Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new method of harmonics rejection based on X-ray refractive optics has been proposed. Taking into account the fact that the focal distance of the refractive lens is energy-dependent, the use of an off-axis illumination of the lens immediately leads to spatial separation of the energy spectrum by focusing the fundamental harmonic at the focal point and suppressing the unfocused high-energy radiation with a screen absorber or slit. The experiment was performed at the ESRF ID06 beamline in the in-line geometry using an X-ray transfocator with compound refractive lenses. Using this technique the presence of the third harmonic has been reduced to 10−3. In total, our method enabled suppression of all higher-order harmonics to five orders of magnitude using monochromator detuning. The method is well suited to third-generation synchrotron radiation sources and is very promising for the future ultimate storage rings.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds