Buy article online - an online subscription or single-article purchase is required to access this article.
The ferrierite crystal structure has often been subject to discussion because of the possible lowering of symmetry from the space group Immm. It mainly occurs in nature with a fibrous crystal habit, and because of the existence of line/planar defects in the framework, texture and preferred orientation effects it has been difficult to obtain an exact crystallographic model based only on the results from powder diffraction data. Therefore, nano-single-crystal diffraction and tomography data have been combined in order to improve the refinement with a meaningful model. High-quality single-crystal data, providing reliable structural information, and tomography images have been used as input for a Rietveld refinement which took into account a phenomenological description of stacking disorder and the analytical description of the preferred orientation, by means of spherical harmonics for strong texture effects. This is one of the first examples of application of synchrotron nano-diffraction for the structure solution of fibrous minerals of micrometre to nanometre size. The high quality of the crystals allowed collection of single-crystal X-ray diffraction data of up to 0.6 Å resolution, leading to an unambiguous solution and precise anisotropic refinement. Nano-single-crystal diffraction and phase contrast tomography data were collected at ID11 and the high-resolution powder diffraction patterns at ID22 of the European Synchrotron Radiation Facility. This detailed crystallographic characterization provides a basis for understanding the potential of ferrierite for toxicity and carcinogenicity.
Supporting information
CCDC reference: 1959269
Program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).
Crystal data top
Al6.24K1.03O77.8Si29.76·4(Mg0.5O2.8) | F(000) = 1252 |
Mr = 2514.66 | Dx = 2.045 Mg m−3 |
Orthorhombic, Immm | Synchrotron radiation, λ = 0.20645 Å |
a = 7.5090 (1) Å | Cell parameters from 6211 reflections |
b = 14.1395 (1) Å | θ = 1.3–6211° |
c = 19.2362 (2) Å | µ = 0.07 mm−1 |
V = 2042.37 (4) Å3 | T = 293 K |
Z = 1 | Fibre |
Data collection top
Nanoscope ID11 diffractometer | Rint = 0.072 |
rotation scans | θmax = 12.6°, θmin = 1.5° |
38588 measured reflections | h = −14→14 |
3785 independent reflections | k = −28→27 |
3119 reflections with I > 2σ(I) | l = −30→30 |
Refinement top
Refinement on F2 | 117 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.071 | w = 1/[σ2(Fo2) + (0.1123P)2 + 0.8578P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.207 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.78 e Å−3 |
3785 reflections | Δρmin = −0.46 e Å−3 |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
K1 | 0.500000 | 1.000000 | 0.4254 (3) | 0.0508 (13) | 0.2572 |
Mg1 | 0.500000 | 0.500000 | 0.500000 | 0.0305 (7) | |
Si1 | 0.500000 | 1.000000 | 0.15498 (5) | 0.0185 (7) | 0.16 |
Al1 | 0.500000 | 1.000000 | 0.15498 (5) | 0.0185 (7) | 0.84 |
Si2 | 0.000000 | 0.70275 (4) | 0.41582 (3) | 0.0181 (6) | 0.64 |
Al2 | 0.000000 | 0.70275 (4) | 0.41582 (3) | 0.0181 (6) | 0.36 |
Si3 | 0.20782 (9) | 1.000000 | 0.27223 (4) | 0.0256 (7) | |
Si4 | 0.29377 (6) | 0.79765 (3) | 0.32302 (3) | 0.0218 (6) | |
O1 | 0.000000 | 0.7163 (3) | 0.500000 | 0.0407 (10) | |
O2 | 0.000000 | 1.000000 | 0.2494 (3) | 0.0439 (10) | |
O3 | 0.000000 | 0.5892 (2) | 0.3980 (2) | 0.0664 (13) | |
O4 | 0.3205 (6) | 1.000000 | 0.2016 (2) | 0.0802 (16) | |
O5 | 0.250000 | 0.750000 | 0.250000 | 0.0577 (10) | |
O6 | 0.500000 | 0.7813 (2) | 0.34276 (18) | 0.0473 (9) | |
O7 | 0.1806 (3) | 0.7511 (2) | 0.38449 (12) | 0.0584 (9) | |
O8 | 0.2527 (4) | 0.90928 (14) | 0.32131 (14) | 0.0553 (9) | |
WAT1 | 0.2345 (4) | 0.500000 | 0.500000 | 0.0411 (10) | |
WAT2 | 0.500000 | 0.4348 (9) | 0.4034 (4) | 0.073 (4) | 0.50 (2) |
WAT3 | 0.500000 | 0.3707 (8) | 0.4503 (7) | 0.072 (5) | 0.398 (19) |
WAT4 | 0.714 (6) | 0.884 (2) | 0.500000 | 0.142 (18) | 0.37 (4) |
WAT5 | 0.588 (6) | 0.819 (7) | 0.500000 | 0.28 (4) | 0.35 (5) |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
K1 | 0.067 (3) | 0.042 (2) | 0.043 (2) | 0.000 | 0.000 | 0.000 |
Mg1 | 0.0213 (9) | 0.0438 (12) | 0.0264 (11) | 0.000 | 0.000 | 0.000 |
Si1 | 0.0205 (7) | 0.0167 (7) | 0.0182 (8) | 0.000 | 0.000 | 0.000 |
Al1 | 0.0205 (7) | 0.0167 (7) | 0.0182 (8) | 0.000 | 0.000 | 0.000 |
Si2 | 0.0185 (7) | 0.0176 (7) | 0.0182 (7) | 0.000 | 0.000 | 0.00023 (17) |
Al2 | 0.0185 (7) | 0.0176 (7) | 0.0182 (7) | 0.000 | 0.000 | 0.00023 (17) |
Si3 | 0.0218 (7) | 0.0248 (7) | 0.0303 (7) | 0.000 | 0.0038 (2) | 0.000 |
Si4 | 0.0182 (6) | 0.0221 (7) | 0.0249 (7) | −0.00156 (12) | 0.00055 (13) | 0.00100 (14) |
O1 | 0.057 (2) | 0.0429 (17) | 0.0216 (15) | 0.000 | 0.000 | 0.000 |
O2 | 0.0247 (13) | 0.0418 (17) | 0.065 (3) | 0.000 | 0.000 | 0.000 |
O3 | 0.121 (4) | 0.0322 (13) | 0.0458 (18) | 0.000 | 0.000 | −0.0126 (12) |
O4 | 0.0503 (19) | 0.141 (4) | 0.050 (2) | 0.000 | 0.0260 (16) | 0.000 |
O5 | 0.075 (2) | 0.0591 (19) | 0.0388 (16) | −0.0087 (16) | −0.0075 (14) | −0.0168 (14) |
O6 | 0.0210 (10) | 0.0614 (18) | 0.0594 (18) | 0.000 | 0.000 | 0.0097 (14) |
O7 | 0.0429 (11) | 0.0909 (19) | 0.0415 (12) | −0.0326 (11) | 0.0078 (8) | 0.0109 (11) |
O8 | 0.0773 (17) | 0.0278 (9) | 0.0608 (16) | 0.0129 (9) | −0.0125 (11) | −0.0002 (8) |
WAT1 | 0.0224 (12) | 0.067 (2) | 0.0344 (17) | 0.000 | 0.000 | 0.000 |
WAT2 | 0.048 (4) | 0.135 (10) | 0.037 (4) | 0.000 | 0.000 | −0.032 (5) |
WAT3 | 0.047 (4) | 0.073 (7) | 0.095 (10) | 0.000 | 0.000 | −0.059 (7) |
WAT4 | 0.24 (4) | 0.12 (2) | 0.063 (10) | 0.09 (2) | 0.000 | 0.000 |
WAT5 | 0.25 (6) | 0.53 (10) | 0.08 (2) | −0.12 (6) | 0.000 | 0.000 |
Geometric parameters (Å, º) top
K1—K1i | 2.870 (12) | Mg1—WAT3vii | 2.064 (8) |
K1—O8ii | 3.017 (5) | Si1—O3ix | 1.622 (3) |
K1—O8iii | 3.017 (5) | Si1—O3x | 1.622 (3) |
K1—O8iv | 3.017 (5) | Si1—O4 | 1.619 (3) |
K1—WAT4 | 2.705 (19) | Si1—O4ii | 1.619 (3) |
K1—WAT4iv | 2.71 (2) | Si2—O1 | 1.6305 (8) |
K1—WAT4i | 2.705 (19) | Si2—O3 | 1.642 (3) |
K1—WAT4v | 2.705 (19) | Si2—O7xi | 1.6342 (18) |
K1—WAT5i | 3.01 (8) | Si2—O7 | 1.6342 (18) |
K1—WAT5iv | 3.01 (8) | Si3—O2 | 1.6211 (16) |
K1—WAT5 | 3.01 (8) | Si3—O4 | 1.601 (4) |
K1—WAT5v | 3.01 (8) | Si3—O8 | 1.628 (2) |
Mg1—WAT1 | 1.994 (3) | Si3—O8iv | 1.628 (2) |
Mg1—WAT1vi | 1.994 (3) | Si4—O5 | 1.5921 (5) |
Mg1—WAT2vii | 2.075 (7) | Si4—O6 | 1.6112 (10) |
Mg1—WAT2vi | 2.075 (7) | Si4—O7 | 1.5979 (19) |
Mg1—WAT2 | 2.075 (7) | Si4—O8 | 1.6085 (19) |
Mg1—WAT2viii | 2.075 (7) | WAT2—WAT3 | 1.280 (16) |
Mg1—WAT3vi | 2.064 (8) | WAT4—WAT5 | 1.33 (6) |
Mg1—WAT3 | 2.064 (8) | WAT5—WAT5v | 1.32 (10) |
Mg1—WAT3viii | 2.064 (8) | | |
| | | |
K1i—K1—O8iii | 131.57 (10) | WAT1vi—Mg1—WAT3viii | 90.000 (1) |
K1i—K1—O8ii | 131.57 (10) | WAT2—Mg1—WAT2vi | 180.0 |
K1i—K1—O8iv | 131.57 (10) | WAT2vi—Mg1—WAT2vii | 127.2 (8) |
K1i—K1—WAT5 | 61.6 (8) | WAT2—Mg1—WAT2vii | 52.8 (8) |
K1i—K1—WAT5i | 61.6 (8) | WAT2viii—Mg1—WAT2vii | 180.0 |
K1i—K1—WAT5iv | 61.6 (8) | WAT2vi—Mg1—WAT2viii | 52.8 (8) |
K1i—K1—WAT5v | 61.6 (8) | WAT2—Mg1—WAT2viii | 127.2 (8) |
O8iv—K1—O8iii | 96.9 (2) | WAT3vi—Mg1—WAT2vi | 36.0 (5) |
O8iv—K1—O8ii | 75.98 (16) | WAT3vi—Mg1—WAT2vii | 91.2 (7) |
O8iii—K1—O8ii | 50.32 (10) | WAT3vii—Mg1—WAT2vi | 91.2 (7) |
WAT4v—K1—K1i | 58.0 (3) | WAT3vi—Mg1—WAT2viii | 88.8 (7) |
WAT4i—K1—K1i | 58.0 (3) | WAT3vii—Mg1—WAT2vii | 36.0 (5) |
WAT4—K1—K1i | 58.0 (3) | WAT3viii—Mg1—WAT2viii | 36.0 (5) |
WAT4iv—K1—K1i | 58.0 (3) | WAT3viii—Mg1—WAT2 | 91.2 (7) |
WAT4v—K1—O8iii | 117.4 (8) | WAT3vii—Mg1—WAT2viii | 144.0 (5) |
WAT4—K1—O8ii | 104.1 (9) | WAT3viii—Mg1—WAT2vii | 144.0 (5) |
WAT4v—K1—O8ii | 167.1 (6) | WAT3vi—Mg1—WAT2 | 144.0 (5) |
WAT4i—K1—O8iii | 167.1 (6) | WAT3—Mg1—WAT2vii | 88.8 (7) |
WAT4iv—K1—O8ii | 74.3 (4) | WAT3viii—Mg1—WAT2vi | 88.8 (7) |
WAT4i—K1—O8ii | 117.4 (8) | WAT3—Mg1—WAT2vi | 144.0 (5) |
WAT4i—K1—O8iv | 74.3 (4) | WAT3vii—Mg1—WAT2 | 88.8 (7) |
WAT4v—K1—O8iv | 104.1 (9) | WAT3—Mg1—WAT2 | 36.0 (5) |
WAT4iv—K1—O8iv | 117.4 (8) | WAT3—Mg1—WAT2viii | 91.2 (7) |
WAT4iv—K1—O8iii | 104.1 (9) | WAT3viii—Mg1—WAT3vii | 180.0 |
WAT4—K1—O8iii | 74.3 (4) | WAT3vi—Mg1—WAT3vii | 55.2 (9) |
WAT4—K1—O8iv | 167.1 (6) | WAT3viii—Mg1—WAT3 | 55.2 (9) |
WAT4—K1—WAT4v | 73 (2) | WAT3vi—Mg1—WAT3viii | 124.8 (9) |
WAT4v—K1—WAT4i | 74.4 (17) | WAT3vi—Mg1—WAT3 | 180.0 |
WAT4iv—K1—WAT4i | 73 (2) | WAT3vii—Mg1—WAT3 | 124.8 (9) |
WAT4iv—K1—WAT4v | 115.9 (5) | O3ix—Si1—O3x | 102.1 (3) |
WAT4—K1—WAT4i | 115.9 (5) | O4ii—Si1—O3ix | 110.38 (12) |
WAT4—K1—WAT4iv | 74.4 (17) | O4—Si1—O3ix | 110.38 (12) |
WAT4v—K1—WAT5v | 26.1 (9) | O4ii—Si1—O3x | 110.38 (12) |
WAT4v—K1—WAT5iv | 113.1 (9) | O4—Si1—O3x | 110.38 (12) |
WAT4iv—K1—WAT5i | 50.4 (17) | O4—Si1—O4ii | 112.8 (4) |
WAT4—K1—WAT5 | 26.1 (9) | O1—Si2—O3 | 108.8 (2) |
WAT4—K1—WAT5v | 50.4 (17) | O1—Si2—O7xi | 108.49 (11) |
WAT4iv—K1—WAT5 | 97.6 (17) | O1—Si2—O7 | 108.49 (11) |
WAT4v—K1—WAT5i | 97.6 (17) | O7—Si2—O3 | 109.42 (12) |
WAT4v—K1—WAT5 | 50.4 (17) | O7xi—Si2—O3 | 109.42 (13) |
WAT4i—K1—WAT5iv | 50.4 (17) | O7—Si2—O7xi | 112.2 (2) |
WAT4i—K1—WAT5i | 26.1 (9) | O2—Si3—K1 | 142.39 (19) |
WAT4—K1—WAT5i | 113.1 (9) | O2—Si3—O8iv | 110.87 (15) |
WAT4i—K1—WAT5v | 97.6 (17) | O2—Si3—O8 | 110.87 (15) |
WAT4iv—K1—WAT5v | 113.1 (9) | O4—Si3—K1 | 111.43 (19) |
WAT4—K1—WAT5iv | 97.6 (17) | O4—Si3—O2 | 106.2 (3) |
WAT4i—K1—WAT5 | 113.1 (9) | O4—Si3—O8 | 112.52 (15) |
WAT4iv—K1—WAT5iv | 26.1 (9) | O4—Si3—O8iv | 112.52 (15) |
WAT5—K1—O8iii | 79.6 (7) | O8—Si3—K1 | 53.94 (10) |
WAT5iv—K1—O8ii | 79.6 (7) | O8iv—Si3—K1 | 53.94 (10) |
WAT5i—K1—O8iv | 79.6 (7) | O8—Si3—O8iv | 104.00 (18) |
WAT5iv—K1—O8iii | 122.9 (8) | O5—Si4—K1 | 149.24 (8) |
WAT5v—K1—O8ii | 144.4 (12) | O5—Si4—O6 | 110.21 (13) |
WAT5i—K1—O8iii | 144.4 (12) | O5—Si4—O7 | 111.65 (9) |
WAT5v—K1—O8iv | 122.9 (8) | O5—Si4—O8 | 110.95 (10) |
WAT5v—K1—O8iii | 95.1 (11) | O6—Si4—K1 | 66.09 (13) |
WAT5i—K1—O8ii | 95.1 (11) | O7—Si4—K1 | 98.23 (12) |
WAT5—K1—O8iv | 144.4 (12) | O7—Si4—O6 | 106.11 (15) |
WAT5iv—K1—O8iv | 95.1 (11) | O7—Si4—O8 | 108.49 (16) |
WAT5—K1—O8ii | 122.9 (8) | O8—Si4—K1 | 49.50 (10) |
WAT5iv—K1—WAT5i | 25 (2) | O8—Si4—O6 | 109.28 (16) |
WAT5i—K1—WAT5v | 117 (2) | Si2viii—O1—Si2 | 166.5 (3) |
WAT5iv—K1—WAT5v | 123.1 (17) | Si3xii—O2—Si3 | 148.6 (4) |
WAT5—K1—WAT5v | 25 (2) | Si1ix—O3—Si2 | 153.1 (3) |
WAT5—K1—WAT5i | 123.1 (17) | Si3—O4—Si1 | 155.5 (4) |
WAT5—K1—WAT5iv | 117 (2) | Si4—O5—Si4ix | 180.0 |
WAT1—Mg1—WAT1vi | 180.0 | Si4—O6—Si4iii | 148.0 (2) |
WAT1vi—Mg1—WAT2 | 90.000 (1) | Si4—O7—Si2 | 152.45 (16) |
WAT1vi—Mg1—WAT2viii | 90.000 (2) | Si3—O8—K1 | 100.20 (12) |
WAT1vi—Mg1—WAT2vii | 90.000 (2) | Si4—O8—K1 | 106.59 (12) |
WAT1—Mg1—WAT2vi | 90.000 (1) | Si4—O8—Si3 | 145.56 (18) |
WAT1—Mg1—WAT2vii | 90.000 (1) | WAT3—WAT2—Mg1 | 71.5 (4) |
WAT1vi—Mg1—WAT2vi | 90.000 (2) | WAT2—WAT3—Mg1 | 72.5 (6) |
WAT1—Mg1—WAT2viii | 90.000 (2) | K1i—WAT4—K1 | 64.1 (5) |
WAT1—Mg1—WAT2 | 90.000 (2) | WAT5—WAT4—K1 | 90 (4) |
WAT1—Mg1—WAT3 | 90.000 (2) | WAT5—WAT4—K1i | 90 (4) |
WAT1—Mg1—WAT3viii | 90.000 (4) | K1i—WAT5—K1 | 56.9 (17) |
WAT1vi—Mg1—WAT3vii | 90.000 (4) | WAT4—WAT5—K1 | 64 (4) |
WAT1vi—Mg1—WAT3 | 90.000 (1) | WAT4—WAT5—K1i | 64 (4) |
WAT1—Mg1—WAT3vii | 90.000 (1) | WAT5v—WAT5—K1 | 77.3 (10) |
WAT1—Mg1—WAT3vi | 90.000 (1) | WAT5v—WAT5—K1i | 77.3 (10) |
WAT1vi—Mg1—WAT3vi | 90.000 (2) | WAT5v—WAT5—WAT4 | 136 (4) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+2, z; (iii) −x+1, y, z; (iv) x, −y+2, z; (v) −x+1, y, −z+1; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y+1, z; (viii) x, y, −z+1; (ix) −x+1/2, −y+3/2, −z+1/2; (x) x+1/2, y+1/2, −z+1/2; (xi) −x, y, z; (xii) −x, −y+2, z. |
Subscribe to Journal of Applied Crystallography
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.