Buy article online - an online subscription or single-article purchase is required to access this article.
research communications
LonA peptidase is a major component of the protein quality-control mechanism in both prokaryotes and the organelles of eukaryotes. Proteins homologous to the N-terminal domain of LonA peptidase, but lacking its other domains, are conserved in several phyla of prokaryotes, including the Xanthomonadales order. However, the function of these homologous proteins (LonNTD-like proteins) is not known. Here, the crystal structure of the LonNTD-like protein from Xanthomonas campestris (XCC3289; UniProt Q8P5P7) is reported at 2.8 Å resolution. The structure was solved by molecular replacement and contains one polypeptide in the asymmetric unit. The structure was refined to an Rfree of 29%. The structure of XCC3289 consists of two domains joined by a long loop. The N-terminal domain (residues 1–112) consists of an α-helix surrounded by β-sheets, whereas the C-terminal domain (residues 123–193) is an α-helical bundle. The fold and spatial orientation of the two domains closely resembles those of the N-terminal domains of the LonA peptidases from Escherichia coli and Mycobacterium avium. The structure is also similar to that of cereblon, a substrate-recognizing component of the E3 ubiquitin ligase complex. The N-terminal domains of both LonA and cereblon are known to be involved in specific protein–protein interactions. This structural analysis suggests that XCC3289 and other LonNTD-like proteins might also be capable of such protein–protein interactions.