Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [FeCl2(C24H21N7)]Cl·C2H5OH·2H2O, comprises an [FeCl2(C24H21N7)]+ cation, a Cl anion, an ethanol mol­ecule and two water mol­ecules. The cations are linked by π–π and C—H...π inter­actions into one-dimensional tapes, and hydrogen bonding between the cations, Cl anions, and ethanol and water mol­ecules links these tapes into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106002630/bm3001sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106002630/bm3001Isup2.hkl
Contains datablock I

CCDC reference: 603181

Comment top

Benzimidazole (Bzim) is an important chemical group in the design of antitumour agents (Arrowsmith et al., 2002; Hay et al., 2003), and its metal complexes have been reported as having the functions of the enzymes superoxide dismutase (SOD) (Nishida et al., 1991; Kwak et al.,1999; Liao et al., 2001; Qin et al., 2005) and nuclease (Liu et al., 2004). Because of our interest in these areas, we have prepared the title compound, (I), and determined its crystal structure.

Compound (I) consists of a cis-[Fe(TBA)Cl2]+ cation [TBA is tris(2-benzimidazolylmethyl)amine], a Cl anion, an ethanol molecule and two water molecules (Fig. 1, Table 1). In the cation, the four N atoms from TBA and two mutually cis Cl anions coordinate to Fe3+. Three N atoms of the TBA ligand (N1, N2 and N4) and atom Cl1 form an equatorial plane, from which the Fe3+ ion is displaced by only 0.067 (1) Å, in the direction of Cl2. The two axial sites are occupied by atom Cl2 and atom N6 from the TBA. The Fe—N(Bzim) bond lengths [2.095 (2)–2.113 (2) Å] are much shorter than the Fe—N(amine group) bond length [2.330 (2) Å]. This is due to the fact that the benzimidazole groups are good σ donors and good π acceptors compared with the amine (Li et al., 2003).

The Fe—Cl2 bond [2.3299 (9) Å] is significantly longer than the Fe—Cl1 bond [2.2426 (9) Å], due to the different trans influences of the tertiary amine and the benzimidazole group (Horng & Lee, 1999). Three N atoms from three TBA ligands coordinate to Fe3+, with angles of 86.00 (9)° for N2—Fe1—N6 and 86.53 (9)° for N4—Fe1—N6, very similar to the values of 84.9 (1) and 86.1 (1)° in [Fe(TBA)Cl2]Cl·3CH3OH (Pascaly et al., 2000) and 86.9 (2) and 86.8 (2)° in [Fe(TBA)Cl2]ClO4 (Kwak et al., 1999). Two benzimidazole rings (N2/N3/C2–C8 and N4/N5/C10–C16) are almost coplanar [dihedral angle 9.6 (1)°], while the third (N6/N7/C18–C24) lies approximately orthogonal to them with dihedral angles of 88.4 (1) and 78.9 (1)°, respectively. Overall, therefore, the cation in (I) is structurally very similar to those in the related complexes [Fe(TBA)Cl2]Cl·3CH3OH and [Fe(TBA)Cl2]ClO4.

Although many crystal structures of TBA coordinated to transition metal ions have been reported, there has been little investigation of noncovalent interactions. Several types of noncovalent interaction organize the molecules of (I) into the supramolecular architecture shown in Figs. 2 and 3. Firstly, two cations interact in an anti-parallel tail-to-tail manner viaππ and C—H···π interactions, which form a loop through four neighbouring benzimidazole groups, linking the [Fe(TBA)Cl2]+ cations into ladders which are then cross-linked to form tapes (Fig. 2). This is also observed in [Fe(TBA)Cl2]Cl·3CH3OH (Pascaly et al., 2000) and in [Fe(TBA)Cl2]ClO4 (Kwak et al., 1999), indicating the role of the cation in directing the packing within the crystals. The centroid–centroid distance [Cg1···Cg2i, symmetry code: (i) −x, 2 − y, 1 − z] associated with the ππ interaction between the six-membered ring (C19–C24; centroid Cg1) and the five-membered ring (N6/C18/N7/C20/C19; centroid Cg2) of the anti-parallel benzimidazoles is 3.704 (2) Å and the two rings have a perpendicular separation of 3.462 (2) Å. The C···Cg distances involved in the C—H···π interactions are 3.647 (4) Å [C5···Cg1ii; symmetry code: (ii) −1 + x, y, z] and 3.665 (4) Å [C21···Cg3i; Cg3 is the centroid of the ring C3–C8].

Secondly, R66(12) hydrogen-bonded rings [O1/Cl3/O2iv/O1v/Cl3v/O2vi; symmetry codes: (iv) −x, 1/2 + y, 3/2 − z; (v) −x, 2 − y, 2 − z; (vi) x, 3/2 − y, 1/2 + z] consisting of four water molecules and two Cl anions directly connect four and indirectly another two neighbouring cations through ethanol molecules via hydrogen bonds (Fig. 3), arranging neighbouring tapes perpendicular to each other and leading to the C—H···π interaction, with a C7···Cg4iii [Cg4 is the centroid of the ring N4/C10/N5/C12/C11; symmetry code: (iii) −x, 1/2 + y, 3/2 − z] distance of 3.332 (4) Å between the tapes (Fig. 2).

As a result of the hydrogen-bonding and C—H···π interactions, compound (I) forms a three-dimensional supramolecular network. This structural motif is clearly different from those in [Fe(TBA)Cl2]Cl·3CH3OH and [Fe(TBA)Cl2]ClO4, where the different hydrogen-bonding patterns give tapes arranged in a head-to-head parallel manner via ππ interactions, rather than the C—H···π interaction (C7···Cg4) seen in (I) between the horizontal benzimidazoles of the tapes. Therefore, the R66(12) hydrogen-bonded rings, together with the hydrogen bonds involving ethanol molecules, change the arrangement of the tapes, resulting in C—H···π interactions between the cations of the tapes in (I).

Experimental top

All chemicals were of reagent grade, commercially available and used without further purification. The ligand tris(2-benzimidazolylmethyl)amine (TBA) was synthesized as follows. Nitrilotracetic acid (0.479 g, 2.50 mmol) and 1,2-diaminobenzene (0.812 g, 7.50 mmol) were dissolved in glycol (10 ml) and the mixture irradiated intermittently (15 × 1 min.) using a WP700 LG microwave oven with an output power of 350 W. The solution was cooled to room temperature, and when distilled water (ca 80 ml) was added a yellow precipitate formed immediately. This was filtered off, washed with distilled water and dried in air. IR data (KBr pellet, ν, cm−1): 3000–3500 (w), 1624 (ms), 1591.2 (ms), 1436.9 (s), 1325 (ms), 1274.9 (s), 1220.9 (ms), 1116.7 (s), 1024.1 (ms), 968.2 (ms), 740.6 (s).

FeCl3·6H2O (0.0344 g, 0.125 mmol) was added to a solution of TBA (0.0514 g, 0.125 mmol) in absolute ethanol (10 ml) and the mixture was stirred for 1 h. The clear solution was left at room temperature and red needles of (I) were obtained by slow evaporation of the solvent over several days. IR data (KBr pellet, ν, cm−1): 3446 (w), 1629.7 (w), 1593.1 (w), 1548.7 (w), 1471.6 (s), 1450.4 (s), 1390.6 (ms), 1325 (ms), 1274.9 (s), 1218.9 (ms), 1049.2 (s), 995.2 (w), 894.9 (ms), 756 (s). Elemental analysis, found: C 47.79, H 4.80, N 14.70%; calculated for C26H31Cl3FeN7O3: C 47.91, H 4.79, N 15.05%.

Refinement top

Atoms C25, C26 and O3 of the solvent ethanol in (I) were found to be disordered and were modelled over two sets of positions using restraints on their anisotropic displacement parameters. The major and minor disorder components had refined occupancies of 0.638 (11) and 0.362 (11), respectively. The H atoms attached to C, N and O(alcohol) atoms of (I) were placed in geometrically idealized positions, with C—H = 0.93–0.97 Å, N—H = 0.86 Å and O—H = 0.82–0.85 Å and refined with Uiso(H) = 1.2Ueq(parent), except for the H atoms on the O and C(methyl) atoms of the ethanol, which were refined with Uiso(H) = 1.5Ueq(parent). The H atoms attached to O(water) atoms were located in a difference Fourier map and refined with a global Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), with displacement ellipsoids drawn at the 25% probability level. The minor disorder components and the H atoms have been omitted for clarity. Hydrogen bonds are indicated by dotted lines.
[Figure 2] Fig. 2. The face-to-face ππ and edge-to-face C—H···π interactions (dotted lines) and the perpendicular arrangement of the tapes in (I). Fe atoms are shaded, N atoms have a central dot, Cl atoms are large and cross-hatched, C atoms are plain spheres and H atoms are small circles. The minor disorder components have been omitted for clarity. [Symmetry codes: (i) 3 + x, y, z; (ii) 3 − x, 2 − y, 1 − z; (iii) 2 + x, y, z; (iv) 2 − x, 2 − y, 1 − z; (v) 3 − x, −1/2 + y, 3/2 − z.]
[Figure 3] Fig. 3. A view of the hydrogen-bonding motif. Fe atoms are shaded, N atoms have a central dot, Cl atoms are large and cross-hatched, C atoms are plain spheres and H atoms are small circles. Dotted lines indicate hydrogen bonds. [Symmetry codes: (i) −x, −1/2 + y, 3/2 − z; (ii) −x, 1 − y, 1 − z; (iii) x, 3/2 − y, −1/2 + z; (iv) −1 − x, 1 − y, 1 − z; (v) 1 + x, y, z.]
cis-Dichloro[tris(2-benzimidazolylmethyl)amine]iron(III) chloride ethanol dihydrate top
Crystal data top
[FeCl2(C24H21N7)]Cl·C2H6O·2H2OF(000) = 1348
Mr = 651.78Dx = 1.457 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2889 reflections
a = 10.3541 (12) Åθ = 2.4–23.2°
b = 13.5873 (15) ŵ = 0.82 mm1
c = 21.746 (3) ÅT = 298 K
β = 103.791 (5)°Needle, red
V = 2971.1 (6) Å30.44 × 0.06 × 0.06 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5216 independent reflections
Radiation source: sealed tube3851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1212
Tmin = 0.715, Tmax = 0.953k = 1615
13948 measured reflectionsl = 2514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: water H atoms from ΔF, others placed geometrically
wR(F2) = 0.113H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0616P)2]
where P = (Fo2 + 2Fc2)/3
5216 reflections(Δ/σ)max = 0.001
395 parametersΔρmax = 0.45 e Å3
42 restraintsΔρmin = 0.27 e Å3
Crystal data top
[FeCl2(C24H21N7)]Cl·C2H6O·2H2OV = 2971.1 (6) Å3
Mr = 651.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3541 (12) ŵ = 0.82 mm1
b = 13.5873 (15) ÅT = 298 K
c = 21.746 (3) Å0.44 × 0.06 × 0.06 mm
β = 103.791 (5)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5216 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3851 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.953Rint = 0.040
13948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04442 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.97Δρmax = 0.45 e Å3
5216 reflectionsΔρmin = 0.27 e Å3
395 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.04350 (4)0.78744 (3)0.69286 (2)0.02969 (14)
Cl10.13300 (8)0.91236 (6)0.75622 (4)0.0457 (2)
Cl20.01003 (8)0.69246 (6)0.77248 (4)0.0425 (2)
N10.0395 (2)0.66172 (17)0.62146 (11)0.0303 (6)
N20.1589 (2)0.81868 (17)0.65803 (11)0.0310 (6)
N30.3619 (2)0.77724 (19)0.60591 (13)0.0394 (7)
H30.42660.74170.58530.047*
N40.2077 (2)0.69665 (17)0.69087 (12)0.0337 (6)
N50.2905 (2)0.5533 (2)0.67106 (13)0.0426 (7)
H5A0.29320.49350.65840.051*
N60.0700 (2)0.84907 (17)0.60750 (11)0.0323 (6)
N70.0833 (2)0.82359 (19)0.50866 (12)0.0391 (6)
H7A0.07650.79430.47300.047*
C10.1811 (3)0.6482 (2)0.62324 (16)0.0374 (7)
H1A0.18710.60840.65950.045*
H1B0.22980.61550.58510.045*
C20.2358 (3)0.7470 (2)0.62845 (15)0.0334 (7)
C30.2399 (3)0.9012 (2)0.65456 (14)0.0328 (7)
C40.3692 (3)0.8743 (2)0.62206 (15)0.0384 (8)
C50.4716 (3)0.9433 (3)0.61094 (19)0.0563 (10)
H50.55800.92610.59040.068*
C60.4392 (4)1.0367 (3)0.63196 (19)0.0592 (11)
H60.50521.08460.62470.071*
C70.3119 (3)1.0632 (3)0.66293 (17)0.0489 (9)
H70.29471.12800.67620.059*
C80.2097 (3)0.9964 (2)0.67537 (15)0.0390 (8)
H80.12401.01440.69650.047*
C90.0416 (3)0.5726 (2)0.64314 (16)0.0390 (8)
H9A0.00960.53910.67600.047*
H9B0.03660.52750.60810.047*
C100.1808 (3)0.6075 (2)0.66788 (15)0.0355 (7)
C110.3468 (3)0.7012 (2)0.71076 (15)0.0366 (7)
C120.3988 (3)0.6112 (2)0.69853 (15)0.0398 (8)
C130.5347 (3)0.5914 (3)0.71466 (18)0.0553 (10)
H130.56910.53080.70660.066*
C140.6157 (3)0.6670 (3)0.74372 (18)0.0571 (10)
H140.70710.65700.75610.068*
C150.5651 (3)0.7573 (3)0.75535 (19)0.0606 (11)
H150.62350.80630.77470.073*
C160.4299 (3)0.7781 (3)0.73921 (17)0.0479 (9)
H160.39660.83940.74660.058*
C170.0275 (3)0.6922 (2)0.55757 (15)0.0375 (7)
H17A0.01930.64150.54000.045*
H17B0.11580.69860.53000.045*
C180.0445 (3)0.7884 (2)0.55869 (14)0.0328 (7)
C190.1273 (3)0.9325 (2)0.58696 (15)0.0349 (7)
C200.1365 (3)0.9161 (2)0.52471 (15)0.0380 (8)
C210.1888 (3)0.9862 (3)0.49057 (17)0.0489 (9)
H210.19680.97400.44960.059*
C220.2274 (3)1.0728 (3)0.52027 (19)0.0546 (10)
H220.26341.12090.49890.066*
C230.2159 (3)1.0917 (3)0.58181 (19)0.0500 (9)
H230.24181.15270.60000.060*
C240.1666 (3)1.0220 (2)0.61611 (17)0.0416 (8)
H240.15881.03470.65710.036 (9)*
O10.0342 (3)0.80686 (18)0.90414 (11)0.0637 (7)
H310.04170.79330.86680.101 (9)*
H320.09430.84810.92070.101 (9)*
O20.2315 (3)0.37557 (18)0.60241 (14)0.0696 (8)
H330.15680.34820.60120.101 (9)*
H340.22740.40810.56880.101 (9)*
Cl30.19657 (9)0.96337 (7)0.99532 (5)0.0565 (3)
O3A0.4659 (15)0.8517 (12)1.0272 (5)0.075 (4)0.362 (11)
H3A0.38830.87021.01880.113*0.362 (11)
C25A0.5154 (11)0.8537 (11)0.9713 (5)0.083 (5)0.362 (11)
H5AA0.60070.82060.97910.100*0.362 (11)
H5BA0.52790.92130.95960.100*0.362 (11)
C26A0.420 (2)0.8040 (16)0.9191 (6)0.138 (9)0.362 (11)
H6AA0.44110.73530.91890.207*0.362 (11)
H6BA0.42440.83300.87940.207*0.362 (11)
H6CA0.33130.81150.92510.207*0.362 (11)
O3B0.4321 (11)0.8111 (8)1.0250 (3)0.097 (3)0.638 (11)
H3B0.36010.83591.02540.145*0.638 (11)
C25B0.4284 (11)0.7743 (6)0.9631 (4)0.139 (5)0.638 (11)
H5AB0.34160.74630.94470.167*0.638 (11)
H5BB0.49450.72290.96560.167*0.638 (11)
C26B0.4557 (14)0.8556 (10)0.9227 (4)0.166 (6)0.638 (11)
H6AB0.46590.91600.94620.249*0.638 (11)
H6BB0.38300.86170.88610.249*0.638 (11)
H6CB0.53600.84180.90950.249*0.638 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0301 (2)0.0300 (3)0.0277 (2)0.00028 (18)0.00422 (19)0.00328 (19)
Cl10.0495 (5)0.0419 (5)0.0424 (5)0.0052 (4)0.0046 (4)0.0134 (4)
Cl20.0477 (5)0.0445 (5)0.0358 (5)0.0012 (4)0.0110 (4)0.0039 (4)
N10.0325 (13)0.0262 (13)0.0313 (14)0.0017 (10)0.0060 (11)0.0018 (11)
N20.0298 (13)0.0310 (14)0.0306 (14)0.0015 (11)0.0039 (11)0.0014 (11)
N30.0275 (13)0.0433 (16)0.0436 (16)0.0062 (11)0.0014 (12)0.0034 (13)
N40.0313 (13)0.0334 (15)0.0338 (14)0.0022 (11)0.0025 (11)0.0020 (12)
N50.0427 (15)0.0397 (16)0.0437 (17)0.0082 (13)0.0071 (13)0.0025 (13)
N60.0342 (13)0.0317 (14)0.0307 (14)0.0013 (11)0.0068 (12)0.0014 (12)
N70.0480 (16)0.0411 (16)0.0297 (14)0.0003 (13)0.0121 (13)0.0015 (13)
C10.0347 (16)0.0340 (17)0.0416 (19)0.0046 (14)0.0054 (15)0.0027 (15)
C20.0294 (16)0.0368 (17)0.0336 (17)0.0039 (13)0.0066 (14)0.0009 (14)
C30.0310 (16)0.0402 (18)0.0278 (17)0.0008 (13)0.0082 (14)0.0010 (14)
C40.0316 (16)0.0409 (19)0.0401 (19)0.0025 (14)0.0037 (14)0.0002 (16)
C50.0317 (18)0.066 (3)0.066 (3)0.0092 (17)0.0032 (18)0.000 (2)
C60.052 (2)0.051 (2)0.072 (3)0.0198 (18)0.009 (2)0.003 (2)
C70.053 (2)0.046 (2)0.048 (2)0.0128 (17)0.0108 (18)0.0080 (18)
C80.0412 (18)0.0383 (18)0.0359 (18)0.0025 (14)0.0057 (15)0.0053 (15)
C90.0390 (17)0.0329 (17)0.043 (2)0.0026 (14)0.0047 (15)0.0030 (15)
C100.0353 (16)0.0396 (18)0.0308 (17)0.0066 (14)0.0061 (14)0.0007 (15)
C110.0338 (16)0.045 (2)0.0307 (17)0.0008 (14)0.0067 (14)0.0016 (15)
C120.0362 (17)0.048 (2)0.0359 (19)0.0056 (15)0.0103 (15)0.0007 (16)
C130.043 (2)0.071 (3)0.053 (2)0.0129 (19)0.0143 (18)0.007 (2)
C140.0355 (19)0.082 (3)0.054 (2)0.007 (2)0.0107 (18)0.010 (2)
C150.037 (2)0.092 (3)0.051 (2)0.017 (2)0.0067 (18)0.006 (2)
C160.0435 (19)0.052 (2)0.049 (2)0.0045 (16)0.0127 (17)0.0051 (18)
C170.0437 (18)0.0340 (18)0.0338 (18)0.0032 (14)0.0075 (15)0.0062 (14)
C180.0323 (16)0.0354 (17)0.0288 (17)0.0014 (13)0.0038 (14)0.0008 (14)
C190.0292 (15)0.0382 (18)0.0358 (18)0.0033 (13)0.0050 (14)0.0051 (15)
C200.0334 (16)0.043 (2)0.0366 (19)0.0015 (14)0.0069 (15)0.0057 (16)
C210.049 (2)0.053 (2)0.045 (2)0.0004 (17)0.0117 (17)0.0112 (18)
C220.044 (2)0.053 (2)0.067 (3)0.0007 (17)0.0142 (19)0.023 (2)
C230.0437 (19)0.040 (2)0.062 (3)0.0026 (16)0.0047 (18)0.0043 (18)
C240.0468 (19)0.0324 (18)0.045 (2)0.0041 (15)0.0092 (16)0.0012 (16)
O10.0861 (19)0.0650 (18)0.0391 (15)0.0035 (15)0.0130 (14)0.0005 (13)
O20.0766 (18)0.0534 (17)0.076 (2)0.0006 (14)0.0128 (16)0.0023 (15)
Cl30.0599 (6)0.0524 (6)0.0570 (6)0.0064 (4)0.0135 (5)0.0058 (5)
O3A0.067 (6)0.072 (8)0.080 (7)0.015 (5)0.005 (5)0.018 (5)
C25A0.082 (8)0.098 (8)0.067 (8)0.001 (6)0.011 (6)0.027 (6)
C26A0.157 (12)0.120 (11)0.138 (12)0.023 (9)0.034 (9)0.011 (9)
O3B0.094 (6)0.094 (6)0.085 (5)0.054 (5)0.013 (4)0.012 (4)
C25B0.132 (7)0.152 (8)0.111 (8)0.059 (6)0.016 (6)0.012 (7)
C26B0.131 (8)0.210 (11)0.176 (10)0.022 (8)0.074 (8)0.021 (8)
Geometric parameters (Å, º) top
Fe1—Cl12.2426 (9)C12—C131.393 (4)
Fe1—Cl22.3299 (9)C13—C141.381 (5)
Fe1—N12.330 (2)C13—H130.9301
Fe1—N22.095 (2)C14—C151.381 (5)
Fe1—N42.110 (2)C14—H140.9300
Fe1—N62.113 (2)C15—C161.388 (5)
N1—C11.487 (4)C15—H150.9301
N1—C91.485 (4)C16—H160.9300
N1—C171.483 (4)C17—C181.503 (4)
