Buy article online - an online subscription or single-article purchase is required to access this article.
crystallization communications
Freezing is dangerous to cellular organisms because it causes an increase in the concentration of ions and other solutes in the plasma, denatures biomolecules and ruptures cell membranes. Some cold-adapted organisms can survive at subzero temperatures by producing proteins that bind to and inhibit the growth of ice crystals. To better understand the structure and function of these proteins, the ice-binding protein from Leucosporidium sp. AY30 (LeIBP) was overexpressed, purified and crystallized. The native crystal belonged to space group P43212, with unit-cell parameters a = b = 98.05, c = 106.13 Å. Since LeIBP lacks any cysteine or methionine residues, two leucine residues (Leu69 and Leu155) were substituted by methionine residues in order to obtain selenomethionine-substituted LeIBP for use in multiple-wavelength anomalous diffraction (MAD) phasing. The selenomethionine-substituted mutant crystallized in the same space group as the native protein.