Buy article online - an online subscription or single-article purchase is required to access this article.
The solid-state structure of the title compound, alternatively called 2-aminoanilinium hydrogen phosphonate, C6H9N2+·H2PO3-, shows the monoprotonated diamine molecule to be multiply hydrogen bonded to HPO3H- anions. There is no inter-phosphite hydrogen bonding, contrary to previous solid-state observations of the species.
Supporting information
CCDC reference: 197335
A single-crystal of the title salt was prepared by slow evaporation of a 1:1
aqueous solution of phosphorous acid (H3PO3) and 1,2-diaminobenzene.
H atoms on N, P and O atoms were located from a difference Fourier synthesis and
then repositioned using HIMP (SHELXL97; Sheldrick, 1997) at idealized
distances, i.e. N—H 0.90, P—H 1.14 and O—H 0.85 Å. H atoms of
the aromatic ring were given idealized geometry, with C—H distances of 0.93 Å. The Uiso values were fixed at 0.05 Å2 for all H atoms.
Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).
2-Aminoanilinium phosphite
top
Crystal data top
C6H9N2+·H2PO3− | F(000) = 400 |
Mr = 190.14 | Dx = 1.517 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.212 (8) Å | Cell parameters from 25 reflections |
b = 5.992 (5) Å | θ = 4.1–9.3° |
c = 13.204 (14) Å | µ = 0.30 mm−1 |
β = 110.16 (3)° | T = 293 K |
V = 832.7 (13) Å3 | Needle, colorless |
Z = 4 | 0.1 × 0.1 × 0.1 mm |
Data collection top
Siemens P4 four-circle diffractometer | Rint = 0.066 |
Radiation source: fine-focus sealed tube | θmax = 26.4°, θmin = 1.9° |
Highly oriented graphite crystal monochromator | h = −14→1 |
θ–2θ scans | k = −7→1 |
2306 measured reflections | l = −15→16 |
1672 independent reflections | 3 standard reflections every 97 reflections |
1359 reflections with I > 2σ(I) | intensity decay: none |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 0.91 | w = 1/[σ2(Fo2) + (0.1328P)2 + 0.2326P] where P = (Fo2 + 2Fc2)/3 |
1672 reflections | (Δ/σ)max < 0.001 |
111 parameters | Δρmax = 0.10 e Å−3 |
0 restraints | Δρmin = −0.09 e Å−3 |
Crystal data top
C6H9N2+·H2PO3− | V = 832.7 (13) Å3 |
Mr = 190.14 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.212 (8) Å | µ = 0.30 mm−1 |
b = 5.992 (5) Å | T = 293 K |
c = 13.204 (14) Å | 0.1 × 0.1 × 0.1 mm |
β = 110.16 (3)° | |
Data collection top
Siemens P4 four-circle diffractometer | Rint = 0.066 |
2306 measured reflections | 3 standard reflections every 97 reflections |
1672 independent reflections | intensity decay: none |
1359 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 0.91 | Δρmax = 0.10 e Å−3 |
1672 reflections | Δρmin = −0.09 e Å−3 |
111 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
P1 | 0.67177 (7) | 0.06825 (11) | 0.94968 (5) | 0.0286 (3) | |
H1 | 0.7698 | 0.0370 | 0.9441 | 0.050* | |
O1 | 0.6125 (2) | −0.1656 (3) | 0.93233 (15) | 0.0412 (6) | |
H11 | 0.6178 | −0.2240 | 0.9924 | 0.050* | |
O2 | 0.6888 (2) | 0.1537 (3) | 1.05738 (16) | 0.0414 (6) | |
O3 | 0.5969 (2) | 0.2060 (4) | 0.85740 (16) | 0.0396 (6) | |
N1 | 0.6391 (2) | 0.5146 (4) | 0.72571 (18) | 0.0308 (5) | |
H1A | 0.6478 | 0.4141 | 0.7784 | 0.050* | |
H1B | 0.5636 | 0.5767 | 0.7189 | 0.050* | |
H1C | 0.6404 | 0.4548 | 0.6636 | 0.050* | |
N2 | 0.6415 (2) | 0.9039 (4) | 0.61449 (19) | 0.0329 (6) | |
H2A | 0.6494 | 1.0469 | 0.5968 | 0.050* | |
H2B | 0.5647 | 0.8894 | 0.6212 | 0.050* | |
C1 | 0.7447 (3) | 0.6618 (5) | 0.7634 (2) | 0.0293 (6) | |
C2 | 0.7437 (3) | 0.8527 (5) | 0.7061 (2) | 0.0316 (6) | |
C3 | 0.8496 (3) | 0.9842 (5) | 0.7394 (3) | 0.0411 (7) | |
H3 | 0.8514 | 1.1153 | 0.7022 | 0.050* | |
C4 | 0.9519 (3) | 0.9269 (6) | 0.8255 (3) | 0.0479 (8) | |
H4 | 1.0238 | 1.0169 | 0.8458 | 0.050* | |
C5 | 0.9505 (3) | 0.7397 (6) | 0.8823 (3) | 0.0496 (9) | |
H5 | 1.0202 | 0.7030 | 0.9426 | 0.050* | |
C6 | 0.8473 (3) | 0.6070 (5) | 0.8507 (2) | 0.0400 (7) | |
H6 | 0.8463 | 0.4770 | 0.8889 | 0.050* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
P1 | 0.0320 (4) | 0.0198 (4) | 0.0303 (4) | 0.0012 (3) | 0.0061 (3) | 0.0014 (3) |
O1 | 0.0592 (14) | 0.0223 (11) | 0.0342 (10) | −0.0069 (10) | 0.0060 (9) | −0.0009 (8) |
O2 | 0.0623 (14) | 0.0206 (10) | 0.0370 (11) | −0.0002 (10) | 0.0116 (10) | −0.0017 (8) |
O3 | 0.0435 (12) | 0.0291 (11) | 0.0387 (11) | −0.0012 (9) | 0.0044 (9) | 0.0116 (8) |
N1 | 0.0378 (13) | 0.0207 (11) | 0.0300 (11) | 0.0003 (10) | 0.0065 (10) | 0.0041 (9) |
N2 | 0.0412 (13) | 0.0178 (11) | 0.0349 (12) | −0.0007 (9) | 0.0070 (10) | 0.0028 (9) |
C1 | 0.0336 (14) | 0.0204 (13) | 0.0327 (13) | −0.0009 (11) | 0.0098 (11) | −0.0016 (10) |
C2 | 0.0376 (15) | 0.0231 (13) | 0.0318 (13) | 0.0024 (11) | 0.0089 (12) | −0.0019 (11) |
C3 | 0.0442 (17) | 0.0287 (15) | 0.0500 (17) | −0.0059 (13) | 0.0156 (14) | −0.0006 (13) |
C4 | 0.0351 (16) | 0.047 (2) | 0.055 (2) | −0.0106 (14) | 0.0066 (14) | −0.0064 (15) |
C5 | 0.0377 (16) | 0.050 (2) | 0.0494 (18) | 0.0050 (15) | −0.0006 (14) | 0.0041 (16) |
C6 | 0.0411 (16) | 0.0344 (16) | 0.0370 (15) | 0.0069 (13) | 0.0039 (13) | 0.0076 (13) |
Geometric parameters (Å, º) top
P1—O2 | 1.461 (3) | N2—H2B | 0.90 |
P1—O3 | 1.471 (2) | C1—C6 | 1.359 (4) |
P1—O1 | 1.534 (2) | C1—C2 | 1.370 (4) |
P1—H1 | 1.1421 | C2—C3 | 1.365 (4) |
O1—H11 | 0.8500 | C3—C4 | 1.352 (5) |
N1—C1 | 1.422 (4) | C3—H3 | 0.93 |
N1—H1A | 0.90 | C4—C5 | 1.352 (5) |
N1—H1B | 0.90 | C4—H4 | 0.93 |
N1—H1C | 0.90 | C5—C6 | 1.346 (5) |
N2—C2 | 1.384 (4) | C5—H5 | 0.93 |
N2—H2A | 0.90 | C6—H6 | 0.93 |
| | | |
O2—P1—O3 | 117.08 (14) | C6—C1—N1 | 120.4 (3) |
O2—P1—O1 | 111.72 (12) | C2—C1—N1 | 118.5 (3) |
O3—P1—O1 | 107.12 (13) | C3—C2—C1 | 117.6 (3) |
O2—P1—H1 | 108.3 | C3—C2—N2 | 121.3 (3) |
O3—P1—H1 | 109.0 | C1—C2—N2 | 121.0 (3) |
O1—P1—H1 | 102.6 | C4—C3—C2 | 121.0 (3) |
P1—O1—H11 | 110.4 | C4—C3—H3 | 119.5 |
C1—N1—H1A | 106.8 | C2—C3—H3 | 119.5 |
C1—N1—H1B | 114.8 | C3—C4—C5 | 120.6 (3) |
H1A—N1—H1B | 101.6 | C3—C4—H4 | 119.7 |
C1—N1—H1C | 107.0 | C5—C4—H4 | 119.7 |
H1A—N1—H1C | 114.0 | C4—C5—C6 | 119.4 (3) |
H1B—N1—H1C | 112.6 | C4—C5—H5 | 120.3 |
C2—N2—H2A | 108.1 | C6—C5—H5 | 120.3 |
C2—N2—H2B | 115.1 | C1—C6—C5 | 120.4 (3) |
H2A—N2—H2B | 107.5 | C1—C6—H6 | 119.8 |
C6—C1—C2 | 120.9 (3) | C5—C6—H6 | 119.8 |
| | | |
C6—C1—C2—C3 | 0.5 (4) | C2—C3—C4—C5 | −1.5 (6) |
N1—C1—C2—C3 | −175.6 (3) | C3—C4—C5—C6 | 1.7 (6) |
C6—C1—C2—N2 | 177.2 (3) | C2—C1—C6—C5 | −0.2 (5) |
N1—C1—C2—N2 | 1.1 (4) | N1—C1—C6—C5 | 175.8 (3) |
C1—C2—C3—C4 | 0.4 (5) | C4—C5—C6—C1 | −0.9 (5) |
N2—C2—C3—C4 | −176.4 (3) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3 | 0.90 | 1.84 | 2.690 (3) | 157 |
N1—H1B···O3i | 0.90 | 1.90 | 2.741 (4) | 155 |
N1—H1C···O2ii | 0.90 | 1.79 | 2.669 (4) | 164 |
N2—H2B···O3i | 0.90 | 2.22 | 3.061 (4) | 156 |
N2—H2A···O2iii | 0.90 | 1.96 | 2.855 (4) | 172 |
O1—H11···N2iv | 0.85 | 1.88 | 2.719 (4) | 168 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z−1/2; (iii) x, −y+3/2, z−1/2; (iv) x, −y+1/2, z+1/2. |
Experimental details
Crystal data |
Chemical formula | C6H9N2+·H2PO3− |
Mr | 190.14 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.212 (8), 5.992 (5), 13.204 (14) |
β (°) | 110.16 (3) |
V (Å3) | 832.7 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.1 × 0.1 × 0.1 |
|
Data collection |
Diffractometer | Siemens P4 four-circle diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2306, 1672, 1359 |
Rint | 0.066 |
(sin θ/λ)max (Å−1) | 0.625 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.167, 0.91 |
No. of reflections | 1672 |
No. of parameters | 111 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.10, −0.09 |
Selected geometric parameters (Å, º) topP1—O2 | 1.461 (3) | C1—C2 | 1.370 (4) |
P1—O3 | 1.471 (2) | C2—C3 | 1.365 (4) |
P1—O1 | 1.534 (2) | C3—C4 | 1.352 (5) |
N1—C1 | 1.422 (4) | C4—C5 | 1.352 (5) |
N2—C2 | 1.384 (4) | C5—C6 | 1.346 (5) |
C1—C6 | 1.359 (4) | | |
| | | |
O2—P1—O3 | 117.08 (14) | C3—C2—N2 | 121.3 (3) |
O2—P1—O1 | 111.72 (12) | C1—C2—N2 | 121.0 (3) |
O3—P1—O1 | 107.12 (13) | C4—C3—C2 | 121.0 (3) |
C6—C1—C2 | 120.9 (3) | C3—C4—C5 | 120.6 (3) |
C6—C1—N1 | 120.4 (3) | C4—C5—C6 | 119.4 (3) |
C2—C1—N1 | 118.5 (3) | C1—C6—C5 | 120.4 (3) |
C3—C2—C1 | 117.6 (3) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3 | 0.90 | 1.84 | 2.690 (3) | 157 |
N1—H1B···O3i | 0.90 | 1.90 | 2.741 (4) | 155 |
N1—H1C···O2ii | 0.90 | 1.79 | 2.669 (4) | 164 |
N2—H2B···O3i | 0.90 | 2.22 | 3.061 (4) | 156 |
N2—H2A···O2iii | 0.90 | 1.96 | 2.855 (4) | 172 |
O1—H11···N2iv | 0.85 | 1.88 | 2.719 (4) | 168 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z−1/2; (iii) x, −y+3/2, z−1/2; (iv) x, −y+1/2, z+1/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
Dihydrogen phosphite (HPO3H2) has been observed in the solid state both in its monoanionic and dianionic forms. There have been observations of the doubly deprotonated form (HPO3-2) with metallic cations: Mg(HPO3)·6H2O (Corbridge, 1956), Na2(HPO3)·5H2O (Colton & Henn, 1971), Cu(HPO3)·2H2O (Handlovic, 1969); Al2(HPO3)3·Ga2(HPO3)3 (Morris et al., 1994), Ga2(HPO3)3·4H2O (Morris et al., 1992) are also known. The single known structure of an organic cation and (HPO3) is (NH4)2(HPO3)·5H2O (Rafiq et al., 1982). The monoanionic form has been observed in the solid state with metallic cations in Ca(HPO3H)2·H2O (Larbot et al., 1984), Cd(HPO3H)2·H2O (Loub et al., 1978), Nd(HPO3H)2·2H2O (Loukili et al., 1988), Fe(HPO3H)3 (Sghyar et al., 1991) and Zn(HPO3H)2.0.333H2O (Durand et al., 1992), and also with organic cations in isopropyl ammonium phosphite (Averbuch-Pouchot, 1993a), anilinium phosphite (Adrissi et al., 2000), as well as in glycinium phosphite and glycylglycinium phosphite (Averbuch-Pouchot, 1993b). The two organic examples of HPO3H- show the two different types of hydrogen possible in the solid state. In isopropyl ammonium phosphite (Averbuch-Pouchot, 1993a), glycinium phosphite and glycylglycinium phosphite (Averbuch-Pouchot, 1993b), the monoanions are linked in a polymeric chain by hydrogen bonding. In anilinium phosphite (Adrissi et al., 2000), phosphite groups are hydrogen bonded in pairs which resemble the doubly hydrogen-bonded pairs normally observed in carboxylic acid species. In both arrangements, ammonium groups serve as hydrogen-bond donors in additional hydrogen bonding. We have examined the solid-state structure of the monoanionic form of dihydrogen phosphite, with o-phenylenediamine, (I), and find that contrary to previous observations, there is no hydrogen bonding between phosphite anions. The H atom on the phosphite O1 atom is donated to the amino group, H11···N2. The ammonium group of the 2-aminoanilinium species serves as a donor to the remaining phosphite O atoms, viz. H1a···O3, H1b···O3 and H1c···O2. The two H atoms of the amino group are similarly involved in hydrogen bonding to these O atoms: N2—H2a···O2 and N2—H2b···O3 (Fig. 1). Packing shows an alternation of cationic and anionic species on planes perpendicular to the c direction. Other structural details are normal. However, the average C—C distance in the phenyl ring is 1.36 Å and the C5—C6 distance is 1.346 (5) Å. The reason for these deviations from the expected values of 1.395 Å are unclear. Bond lengths reveal the protonated O1 atom to have a longer P—O bond [1.534 (2) Å] than P1—O2 [1.461 (3) Å] and P1—O3 [1.471 (2) Å], which are of similar length as a result of delocalization of the negative charge between them. The C—NH3+ bond [1.422 (4) Å] is longer than the C—NH2 bond [1.384 (4) Å], as predicted by charge considerations.