N2—C21.324 (4)C17—H17A0.9700
N2—C31.392 (4)C17—H17B0.9700
N3—C21.345 (4)C19—C241.388 (4)
N3—C41.371 (4)C19—C201.397 (4)
N3—H30.8600C20—C211.395 (4)
N4—C101.314 (4)C21—C221.355 (5)
N4—C111.403 (4)C21—H210.9301
N5—C101.342 (4)C22—C231.395 (5)
N5—C121.384 (4)C22—H220.9301
N5—H5A0.8601C23—C241.376 (5)
N6—C181.320 (4)C23—H230.9300
N6—C191.401 (4)C24—H240.9301
N7—C181.335 (4)O1—H310.8546
N7—C201.383 (4)O1—H320.8510
N7—H7A0.8599O2—H330.8528
C1—C21.472 (4)O2—H340.8467
C1—H1A0.9700O3A—C25A1.4294 (11)
C1—H1B0.9700O3A—H3A0.8200
C3—C81.381 (4)C25A—C26A1.4794 (11)
C3—C41.405 (4)C25A—H5AA0.9700
C4—C51.392 (4)C25A—H5BA0.9700
C5—C61.363 (5)C26A—H6AA0.9600
C5—H50.9300C26A—H6BA0.9600
C6—C71.378 (5)C26A—H6CA0.9600
C6—H60.9300O3B—C25B1.4296 (11)
C7—C81.371 (4)O3B—H3B0.8200
C7—H70.9300C25B—C26B1.4800 (11)
C8—H80.9300C25B—H5AB0.9700
C9—C101.491 (4)C25B—H5BB0.9700
C9—H9A0.9700C26B—H6AB0.9600
C9—H9B0.9699C26B—H6BB0.9600
C11—C121.387 (4)C26B—H6CB0.9600
C11—C161.401 (4)
Cg1···Cg2i3.704 (2)C7-H7···Cg4iii3.332 (4)
C5-H5···Cg1ii3.647 (4)C21-H21···Cg3i3.665 (4)
Cl1—Fe1—Cl295.70 (4)H9A—C9—H9B108.6
Cl1—Fe1—N1175.43 (6)N4—C10—N5112.7 (3)
Cl1—Fe1—N2107.46 (7)N4—C10—C9122.0 (3)
Cl1—Fe1—N4103.77 (7)N5—C10—C9125.3 (3)
Cl1—Fe1—N696.81 (7)C12—C11—C16121.1 (3)
Cl2—Fe1—N188.51 (6)C12—C11—N4108.6 (3)
Cl2—Fe1—N289.21 (7)C16—C11—N4130.2 (3)
Cl2—Fe1—N491.56 (7)N5—C12—C11105.8 (3)
Cl2—Fe1—N6167.44 (7)N5—C12—C13131.6 (3)
N1—Fe1—N274.30 (9)C11—C12—C13122.5 (3)
N1—Fe1—N474.26 (9)C14—C13—C12116.0 (4)
N1—Fe1—N679.03 (9)C14—C13—H13121.8
N2—Fe1—N4148.52 (9)C12—C13—H13122.2
N2—Fe1—N686.00 (9)C13—C14—C15121.9 (3)
N4—Fe1—N686.53 (9)C13—C14—H14119.3
C1—N1—C9112.1 (2)C15—C14—H14118.8
C1—N1—C17111.2 (2)C14—C15—C16122.6 (4)
C9—N1—C17111.0 (2)C14—C15—H15118.9
C17—N1—Fe1108.65 (16)C16—C15—H15118.5
C9—N1—Fe1107.20 (17)C15—C16—C11115.8 (3)
C1—N1—Fe1106.42 (17)C15—C16—H16122.2
C2—N2—C3106.3 (2)C11—C16—H16122.0
C2—N2—Fe1117.43 (19)N1—C17—C18112.3 (2)
C3—N2—Fe1136.14 (19)N1—C17—H17A109.4
C2—N3—C4108.0 (2)C18—C17—H17A109.4
C2—N3—H3125.9N1—C17—H17B109.0
C4—N3—H3126.1C18—C17—H17B108.8
C10—N4—C11105.5 (2)H17A—C17—H17B107.8
C10—N4—Fe1116.59 (19)N6—C18—N7113.0 (3)
C11—N4—Fe1137.8 (2)N6—C18—C17124.0 (3)
C10—N5—C12107.4 (3)N7—C18—C17122.9 (3)
C10—N5—H5A126.4C24—C19—C20120.1 (3)
C12—N5—H5A126.2C24—C19—N6131.6 (3)
C18—N6—C19105.5 (3)C20—C19—N6108.2 (3)
C18—N6—Fe1114.59 (19)N7—C20—C21132.0 (3)
C19—N6—Fe1139.0 (2)N7—C20—C19105.9 (3)
C18—N7—C20107.4 (3)C21—C20—C19122.1 (3)
C18—N7—H7A126.4C22—C21—C20116.6 (3)
C20—N7—H7A126.2C22—C21—H21121.9
C2—C1—N1106.8 (2)C20—C21—H21121.5
C2—C1—H1A110.2C21—C22—C23122.3 (3)
N1—C1—H1A110.2C21—C22—H22118.7
C2—C1—H1B110.6C23—C22—H22119.0
N1—C1—H1B110.5C24—C23—C22121.3 (3)
H1A—C1—H1B108.6C24—C23—H23119.2
N2—C2—N3111.8 (3)C22—C23—H23119.4
N2—C2—C1120.7 (3)C23—C24—C19117.5 (3)
N3—C2—C1127.5 (3)C23—C24—H24121.4
C8—C3—N2130.6 (3)C19—C24—H24121.1
C8—C3—C4121.5 (3)H31—O1—H32108.8
N2—C3—C4107.9 (3)H33—O2—H34110.0
N3—C4—C5133.6 (3)O3A—C25A—C26A109.48 (11)
N3—C4—C3105.9 (3)O3A—C25A—H5AA109.8
C5—C4—C3120.4 (3)C26A—C25A—H5AA109.8
C6—C5—C4116.9 (3)O3A—C25A—H5BA109.8
C6—C5—H5121.8C26A—C25A—H5BA109.8
C4—C5—H5121.3H5AA—C25A—H5BA108.2
C5—C6—C7122.5 (3)C25B—O3B—H3B109.5
C5—C6—H6118.9O3B—C25B—C26B109.42 (11)
C7—C6—H6118.6O3B—C25B—H5AB109.8
C8—C7—C6121.8 (3)C26B—C25B—H5AB109.8
C8—C7—H7119.0O3B—C25B—H5BB109.8
C6—C7—H7119.3C26B—C25B—H5BB109.8
C7—C8—C3116.9 (3)H5AB—C25B—H5BB108.2
C7—C8—H8121.6C25B—C26B—H6AB109.5
C3—C8—H8121.5C25B—C26B—H6BB109.5
N1—C9—C10106.2 (2)H6AB—C26B—H6BB109.5
N1—C9—H9A110.5C25B—C26B—H6CB109.5
C10—C9—H9A110.7H6AB—C26B—H6CB109.5
N1—C9—H9B110.3H6BB—C26B—H6CB109.5
C10—C9—H9B110.5
N2—Fe1—N1—C1789.45 (19)N3—C4—C5—C6176.5 (4)
N4—Fe1—N1—C1788.91 (18)C3—C4—C5—C61.1 (5)
N6—Fe1—N1—C170.55 (18)C4—C5—C6—C70.1 (6)
Cl2—Fe1—N1—C17179.05 (17)C5—C6—C7—C81.0 (6)
N2—Fe1—N1—C9150.56 (19)C6—C7—C8—C30.9 (5)
N4—Fe1—N1—C931.08 (18)N2—C3—C8—C7177.8 (3)
N6—Fe1—N1—C9120.54 (19)C4—C3—C8—C70.1 (5)
Cl2—Fe1—N1—C960.96 (17)C17—N1—C9—C1081.0 (3)
N2—Fe1—N1—C130.42 (18)C1—N1—C9—C10154.0 (2)
N4—Fe1—N1—C1151.22 (19)Fe1—N1—C9—C1037.5 (3)
N6—Fe1—N1—C1119.32 (19)C11—N4—C10—N50.0 (3)
Cl2—Fe1—N1—C159.18 (17)Fe1—N4—C10—N5177.1 (2)
N4—Fe1—N2—C218.9 (3)C11—N4—C10—C9178.4 (3)
N6—Fe1—N2—C295.6 (2)Fe1—N4—C10—C91.2 (4)
Cl1—Fe1—N2—C2168.5 (2)C12—N5—C10—N40.1 (4)
Cl2—Fe1—N2—C272.8 (2)C12—N5—C10—C9178.1 (3)
N1—Fe1—N2—C215.9 (2)N1—C9—C10—N426.9 (4)
N4—Fe1—N2—C3157.2 (3)N1—C9—C10—N5155.0 (3)
N6—Fe1—N2—C380.5 (3)C10—N4—C11—C120.2 (3)
Cl1—Fe1—N2—C315.4 (3)Fe1—N4—C11—C12176.0 (2)
Cl2—Fe1—N2—C3111.1 (3)C10—N4—C11—C16179.5 (3)
N1—Fe1—N2—C3160.2 (3)Fe1—N4—C11—C163.3 (5)
N2—Fe1—N4—C1021.1 (3)C10—N5—C12—C110.2 (4)
N6—Fe1—N4—C1097.6 (2)C10—N5—C12—C13177.9 (4)
Cl1—Fe1—N4—C10166.2 (2)C16—C11—C12—N5179.6 (3)
Cl2—Fe1—N4—C1070.0 (2)N4—C11—C12—N50.3 (3)
N1—Fe1—N4—C1018.0 (2)C16—C11—C12—C131.3 (5)
N2—Fe1—N4—C11163.1 (3)N4—C11—C12—C13178.1 (3)
N6—Fe1—N4—C1186.5 (3)N5—C12—C13—C14178.0 (3)
Cl1—Fe1—N4—C119.6 (3)C11—C12—C13—C140.1 (5)
Cl2—Fe1—N4—C11105.9 (3)C12—C13—C14—C150.8 (6)
N1—Fe1—N4—C11166.1 (3)C13—C14—C15—C160.5 (6)
N2—Fe1—N6—C1882.0 (2)C14—C15—C16—C110.7 (5)
N4—Fe1—N6—C1867.4 (2)C12—C11—C16—C151.5 (5)
Cl1—Fe1—N6—C18170.87 (19)N4—C11—C16—C15177.7 (3)
Cl2—Fe1—N6—C1814.2 (5)C9—N1—C17—C18112.3 (3)
N1—Fe1—N6—C187.23 (19)C1—N1—C17—C18122.1 (3)
N2—Fe1—N6—C19111.2 (3)Fe1—N1—C17—C185.3 (3)
N4—Fe1—N6—C1999.4 (3)C19—N6—C18—N71.7 (3)
Cl1—Fe1—N6—C194.0 (3)Fe1—N6—C18—N7169.37 (19)
Cl2—Fe1—N6—C19179.0 (2)C19—N6—C18—C17175.0 (3)
N1—Fe1—N6—C19174.1 (3)Fe1—N6—C18—C1713.9 (4)
C17—N1—C1—C279.2 (3)C20—N7—C18—N61.3 (3)
C9—N1—C1—C2155.9 (2)C20—N7—C18—C17175.4 (3)
Fe1—N1—C1—C239.0 (3)N1—C17—C18—N613.2 (4)
C3—N2—C2—N30.0 (3)N1—C17—C18—N7170.4 (3)
Fe1—N2—C2—N3177.23 (19)C18—N6—C19—C24175.5 (3)
C3—N2—C2—C1180.0 (3)Fe1—N6—C19—C2416.9 (5)
Fe1—N2—C2—C12.8 (4)C18—N6—C19—C201.4 (3)
C4—N3—C2—N20.7 (4)Fe1—N6—C19—C20166.2 (2)
C4—N3—C2—C1179.3 (3)C18—N7—C20—C21178.4 (3)
N1—C1—C2—N230.6 (4)C18—N7—C20—C190.3 (3)
N1—C1—C2—N3149.4 (3)C24—C19—C20—N7176.7 (3)
C2—N2—C3—C8177.2 (3)N6—C19—C20—N70.7 (3)
Fe1—N2—C3—C80.8 (5)C24—C19—C20—C212.2 (5)
C2—N2—C3—C40.7 (3)N6—C19—C20—C21179.5 (3)
Fe1—N2—C3—C4177.1 (2)N7—C20—C21—C22176.9 (3)
C2—N3—C4—C5178.9 (4)C19—C20—C21—C221.7 (5)
C2—N3—C4—C31.1 (3)C20—C21—C22—C230.0 (5)
C8—C3—C4—N3177.0 (3)C21—C22—C23—C241.2 (5)
N2—C3—C4—N31.1 (3)C22—C23—C24—C190.7 (5)
C8—C3—C4—C51.1 (5)C20—C19—C24—C231.0 (4)
N2—C3—C4—C5179.3 (3)N6—C19—C24—C23177.5 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3Biv0.861.862.701 (9)165
N3—H3···O3Aiv0.861.942.779 (16)164
O3A—H3A···Cl30.822.313.104 (16)164
O3B—H3B···Cl30.822.403.145 (8)151
N5—H5A···O20.862.022.828 (4)156
N7—H7A···O1v0.862.002.831 (4)162
O1—H32···Cl30.852.323.113 (3)155
O1—H31···Cl20.852.423.193 (3)151
O2—H33···O1vi0.852.032.877 (4)170
O2—H34···Cl3v0.852.343.153 (3)162
Symmetry codes: (iv) x1, y+3/2, z1/2; (v) x, y+3/2, z1/2; (vi) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[FeCl2(C24H21N7)]Cl·C2H6O·2H2O
Mr651.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.3541 (12), 13.5873 (15), 21.746 (3)
β (°) 103.791 (5)
V3)2971.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.44 × 0.06 × 0.06
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.715, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
13948, 5216, 3851
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 0.97
No. of reflections5216
No. of parameters395
No. of restraints42
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC.

Selected geometric parameters (Å, º) top
Fe1—Cl12.2426 (9)Fe1—N22.095 (2)
Fe1—Cl22.3299 (9)Fe1—N42.110 (2)
Fe1—N12.330 (2)Fe1—N62.113 (2)
Cg1···Cg2i3.704 (2)C7-H7···Cg4iii3.332 (4)
C5-H5···Cg1ii3.647 (4)C21-H21···Cg3i3.665 (4)
Cl1—Fe1—Cl295.70 (4)Cl2—Fe1—N6167.44 (7)
Cl1—Fe1—N1175.43 (6)N1—Fe1—N274.30 (9)
Cl1—Fe1—N2107.46 (7)N1—Fe1—N474.26 (9)
Cl1—Fe1—N4103.77 (7)N1—Fe1—N679.03 (9)
Cl1—Fe1—N696.81 (7)N2—Fe1—N4148.52 (9)
Cl2—Fe1—N188.51 (6)N2—Fe1—N686.00 (9)
Cl2—Fe1—N289.21 (7)N4—Fe1—N686.53 (9)
Cl2—Fe1—N491.56 (7)
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3Biv0.861.862.701 (9)165
N3—H3···O3Aiv0.861.942.779 (16)164
O3A—H3A···Cl30.822.313.104 (16)164
O3B—H3B···Cl30.822.403.145 (8)151
N5—H5A···O20.862.022.828 (4)156
N7—H7A···O1v0.862.002.831 (4)162
O1—H32···Cl30.852.323.113 (3)155
O1—H31···Cl20.852.423.193 (3)151
O2—H33···O1vi0.852.032.877 (4)170
O2—H34···Cl3v0.852.343.153 (3)162
Symmetry codes: (iv) x1, y+3/2, z1/2; (v) x, y+3/2, z1/2; (vi) x, y1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds