C5A—C6A—H63A109.5C5D—C6D—H63D109.5
H61A—C6A—H63A109.5H61D—C6D—H63D109.5
H62A—C6A—H63A109.5H62D—C6D—H63D109.5
C2B—N1B—H1B109.5C2E—N1E—H1E109.5
C2B—N1B—H2B109.5C2E—N1E—H2E109.5
H1B—N1B—H2B109.5H1E—N1E—H2E109.5
C2B—N1B—H3B109.5C2E—N1E—H3E109.5
H1B—N1B—H3B109.5H1E—N1E—H3E109.5
H2B—N1B—H3B109.5H2E—N1E—H3E109.5
O2B—C1B—O1B125.1 (6)O2E—C1E—O1E124.4 (6)
O2B—C1B—C2B117.8 (6)O2E—C1E—C2E119.1 (6)
O1B—C1B—C2B117.0 (6)O1E—C1E—C2E116.5 (6)
N1B—C2B—C3B110.4 (5)N1E—C2E—C3E108.7 (5)
N1B—C2B—C1B108.7 (5)N1E—C2E—C1E110.1 (5)
C3B—C2B—C1B113.5 (5)C3E—C2E—C1E113.6 (5)
N1B—C2B—H21B108.0N1E—C2E—H21E108.1
C3B—C2B—H21B108.0C3E—C2E—H21E108.1
C1B—C2B—H21B108.0C1E—C2E—H21E108.1
C4B—C3B—C2B113.2 (5)C2E—C3E—C4E112.4 (6)
C4B—C3B—H31B108.9C2E—C3E—H31E109.1
C2B—C3B—H31B108.9C4E—C3E—H31E109.1
C4B—C3B—H32B108.9C2E—C3E—H32E109.1
C2B—C3B—H32B108.9C4E—C3E—H32E109.1
H31B—C3B—H32B107.7H31E—C3E—H32E107.9
C5B—C4B—C3B112.4 (6)C3E—C4E—C5E113.4 (6)
C5B—C4B—H41B109.1C3E—C4E—H41E108.9
C3B—C4B—H41B109.1C5E—C4E—H41E108.9
C5B—C4B—H42B109.1C3E—C4E—H42E108.9
C3B—C4B—H42B109.1C5E—C4E—H42E108.9
H41B—C4B—H42B107.9H41E—C4E—H42E107.7
C4B—C5B—C6B112.3 (6)C6E—C5E—C4E111.8 (6)
C4B—C5B—H51B109.1C6E—C5E—H51E109.3
C6B—C5B—H51B109.1C4E—C5E—H51E109.3
C4B—C5B—H52B109.1C6E—C5E—H52E109.3
C6B—C5B—H52B109.1C4E—C5E—H52E109.3
H51B—C5B—H52B107.9H51E—C5E—H52E107.9
C5B—C6B—H61B109.5C5E—C6E—H61E109.5
C5B—C6B—H62B109.5C5E—C6E—H62E109.5
H61B—C6B—H62B109.5H61E—C6E—H62E109.5
C5B—C6B—H63B109.5C5E—C6E—H63E109.5
H61B—C6B—H63B109.5H61E—C6E—H63E109.5
H62B—C6B—H63B109.5H62E—C6E—H63E109.5
C2C—N1C—H1C109.5C2F—N1F—H1F109.5
C2C—N1C—H2C109.5C2F—N1F—H2F109.5
H1C—N1C—H2C109.5H1F—N1F—H2F109.5
C2C—N1C—H3C109.5C2F—N1F—H3F109.5
H1C—N1C—H3C109.5H1F—N1F—H3F109.5
H2C—N1C—H3C109.5H2F—N1F—H3F109.5
O2C—C1C—O1C124.8 (6)O2F—C1F—O1F124.8 (6)
O2C—C1C—C2C119.3 (6)O2F—C1F—C2F119.0 (6)
O1C—C1C—C2C115.9 (6)O1F—C1F—C2F116.1 (6)
N1C—C2C—C1C109.1 (5)N1F—C2F—C3F109.3 (5)
N1C—C2C—C3C110.9 (5)N1F—C2F—C1F108.8 (5)
C1C—C2C—C3C113.0 (5)C3F—C2F—C1F112.2 (5)
N1C—C2C—H21C107.9N1F—C2F—H21F108.8
C1C—C2C—H21C107.9C3F—C2F—H21F108.8
C3C—C2C—H21C107.9C1F—C2F—H21F108.8
C4C—C3C—C2C113.1 (6)C4F—C3F—C2F113.7 (6)
C4C—C3C—H31C109.0C4F—C3F—H31F108.8
C2C—C3C—H31C109.0C2F—C3F—H31F108.8
C4C—C3C—H32C109.0C4F—C3F—H32F108.8
C2C—C3C—H32C109.0C2F—C3F—H32F108.8
H31C—C3C—H32C107.8H31F—C3F—H32F107.7
C5C—C4C—C3C112.6 (6)C3F—C4F—C5F113.4 (6)
C5C—C4C—H41C109.1C3F—C4F—H41F108.9
C3C—C4C—H41C109.1C5F—C4F—H41F108.9
C5C—C4C—H42C109.1C3F—C4F—H42F108.9
C3C—C4C—H42C109.1C5F—C4F—H42F108.9
H41C—C4C—H42C107.8H41F—C4F—H42F107.7
C4C—C5C—C6C112.4 (6)C6F—C5F—C4F112.2 (6)
C4C—C5C—H51C109.1C6F—C5F—H51F109.2
C6C—C5C—H51C109.1C4F—C5F—H51F109.2
C4C—C5C—H52C109.1C6F—C5F—H52F109.2
C6C—C5C—H52C109.1C4F—C5F—H52F109.2
H51C—C5C—H52C107.9H51F—C5F—H52F107.9
C5C—C6C—H61C109.5C5F—C6F—H61F109.5
C5C—C6C—H62C109.5C5F—C6F—H62F109.5
H61C—C6C—H62C109.5H61F—C6F—H62F109.5
C5C—C6C—H63C109.5C5F—C6F—H63F109.5
H61C—C6C—H63C109.5H61F—C6F—H63F109.5
H62C—C6C—H63C109.5H62F—C6F—H63F109.5
O2A—C1A—C2A—N1A157.7 (6)O2D—C1D—C2D—N1D157.8 (5)
O1A—C1A—C2A—N1A24.8 (8)O1D—C1D—C2D—N1D24.9 (7)
O2A—C1A—C2A—C3A81.7 (8)O2D—C1D—C2D—C3D84.5 (7)
O1A—C1A—C2A—C3A95.8 (7)O1D—C1D—C2D—C3D92.8 (7)
N1A—C2A—C3A—C4A167.4 (5)N1D—C2D—C3D—C4D165.9 (5)
C1A—C2A—C3A—C4A71.5 (7)C1D—C2D—C3D—C4D75.0 (7)
C2A—C3A—C4A—C5A72.3 (7)C2D—C3D—C4D—C5D70.8 (8)
C3A—C4A—C5A—C6A175.3 (6)C3D—C4D—C5D—C6D175.1 (6)
O2B—C1B—C2B—N1B161.8 (5)O2E—C1E—C2E—N1E164.5 (5)
O1B—C1B—C2B—N1B20.1 (7)O1E—C1E—C2E—N1E17.3 (7)
O2B—C1B—C2B—C3B75.0 (8)O2E—C1E—C2E—C3E73.4 (8)
O1B—C1B—C2B—C3B103.1 (7)O1E—C1E—C2E—C3E104.9 (7)
N1B—C2B—C3B—C4B165.1 (5)N1E—C2E—C3E—C4E163.8 (5)
C1B—C2B—C3B—C4B72.6 (7)C1E—C2E—C3E—C4E73.3 (8)
C2B—C3B—C4B—C5B171.8 (5)C2E—C3E—C4E—C5E173.2 (5)
C3B—C4B—C5B—C6B177.4 (6)C3E—C4E—C5E—C6E176.2 (6)
O2C—C1C—C2C—N1C157.5 (6)O2F—C1F—C2F—N1F157.6 (5)
O1C—C1C—C2C—N1C25.3 (8)O1F—C1F—C2F—N1F24.7 (7)
O2C—C1C—C2C—C3C78.8 (8)O2F—C1F—C2F—C3F81.4 (8)
O1C—C1C—C2C—C3C98.5 (7)O1F—C1F—C2F—C3F96.3 (7)
N1C—C2C—C3C—C4C167.0 (5)N1F—C2F—C3F—C4F168.5 (5)
C1C—C2C—C3C—C4C70.2 (8)C1F—C2F—C3F—C4F70.7 (7)
C2C—C3C—C4C—C5C171.4 (5)C2F—C3F—C4F—C5F171.8 (5)
C3C—C4C—C5C—C6C176.3 (6)C3F—C4F—C5F—C6F177.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1Ci0.911.932.806 (6)162
N1A—H2A···O1Bii0.911.892.782 (6)167
N1A—H3A···O2Aii0.911.902.793 (7)167
N1B—H1B···O1Bi0.911.912.765 (6)156
N1B—H2B···O1C0.911.882.778 (6)167
N1B—H3B···O2Bii0.911.892.774 (7)164
N1C—H1C···O1Ai0.911.882.752 (6)160
N1C—H2C···O1Aiii0.911.972.822 (6)155
N1C—H3C···O2Cii0.911.882.754 (7)160
N1D—H1D···O1Eii0.911.932.807 (6)162
N1D—H2D···O2Dii0.911.882.773 (7)167
N1D—H3D···O1Div0.911.932.824 (6)166
N1E—H1E···O1F0.911.872.773 (6)170
N1E—H2E···O2Eii0.911.892.782 (7)165
N1E—H3E···O1Fv0.912.002.830 (6)152
N1F—H1F···O1Dvi0.911.972.822 (6)156
N1F—H2F···O2Fii0.911.892.754 (7)157
N1F—H3F···O1Evii0.911.912.789 (6)161
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1, z; (iii) x+1/2, y1/2, z; (iv) x+1, y, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y1/2, z; (vii) x+1/2, y1/2, z+1.
(Nle210) S-2-aminohexanoic acid