Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Rocking curves of micro-channel (MC) water-cooled monochromators are broadened by stresses introduced during fabrication and under X-ray thermal load. This is a problem which will be even more serious with the rise of the fourth-generation synchrotron sources, i.e. the free-electron lasers. The X-ray optics group at the Institute of Physics at the ASCR v.v.i. in Prague is designing, testing and, with company Polovodiče a.s., fabricating novel internally water-cooled Si monochromators. Here three new micro-channel geometries are introduced which reduce rocking-curve enlargement owing to the fabrication to less than 2.5 µrad (∼0.5 arcsec). All three MC designs show less rocking-curve enlargement and smoother topographic images. The designs also show better cooling efficiencies than the classical MC design in finite-element analysis calculations.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds