Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Characterization of the austenite phase at high temperatures is important for understanding the microstructural evolution during steel processing. The austenite phase structure can be reconstructed from the room-temperature microstructure employing the crystallographic orientation relationship between the parent and product phases. The actual orientation relationships in steels are often calculated on the basis of well known relations (e.g. Kurdjumov–Sachs), which may differ from the experimentally observed orientation relationships. This work introduces a new approach to improve the current state of the art in prior phase reconstruction. The proposed approach consists of two new algorithms that are sequentially applied on an electron backscatter diffraction (EBSD) measured data set of the product phase microstructure: (i) an automated identification of the optimum orientation relationship using the observed misorientation distribution of the entire EBSD scan and (ii) reconstruction of the parent phase microstructure using a random walk clustering technique. The latter identifies groups of closely related grains according to their angular deviation from the proposed orientation relationship. The results were validated by near in situ experimental observations of phase transformation in an Fe–Ni alloy whereby the experimentally measured parent phase structure could be compared point by point with the reconstructed counterpart.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds