Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
An X-ray magnetic circular dichroism (XMCD) study performed at the Ho L2,3-edges in Ho6Fe23 as a function of temperature is presented. It is demonstrated that the anomalous temperature dependence of the Ho L2-edge XMCD signal is due to the magnetic contribution of Fe atoms. By contrast, the Ho L3-edge XMCD directly reflects the temperature dependence of the Ho magnetic moment. By combining the XMCD at both Ho L2- and L3-edges, the possibility of determining the temperature dependence of the Fe magnetic moment is demonstrated. Then, both μHo(T) and μFe(T) have been determined by tuning only the absorption L-edges of Ho. This result opens new possibilities of applying XMCD at these absorption edges to obtain quantitative element-specific magnetic information that is not directly obtained by other experimental tools.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds