Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A novel set-up has been designed and used for synchrotron radiation X-ray high-resolution powder diffraction (SR-HRPD) in transmission geometry (spinning capillary) for in situ solid–gas reactions and processes in an isobaric and isothermal environment. The pressure and temperature of the sample are controlled from 10−3 to 1000 mbar and from 80 to 1000 K, respectively. To test the capacities of this novel experimental set-up, structure deformation in the porous material zeolitic imidazole framework (ZIF-8) by gas adsorption at cryogenic temperature has been studied under isothermal and isobaric conditions. Direct structure deformations by the adsorption of Ar and N2 gases have been observed in situ, demonstrating that this set-up is perfectly suitable for direct structural analysis under in operando conditions. The presented results prove the feasibility of this novel experimental station for the characterization in real time of solid–gas reactions and other solid–gas processes by SR-HRPD.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds