Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Key parameters of two-phase flows, such as void fraction and microscale bubble size, shape and velocity, were simultaneously measured using time-resolved X-ray imaging. X-ray phase-contrast imaging was employed to obtain those parameters on microbubbles. The void fraction was estimated from X-ray absorption. The radii of the measured microbubbles were mostly smaller than 20 µm, and the maximum velocity was 39.442 mm s−1, much higher than that in previous studies. The spatial variations of the void fraction were consecutively obtained with a small time interval. This technique would be useful in the experimental analysis of bubbly flows in which microbubbles move at high speed.

Supporting information

wmv

Windows Media Video (WMV) file https://doi.org/10.1107/S1600577513034760/pp5041sup1.wmv
Video clip of a two-phase flow experiment at film boiling state


Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds