Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Anomalous small-angle X-ray scattering with two marker elements was applied to the structural analysis of poly(4-vinylphenol rubidium salt)-block-poly(4-bromostyrene) (RbPVPh-b-PBrS) micelles, where Br and Rb were the markers for the hydrophobic core and the hydrated corona, respectively. By using two different markers for the hydrophobic core and the hydrated corona, the form factors of the core and corona were extracted separately from the scattering profile of the whole RbPVPh-b-PBrS micelles. The form factor of the hydrophobic core (the spatial distribution of Br) revealed that the core was regarded as a solid sphere with a smooth surface and a radius of 47 nm. Conversely, the form factor of the spatial distribution of Rb+ indicated that the shell of the RbPVPh-b-PBrS micelles was 15 nm thick.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds