Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The ferrierite crystal structure has often been subject to discussion because of the possible lowering of symmetry from the space group Immm. It mainly occurs in nature with a fibrous crystal habit, and because of the existence of line/planar defects in the framework, texture and preferred orientation effects it has been difficult to obtain an exact crystallographic model based only on the results from powder diffraction data. Therefore, nano-single-crystal diffraction and tomography data have been combined in order to improve the refinement with a meaningful model. High-quality single-crystal data, providing reliable structural information, and tomography images have been used as input for a Rietveld refinement which took into account a phenomenological description of stacking disorder and the analytical description of the preferred orientation, by means of spherical harmonics for strong texture effects. This is one of the first examples of application of synchrotron nano-diffraction for the structure solution of fibrous minerals of micrometre to nanometre size. The high quality of the crystals allowed collection of single-crystal X-ray diffraction data of up to 0.6 Å resolution, leading to an unambiguous solution and precise anisotropic refinement. Nano-single-crystal diffraction and phase contrast tomography data were collected at ID11 and the high-resolution powder diffraction patterns at ID22 of the European Synchrotron Radiation Facility. This detailed crystallographic characterization provides a basis for understanding the potential of ferrierite for toxicity and carcinogenicity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576719013980/kc5102sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576719013980/kc5102Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576719013980/kc5102sup3.pdf
Other useful pictures and tables for the description of the structure of the ferrierite

CCDC reference: 1959269

Computing details top

Program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(I) top
Crystal data top
Al6.24K1.03O77.8Si29.76·4(Mg0.5O2.8)F(000) = 1252
Mr = 2514.66Dx = 2.045 Mg m3
Orthorhombic, ImmmSynchrotron radiation, λ = 0.20645 Å
a = 7.5090 (1) ÅCell parameters from 6211 reflections
b = 14.1395 (1) Åθ = 1.3–6211°
c = 19.2362 (2) ŵ = 0.07 mm1
V = 2042.37 (4) Å3T = 293 K
Z = 1Fibre
Data collection top
Nanoscope ID11
diffractometer
Rint = 0.072
rotation scansθmax = 12.6°, θmin = 1.5°
38588 measured reflectionsh = 1414
3785 independent reflectionsk = 2827
3119 reflections with I > 2σ(I)l = 3030
Refinement top
Refinement on F2117 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.071 w = 1/[σ2(Fo2) + (0.1123P)2 + 0.8578P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.207(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.78 e Å3
3785 reflectionsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.5000001.0000000.4254 (3)0.0508 (13)0.2572
Mg10.5000000.5000000.5000000.0305 (7)
Si10.5000001.0000000.15498 (5)0.0185 (7)0.16
Al10.5000001.0000000.15498 (5)0.0185 (7)0.84
Si20.0000000.70275 (4)0.41582 (3)0.0181 (6)0.64
Al20.0000000.70275 (4)0.41582 (3)0.0181 (6)0.36
Si30.20782 (9)1.0000000.27223 (4)0.0256 (7)
Si40.29377 (6)0.79765 (3)0.32302 (3)0.0218 (6)
O10.0000000.7163 (3)0.5000000.0407 (10)
O20.0000001.0000000.2494 (3)0.0439 (10)
O30.0000000.5892 (2)0.3980 (2)0.0664 (13)
O40.3205 (6)1.0000000.2016 (2)0.0802 (16)
O50.2500000.7500000.2500000.0577 (10)
O60.5000000.7813 (2)0.34276 (18)0.0473 (9)
O70.1806 (3)0.7511 (2)0.38449 (12)0.0584 (9)
O80.2527 (4)0.90928 (14)0.32131 (14)0.0553 (9)
WAT10.2345 (4)0.5000000.5000000.0411 (10)
WAT20.5000000.4348 (9)0.4034 (4)0.073 (4)0.50 (2)
WAT30.5000000.3707 (8)0.4503 (7)0.072 (5)0.398 (19)
WAT40.714 (6)0.884 (2)0.5000000.142 (18)0.37 (4)
WAT50.588 (6)0.819 (7)0.5000000.28 (4)0.35 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.067 (3)0.042 (2)0.043 (2)0.0000.0000.000
Mg10.0213 (9)0.0438 (12)0.0264 (11)0.0000.0000.000
Si10.0205 (7)0.0167 (7)0.0182 (8)0.0000.0000.000
Al10.0205 (7)0.0167 (7)0.0182 (8)0.0000.0000.000
Si20.0185 (7)0.0176 (7)0.0182 (7)0.0000.0000.00023 (17)
Al20.0185 (7)0.0176 (7)0.0182 (7)0.0000.0000.00023 (17)
Si30.0218 (7)0.0248 (7)0.0303 (7)0.0000.0038 (2)0.000
Si40.0182 (6)0.0221 (7)0.0249 (7)0.00156 (12)0.00055 (13)0.00100 (14)
O10.057 (2)0.0429 (17)0.0216 (15)0.0000.0000.000
O20.0247 (13)0.0418 (17)0.065 (3)0.0000.0000.000
O30.121 (4)0.0322 (13)0.0458 (18)0.0000.0000.0126 (12)
O40.0503 (19)0.141 (4)0.050 (2)0.0000.0260 (16)0.000
O50.075 (2)0.0591 (19)0.0388 (16)0.0087 (16)0.0075 (14)0.0168 (14)
O60.0210 (10)0.0614 (18)0.0594 (18)0.0000.0000.0097 (14)
O70.0429 (11)0.0909 (19)0.0415 (12)0.0326 (11)0.0078 (8)0.0109 (11)
O80.0773 (17)0.0278 (9)0.0608 (16)0.0129 (9)0.0125 (11)0.0002 (8)
WAT10.0224 (12)0.067 (2)0.0344 (17)0.0000.0000.000
WAT20.048 (4)0.135 (10)0.037 (4)0.0000.0000.032 (5)
WAT30.047 (4)0.073 (7)0.095 (10)0.0000.0000.059 (7)
WAT40.24 (4)0.12 (2)0.063 (10)0.09 (2)0.0000.000
WAT50.25 (6)0.53 (10)0.08 (2)0.12 (6)0.0000.000
Geometric parameters (Å, º) top
K1—K1i2.870 (12)Mg1—WAT3vii2.064 (8)
K1—O8ii3.017 (5)Si1—O3ix1.622 (3)
K1—O8iii3.017 (5)Si1—O3x1.622 (3)
K1—O8iv3.017 (5)Si1—O41.619 (3)
K1—WAT42.705 (19)Si1—O4ii1.619 (3)
K1—WAT4iv2.71 (2)Si2—O11.6305 (8)
K1—WAT4i2.705 (19)Si2—O31.642 (3)
K1—WAT4v2.705 (19)Si2—O7xi1.6342 (18)
K1—WAT5i3.01 (8)Si2—O71.6342 (18)
K1—WAT5iv3.01 (8)Si3—O21.6211 (16)
K1—WAT53.01 (8)Si3—O41.601 (4)
K1—WAT5v3.01 (8)Si3—O81.628 (2)
Mg1—WAT11.994 (3)Si3—O8iv1.628 (2)
Mg1—WAT1vi1.994 (3)Si4—O51.5921 (5)
Mg1—WAT2vii2.075 (7)Si4—O61.6112 (10)
Mg1—WAT2vi2.075 (7)Si4—O71.5979 (19)
Mg1—WAT22.075 (7)Si4—O81.6085 (19)
Mg1—WAT2viii2.075 (7)WAT2—WAT31.280 (16)
Mg1—WAT3vi2.064 (8)WAT4—WAT51.33 (6)
Mg1—WAT32.064 (8)WAT5—WAT5v1.32 (10)
Mg1—WAT3viii2.064 (8)
K1i—K1—O8iii131.57 (10)WAT1vi—Mg1—WAT3viii90.000 (1)
K1i—K1—O8ii131.57 (10)WAT2—Mg1—WAT2vi180.0
K1i—K1—O8iv131.57 (10)WAT2vi—Mg1—WAT2vii127.2 (8)
K1i—K1—WAT561.6 (8)WAT2—Mg1—WAT2vii52.8 (8)
K1i—K1—WAT5i61.6 (8)WAT2viii—Mg1—WAT2vii180.0
K1i—K1—WAT5iv61.6 (8)WAT2vi—Mg1—WAT2viii52.8 (8)
K1i—K1—WAT5v61.6 (8)WAT2—Mg1—WAT2viii127.2 (8)
O8iv—K1—O8iii96.9 (2)WAT3vi—Mg1—WAT2vi36.0 (5)
O8iv—K1—O8ii75.98 (16)WAT3vi—Mg1—WAT2vii91.2 (7)
O8iii—K1—O8ii50.32 (10)WAT3vii—Mg1—WAT2vi91.2 (7)
WAT4v—K1—K1i58.0 (3)WAT3vi—Mg1—WAT2viii88.8 (7)
WAT4i—K1—K1i58.0 (3)WAT3vii—Mg1—WAT2vii36.0 (5)
WAT4—K1—K1i58.0 (3)WAT3viii—Mg1—WAT2viii36.0 (5)
WAT4iv—K1—K1i58.0 (3)WAT3viii—Mg1—WAT291.2 (7)
WAT4v—K1—O8iii117.4 (8)WAT3vii—Mg1—WAT2viii144.0 (5)
WAT4—K1—O8ii104.1 (9)WAT3viii—Mg1—WAT2vii144.0 (5)
WAT4v—K1—O8ii167.1 (6)WAT3vi—Mg1—WAT2144.0 (5)
WAT4i—K1—O8iii167.1 (6)WAT3—Mg1—WAT2vii88.8 (7)
WAT4iv—K1—O8ii74.3 (4)WAT3viii—Mg1—WAT2vi88.8 (7)
WAT4i—K1—O8ii117.4 (8)WAT3—Mg1—WAT2vi144.0 (5)
WAT4i—K1—O8iv74.3 (4)WAT3vii—Mg1—WAT288.8 (7)
WAT4v—K1—O8iv104.1 (9)WAT3—Mg1—WAT236.0 (5)
WAT4iv—K1—O8iv117.4 (8)WAT3—Mg1—WAT2viii91.2 (7)
WAT4iv—K1—O8iii104.1 (9)WAT3viii—Mg1—WAT3vii180.0
WAT4—K1—O8iii74.3 (4)WAT3vi—Mg1—WAT3vii55.2 (9)
WAT4—K1—O8iv167.1 (6)WAT3viii—Mg1—WAT355.2 (9)
WAT4—K1—WAT4v73 (2)WAT3vi—Mg1—WAT3viii124.8 (9)
WAT4v—K1—WAT4i74.4 (17)WAT3vi—Mg1—WAT3180.0
WAT4iv—K1—WAT4i73 (2)WAT3vii—Mg1—WAT3124.8 (9)
WAT4iv—K1—WAT4v115.9 (5)O3ix—Si1—O3x102.1 (3)
WAT4—K1—WAT4i115.9 (5)O4ii—Si1—O3ix110.38 (12)
WAT4—K1—WAT4iv74.4 (17)O4—Si1—O3ix110.38 (12)
WAT4v—K1—WAT5v26.1 (9)O4ii—Si1—O3x110.38 (12)
WAT4v—K1—WAT5iv113.1 (9)O4—Si1—O3x110.38 (12)
WAT4iv—K1—WAT5i50.4 (17)O4—Si1—O4ii112.8 (4)
WAT4—K1—WAT526.1 (9)O1—Si2—O3108.8 (2)
WAT4—K1—WAT5v50.4 (17)O1—Si2—O7xi108.49 (11)
WAT4iv—K1—WAT597.6 (17)O1—Si2—O7108.49 (11)
WAT4v—K1—WAT5i97.6 (17)O7—Si2—O3109.42 (12)
WAT4v—K1—WAT550.4 (17)O7xi—Si2—O3109.42 (13)
WAT4i—K1—WAT5iv50.4 (17)O7—Si2—O7xi112.2 (2)
WAT4i—K1—WAT5i26.1 (9)O2—Si3—K1142.39 (19)
WAT4—K1—WAT5i113.1 (9)O2—Si3—O8iv110.87 (15)
WAT4i—K1—WAT5v97.6 (17)O2—Si3—O8110.87 (15)
WAT4iv—K1—WAT5v113.1 (9)O4—Si3—K1111.43 (19)
WAT4—K1—WAT5iv97.6 (17)O4—Si3—O2106.2 (3)
WAT4i—K1—WAT5113.1 (9)O4—Si3—O8112.52 (15)
WAT4iv—K1—WAT5iv26.1 (9)O4—Si3—O8iv112.52 (15)
WAT5—K1—O8iii79.6 (7)O8—Si3—K153.94 (10)
WAT5iv—K1—O8ii79.6 (7)O8iv—Si3—K153.94 (10)
WAT5i—K1—O8iv79.6 (7)O8—Si3—O8iv104.00 (18)
WAT5iv—K1—O8iii122.9 (8)O5—Si4—K1149.24 (8)
WAT5v—K1—O8ii144.4 (12)O5—Si4—O6110.21 (13)
WAT5i—K1—O8iii144.4 (12)O5—Si4—O7111.65 (9)
WAT5v—K1—O8iv122.9 (8)O5—Si4—O8110.95 (10)
WAT5v—K1—O8iii95.1 (11)O6—Si4—K166.09 (13)
WAT5i—K1—O8ii95.1 (11)O7—Si4—K198.23 (12)
WAT5—K1—O8iv144.4 (12)O7—Si4—O6106.11 (15)
WAT5iv—K1—O8iv95.1 (11)O7—Si4—O8108.49 (16)
WAT5—K1—O8ii122.9 (8)O8—Si4—K149.50 (10)
WAT5iv—K1—WAT5i25 (2)O8—Si4—O6109.28 (16)
WAT5i—K1—WAT5v117 (2)Si2viii—O1—Si2166.5 (3)
WAT5iv—K1—WAT5v123.1 (17)Si3xii—O2—Si3148.6 (4)
WAT5—K1—WAT5v25 (2)Si1ix—O3—Si2153.1 (3)
WAT5—K1—WAT5i123.1 (17)Si3—O4—Si1155.5 (4)
WAT5—K1—WAT5iv117 (2)Si4—O5—Si4ix180.0
WAT1—Mg1—WAT1vi180.0Si4—O6—Si4iii148.0 (2)
WAT1vi—Mg1—WAT290.000 (1)Si4—O7—Si2152.45 (16)
WAT1vi—Mg1—WAT2viii90.000 (2)Si3—O8—K1100.20 (12)
WAT1vi—Mg1—WAT2vii90.000 (2)Si4—O8—K1106.59 (12)
WAT1—Mg1—WAT2vi90.000 (1)Si4—O8—Si3145.56 (18)
WAT1—Mg1—WAT2vii90.000 (1)WAT3—WAT2—Mg171.5 (4)
WAT1vi—Mg1—WAT2vi90.000 (2)WAT2—WAT3—Mg172.5 (6)
WAT1—Mg1—WAT2viii90.000 (2)K1i—WAT4—K164.1 (5)
WAT1—Mg1—WAT290.000 (2)WAT5—WAT4—K190 (4)
WAT1—Mg1—WAT390.000 (2)WAT5—WAT4—K1i90 (4)
WAT1—Mg1—WAT3viii90.000 (4)K1i—WAT5—K156.9 (17)
WAT1vi—Mg1—WAT3vii90.000 (4)WAT4—WAT5—K164 (4)
WAT1vi—Mg1—WAT390.000 (1)WAT4—WAT5—K1i64 (4)
WAT1—Mg1—WAT3vii90.000 (1)WAT5v—WAT5—K177.3 (10)
WAT1—Mg1—WAT3vi90.000 (1)WAT5v—WAT5—K1i77.3 (10)
WAT1vi—Mg1—WAT3vi90.000 (2)WAT5v—WAT5—WAT4136 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z; (iii) x+1, y, z; (iv) x, y+2, z; (v) x+1, y, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y+1, z; (viii) x, y, z+1; (ix) x+1/2, y+3/2, z+1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x, y, z; (xii) x, y+2, z.
 

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds