Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The new bifunctional ligand 4,4′-(adamantane-1,3-diyl)bis­(1,2,4-triazole) (tr2ad) and benzene-1,3,5-tricarboxyl­ate sus­tain complementary coordination bridging for the three-dimensional framework of poly[[bis­[μ3-4,4′-(adamantane-1,3-diyl)bis­(1,2,4-triazole)-κ3N1:N2:N1′]bis­(μ4-benzene-1,3,5-tricarboxyl­ato-κ4O1:O1′:O3:O5)di-μ3-hydroxido-κ6O:O:O-tetra­copper(II)] dihydrate], {[Cu4(C9H3O6)2(OH)2(C14H18N6)2]·2H2O}n. The net node is a centrosymmetric (μ3-OH)2Cu4 cluster [Cu—O = 1.9525 (14)–2.0770 (15) Å and Cu...Cu = 3.0536 (5) Å] involving two independent copper ions in tetra­gonal pyramidal CuO4N and trigonal bipyramidal CuO3N2 environments. One carboxyl­ate group of the anion is bridging and the other two are monodentate, leading to the connection of three hydroxide clusters and the generation of neutral coordination layers separated by 9.3583 (5) Å. The inter­layer linkage is effected by μ3-tr2ad ligands, with one triazole group N1:N2-bridging and the second monodentate [Cu—N = 1.9893 (19), 2.010 (2) and 2.411 (2) Å]. In total, the hydroxide clusters are linked to six close neighbors within the carboxyl­ate layer and to four neighbors via tr2ad bridges. Hydrogen bonding of solvent water mol­ecules to noncoordinated triazole N atoms and carboxyl­ate groups provides two additional links for the net, which adopts a 12-connected topology corresponding to hexa­gonal closest packing. The study also introduces a new type of bis­(triazole) ligand, which may find wider applications for supra­molecular synthesis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108016545/jz3138sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016545/jz3138Isup2.hkl
Contains datablock I

CCDC reference: 697558

Comment top

1,2,4-Triazole and its derivatives commonly adopt multiple N1,N2-coordination bridges that effectively transmit magnetic interaction between paramagnetic metal centers (van Koningsbruggen et al., 1997), and these features are essential for the preparation of polynuclear complexes exhibiting diverse magnetic properties (Kahn et al., 1992). For connecting many metal ions, the triazole bridges are especially applicable in combination with short-distance inorganic (OH or Cl) or organic (RCO2- or RPO32-) links. They are complementary in their coordination preferences and may act synergetically in the generation of complicated polynuclear motifs, as was revealed by the structure of hydroxotricopper(II) complexes with 4-amino-1,2,4-triazoles (Liu et al., 2003). Further attractive possibilities for the extension of the polynuclear ensembles and their propagation into the lattice could be provided by the cooperation of triazole and polyfunctional anionic linkers, such as polycarboxylates (Zhai et al., 2007), and also by employing organic modules bearing multiple triazole groups (Lysenko et al., 2006). In this way, benzene-1,3,5-tricarboxylate and flexible 1,2-bis(1,2,4-triazol-4-yl)ethane were used for the preparation of highly connected topologies involving Ni3 and Zn3 units (Habib et al., 2008). However, since the multivalency of the building block and inherently defined and proper binding geometry are equally important prerequisites from the design perspective, a suitable paradigm for new polytriazolyl ligands may be found with geometrically rigid molecular platforms (cf. adamantane functionalized at the bridgehead positions) rather than using the flexible aliphatic spacers. In this context, we have examined systems combining the aforementioned components; we report here the structure of a new coordination polymer, (I), that features assembly of a polynuclear copper(II)–hydroxide cluster and its propagation by combination of trifunctional benzene-1,3,5-tricarboxylate and bifuctional adamantane-1,3-bis(1,2,4-triazol-4-yl) (tr2ad) bridges.

In (I), the three-dimensional framework architecture is organized by interconnection of copper(II) ions by three types of links, namely µ3-hydroxide, µ3-tr2ad and µ4-C6H3(CO2)3. The unique portion of the structure includes two Cu ions, one each of the hydroxide, bis(triazole) and carboxylate ligands, and a solvent water molecule. Two characteristic Cu33-OH) fragments share a Cu2···Cu2iii edge [symmetry code: (iii) -x + 1, -y + 1, -z + 1], yielding a tetranuclear Cu43-OH)2 hydroxo cluster situated across an inversion center (Fig. 1). In the cluster, two pairs of Cu1···Cu2 and Cu1···Cu2iii edges are bridged by bidentate carboxylate and triazole groups, respectively, and the coordination also involves four monodentate carboxy O- and two triazole N-atom donors. This polynuclear ensemble formed by a set of hydroxide, carboxylate and azole bridges has several close precedents for molecular copper(II) species, such as pivalate complexes with 4-amino- and 4-tert-butyl-1,2,4-triazoles (Zhou et al., 2005) and mixed-anion benzoate–pyrazolyde compounds (Mezei et al., 2004). Therefore, the present cluster may be regarded as a predictable feature of the system and it demonstrates an attractive supramolecular synthon for crystal design. Within the central Cu2O2 rhomb of the cluster, the Cu2···Cu2iii separation is relatively short [3.0536 (5) Å] and only slightly exceeds the shortest Cu···Cu distance found for Cu43-OH)2 units [2.864 (1) Å; Knuuttila, 1982].

The µ3-OH group sustains two short [Cu—O = 1.9525 (14) and 1.9715 (14) Å] and one slightly longer [Cu2—O1iii = 2.0770 (15) Å] coordination bonds. Divergence of these parameters was much more appreciable for a molecular 4-tert-butyl-1,2,4-triazole analog [Cu—O = 1.927 (5)–2.302 (5) Å; Zhou et al., 2005]; however, the relatively strong coordination interactions with the hydroxo group in the title compound facilitate elongation of one of the Cu—N bonds. Thus the typically Jahn–Teller-distorted CuO4N tetragonal pyramid around Cu1 involves four basal O-atom donors [one hydroxide and three carboxylate groups; Cu—O = 1.9153 (17)–1.9993 (17) Å] and a distal triazole N atom at the apex [Cu1—N2iii = 2.411 (2) Å]. A second unique copper ion adopts a distorted trigonal–bipyramidal CuO3N2 coordination with a monodentate triazole N atom in the equatorial position [Cu—N4iv = 2.010 (2) Å; symmetry code: (iv) -x + 1/2, y + 1/2, -z + 3/2; Fig. 1].

The carboxylate groups of the anion display three different coordination modes. The first (containing atom C15) is O2,O3-bidentate bridging between two copper ions; the second carboxylate group (C16) acts as a single coordination donor and accepts a strong hydrogen bond from an adjacent hydroxo group [Cu1—O4ii 1.9993 (17) Å; O1—H1W···O5ii = 2.652 (2) Å; symmetry code: (ii) -x + 1/2, y + 1/2, -z + 1/2; Table 2], while the remaining carboxylate group (C17) is coordinated monodentately. The tr2ad ligand, one triazole group of which is N1,N2-bidentate while the other is monodentate, connects two clusters, and the significant size of the adamantane spacer effects long-distance bridging [Cu2···Cu2vii = 11.63 Å; symmetry code: (vii) -x + 1/2, y - 1/2, -z + 3/2].

Thus, the interconnection of the clusters is supported either by carboxylate or by tr2ad bridges, and these generate two distinct topologies, which connect with each other through common net nodes. Firstly, interconnection of the Cu43-OH)2 units by bis(triazole) bridges yields a corrugated (4,4)-net, which is parallel to the (101) plane, with a distance between the centroids of the linked clusters of 13.60 (s.u.?) Å. Secondly, each cluster is bonded to six close neighbors by three-connecting carboxylate groups, yielding a neutral coordination layer parallel to the (101) plane (Fig. 2). Its topology may be represented in the form of a regular hexagonal lattice with the hydroxide–copper clusters as six-connected nodes; furthermore, considering the ligands also as three-connected net points, a 3,6-coordinated "Kagome dual" (kgd) isohedral lattice is found with two types of nodes. Such a layer is unprecedented for metal–tricarboxylate complexes, although it may be compared with a three-dimensional eight-connected framework involving closely related [Fe43-OH)2]10+ clusters (Choi et al., 2007). These covalent layers are separated by 9.36 (s.u.?) Å and are linked by neutral tr2ad bridges (Fig. 3). Such a type of `pillared' structure may favor the accommodation of guest molecules between the layers, in the same way as for clays or organic clay mimics (Biradha et al., 1998).

The organic bridges support the connection of the Cu43-OH)2 units to ten close neighbors, and this is one of the highest net node coordinations yet observed for metal-organic polymers. One example of a 12-connected coordination topology is known (Li et al., 2005). Two more links for the network in (I) are provided by hydrogen bonding. Thus, the solvent water molecules are incorporated into the interlayer space and are involved in bonding with noncoordinated triazole N atoms and carboxylate O4 atoms [O8—H3W···O4 = 2.974 (3) Å; O8—H2W···N5v = 3.093 (4) Å; symmetry code: (v) -x + 1, -y, -z + 1]. This is accompanied by weak C—H···O bonding of the triazole ring [C···O = 3.078 (3) and 3.098 (3) Å; Table 2 and Fig. 3], which together support additional links between the clusters related by translation parallel to the x axis (symmetry code: x - 1, y, z). Therefore, the entire supramolecular architecture in (I) may be regarded as a 12-connected net corresponding to hexagonal closest packing (hcp) (Fig. 4).

In brief, the title compound reveals a potential for the construction of highly-connected coordination frameworks utilizing polynuclear secondary building blocks and complementary carboxylate and triazole bridges. The study introduces also a new type of bis(triazole) ligand, which may find wider applications for supramolecular synthesis.

Related literature top

For related literature, see: Biradha et al. (1998); Choi et al. (2007); Habib et al. (2008); Kahn et al. (1992); Knuuttila (1982); Koningsbruggen et al. (1997); Li et al. (2005); Liu et al. (2003); Lysenko et al. (2006); Mezei et al. (2004); Zhou et al. (2005).

Experimental top

The tr2ad ligand was prepared in 70% yield by reacting adamantane-1,3-diamine and dimethylformamide azine in boiling xylene in the presence of TsOH as catalyst; the product was crystallized from water as the trihydrate tr2ad.3H2O. For the synthesis of the title compound, Cu(AcO)2.H2O (6.0 mg, 0.03 mmol) 1,3,5-benzenetricarboxylic acid (6.3 mg, 0.03 mmol), tr2ad.3H2O (8.9 mg, 0.03 mmol) and water (7 ml) in a Teflon vessel were placed in a steel autoclave, heated at 453 K for 24 h and then cooled to room temperature over a period of 48 h, affording light-green plates of (I) (yield 85%, 8.1 mg).

Refinement top

All H atoms were located from difference maps and then refined as riding, with O—H distances constrained to 0.85 Å, C—H(aromatic) distances constrained to 0.94 Å and C—H(adamantane) distances constrained to 0.98 Å, and with Uiso(H) equal to 1.2Ueq(C) or 1.5Ueq(O). H atoms of the water molecule were also located and then fixed with O—H bond distances of 0.85 Å and an H—O—H bond angle of 108°. The U values of the water molecule are appreciably larger than those of the rest of the structure.

Computing details top

Data collection: IPDS Software (Stoe & Cie, 2000); cell refinement: IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) x - 1/2, -y + 1/2, z - 1/2; (ii) -x + 1/2, y + 1/2, -z + 1/2; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1/2, y + 1/2, -z + 3/2.]
[Figure 2] Fig. 2. The carboxylate-bridged subtopology in the structure of (I), in the form of a planar 3,6-connected net supported by dihydroxotetracopper(II) and 1,3,5-benzenetricarboxylate nodes. O atoms are shaded gray and dashed lines indicate hydrogen bonds. [Symmetry codes: (ii) -x + 1/2, y + 1/2, -z + 1/2; (iii) -x + 1, -y + 1, -z + 1.]
[Figure 3] Fig. 3. The interconnection of metal/carboxylate layers (which are orthogonal to the plane of the figure) by tr2ad ligands in (I), showing a set of O—H···O, O—H···N and C—H···O bonds. Note that hydrogen-bonded water molecules (O8) provide additional links between the hydroxide–copper clusters. Dashed lines indicate hydrogen bonding, O atoms are shaded gray, N and Cu atoms are shown as crossed circles, and methylene H atoms have been omitted for clarity. [Symmetry codes: (v) -x + 1, -y, -z + 1; (vi) x, y, z + 1.]
[Figure 4] Fig. 4. A schematic representation of the three-dimensional topology in (I), in the form of a 12-connected framework (hexagonal closest packing) that considers the hydroxide–copper clusters as the net nodes. Bold lines show links to carboxylate-bridged nodes, open lines are bis(triazole) bridges and dashed lines indicate hydrogen bonding with solvent water molecules.
poly[bis[µ3-adamantane-1,3-bis(1,2,4-triazol-4-yl)-κ3N:N':N''] -bis(µ4-benzene-1,3,5-tricarboxylato-κ4O:O':O'':O''') -bis(µ3-hydroxido)tetracopper(II) dihydrate] top
Crystal data top
[Cu4(OH)2(C14H18N6)2(C9H3O6)2]·2H2OF(000) = 1304
Mr = 1279.12Dx = 1.798 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.1122 (5) ÅCell parameters from 8000 reflections
b = 18.9068 (7) Åθ = 2.2–26.0°
c = 13.3503 (5) ŵ = 1.87 mm1
β = 112.241 (2)°T = 213 K
V = 2362.53 (17) Å3Plate, green
Z = 20.22 × 0.18 × 0.11 mm
Data collection top
Stoe IPDS
diffractometer
4592 independent reflections
Radiation source: fine-focus sealed tube3851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ oscillation scansθmax = 26.0°, θmin = 2.2°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 1212
Tmin = 0.684, Tmax = 0.821k = 2222
18636 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
4592 reflections(Δ/σ)max = 0.002
352 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cu4(OH)2(C14H18N6)2(C9H3O6)2]·2H2OV = 2362.53 (17) Å3
Mr = 1279.12Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.1122 (5) ŵ = 1.87 mm1
b = 18.9068 (7) ÅT = 213 K
c = 13.3503 (5) Å0.22 × 0.18 × 0.11 mm
β = 112.241 (2)°
Data collection top
Stoe IPDS
diffractometer
4592 independent reflections
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
3851 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.821Rint = 0.050
18636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 0.99Δρmax = 1.18 e Å3
4592 reflectionsΔρmin = 0.56 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26068 (3)0.469671 (15)0.29288 (2)0.01235 (9)
Cu20.40469 (3)0.491597 (15)0.56472 (2)0.01273 (9)
O10.38520 (16)0.52312 (3)0.42053 (12)0.0124 (3)
H1W0.36400.56680.41290.019*
O20.37469 (17)0.38473 (9)0.35256 (12)0.0164 (3)
O30.34082 (19)0.38453 (9)0.51024 (13)0.0190 (4)
O40.36772 (17)0.05199 (9)0.27104 (13)0.0185 (4)
O50.22279 (18)0.14151 (9)0.18524 (13)0.0208 (4)
O60.63940 (19)0.08103 (10)0.66757 (13)0.0235 (4)
O70.56927 (18)0.16865 (10)0.75040 (13)0.0218 (4)
O80.6695 (3)0.0031 (2)0.3479 (3)0.0921 (13)
H2W0.68440.00240.28990.138*
H3W0.58380.01690.33130.138*
N10.4618 (2)0.45631 (11)0.71565 (15)0.0156 (4)
N20.5829 (2)0.48624 (11)0.79143 (16)0.0181 (4)
N30.5146 (2)0.39676 (11)0.86645 (15)0.0146 (4)
N40.2352 (2)0.06286 (12)0.92189 (16)0.0193 (4)
N50.3266 (2)0.05384 (12)0.86811 (18)0.0251 (5)
N60.3607 (2)0.16003 (11)0.94429 (16)0.0179 (4)
C10.4231 (2)0.40341 (14)0.76151 (18)0.0178 (5)
H10.34360.37420.72700.021*
C20.6118 (3)0.44991 (13)0.88059 (18)0.0179 (5)
H20.68920.45910.94570.021*
C30.2562 (3)0.12622 (14)0.9650 (2)0.0201 (5)
H30.20550.14541.00480.024*
C40.4014 (3)0.11254 (15)0.8839 (2)0.0260 (6)
H40.47360.12090.85710.031*
C50.5063 (2)0.34774 (13)0.95240 (17)0.0136 (5)
C60.4337 (2)0.27796 (13)0.90010 (18)0.0151 (5)
H6A0.48780.25550.86140.018*
H6B0.33660.28730.84830.018*
C70.4292 (2)0.22883 (13)0.99125 (18)0.0155 (5)
C80.3430 (3)0.26460 (14)1.0501 (2)0.0203 (5)
H8A0.33660.23301.10630.024*
H8B0.24580.27450.99870.024*
C90.4166 (3)0.33403 (14)1.1017 (2)0.0234 (5)
H90.36130.35681.14020.028*
C100.4222 (3)0.38384 (14)1.0120 (2)0.0200 (5)
H10A0.32510.39450.96120.024*
H10B0.46870.42841.04390.024*
C110.6588 (2)0.33215 (14)1.03202 (19)0.0186 (5)
H11A0.70700.37641.06360.022*
H11B0.71330.30940.99380.022*
C120.6528 (3)0.28298 (15)1.1224 (2)0.0243 (6)
H120.75120.27341.17420.029*
C130.5813 (3)0.21293 (14)1.0720 (2)0.0221 (5)
H13A0.57760.18101.12870.027*
H13B0.63650.18991.03470.027*
C140.5684 (3)0.31884 (16)1.1820 (2)0.0288 (6)
H14A0.61530.36311.21470.035*
H14B0.56500.28801.24000.035*
C150.3710 (2)0.35469 (13)0.43742 (17)0.0135 (4)
C160.3224 (2)0.11582 (13)0.26474 (17)0.0139 (5)
C170.5770 (2)0.13964 (13)0.66935 (18)0.0144 (5)
C180.4072 (2)0.27715 (13)0.44860 (18)0.0140 (5)
C190.3638 (2)0.23499 (13)0.35561 (18)0.0144 (5)
H190.31620.25570.28740.017*
C200.3907 (2)0.16211 (13)0.36334 (18)0.0144 (5)
C210.4669 (2)0.13240 (13)0.46532 (18)0.0146 (5)
H210.49120.08420.47080.018*
C220.5069 (2)0.17396 (13)0.55891 (17)0.0134 (4)
C230.4751 (2)0.24598 (13)0.55069 (18)0.0134 (4)
H230.49920.27370.61360.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01570 (15)0.00763 (17)0.00932 (14)0.00101 (10)0.00024 (10)0.00026 (10)
Cu20.01599 (15)0.01211 (17)0.00947 (14)0.00338 (10)0.00409 (11)0.00196 (10)
O10.0156 (7)0.0088 (9)0.0112 (7)0.0024 (6)0.0032 (6)0.0001 (6)
O20.0228 (8)0.0091 (9)0.0152 (8)0.0017 (6)0.0048 (7)0.0016 (6)
O30.0304 (9)0.0103 (9)0.0174 (8)0.0019 (7)0.0101 (7)0.0020 (6)
O40.0198 (8)0.0093 (9)0.0204 (8)0.0008 (6)0.0008 (7)0.0033 (7)
O50.0274 (9)0.0113 (9)0.0141 (8)0.0004 (7)0.0030 (7)0.0011 (6)
O60.0320 (10)0.0127 (10)0.0154 (8)0.0066 (7)0.0027 (7)0.0002 (7)
O70.0236 (9)0.0277 (11)0.0146 (8)0.0039 (7)0.0079 (7)0.0023 (7)
O80.0381 (15)0.126 (3)0.091 (2)0.0069 (17)0.0012 (15)0.063 (2)
N10.0172 (9)0.0150 (11)0.0131 (9)0.0002 (8)0.0039 (7)0.0004 (8)
N20.0225 (10)0.0155 (11)0.0134 (9)0.0032 (8)0.0037 (8)0.0000 (8)
N30.0159 (9)0.0147 (11)0.0120 (9)0.0023 (8)0.0038 (7)0.0012 (8)
N40.0237 (10)0.0174 (12)0.0192 (10)0.0051 (8)0.0107 (8)0.0018 (8)
N50.0300 (11)0.0202 (13)0.0325 (12)0.0062 (9)0.0203 (10)0.0065 (10)
N60.0227 (10)0.0137 (12)0.0202 (10)0.0043 (8)0.0114 (8)0.0007 (8)
C10.0161 (11)0.0207 (14)0.0135 (11)0.0025 (9)0.0020 (9)0.0032 (9)
C20.0231 (12)0.0141 (13)0.0134 (11)0.0046 (9)0.0035 (9)0.0002 (9)
C30.0258 (12)0.0175 (14)0.0209 (12)0.0068 (10)0.0135 (10)0.0040 (10)
C40.0319 (14)0.0207 (15)0.0346 (14)0.0059 (11)0.0231 (12)0.0058 (11)
C50.0156 (11)0.0135 (13)0.0111 (10)0.0012 (9)0.0044 (8)0.0027 (8)
C60.0164 (11)0.0149 (13)0.0134 (10)0.0022 (9)0.0051 (8)0.0007 (9)
C70.0180 (11)0.0126 (13)0.0162 (11)0.0041 (9)0.0067 (9)0.0025 (9)
C80.0263 (12)0.0181 (14)0.0216 (12)0.0047 (10)0.0148 (10)0.0015 (10)
C90.0356 (14)0.0179 (14)0.0238 (12)0.0056 (11)0.0194 (11)0.0041 (10)
C100.0261 (12)0.0141 (13)0.0229 (12)0.0008 (10)0.0127 (10)0.0013 (10)
C110.0153 (11)0.0193 (14)0.0174 (11)0.0037 (9)0.0018 (9)0.0036 (10)
C120.0212 (12)0.0254 (15)0.0176 (12)0.0042 (10)0.0025 (9)0.0091 (10)
C130.0219 (12)0.0181 (14)0.0238 (12)0.0011 (10)0.0058 (10)0.0091 (10)
C140.0429 (16)0.0270 (16)0.0141 (12)0.0148 (12)0.0080 (11)0.0008 (10)
C150.0121 (10)0.0107 (12)0.0133 (10)0.0024 (8)0.0001 (8)0.0007 (8)
C160.0171 (11)0.0116 (13)0.0117 (10)0.0024 (9)0.0042 (9)0.0004 (9)
C170.0131 (10)0.0099 (12)0.0161 (11)0.0029 (8)0.0011 (9)0.0020 (9)
C180.0148 (10)0.0101 (12)0.0151 (11)0.0004 (8)0.0034 (8)0.0007 (8)
C190.0181 (11)0.0107 (12)0.0116 (10)0.0001 (8)0.0023 (9)0.0015 (8)
C200.0156 (10)0.0125 (13)0.0131 (10)0.0004 (8)0.0031 (8)0.0005 (9)
C210.0160 (11)0.0076 (12)0.0168 (11)0.0018 (8)0.0022 (9)0.0013 (9)
C220.0109 (10)0.0139 (12)0.0125 (10)0.0005 (8)0.0012 (8)0.0020 (9)
C230.0140 (10)0.0120 (12)0.0122 (10)0.0016 (8)0.0026 (8)0.0014 (8)
Geometric parameters (Å, º) top
Cu1—O6i1.9153 (17)C5—C111.534 (3)
Cu1—O21.9616 (16)C5—C61.542 (3)
Cu1—O11.9715 (14)C6—C71.545 (3)
Cu1—O4ii1.9993 (17)C6—H6A0.9800
Cu1—N2iii2.411 (2)C6—H6B0.9800
Cu2—O11.9525 (14)C7—C81.534 (3)
Cu2—N11.9893 (19)C7—C131.537 (3)
Cu2—N4iv2.010 (2)C8—C91.537 (4)
Cu2—O1iii2.0770 (15)C8—H8A0.9800
Cu2—O32.1652 (18)C8—H8B0.9800
Cu2—Cu2iii3.0536 (5)C9—C141.531 (4)
O1—H1W0.8500C9—C101.541 (3)
O2—C151.280 (3)C9—H90.9900
O3—C151.257 (3)C10—H10A0.9800
O4—C161.282 (3)C10—H10B0.9800
O5—C161.252 (3)C11—C121.543 (3)
O6—C171.280 (3)C11—H11A0.9800
O7—C171.242 (3)C11—H11B0.9800
O8—H2W0.8500C12—C141.528 (4)
O8—H3W0.8500C12—C131.537 (4)
N1—C11.308 (3)C12—H120.9900
N1—N21.380 (3)C13—H13A0.9800
N2—C21.308 (3)C13—H13B0.9800
N3—C11.361 (3)C14—H14A0.9800
N3—C21.368 (3)C14—H14B0.9800
N3—C51.502 (3)C15—C181.505 (3)
N4—C31.311 (3)C16—C201.513 (3)
N4—N51.379 (3)C17—C221.519 (3)
N5—C41.314 (4)C18—C191.399 (3)
N6—C31.350 (3)C18—C231.403 (3)
N6—C41.370 (3)C19—C201.401 (3)
N6—C71.495 (3)C19—H190.9400
C1—H10.9400C20—C211.403 (3)
C2—H20.9400C21—C221.400 (3)
C3—H30.9400C21—H210.9400
C4—H40.9400C22—C231.394 (3)
C5—C101.528 (3)C23—H230.9400
O6i—Cu1—O291.64 (7)N6—C7—C8109.58 (18)
O6i—Cu1—O1179.15 (6)N6—C7—C13107.8 (2)
O2—Cu1—O189.07 (5)C8—C7—C13109.81 (19)
O6i—Cu1—O4ii85.36 (7)N6—C7—C6109.87 (18)
O2—Cu1—O4ii175.99 (7)C8—C7—C6109.3 (2)
O1—Cu1—O4ii93.96 (5)C13—C7—C6110.49 (18)
O6i—Cu1—N2iii94.68 (7)C7—C8—C9109.47 (19)
O2—Cu1—N2iii94.82 (7)C7—C8—H8A109.8
O1—Cu1—N2iii84.78 (7)C9—C8—H8A109.8
O4ii—Cu1—N2iii88.08 (7)C7—C8—H8B109.8
O1—Cu2—N1169.48 (7)C9—C8—H8B109.8
O1—Cu2—N4iv94.09 (6)H8A—C8—H8B108.2
N1—Cu2—N4iv94.53 (8)C14—C9—C8109.9 (2)
O1—Cu2—O1iii81.51 (6)C14—C9—C10109.7 (2)
N1—Cu2—O1iii87.98 (7)C8—C9—C10109.1 (2)
N4iv—Cu2—O1iii144.16 (7)C14—C9—H9109.4
O1—Cu2—O392.77 (5)C8—C9—H9109.4
N1—Cu2—O387.83 (7)C10—C9—H9109.4
N4iv—Cu2—O3121.73 (8)C5—C10—C9108.9 (2)
O1iii—Cu2—O394.07 (5)C5—C10—H10A109.9
O1—Cu2—Cu2iii42.28 (4)C9—C10—H10A109.9
N1—Cu2—Cu2iii127.20 (6)C5—C10—H10B109.9
N4iv—Cu2—Cu2iii126.65 (6)C9—C10—H10B109.9
O1iii—Cu2—Cu2iii39.23 (4)H10A—C10—H10B108.3
O3—Cu2—Cu2iii94.54 (5)C5—C11—C12109.30 (19)
Cu2—O1—Cu1119.26 (6)C5—C11—H11A109.8
Cu2—O1—Cu2iii98.49 (6)C12—C11—H11A109.8
Cu1—O1—Cu2iii108.00 (6)C5—C11—H11B109.8
Cu2—O1—H1W110.0C12—C11—H11B109.8
Cu1—O1—H1W110.2H11A—C11—H11B108.3
Cu2iii—O1—H1W110.1C14—C12—C13110.4 (2)
C15—O2—Cu1120.86 (15)C14—C12—C11109.6 (2)
C15—O3—Cu2123.39 (15)C13—C12—C11109.1 (2)
C16—O4—Cu1v123.11 (14)C14—C12—H12109.2
C17—O6—Cu1vi125.05 (15)C13—C12—H12109.2
H2W—O8—H3W108.4C11—C12—H12109.2
C1—N1—N2108.06 (18)C12—C13—C7108.6 (2)
C1—N1—Cu2135.00 (17)C12—C13—H13A110.0
N2—N1—Cu2116.22 (15)C7—C13—H13A110.0
C2—N2—N1106.42 (19)C12—C13—H13B110.0
C2—N2—Cu1iii130.24 (17)C7—C13—H13B110.0
N1—N2—Cu1iii110.87 (13)H13A—C13—H13B108.4
C1—N3—C2104.31 (19)C12—C14—C9109.2 (2)
C1—N3—C5129.09 (19)C12—C14—H14A109.8
C2—N3—C5126.36 (19)C9—C14—H14A109.8
C3—N4—N5108.2 (2)C12—C14—H14B109.8
C3—N4—Cu2vii125.16 (16)C9—C14—H14B109.8
N5—N4—Cu2vii126.62 (16)H14A—C14—H14B108.3
C4—N5—N4105.7 (2)O3—C15—O2125.6 (2)
C3—N6—C4104.0 (2)O3—C15—C18118.8 (2)
C3—N6—C7126.9 (2)O2—C15—C18115.6 (2)
C4—N6—C7128.5 (2)O5—C16—O4125.0 (2)
N1—C1—N3110.2 (2)O5—C16—C20118.0 (2)
N1—C1—H1124.9O4—C16—C20116.96 (19)
N3—C1—H1124.9O7—C17—O6126.3 (2)
N2—C2—N3111.0 (2)O7—C17—C22119.8 (2)
N2—C2—H2124.5O6—C17—C22113.8 (2)
N3—C2—H2124.5C19—C18—C23119.8 (2)
N4—C3—N6110.6 (2)C19—C18—C15119.0 (2)
N4—C3—H3124.7C23—C18—C15121.1 (2)
N6—C3—H3124.7C18—C19—C20120.5 (2)
N5—C4—N6111.4 (2)C18—C19—H19119.7
N5—C4—H4124.3C20—C19—H19119.7
N6—C4—H4124.3C19—C20—C21119.0 (2)
N3—C5—C10108.97 (19)C19—C20—C16119.5 (2)
N3—C5—C11108.42 (18)C21—C20—C16121.0 (2)
C10—C5—C11109.66 (19)C22—C21—C20120.6 (2)
N3—C5—C6109.67 (17)C22—C21—H21119.7
C10—C5—C6110.75 (19)C20—C21—H21119.7
C11—C5—C6109.32 (19)C23—C22—C21119.9 (2)
C5—C6—C7107.97 (18)C23—C22—C17120.2 (2)
C5—C6—H6A110.1C21—C22—C17119.9 (2)
C7—C6—H6A110.1C22—C23—C18120.0 (2)
C5—C6—H6B110.1C22—C23—H23120.0
C7—C6—H6B110.1C18—C23—H23120.0
H6A—C6—H6B108.4
N1—Cu2—O1—Cu1115.5 (4)C4—N6—C7—C8178.5 (2)
N4iv—Cu2—O1—Cu199.58 (8)C3—N6—C7—C13107.8 (3)
O1iii—Cu2—O1—Cu1116.22 (6)C4—N6—C7—C1362.1 (3)
O3—Cu2—O1—Cu122.52 (7)C3—N6—C7—C6131.7 (2)
Cu2iii—Cu2—O1—Cu1116.22 (6)C4—N6—C7—C658.4 (3)
N1—Cu2—O1—Cu2iii0.7 (4)C5—C6—C7—N6179.46 (18)
N4iv—Cu2—O1—Cu2iii144.20 (7)C5—C6—C7—C860.3 (2)
O1iii—Cu2—O1—Cu2iii0.0C5—C6—C7—C1360.6 (2)
O3—Cu2—O1—Cu2iii93.70 (6)N6—C7—C8—C9178.0 (2)
O2—Cu1—O1—Cu257.64 (7)C13—C7—C8—C959.8 (3)
O4ii—Cu1—O1—Cu2119.73 (7)C6—C7—C8—C961.6 (3)
N2iii—Cu1—O1—Cu2152.56 (8)C7—C8—C9—C1459.4 (3)
O2—Cu1—O1—Cu2iii53.47 (6)C7—C8—C9—C1060.9 (3)
O4ii—Cu1—O1—Cu2iii129.16 (6)N3—C5—C10—C9178.86 (19)
N2iii—Cu1—O1—Cu2iii41.46 (6)C11—C5—C10—C960.3 (3)
O6i—Cu1—O2—C15111.37 (17)C6—C5—C10—C960.4 (2)
O1—Cu1—O2—C1569.11 (17)C14—C9—C10—C560.7 (3)
N2iii—Cu1—O2—C15153.79 (17)C8—C9—C10—C559.8 (3)
O1—Cu2—O3—C1534.37 (18)N3—C5—C11—C12178.9 (2)
N1—Cu2—O3—C15135.12 (18)C10—C5—C11—C1260.0 (3)
N4iv—Cu2—O3—C15130.90 (18)C6—C5—C11—C1261.6 (3)
O1iii—Cu2—O3—C1547.30 (18)C5—C11—C12—C1459.7 (3)
Cu2iii—Cu2—O3—C157.96 (18)C5—C11—C12—C1361.2 (3)
O1—Cu2—N1—C1119.4 (4)C14—C12—C13—C760.3 (3)
N4iv—Cu2—N1—C195.7 (2)C11—C12—C13—C760.2 (3)
O1iii—Cu2—N1—C1120.2 (2)N6—C7—C13—C12179.17 (19)
O3—Cu2—N1—C126.0 (2)C8—C7—C13—C1259.8 (3)
Cu2iii—Cu2—N1—C1120.0 (2)C6—C7—C13—C1260.8 (3)
O1—Cu2—N1—N249.5 (5)C13—C12—C14—C960.2 (3)
N4iv—Cu2—N1—N295.39 (17)C11—C12—C14—C960.0 (3)
O1iii—Cu2—N1—N248.79 (16)C8—C9—C14—C1259.3 (3)
O3—Cu2—N1—N2142.94 (17)C10—C9—C14—C1260.7 (3)
Cu2iii—Cu2—N1—N248.89 (19)Cu2—O3—C15—O236.9 (3)
C1—N1—N2—C20.2 (3)Cu2—O3—C15—C18142.69 (17)
Cu2—N1—N2—C2172.02 (16)Cu1—O2—C15—O325.7 (3)
C1—N1—N2—Cu1iii146.21 (16)Cu1—O2—C15—C18154.69 (15)
Cu2—N1—N2—Cu1iii25.59 (19)Cu1v—O4—C16—O535.7 (3)
C3—N4—N5—C41.4 (3)Cu1v—O4—C16—C20141.37 (16)
Cu2vii—N4—N5—C4177.69 (19)Cu1vi—O6—C17—O79.8 (3)
N2—N1—C1—N30.1 (3)Cu1vi—O6—C17—C22170.73 (15)
Cu2—N1—C1—N3169.67 (17)O3—C15—C18—C19144.2 (2)
C2—N3—C1—N10.1 (3)O2—C15—C18—C1936.1 (3)
C5—N3—C1—N1174.7 (2)O3—C15—C18—C2331.6 (3)
N1—N2—C2—N30.3 (3)O2—C15—C18—C23148.0 (2)
Cu1iii—N2—C2—N3137.13 (18)C23—C18—C19—C201.6 (3)
C1—N3—C2—N20.2 (3)C15—C18—C19—C20177.5 (2)
C5—N3—C2—N2175.0 (2)C18—C19—C20—C212.5 (3)
N5—N4—C3—N61.3 (3)C18—C19—C20—C16170.1 (2)
Cu2vii—N4—C3—N6177.83 (16)O5—C16—C20—C1913.5 (3)
C4—N6—C3—N40.6 (3)O4—C16—C20—C19169.2 (2)
C7—N6—C3—N4171.2 (2)O5—C16—C20—C21158.9 (2)
N4—N5—C4—N61.0 (3)O4—C16—C20—C2118.4 (3)
C3—N6—C4—N50.3 (3)C19—C20—C21—C224.4 (3)
C7—N6—C4—N5172.0 (2)C16—C20—C21—C22168.1 (2)
C1—N3—C5—C1089.6 (3)C20—C21—C22—C232.1 (3)
C2—N3—C5—C1084.0 (3)C20—C21—C22—C17174.3 (2)
C1—N3—C5—C11151.1 (2)O7—C17—C22—C2320.7 (3)
C2—N3—C5—C1135.3 (3)O6—C17—C22—C23159.8 (2)
C1—N3—C5—C631.8 (3)O7—C17—C22—C21155.7 (2)
C2—N3—C5—C6154.6 (2)O6—C17—C22—C2123.8 (3)
N3—C5—C6—C7179.26 (18)C21—C22—C23—C182.0 (3)
C10—C5—C6—C760.4 (2)C17—C22—C23—C18178.5 (2)
C11—C5—C6—C760.5 (2)C19—C18—C23—C223.9 (3)
C3—N6—C7—C811.6 (3)C15—C18—C23—C22179.7 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+3/2; (v) x+1/2, y1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O5ii0.851.902.652 (2)147
O8—H2W···N5viii0.852.293.093 (4)158
O8—H3W···O40.852.132.974 (3)173
C4—H4···O70.942.203.078 (3)156
C3—H3···O5ix0.942.353.098 (3)136
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (viii) x+1, y, z+1; (ix) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu4(OH)2(C14H18N6)2(C9H3O6)2]·2H2O
Mr1279.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)213
a, b, c (Å)10.1122 (5), 18.9068 (7), 13.3503 (5)
β (°) 112.241 (2)
V3)2362.53 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.22 × 0.18 × 0.11
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
Tmin, Tmax0.684, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
18636, 4592, 3851
Rint0.050
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 0.99
No. of reflections4592
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.56

Computer programs: IPDS Software (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Version 1.70.01; Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—O6i1.9153 (17)Cu2—O11.9525 (14)
Cu1—O21.9616 (16)Cu2—N11.9893 (19)
Cu1—O11.9715 (14)Cu2—N4iv2.010 (2)
Cu1—O4ii1.9993 (17)Cu2—O1iii2.0770 (15)
Cu1—N2iii2.411 (2)Cu2—O32.1652 (18)
O6i—Cu1—O291.64 (7)N1—Cu2—N4iv94.53 (8)
O6i—Cu1—O1179.15 (6)O1—Cu2—O1iii81.51 (6)
O2—Cu1—O189.07 (5)N1—Cu2—O1iii87.98 (7)
O6i—Cu1—O4ii85.36 (7)N4iv—Cu2—O1iii144.16 (7)
O2—Cu1—O4ii175.99 (7)O1—Cu2—O392.77 (5)
O1—Cu1—O4ii93.96 (5)N1—Cu2—O387.83 (7)
O6i—Cu1—N2iii94.68 (7)N4iv—Cu2—O3121.73 (8)
O2—Cu1—N2iii94.82 (7)O1iii—Cu2—O394.07 (5)
O1—Cu1—N2iii84.78 (7)Cu2—O1—Cu1119.26 (6)
O4ii—Cu1—N2iii88.08 (7)Cu2—O1—Cu2iii98.49 (6)
O1—Cu2—N1169.48 (7)Cu1—O1—Cu2iii108.00 (6)
O1—Cu2—N4iv94.09 (6)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O5ii0.851.902.652 (2)147
O8—H2W···N5v0.852.293.093 (4)158
O8—H3W···O40.852.132.974 (3)173
C4—H4···O70.942.203.078 (3)156
C3—H3···O5vi0.942.353.098 (3)136
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (v) x+1, y, z+1; (vi) x, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds